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Abstract: We consider a general framework where weaker patterns of identification may

arise: typically, the data generating process is allowed to depend on the sample size. How-

ever, contrary to what is usually done in the literature on weak identification, we do not give

up the efficiency goal of statistical inference: even fragile information should be processed

optimally for the purpose of both efficient estimation and powerful testing. Our main contri-

bution is actually to consider that several patterns of identification may arise simultaneously.

This heterogeneity of identification schemes paves the way for the device of optimal strategies

for inferential use of information of poor quality. More precisely, we focus on a case where

asymptotic efficiency of estimators is well-defined through the variance of asymptotically nor-

mal distributions. Standard efficient estimation procedures still hold, albeit with rates of

convergence slower than usual. We stress that these are feasible without requiring the prior

knowledge of the identification schemes.
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1 Introduction

The Generalized Method of Moments (GMM) provides a computationally convenient method

for inference on the structural parameters of economic models. The method has been applied in

many areas of economics but it was in empirical finance that the power of the method was first

illustrated. Hansen (1982) introduced GMM and presented its fundamental statistical theory.

Hansen and Hodrick (1980) and Hansen and Singleton (1982) showed the potential of the GMM

approach to testing economic theories through their empirical analyzes of, respectively, foreign

exchange markets and asset pricing. In such contexts, the cornerstone of GMM inference is a

set of conditional moment restrictions. More generally, GMM is well suited for the test of an

economic theory every time the theory can be encapsulated in the postulated unpredictability

of some error term u(Yt, θ) given as a known function of p unknown parameters θ ∈ Θ ⊆ Rp

and a vector of observed random variables Yt. Then, the testability of the theory of interest

is akin to the testability of a set of conditional moment restrictions,

Et[u(Yt+1, θ)] = 0 (1.1)

where the operator Et[.] denotes the conditional expectation given available information at

time t. Moreover, under the null hypothesis that the theory summarized by the restrictions

(1.1) is true, these restrictions are supposed to uniquely identify the true unknown value θ0

of the parameters. Then, GMM considers a set of H instruments zt assumed to belong to

the available information at time t and to summarize the testable implications of (1.1) by the

implied unconditional moment restrictions:

E[ϕt(θ)] = 0 where ϕt(θ) = zt ⊗ u(Yt+1, θ) (1.2)

The recent literature on weak instruments (see the seminal work by Stock and Wright (2000))

has stressed that the standard asymptotic theory of GMM inference may be misleading because
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of the insufficient correlation between some instruments zt and some components of the local

explanatory variables of [∂u(Yt+1, θ)/∂θ]. In this case, some of the moment conditions (1.2)

are not only zero at θ0 but rather flat and close to zero in a neighborhood of θ0.

Many asset pricing applications of GMM focus on the study of a pricing kernel as provided by

some financial theory. This pricing kernel is typically either a linear function of the parameters

of interest, as in linear-beta pricing models, or a log-linear one as in most of the equilibrium

based pricing models where parameters of interest are preference parameters. In all these

examples, the weak instruments’ problem simply relates to some lack of predictability of some

asset returns from some lagged variables.

Since the seminal work of Stock and Wright (2000), it is common to capture the impact of the

weakness of instruments by a drifting data generating process (hereafter DGP) such that the

informational content of estimating equations ρT (θ) = E[ϕt(θ)] about structural parameters

of interest is impaired by the fact that ρT (θ) becomes zero for all θ when the sample size goes

to infinity. The initial goal of this so-called "weak instruments asymptotics" approach was to

devise inference procedures robust to weak identification in the worst case scenario, as made

formal by Stock and Wright (2000):

ρT (θ) =
ρ1T (θ)√

T
+ ρ2(θ1) with θ = [θ′1 θ′2]

′ and ρ2(θ1) = 0 ⇔ θ1 = θ01 (1.3)

The rationale for (1.3) is the following. While some components θ1 of θ would be identified in a

standard way if the other components θ2 were known, the latter ones are so weakly identified

that for sample sizes typically available in practice, no significant increase of accuracy of

estimators can be noticed when the sample size increases: the typical root-T consistency is

completely erased by the DGP drifting at the same rate through the term ρ1T (θ)/
√
T . It is

then clear that this drifting rate is a worst case scenario, sensible when robustness to weak

identification is the main concern, as it is the case for popular micro-econometric applications:
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for instance the study of Angrist and Krueger (1991) on returns to education.

The purpose of this paper is somewhat different: taking for granted that some instruments

may be poor, we nevertheless do not give up the efficiency goal of statistical inference. Even

fragile information must be processed optimally, for the purpose of both efficient estimation

and powerful testing. This point of view leads us to a couple of modifications with respect to

the traditional weak instruments asymptotics.

First, we consider that the worst case scenario is a possibility but not the general rule. Typi-

cally, we revisit the drifting DGP (1.3) with a more general framework like:

ρT (θ) =
ρ1T (θ)

T λ
+ ρ2(θ1) with 0 ≤ λ ≤ 1/2

The case λ = 1/2 has been the main focus of interest of the weak instruments literature so far

because it accommodates the observed lack of consistency of some GMM estimators (typically

estimators of θ2 in the framework of (1.3)) and the implied lack of asymptotic normality of

the consistent estimators (estimators of θ1 in the framework of (1.3)). We rather set the focus

on an intermediate case, 0 < λ < 1/2, which has been dubbed nearly-weak identification by

Han and Kuersteiner (2002) in the linear case and Caner (2009) for nonlinear GMM. Standard

(strong) identification would take λ = 0. Note also that nearly-weak identification is implic-

itly studied by several authors who introduce infinitely many instruments: the large number

of instruments partially compensates for the genuine weakness of each of them individually

(see Han and Phillips (2006), Hansen, Hausman and Newey (2008), Newey and Windmeijer

(2009)).

However, following our former work in Antoine and Renault (2009, 2010a), our main contribu-

tion is above all to consider that several patterns of identification may show up simultaneously.

This point of view appears especially relevant for the asset pricing applications described above.

Nobody would pretend that the constant instrument is weak. Therefore, the moment condi-
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tion, E[u(Yt+1, θ)] = 0, should not display any drifting feature (as it actually corresponds to

λ = 0). Even more interestingly, Epstein and Zin (1991) stress that the pricing equation for

the market return is poorly informative about the difference between the risk aversion coeffi-

cient and the inverse of the elasticity of substitution. Individual asset returns should be more

informative.

This paves the way for two additional extensions in the framework (1.3). First, one may

consider, depending on the moment conditions, different values of the parameter λ of drifting

DGP. Large values of λ would be assigned to components [zit×uj(Yt+1, θ)] for which either the

pricing of asset j or the lagged value of return i are especially poorly informative. Second, there

is no such thing as a parameter θ2 always poorly identified or parameter θ1 which would be

strongly identified if the other parameters θ2 were known. Instead, one must define directions

in the parameter space (like the difference between risk aversion and inverse of elasticity of

substitution) that may be poorly identified by some particular moment restrictions.

This heterogeneity of identification patterns clearly paves the way for the device of optimal

strategies for inferential use of fragile (or poor) information. In this paper, we focus on a case

where asymptotic efficiency of estimators is well-defined through the variance of asymptotically

normal distributions. The price to pay for this maintained tool is to assume that the set

of moment conditions that are not genuinely weak (λ < 1/2) is sufficient to identify the

true unknown value θ0 of the parameters. In this case, normality must be reconsidered at

heterogeneous rates smaller than the standard root-T in different directions of the parameter

space (depending on the strength of identification about these directions). At least, non-normal

asymptotic distributions introduced by situations of partial identification as in Phillips (1989)

and Choi and Phillips (1992) are avoided in our setting. It seems to us that, by considering the

large sample sizes typically available in financial econometrics, working with the maintained

assumption of asymptotic normality of estimators is reasonable; hence, the study of efficiency
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put forward in this paper. However, there is no doubt that some instruments are poorer and

that some directions of the parameter space are less strongly identified. Last but not least:

even though we are less obsessed by robustness to weak identification in the worst case scenario,

we do not want to require from the practitioner a prior knowledge of the identification schemes.

Efficient inference procedures must be feasible without requiring any prior knowledge neither

of the different rates λ of nearly-weak identification, nor of the heterogeneity of identification

patterns in different directions in the parameter space.

To delimit the focus of this paper, we put an emphasis on efficient inference. There are actu-

ally already a number of surveys that cover the earlier literature on inference robust to weak

instruments. For example, Stock, Wright and Yogo (2002) set the emphasis on procedures

available for detecting and handling weak instruments in the linear instrumental variables

model. More recently, Andrews and Stock (2007) wrote an excellent review, discussing many

issues involved in testing and building confidence sets robust to the weak instrumental variables

problem. Smith (2007) revisited this review, with a special focus on empirical likelihood-based

approaches. Our paper is organized as follows. In section 2, we introduce our framework and

identification procedure with poor instruments; the consistency of all GMM estimators is de-

duced from an empirical process approach. Section 3 is concerned with asymptotic theory and

inference. Section 4 compares our approach to others: we specifically discuss the linear in-

strumental variables regression model, the (non)-equivalence between efficient two-step GMM

and continuously-updated GMM and the GMM-score test of Kleibergen (2005). Section 5

concludes. All the proofs are gathered in the appendix.
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2 Identification with Poor Instruments

2.1 Framework

We consider the true unknown value θ0 of the parameter θ ∈ Θ ⊂ Rp defined as the solution of

the moment conditions E[ϕt(θ)] = 0 for some known function ϕt(.) of size K. Since the seminal

work of Stock and Wright (2000), the weakness of the moment conditions (or instrumental

variables) is usually captured through a drifting DGP such that the informational content of

the estimating equations shrinks towards zero (for all θ) while the sample size T grows to

infinity.

More precisely, the population moment conditions obtained from a set of poor instruments

are modeled as a function ρT (θ) that depends on the sample size T and becomes zero when

it goes to infinity. The statistical information about the estimating equations ρT (θ) is given

by the sample mean ϕT (θ) = (1/T )
∑T

t=1 ϕt(θ) and the asymptotic behavior of the empirical

process
√
T
[
ϕT (θ)− ρT (θ)

]
.

Assumption 1 (Functional CLT)

(i) There exists a sequence of deterministic functions ρT such that the empirical process
√
T
[
ϕT (θ)− ρT (θ)

]
, for θ ∈ Θ, weakly converges (for the sup-norm on Θ) towards a Gaussian

process on Θ with mean zero and covariance S(θ).

(ii) There exists a sequence AT of deterministic nonsingular matrices of size K and a bounded

deterministic function c such that

lim
T→∞

sup
θ∈Θ

∥c(θ)−ATρT (θ)∥ = 0

The rate of convergence of coefficients of the matrix AT towards infinity characterizes the

degree of global identification weakness. Note that we may not be able to replace ρT (θ) by
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the function A−1
T c(θ) in the convergence of the empirical process since:

√
T
[
ρT (θ)−A−1

T c(θ)
]
=

(
AT√
T

)−1

[ATρT (θ)− c(θ)]

may not converge towards zero. While genuine weak identification like Stock and Wright

(2000) means that AT =
√
TIdK (with IdK identity matrix of size K), we rather consider

nearly-weak identification where some rows of the matrix AT may go to infinity strictly slower

than
√
T . Standard GMM asymptotic theory based on strong identification would assume

AT = IdK and ρT (θ) = c(θ) for all T . In this case, it would be sufficient to assume asymptotic

normality of
√
TϕT (θ

0) at the true value θ0 of the parameters (while ρT (θ
0) = c(θ0) = 0).

By contrast, as already pointed out by Stock and Wright (2000), the asymptotic theory with

(nearly)-weak identification is more involved since it assumes a functional central limit theorem

uniform on Θ. However, this uniformity is not required in the linear case1, as now illustrated.

Example 2.1 (Linear IV regression)

We consider a structural linear equation: yt = x′tθ+ ut for t = 1, · · · , T where the p explana-

tory variables xt may be endogenous. The true unknown value θ0 of the structural parameters

is defined through K ≥ p instrumental variables zt uncorrelated with (yt − x′tθ
0). In other

words, the estimating equations for standard IV estimation are:

ϕT (θ̂T ) =
1

T
Z ′
(
y −Xθ̂T

)
= 0 (2.1)

where X (respectively Z) is the (T, p) (respectively (T,K)) matrix which contains the available

observations of the p explanatory variables (respectively the K instrumental variables) and θ̂T

denotes the standard IV estimator of θ. Inference with poor instruments typically means that

the required rank condition is not fulfilled, even asymptotically:

Plim

[
Z ′X

T

]
may not be of full rank.

1Note also that uniformity is not required in the linear-in-variable case.
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Weak identification means that only Plim

[
Z′X√

T

]
has full rank, while intermediate cases with

nearly-weak identification have been studied by Hahn and Kuersteiner (2002). The following

assumption conveniently nests all the above cases:

Assumption L1 There exists a sequence AT of deterministic nonsingular matrices of size K

such that Plim

[
AT

Z′X
T

]
= Π is full column rank.

While standard strong identification asymptotics assume that the largest absolute value of all

coefficients of the matrix AT , ||AT ||, is of order O(1), weak identification means that ||AT ||

grows at rate
√
T . The following assumption focuses on nearly-weak identification, which

ensures consistent IV estimation under standard regularity conditions as explained below.

Assumption L2 The largest absolute value of all coefficients of the matrix AT is o(
√
T ).

To deduce the consistency of the estimator θ̂T , we rewrite equation (2.1) as follows and pre-

multiply it by AT :

Z ′X

T

(
θ̂T − θ0

)
+

Z ′u

T
= 0 ⇒ AT

Z ′X

T

(
θ̂T − θ0

)
+AT

Z ′u

T
= 0 (2.2)

After assuming a central limit theorem for (Z ′u/
√
T ) and after considering (for simplicity)

that the unknown parameter vector θ evolves in a bounded subset of Rp, we get:

Π(θ̂T − θ0) = oP (1)

Then, the consistency of θ̂T directly follows from the full column rank assumption on Π. Note

that uniformity with respect to θ does not play any role in the required central limit theorem

since we have:

√
T
[
ϕT (θ)− ρT (θ)

]
=

Z ′u√
T

+
√
T

[
Z ′X

T
− E

[
ztx

′
t

]]
(θ0 − θ)
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with

ρT (θ) = E
[
ztx

′
t

]
(θ0 − θ)

Linearity of the moment conditions with respect to unknown parameters allows us to factorize

them out and uniformity is not an issue.

It is worth noting that in the linear example, the central limit theorem has been used to

prove consistency of the IV estimator and not to derive its asymptotic normal distribution.

This non-standard proof of consistency will be generalized for the non-linear case in the next

subsection, precisely thanks to the uniformity of the central limit theorem over the parameter

space. As far as asymptotic normality of the estimator is concerned, the key issue is to take

advantage of the asymptotic normality of
√
TϕT (θ

0) at the true value θ0 of the parameters

(while ρT (θ
0) = c(θ0) = 0). The linear example again shows that, in general, doing so involves

additional assumptions about the structure of the matrix AT . More precisely, we want to

stress that when several degrees of identification (weak, nearly-weak, strong) are considered

simultaneously, the above assumptions are not sufficient to derive a meaningful asymptotic

distributional theory. In our setting, it means that the matrix AT is not simply a scalar

matrix λTA with the scalar sequence λT possibly going to infinity but not faster than
√
T .

This setting is in contrast with most of the literature on weak instruments (see Kleibergen

(2005), Caner (2009) among others).

Example 2.2 (Linear IV regression - continued)

To derive the asymptotic distribution of the estimator θ̂T , pre-multiplying the estimating equa-

tions by the matrix AT may not work. However, for any sequence of deterministic nonsingular

matrices ÃT of size p, we have:

Z ′X

T

(
θ̂T − θ0

)
+

Z ′u

T
= 0 ⇒ Z ′X

T
ÃT

√
TÃ−1

T

(
θ̂T − θ0

)
= −Z ′u√

T
(2.3)
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If [Z
′X
T ÃT ] converges towards a well-defined matrix with full column rank, a central limit

theorem for (Z ′u/
√
T ) ensures the asymptotic normality of

√
TÃ−1

T

(
θ̂T − θ0

)
. In general, this

condition cannot be deduced from assumption L1 unless the matrix AT appropriately commutes

with [Z
′X
T ]. Clearly, this is not an issue if AT is simply a scalar matrix λT IdK . In case of

nearly-weak identification (λT = o(
√
T )), it delivers asymptotic normality of the estimator at

slow rate
√
T/λT while, in case of genuine weak identification (λT =

√
T ), consistency is not

ensured and asymptotic Cauchy distributions show up.

In the general case, the key issue is to justify the existence of a sequence of deterministic

nonsingular matrices ÃT of size p such that [Z
′X
T ÃT ] converges towards a well-defined matrix

with full column rank. In the just-identified case (K = p), it follows directly from assumption

L1 with ÃT = Π−1AT :

Plim

[
Z ′X

T
Π−1AT

]
= Plim

[
Z ′X

T

(
AT

Z ′X

T

)−1

AT

]
= Ip

In the over-identified case (K > p), it is rather the structure of the matrix AT (and not only

its norm, or largest coefficient) that is relevant. Of course, by equation (2.2), we know that

Z ′X

T

√
T
(
θ̂T − θ0

)
= −Z ′u√

T

is asymptotically normal. However, in case of lack of strong identification, (Z ′X/T ) is not

asymptotically full rank and some linear combinations of
√
T (θ̂T −θ0) may blow up. To provide

a meaningful asymptotic theory for the IV estimator θ̂T , the following condition is required.

In the general case, we explain why such a sequence ÃT always exists and how to construct it

(see Theorem 3.2).

Assumption L3 There exists a sequence ÃT of deterministic nonsingular matrices of size p

such that Plim
[
Z′X
T ÃT

]
is full column rank.
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It is then straightforward to deduce that
√
TÃ−1

T

(
θ̂T − θ0

)
is asymptotically normal. Hansen,

Hausman and Newey (2008) provide a set of assumptions to derive similar results in the case

of many weak instruments asymptotics. In their setting, considering a number of instruments

growing to infinity can be seen as a way to ensure assumption L2, even though weak identifi-

cation (or ∥AT ∥ of order
√
T ) is assumed for any given finite set of instruments.

The above example shows that, in case of (nearly)-weak identification, a relevant asymptotic

distributional theory is not directly about the common sequence
√
T
(
θ̂T − θ0

)
but rather

about a well-suited reparametrization Ã−1
T

√
T
(
θ̂T − θ0

)
. Moreover, lack of strong identifica-

tion means that the matrix of reparametrization ÃT also involves a rescaling (going to infinity

with the sample size) in order to characterize slower rates of convergence. For sake of structural

interpretation, it is worth disentangling the two issues: first, the rotation in the parameter

space, which is assumed well-defined at the limit (when T → ∞); second, the rescaling. The

convenient mathematical tool is the singular value decomposition of the matrix AT (see Horn

and Johnson (1985) p414-416, 425). We know that the nonsingular matrix AT can always be

written as: AT = MTΛTN
′
T with MT , NT and ΛT three square matrices of size K, MT and

NT orthogonal and ΛT diagonal with non-zero entries. In our context of rates of convergence,

we want to see the singular values of the matrix AT (that is the diagonal coefficients of ΛT ) as

positive and, without loss of generality, ranked in increasing order. If we consider assumption

1(ii) again, N ′
T can intuitively be seen as selecting appropriate linear combinations of the mo-

ment conditions and ΛT as rescaling appropriately these combinations. On the other hand,

MT is related to selecting linear combinations of the deterministic vector c.

Without loss of generality, we always consider the singular value decomposition AT = MTΛTN
′
T

such that the diagonal matrix sequence ΛT has positive diagonal coefficients bounded away
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from zero and the two sequences of orthogonal matrices MT and NT have well-defined limits2

when T → ∞, M and N , respectively, both orthogonal matrices.

2.2 Consistency

In this subsection, we set up a framework where consistency of a GMM estimator is warranted

in spite of lack of strong identification. The key is to ensure that a sufficient subset of the

moment conditions is not impaired by genuine weak identification: in other words, the corre-

sponding rates of convergence of the singular values of AT are slower than
√
T . As explained

above, specific rates of convergence are actually assigned to appropriate linear combinations

of the moment conditions:

d(θ) = M−1c(θ) = lim
T

[
ΛTN

′
TρT (θ)

]
Our maintained identification assumption follows:

Assumption 2 (Identification)

(i) The sequence of nonsingular matrices AT writes AT = MTΛTN
′
T with lim

T
[MT ] = M ,

lim
T
[NT ] = N , M and N orthogonal matrices.

(ii) The sequence of matrices ΛT is partitioned as ΛT =

 Λ̃T 0

0 Λ̆T

, such that Λ̃T and

Λ̆T are two diagonal matrices, respectively of size K̃ and (K − K̃), with3 ∥Λ̃T ∥ = o(
√
T ),

∥Λ̆T ∥ = O(
√
T ) and Λ̆−1

T = o(∥Λ̃T ∥−1).

2It is well-known that the group of real orthogonal matrices is compact (see Horn and Johnson (1985) p71).

Hence, one can always define M and N for convergent subsequences, respectively MTn and NTl . To simplify

the notations, we only refer to sequences and not subsequences.
3∥M∥ denotes the largest element (in absolute value) of any matrix M .
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(iii) The vector d of moment conditions, with d(θ) = M−1c(θ) = limT [ΛTN
′
TρT (θ)], is par-

titioned accordingly as d =
[
d̃′ d̆′

]′
such that θ0 is a well-separated zero of the vectorial

function d̃ of size K̃ ≤ p:

∀ϵ > 0 inf
∥θ−θ0∥>ϵ

∥d̃(θ)∥ > 0

(iv) The first K̃ elements of NTρT (θ
0) are identically equal to zero for any T .

As announced, the above identification assumption ensures that the first K̃ moment conditions

are only possibly nearly-weak (and not genuinely weak), ∥Λ̃T ∥ = o(
√
T ), and sufficient to

identify the true unknown value θ0:

d̃(θ) = 0 ⇔ θ = θ0

The additional moment restrictions, as long as they are strictly weaker (Λ̆−1
T = o(∥Λ̃T ∥−1),

may be arbitrarily weak and even misspecified, since we do not assume d̆(θ0) = 0. It is worth

noting that the above identification concept is non-standard, since all singular values of the

matrix AT may go to infinity. In such a case, we have:

Plim
[
ϕT (θ)

]
= 0 ∀ θ ∈ Θ (2.4)

This explains why the following consistency result of a GMM estimator cannot be proved in a

standard way. The key argument is actually tightly related to the uniform functional central

limit theorem of assumption 1.

Theorem 2.1 (Consistency of θ̂T )

We define a GMM-estimator:

θ̂T = argmin
θ∈Θ

[
ϕ
′
T (θ)ΩTϕT (θ)

]
(2.5)
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with ΩT a sequence of symmetric positive definite random matrices of size K which converges

in probability towards a positive definite matrix Ω.

Under the assumptions 1 and 2, any GMM estimator like (2.5) is weakly consistent.

We now explain why the consistency result cannot be deduced from a standard argument

based on a simple rescaling of the moment conditions to avoid asymptotic degeneracy of (2.4).

The GMM estimator (2.5) can be rewritten as:

θ̂T = argmin
θ∈Θ

{[
ΛTN

′
TϕT (θ)

]′
WT

[
ΛTN

′
TϕT (θ)

]}
with a weighting matrix sequence, WT = Λ−1

T N ′
TΩTNTΛ

−1
T , and rescaled moment conditions

[ΛTN
′
TϕT (θ)] such that:

Plim
[
ΛTN

′
TϕT (θ)

]
= lim

T

[
ΛTN

′
TρT (θ)

]
= d(θ) ̸= 0 for θ ̸= θ0

However, when all singular values of AT go to infinity, the weighting matrix sequence WT is

such that:

Plim [WT ] = lim
T

[
Λ−1
T N ′ΩNΛ−1

T

]
= 0

In addition, the limit of the GMM estimator in Theorem 2.1 is solely determined by the

strongest moment conditions that identify θ0. There is actually no need to assume that

the last (K − K̃) coefficients in [ΛTN
′
TρT (θ

0)], or even their limits d̆(θ0), are equal to zero.

In other words, the additional estimating equations d̆(θ) = 0, may be biased and this has

no consequence on the limit value of the GMM estimator insofar as the additional moment

restrictions are strictly weaker than the initial ones, Λ̆−1
T = o(∥Λ̃T ∥−1). They may even be

genuinely weak with ∥Λ̆T ∥ =
√
T . This result has important consequences on the power of

the overidentification test defined in the next section.
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3 Asymptotic distribution and Inference

3.1 Efficient estimation

In our setting, rates of convergence slower than square-root T are produced because some

coefficients of AT may go to infinity while the asymptotically identifying equations are given

by ρT (θ)
a∼ A−1

T c(θ). Since we do not want to introduce other causes for slower rates of

convergence (like singularity of the Jacobian matrix of the moment conditions, as done in

Sargan (1983)), first-order local identification is maintained.

Assumption 3 (Local identification)

(i) θ → c(θ), θ → d(θ) and θ → ρT (θ) are continuously differentiable on the interior of Θ.

(ii) θ0 belongs to the interior of Θ.

(iii) The (K̃, p)-matrix
[
∂d̃(θ0)/∂θ′

]
has full column rank p.

(iv) ΛTN
′
T [∂ρT (θ)/∂θ

′] converges uniformly on the interior of Θ towards

M−1 [∂c(θ)/∂θ′] = ∂d(θ)/∂θ′.

(v) The last (K − K̃) elements of NTρT (θ
0) are either identically equal to zero for any T , or

genuinely weak with the corresponding element of Λ̆T equal to
√
T .

Assumption 3(iv) states that rates of convergence are maintained after differentiation with

respect to the parameters. Contrary to the linear case, this does not follow automatically

in the general case. Then, we are able to show that the structural parameters are identified

at the slowest rate available from the set of identifying equations. Assumption 3(v) ensures

that the additional moment restrictions (the ones not required for identification) are either

well-specified or genuinely weak: this ensures that these conditions do not deteriorate the

rate of convergence of the GMM estimator (see Theorem 3.1 below). Intuitively, a GMM
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estimator is always a linear combination of the moment conditions. Hence, if some moments

are misspecified and do not disappear as fast as
√
T , they can only deteriorate the rate of

convergence of the estimator.

Theorem 3.1 (Rate of convergence)

Under assumptions 1 to 3, any GMM estimator θ̂T like (2.5) is such that:

∥θ̂T − θ0∥ = Op(∥Λ̃T ∥/
√
T ).

The above result is quite poor, since it assigns the slowest possible rate to all components of

the structural parameters. We now show how to identify faster directions in the parameter

space. The first step consists in defining a matrix ÃT similar to the one introduced in the

linear example. The following result justifies its existence: in the appendix, we also explain in

details how to construct it.

Theorem 3.2 Under assumptions 1 to 3, there exists a sequence ÃT of deterministic nonsin-

gular matrices of size p such that the smallest eigenvalue of Ã′
T ÃT is bounded away from zero

and

lim
T

[
Λ−1
T M−1∂c(θ

0)

∂θ′
ÃT

]
exists and is full column rank with ∥ÃT ∥ = O(∥Λ̃T ∥)

Following the approach put forward in the linear example, Theorem 3.2 is used to derive the

asymptotic theory of the estimator θ̂T . Since,

∂ϕT (θ
0)

∂θ′

√
T (θ̂T − θ0) =

∂ϕT (θ
0)

∂θ′
ÃT

√
TÃ−1

T (θ̂T − θ0)

a meaningful asymptotic distributional theory is not directly about the common sequence
√
T (θ̂T − θ0), but rather about a well-suited reparametrization Ã−1

T

√
T (θ̂T − θ0). Similar to
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the structure of AT , ÃT involves a reparametrization and a rescaling. In others words, specific

rates of convergence are actually assigned to appropriate linear combinations of the structural

parameters.

Assumption 4 (Regularity)

(i)
√
T

[
∂ϕT (θ

0)

∂θ′
−A−1

T

∂c(θ0)

∂θ′

]
= OP (1)

(ii)
√
T

∂

∂θ

[
∂ϕT (θ)

∂θ′

]
k.

− ∂

∂θ

[
A−1

T

∂c(θ)

∂θ′

]
k.

= OP (1) and
∂

∂θ

[
∂c(θ)

∂θ′

]
k.

= OP (1)

for any 1 ≤ k ≤ K, uniformly on the interior of Θ with [M ]k. the k-th row the matrix M .

With additional regularity assumption 4(i), Corollary 3.3 extends Theorem 3.2 to rather con-

sider the empirical counterparts of the moment conditions: it is the nonlinear analog of as-

sumption L3.

Corollary 3.3 (Nonlinear extension of L3)

Under assumptions 1 to 3 and 4(i), we have:

Γ(θ0) ≡ Plim

[
∂ϕT (θ

0)

∂θ′
ÃT

]
exists and is full column rank

In order to derive a standard asymptotic theory for the GMM estimator θ̂T , we need to impose

an assumption on the strength of identification: this is done through the rate of convergence

of the matrix Λ̃T and is dubbed nearly-strong identification.

Assumption 5 (Nearly-strong identification)

∥Λ̃T ∥2 = o(
√
T )

where ∥M∥ denotes the largest absolute value of all coefficients of the matrix M .
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As a consequence, the rate of convergence of θ̂T is now strictly larger than T 1/4. Intuitively,

assumption 5 ensures that second-order terms in Taylor expansions remain negligible in front

of square-root T central limit theorem terms. This condition is standard in semi-parametric

econometrics to control for the impact of infinite dimensional nuisance parameters (see An-

drews’ (1994) MINPIN estimators and Newey’s (1994) linearization assumption). Thanks to

the nearly-strong identification assumption, the asymptotic distribution of the rescaled esti-

mated parameters
√
TÃ−1

T

(
θ̂T − θ0

)
is characterized by seemingly standard GMM formulas:

Theorem 3.4 (Asymptotic distribution of θ̂T )

Under assumptions 1 to 5, any GMM estimator θ̂T like (2.5) is such that
√
TÃ−1

T

(
θ̂T − θ0

)
is asymptotically normal with mean zero and variance Σ(θ0) given by

Σ(θ0) =
[
Γ′(θ0)ΩΓ(θ0)

]−1
Γ′(θ0)ΩS(θ0)ΩΓ(θ0)

[
Γ′(θ0)ΩΓ(θ0)

]−1

where S(θ0) is the asymptotic variance of
√
TϕT (θ

0).

Theorem 3.4 paves the way for a concept of efficient estimation in presence of poor instruments.

By a common argument, the unique limit weighting matrix Ω minimizing the above covariance

matrix is clearly Ω = [S(θ0)]−1.

Theorem 3.5 (Efficient GMM estimator)

Under assumptions 1 to 5, any GMM estimator θ̂T like (2.5) with a weighting matrix ΩT =

S−1
T , where ST denotes a consistent estimator of S(θ0), is such that

√
TÃ−1

T

(
θ̂T − θ0

)
is

asymptotically normal with mean zero and variance
[
Γ′(θ0)S−1(θ0)Γ(θ0)

]−1.

In our framework, the terminology "efficient GMM" and "standard formulas" for asymptotic

covariance matrices must be carefully qualified. On the one hand, it is true that for all practical
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purposes, Theorem 3.5 states that, for T large enough,
√
TÃ−1

T

(
θ̂T − θ0

)
can be seen as a

Gaussian vector with mean zero and variance consistently estimated by:

Ã−1
T

[
∂ϕ

′
T (θ̂T )

∂θ
S−1
T

∂ϕT (θ̂T )

∂θ′

]−1

Ã−1′
T (3.1)

since Γ(θ0) = Plim

[
∂ϕT (θ0)

∂θ′ ÃT

]
. However, it is incorrect to deduce from equation (3.1) that,

after simplifications on both sides by Ã−1
T ,

√
T
(
θ̂T − θ0

)
can be seen (for T large enough) as

a Gaussian vector with mean zero and variance consistently estimated by:

[
∂ϕ

′
T (θ̂T )

∂θ
S−1
T

∂ϕT (θ̂T )

∂θ′

]−1

(3.2)

This is wrong since the matrix
[
∂ϕ

′
T (θ̂T )
∂θ S−1

T
∂ϕT (θ̂T )

∂θ′

]
is asymptotically singular. In this sense,

a truly standard GMM theory does not apply and at least some components of
√
T
(
θ̂T − θ0

)
must blow up. Quite surprisingly, it turns out that the spurious feeling that (3.2) estimates

the asymptotic variance (as usual) is tremendously useful for inference as explained in the

next section. Intuitively, it explains why standard inference procedures work, albeit for non-

standard reasons. As a consequence, for all practical purposes related to inference about the

structural parameters θ, the knowledge of the matrices AT and ÃT is not required.

However, the fact that the correct understanding of the "efficient GMM" covariance matrix

as estimated by (3.1) involves the sequence of matrices ÃT is important for two reasons.

First, it is worth reminding that the construction of the matrix ÃT only involves the first

K̃ components of the rescaled estimating equations [N ′
TρT (θ)]. This is implicit in the rate

of convergence of ∥ÃT ∥ put forward in Theorem 3.2 and quite clear in its proof. In other

words, when the total number of moment conditions K is strictly larger than K̃, the last
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(K − K̃) rows of the matrix Γ(θ0) = Plim

[
∂ϕT (θ0)

∂θ′ ÃT

]
are equal to zero. Irrespective of

the weighting matrix’s choice for GMM estimation, the associated estimator does not depend

asymptotically on these last moment conditions. Therefore, there is an obvious waste of

information: the so-called efficient GMM estimator of Theorem 3.5 does not make use of all

the available information. Moment conditions based on poorer instruments (redundant for the

purpose of identification) should actually be used for improved accuracy of the estimator, as

explicitly shown in Antoine and Renault (2010a).

Second, the interpretation of the matrix ÃT in terms of reparametrization is underpinned by

the proof of Theorem 3.2 which shows that:

ÃT =

[
λ1TR1

... λ2TR2
... · · ·

... λLTRL

]
= R∆T with R =

[
R1

... R2
... · · ·

... RL

]
R is a nonsingular matrix of size p with each submatrix Ri of size (p, si); ∆T is a diagonal

matrix with L diagonal blocks equal to λiT Idsi . It is worth reinterpreting Theorem 3.5 in

terms of the asymptotic distribution of the estimator of a new parameter vector4:

η = R−1θ = [η′1 η′2 · · · η′L]
′

Theorem 3.5 states that (R−1θ̂T ) is a consistent asymptotically normal estimator of the true

unknown value η0 = R−1θ0, while each subvector ηi of size si is attached to a specific (slower)

rate of convergence
√
T/λiT . It is clear in the appendix that this reparametrization is per-

formed according to the directions which span the range of the Jacobian matrix of the rescaled

"efficient" moment conditions d̃(θ), that is according to the columns of the matrix R. Even

though the knowledge of the matrix R (and corresponding rates λiT ) is immaterial for the

practical implementation of inference procedures on structural parameters (as shown in the

next section), it may matter for a fair assessment of the accuracy of this inference. As an illus-

4Note that the structural parameter θ is such that: θ =
∑L

i=1 Riηi.
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tration, section 4.3 studies the power of score-type tests against sequences of local alternatives

in different directions.

In the context of the Consumption based Capital Asset Pricing Model (CCAPM) discussed

in Stock and Wright (2000) and Antoine and Renault (2009), there are two structural param-

eters: θ1, the subjective discount factor and θ2, the coefficient of relative risk aversion of a

representative investor. Antoine and Renault (2009) provide compelling evidence that a first

parameter η1, estimated at fast rate
√
T , is very close to θ1 (the estimation results show that

η1 = 0.999θ1 − 0.007θ2), while any other direction in the parameter space, like for instance

the risk aversion parameter θ2, is estimated at a much slower rate. In other words, all param-

eters are consistently estimated as shown in Stock and Wright’s (2000) empirical results (and

contrary to their theoretical framework), but the directions with
√
T -consistent estimation are

now inferred from data instead of being considered as a prior specification.

The practical way to consistently estimate the matrix R from the sample counterpart of the

Jacobian matrix of the moment conditions is extensively discussed in Antoine and Renault

(2010a). Of course, since this Jacobian matrix involves in general the unknown structural

parameters θ, there is little hope to consistently estimate R at a rate faster than the slowest

one, namely
√
T/∥Λ̃T ∥. Interestingly enough, this slower rate does not impair the faster rates

involved in Theorem 3.5. When R is replaced by its consistent estimator R̂, in the context of

Theorem 3.5,
√
T∆−1

T

(
R̂−1θ̂T − R̂−1θ0

)
is still asymptotically normal with mean zero and variance

[
Γ′(θ0)S−1(θ0)Γ(θ0)

]−1. The key

intuition comes from the following decomposition:

R̂−1θ̂T − R̂−1θ0 = R−1(θ̂T − θ0) + (R̂−1 −R−1)(θ̂T − θ0)
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The potentially slow rates of convergence in the second term of the right-hand side do not

deteriorate the fast rates in the relevant directions of R−1(θ̂T − θ0): these slow rates show up

as T/∥Λ̃T ∥2 at worst, which is still faster than the fastest rate
√
T/λ1T by our nearly-strong

identification assumption 5.

3.2 Inference

As discussed in the previous section, inference procedures are actually more involved than

one may believe at first sight from the apparent similarity with standard GMM formulas.

Nonetheless, the seemingly standard "efficient" asymptotic distribution theory of Theorem

3.5 paves the way for two usual results: the overidentification test and the Wald-test.

Theorem 3.6 (J-test)

Let S−1
T be a consistent estimator of lim

T

[
Var(

√
TϕT (θ

0))
]−1

.

Under assumptions 1 to 5, for any GMM estimator like (2.5), we have:

Tϕ
′
T (θ̂T )S

−1
T ϕT (θ̂T )

d→ χ2(K − p)

As already announced, Theorem 2.1 has important consequences for the practice of GMM

inference. We expect the above overidentification test to have little power to detect the

misspecification of moment conditions when this misspecification corresponds to a subset of

moment conditions of heterogeneous strengths. The proofs of Theorems 2.1 and 3.2 actually

show that

TϕT (θ̂T )S
−1
T ϕT (θ̂T ) = OP

(
T

∥Λ̆T ∥2

)
In other words, the standard J-test statistic for overidentification will not diverge as fast as

the standard rate T of divergence and will even not diverge at all if the misspecified moment

restrictions are genuinely weak (∥Λ̆T ∥ =
√
T ).
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Second, we are interested in testing the null hypothesis, H0 : g(θ) = 0, where the function

g : Θ → Rq is continuously differentiable on the interior of Θ. We focus on Wald-testing

since it avoids estimation under the null which may affect the reparametrization5 previously

defined. The following example illustrates how the standard delta-theorem is affected in our

framework.

Example 3.3 Consider the null hypothesis H0 : g(θ) = 0 with g a vector of size q such that:[
∂gj(θ

0)

∂θ

]
/∈ col

[
∂d̃′1(θ

0)

∂θ

]
∀ j = 1, · · · , q

and a diagonal matrix ΛT ,

ΛT =

 λ1T IdK1 O

O λ2T IdK−K1

 with λ1T = o(λ2T ) , λ2T → ∞ and λ2T = o(
√
T )

Applying the standard argument to derive the Wald test, we have that, under the null,[√
T

λ2T
g(θ̂T )

]
a∼

[
∂g(θ0)

∂θ′

√
T

λ2T
(θ̂T − θ0)

]

In other words, for T large enough,
[√

T
λ2T

g(θ̂T )
]

can be seen as a normal random variable with

mean 0 and variance

∂g(θ0)

∂θ′

[
∂ϕ

′
T (θ

0)

∂θ
[S(θ0)]−1∂ϕT (θ

0)

∂θ′

]−1
∂g′(θ0)

∂θ

Suppose now that there exists a nonzero vector α such that,[
∂g′(θ0)

∂θ
α

]
∈ col

[
∂d̃′1(θ

0)

∂θ

]
5Typically, with additional information, the linear combinations of θ estimated respectively at specific rates

of convergence may be defined differently. Caner (2009) derives the standard asymptotic equivalence results

for the trinity of tests because he only considers testing when all parameters converge at the same nearly-weak

rate.
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Then, under the null,
[√

T
λ1T

α′g(θ̂T )
]

is asymptotically normal and thus

√
T

λ2T
α′g(θ̂T ) =

λ1T

λ2T

√
T

λ1T
α′g(θ̂T )

P→ 0

This means that even when a full rank assumption is maintained for the constraints to be tested,[√
T

λ2T
g(θ̂T )

]
does not behave asymptotically like a normal with a nonsingular variance matrix.

This explains why deriving the asymptotic distributional theory for the Wald test statistic is

non-standard.

Surprisingly enough, the above asymptotic singularity issue is immaterial and the standard

Wald-type inference holds without additional regularity assumption as stated in Theorem

3.7 below. The intuition is the following. Consider a fictitious situation where the range of[
∂d̃′1(θ

0)/∂θ
]

is known. Then, one can always define a nonsingular matrix H of size q and the

associated vector h, h(θ) = Hg(θ), in order to avoid the asymptotic singularity issue portrayed

in example 3.3. More precisely, with a (simplified) matrix AT as in the above example, we

consider:

- for j = 1, · · · , q1:
[
∂hj(θ

0)/∂θ
]
∈ col

[
∂d̃′1(θ

0)/∂θ
]

- for j = q1 + 1, · · · , q:
[
∂hj(θ

0)/∂θ
]

/∈ col

[
∂d̃′1(θ

0)/∂θ
]

and no linear combinations of[
∂hj(θ

0)/∂θ
]

does.

Note that the new restrictions h(θ) = 0 should be interpreted as a nonlinear transformations

of the initial ones g(θ) = 0 (since the matrix H depends on θ). It turns out that, for all

practical purposes, by treating H as known, the Wald-type test statistics written with h(.) or

g(.) are numerically equal: see the proof of Theorem 3.7 in the appendix.

Theorem 3.7 (Wald test)

Under assumptions 1 to 5, the Wald test statistic ξT , for testing H0 : g(θ) = 0 with g twice
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continuously differentiable,

ξT = Tg′(θ̂T )

∂g(θ̂T )

∂θ′

[
∂ϕ

′
T (θ̂T )

∂θ
S−1
T

∂ϕT (θ̂T )

∂θ′

]−1
∂g′(θ̂T )

∂θ


−1

g(θ̂T )

is asymptotically distributed as a chi-square with q degrees of freedom under the null.

In our framework, the standard result holds with respect to the size of the Wald test. Of

course, the power of the test heavily depends on the strength of identification of the various

constraints to test as extensively discussed in Antoine and Renault (2010a). See also the

discussion in section 4.3.

4 Comparisons with other approaches

4.1 Linear IV model

Following the discussion in examples 2.1 and 2.2, several matrices ΠT may be considered in

the linear model with poor instruments. We now show that this choice is not innocuous.

(i) Staiger and Stock (1997) consider a framework with the same genuine weak identification

pattern for all the parameters: ΠT = C/
√
T . To maintain assumption L2, we can consider it

as the limit case of: ΠT = C/T λ, for 0 < λ < 1/2 and C full column rank. Then AT = T λIdK

fulfills assumption L1. Similarly, ÃT = T λIdp fulfills assumption L3. Note that in this simple

example, ∥AT ∥ and ∥ÃT ∥ grow at the same rate, which corresponds to the unique degree of

nearly-weak identification.

(ii) Stock and Wright (2000) reinterpret the above framework to accommodate simultane-

ously strong and weak identification patterns. This distinction is done at the parameter level

and the structural parameter θ is (a priori) partitioned: θ = [θ′1
... θ′2]′ with θ1 of dimension p1
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strongly identified and θ2 of dimension p2 = p−p1 weakly identified. Following their approach,

while maintaining assumption L2, we consider the matrix

ΠT =

 π11 π12/T
λ

π21 π22/T
λ

 = ΠD−1
T

with 0 < λ < 1/2 while λ = 1/2 in Stock and Wright (2000); Π =

 π11 π12

π21 π22

 and DT

a (p, p)-diagonal matrix (with 1 as the first p1 coefficients and T λ as the remaining ones).

ÃT = DT directly fulfills assumption L3. Note that the degree of identification of each

parameter has to be known (assumed) a priori in Stock and Wright’s (2000) specification.

(iii) Antoine and Renault (2009) choose to distinguish between strong and nearly-weak

identification at the instrument level: see in particular their section 3.2. They suppose that

the set of K instruments can be partitioned between K1 strong ones and (K−K1) nearly-weak

ones, so that:

ΠT =

 π11 π12

π21/T
λ π22/T

λ

 = Λ−1
T Π

with ΛT a (K,K)-diagonal matrix (with 1 as the first K1 coefficients and T λ as the K2

remaining ones). The limit case with λ = 1/2 is the framework of Hahn, Ham and Moon

(2009).

Interestingly enough, the above approaches (ii) and (iii) lead to the same concentration matrix,

a well-known measure of the strength of the instruments. As a consequence, one concludes

that both approaches capture similar patters of weak identification. In examples 2.1 and 2.2,

the concentration matrix and its determinant are respectively equal to:

µ = Σ
−1/2′
V Π′

TZ
′ZΠTΣ

1/2
V and det(µ) =

1

T 2λ
det(Z ′Z) det(Σ−1

V ) det(Π)2
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with ΣV ≡ Var[V ]. With standard weak asymptotics (T λ =
√
T ), the concentration matrix

has a finite limit (see also Andrews and Stock (2007)). Nearly-weak asymptotics allow an

infinite limit for the determinant of the concentration matrix, but at a rate smaller than

det[Z ′Z] = O(T ). In this respect, there is no difference between the two approaches, only the

rate of convergence to zero of respectively a row or a column of the matrix ΠT matters.

(iv) Phillips (1989) introduces partial identification where ΠT matrices that may not be

of full rank are considered. Generalization to asymptotic rank condition failures (at rate T λ)

comes at the price of having to specify which row (or column) asymptotically goes to zero.

At least, Antoine and Renault’s (2009) approach (iii) works with "estimable functions" of the

structural parameters, or functions that can be identified and square-root T consistently esti-

mated. By contrast, the approach (ii) implies directly a partition of the structural parameters

between strongly and weakly identified ones.

(v) Antoine and Renault (2010a) generalize the above approach (iii) to accommodate

matrices of reduced form like ΠT = Λ−1
T Π with ΛT a (K,K)-diagonal matrix such that ∥ΛT ∥ =

o(
√
T ). Then AT = ΛTE

−1
zz fulfills assumption L1. By contrast with the former examples,

the case where instruments may not be mutually orthogonal and may display different levels

of strength leads to a non-diagonal matrix AT . However, in this case, it is easy to imagine

a standardization of instruments such that AT eventually becomes diagonal (ie AT = ΛT ).

Then, a sequence of matrices ÃT fulfilling assumption L3 can be built according to the general

result provided in Theorem 3.2. The detailed construction provided in the appendix shows that

we can actually choose ÃT = RΛ̃T with R nonsingular (p, p)-matrix whose columns provide

a basis for the orthogonal of the null space of Π while Λ̃T is a diagonal (p, p)-matrix such

that ∥Λ̃T ∥ ≤ ∥ΛT ∥. In other words, all parameters are estimated with a rate of convergence

at least equal to
√
T/∥Λ̃T ∥ irrespective of the slowest rate

√
T/∥ΛT ∥. The key is that some
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instruments (among the weakest) may be irrelevant, depending on the range of Π′. This

analysis actually provides primitive conditions for the high-level assumption 2 in Hansen,

Hausman, and Newey (2008) where they assume that Υ = Π′
T zt (where zt denotes the t-th

observation of the K instruments) can be rewriten as Υ = ST z̃T for some p-dimensional vector

z̃T . This transformation exactly corresponds to our transformation of AT into ÃT which is

made explicit in the above detailed discussion. As also done in Antoine and Renault (2009,

2010a), Hansen, Hausman, and Newey (2008) take advantage of the matrix ST to characterize

how some linear combinations of the parameters may be identified at different rates.

4.2 Continuously Updated GMM

We now show that the nearly-strong identification assumption 5 is exactly needed to ensure

that any direction in the parameter space is equivalently estimated by efficient two-step GMM

and continuously-updated GMM. This will also explain the equivalence between GMM score

test and Kleibergen’s modified score test discussed in the next section. Hansen, Heaton, and

Yaron (1996) define the continuously updated GMM estimator θ̂CU
T as:

Definition 4.1 Let ST (θ) be a family of nonsingular random matrices such that6:

(i) ST (θ
0) is a (unfeasible) consistent estimator of S ≡ lim

T

[
Var(

√
TϕT (θ

0))
]
.

(ii) ∥S−1
T (θ0)∥ = OP (1).

(iii) sup
θ∈Θ

∥ST (θ)∥ = OP (1).

(iv) sup
∥θ−θ0∥<δT

∥S−1
T (θ)− S−1∥ = op(1) with δT real sequence such that δT → 0.

6The following regularity assumptions are standard when defining the continuously updated GMM estima-

tor. See Pakes and Pollard (1989, p1044-1046).
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The continuously-updated GMM estimator θ̂CU
T of θ0 is then defined as:

θ̂CU
T = argmin

θ∈Θ

[
ϕ
′
T (θ)S

−1
T (θ)ϕT (θ)

]
(4.1)

Proposition 4.1 (Equivalence between CU-GMM and efficient 2S-GMM)

Under assumptions 1 to 5, any direction in the parameter space is equivalently estimated by

efficient two-step GMM and continuously updated GMM. That is,

√
TÃ−1

T (θ̂CU
T − θ̂T ) = op(1)

In the special case where the same degree of global identification weakness λT is assumed for

all coefficients of ÃT , CU-GMM and efficient 2S-GMM are equivalent without near-strong

identification assumption 5 (insofar as λT = o(
√
T )).

Several comments are in order.

First, since non-degenerate asymptotic normality is obtained for
√
TÃ−1

T (θ̂T −θ0) (and not for
√
T (θ̂T − θ0)), the relevant (non-trivial) equivalence result between two-step efficient GMM

and continuously updated GMM relates to the suitably rescaled difference
√
TÃ−1

T (θ̂T − θ̂CU
T ).

Second, the case with nearly-weak (and not nearly-strong) identification (∥Λ̃T ∥2/
√
T = o(1))

breaks down the standard theory of efficient GMM: the proof shows that there is no reason to

believe that continuously updated GMM may be an answer. Two-step GMM and continuously

updated GMM, albeit no longer equivalent, are both perturbed by higher-order terms with am-

biguous effects on asymptotic distributions. The intuition given by higher-order asymptotics

in standard identification settings cannot be extended to the case of nearly-weak identification.

While the latter approach shows that continuously updated GMM is, in general, higher-order

efficient (see Newey and Smith (2004), and Antoine, Bonnal and Renault (2007)), there is no

clear ranking of asymptotic performances under weak identification.
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Third, it is important to keep in mind that all these difficulties are due to the fact that we con-

sider realistic circumstances where several degrees of global identification weakness are simul-

taneously involved. Standard results (equivalence, or rankings between different approaches)

carry on when the same rate λT is assumed for all coefficients of ÃT .

4.3 GMM score-type testing

As already explained, when the same degree of global identification weakness λT is assumed for

all coefficients of the matrix ΛT , standard procedures and results hold. One of the contribution

of this paper is to characterize the heterogeneity of the informational content of moment

conditions along different directions in the parameter space. We now illustrate how the power

of tests is affected. More precisely, we are interested in testing the null hypothesis: H0 : θ = θ0.

To simplify the exposition, we focus here on a diagonal matrix AT :

AT =

 IdK1 O

O λT IdK−K1

 with λT → ∞ and λT = o(
√
T )

Assumption 3 is modified accordingly:

(simplified) Assumptions 3: IdK1 O

O λT IdK−K1

 ∂ϕT (θ0)

∂θ′
=

 IdK1 O

O λT IdK−K1

 ∂ϕ1T (θ0)
∂θ′

∂ϕ2T (θ0)
∂θ′


→ ∂d̃(θ0)

∂θ′
≡

 ∂d̃1(θ0)
∂θ′

∂d̃2(θ0)
∂θ′


with the (K, p)-matrix [∂d̃(θ0)/∂θ′] full column rank.

The following (simple) example illustrates our focus of interest.
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Example 4.4

Consider the functions ϕ1t and ϕ2t defined as,

ϕ1t(θ) = Y1t − g(θ) and ϕ2t(θ) = −Zt ⊗ (Y2t −X2tθ)

and associated moment conditions:

E [Y1t] = g(θ0) and E
[
Zt ⊗ (Y2t −X2tθ

0)
]
= 0

The instruments Zt introduced in ϕ2t are only nearly-weak instruments since

E [Zt ⊗X2t] =
1

λT

∂d̃2(θ
0)

∂θ′
with λT

T→ ∞, and
λT√
T

T→ 0

Then the associated Jacobian matrices are:

Plim

[
∂ϕ1T (θ

0)

∂θ′

]
=

∂g(θ0)

∂θ′
=

∂d̃1(θ
0)

∂θ′

Plim

[
λT

∂ϕ2T (θ
0)

∂θ′

]
= Plim

[
λT

1

T

T∑
t=1

(Zt ⊗X2t)

]
= lim

T
[λTE (Zt ⊗X2t)] =

∂d̃2(θ
0)

∂θ′

and we assume that
[
∂d̃′

1(θ
0)

∂θ

... ∂d̃′
2(θ

0)
∂θ

]′
has full column rank.

The GMM score-type testing approach wonders whether the test value θ0 is close to fulfill the

first-order conditions of the (efficient) two-step GMM minimization, that is whether the score

vector is close to zero. The score vector is defined at the test value θ0 as:

VT (θ0) =
∂ϕ

′
T (θ0)

∂θ
S−1
T (θ0)ϕT (θ0)

The GMM score test statistic (Newey and West (1987)) is then a suitable norm of VT (θ0):

ξNW
T = TV ′

T (θ0)

[
∂ϕ

′
T (θ0)

∂θ
S−1
T (θ0)

∂ϕT (θ0)

∂θ′

]−1

VT (θ0)
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Kleibergen’s (2005) approach rather considers the first-order conditions of the CU-GMM min-

imization. The corresponding score vector is defined at the test value θ0 as:

V CU
T (θ0) =

∂ϕCU ′
T (θ0)

∂θ
S−1
T (θ0)ϕT (θ0)

where each row of
[
∂ϕCU

T (θ0)
∂θ′

]
is the residual of the long-term affine regression of

[
∂ϕT (θ0)

∂θ′

]
[i.]

on ϕT (θ0):[
∂ϕCU

T (θ0)

∂θ′

]′
[i.]

=

[
∂ϕT (θ0)

∂θ′

]′
[i.]

−Covas

(
√
T

[
∂ϕT (θ0)

∂θ′

]′
[i.]

,
√
TϕT (θ0)

)
V aras

(√
TϕT (θ0)

)−1

ϕT (θ0)

(4.2)

where V aras

(√
TϕT (θ0)

)
= S0 is the long-term covariance matrix of the moment condi-

tions ϕt(θ0) and Covas

(√
T
[
∂ϕT (θ0)

∂θ

]′
[i.]

,
√
TϕT (θ0)

)
is the long-term covariance between[

∂ϕt(θ0)
∂θ

]
[i.]

and ϕt(θ0) (which is assumed well-defined).

This characterization of the score of continuously updated GMM in terms of residual of an

affine regression is extensively discussed in Antoine, Bonnal and Renault (2007) through their

Euclidean Empirical Likelihood approach. It explains the better finite sample performance of

CU-GMM since the regression allows to remove the perverse correlation between the Jacobian

matrix and the moment conditions. In finite sample, this perverse correlation implies that the

first order conditions of standard (two-step) efficient GMM are biased. As clearly explained

by Kleibergen (2005), this perverse correlation is even more detrimental with genuinely weak

instruments since it does not even vanish asymptotically. This is the reason why Kleibergen

(2005) puts forward a modified version of the Newey-West (1987) score test statistic:

ξKT = TV CU ′
T (θ0)

[
∂ϕCU ′

T (θ0)

∂θ
S−1
T (θ0)

∂ϕCU
T (θ0)

∂θ′

]−1

V CU
T (θ0)

By contrast with Kleibergen (2005), we show that with nearly-weak instruments, the afore-

mentioned correlation does not matter asymptotically and that the standard GMM score test
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statistic ξNW
T works. It is actually asymptotically equivalent to the modified Kleibergen’s

score test statistic under the null:

Proposition 4.2 (Equivalence under the null)

Under the null H0 : θ = θ0, we have: Plim
[
ξNW
T − ξKT

]
= 0. Both ξNW

T and ξKT converge in

distribution towards a chi-square with p degrees of freedom.

The following example illustrates how a proper characterization of the heterogeneity of the

informational content of moment conditions matters when considering power of tests under

sequences of local alternatives.

Example 4.4 (continued)

Consider a sequence of local alternatives defined by a given deterministic sequence (γT )T≥0 in

Rp, going to zero when T goes to infinity, and such that the true unknown value θ0 is defined

as: θT = θ0+γT . For T large enough, g(θT ) can be seen as g(θ0)+ [∂g(θ0)/∂θ
′]γT . Therefore,

the strongly identified moment restrictions E[Y1t − g(θT )] = 0 are informative with respect to

the violation of the null (θT ̸= θ0) if and only if: [∂g(θ0)/∂θ
′]γT ̸= 0.

As a consequence, we expect GMM-based tests of H0 : θ = θ0 to have power against se-

quences of local alternatives converging at standard rate
√
T , θT = θ0 + γ/

√
T , if and only if

[∂g(θ0)/∂θ
′]γ ̸= 0,

or, when γ does not belong to the null space of [∂g(θ0)/∂θ′] = [∂d̃1(θ0)/∂θ
′]. By contrast, if

[∂d̃1(θ0)/∂θ
′]γ = 0, violations of the null can only be built from the other identifying conditions:

E [Zt ⊗ Yt] =
∂d̃2(θ0)

∂θ′
θT
λT

We show that the sequences of local alternatives relevant to characterize non-trivial power are

necessarily such that: θT = θ0 + λT
γ√
T

.
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In other words, the degree of weakness of the moment conditions λT downplays the standard

rate [γ/
√
T ] of sequences of local alternatives against which the tests have non-trivial local

power. Under such a sequence of local alternatives,

E [Zt ⊗ Yt] =
∂d̃2(θ0)

∂θ′

[
θ0
λT

+
γ√
T

]
differs from its value under the null by the standard scale 1/

√
T .

Proposition 4.3 (Local power of GMM score tests)

(i) With a (drifted) true unknown value, θT = θ0 + γ/
√
T , for some γ ∈ Rp, we have

Plim[ξNW
T − ξKT ] = 0, and both ξNW

T and ξKT converge in distribution towards a non-central

chi-square with p degrees of freedom and non-centrality parameter

µ = (γ′
∂d̃′1(θ0)

∂θ

... 0)[S(θ0)]−1

 ∂d̃1(θ0)
∂θ′ γ

0

.

(ii) In case of nearly-strong identification (λ2
T = o(

√
T )), with a (drifted) true unknown value

θT = θ0 + γ/λT , for some γ ∈ Rp such that ∂d̃1(θ0)
∂θ′ γ = 0, we have Plim[ξNW

T − ξKT ] = 0, and

both ξNW
T and ξKT converge in distribution towards a non-central chi-square with p degrees of

freedom and non-centrality parameter µ = (0
... γ′ ∂d̃

′
2(θ0)
∂θ )[S(θ0)]−1

 0

∂d̃2(θ0)
∂θ′ γ

.

Two additional conclusions follow from the above Proposition:

(i) First, if ∂d̃1(θ0)
∂θ′ γ ̸= 0, the two GMM score tests behave more or less as usual against

sequences of local alternatives in the direction γ. They are asymptotically equivalent and both

consistent against sequences converging slower than
√
T . They both follow asymptotically a

non-central chi-square against sequences with the usual rate
√
T .

(ii) Second, if ∂d̃1(θ0)
∂θ′ γ = 0, the two GMM score tests have no power against sequences of local

alternatives θT = θ0 + γ/
√
T . They may have power against sequences θT = θ0 + γλT /

√
T
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(or slower); their behavior is pretty much the standard one, but only in the nearly-strong case

where λ2
T = o(

√
T ).

We now explain why non-standard asymptotic behavior of both score tests may arise when

we consider sequences of local alternatives in the weak directions (θT = θ0 + γλT /
√
T with

∂d̃1(θ0)
∂θ′ γ = 0) with severe nearly-weak identification issues. Recall that the genuine weak

identification usually considered in the literature (λT =
√
T ) is a limit case, since we always

maintain the nearly-weak identification condition λT = o(
√
T ). Under such a sequence of

local alternatives, while
√
TϕT (θT ) is asymptotically normal with zero mean, the key to get

a standard non-central chi-square for the asymptotic distribution of a score test statistic is

to ensure that
√
TϕT (θ0) is asymptotically normal with non-zero mean if and only if γ is not

zero. This result should follow from the Taylor approximation around θ0 with θ∗T between θ0

and θT :

√
TϕT (θT ) ≈

√
TϕT (θ0) +

√
T
∂ϕT (θ

∗
T )

∂θ′
(θT − θ0) ≈

√
TϕT (θ0) +

 0

∂d̃2(θ0)
∂θ′ γ


This approximation is justified by (simplified) assumption 3 as long as:

∂d̃1(θ0)

∂θ′
γ = 0 ⇒ Plim

[
λT

∂ϕ1T (θ
∗
T )

∂θ′
γ

]
= 0 (4.3)

This is not an issue if, as in Kleibergen (2005), the same degree of global identification weak-

ness7 is assumed for all coefficients of the matrix AT . In other words, we can easily state that

in the interesting case with mixture of strong and nearly-weak identification (or non-empty

subsets of components ϕ1 and ϕ2), (4.3) should follow from:

∂d̃1(θ0)

∂θ′
γ = 0 ⇒ Plim

[
λT

∂ϕ1T (θT )

∂θ′
γ

]
= 0 (4.4)

Fragile identification may be wasted by Kleibergen’s modification precisely because it comes

with another piece of information which is stronger. To see this, the key is the aforementioned
7Smith (2007) already pointed out that the standard equivalence between tests holds when only one rate of

convergence is considered.
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lack of logical implication from (4.4) to (4.3). As a result, the modified score statistic and

the original one may have quite different asymptotic behaviors. It is quite evident from (4.2)

that, when
√
TϕT (θ0) is not OP (1), the modified score statistic may have an arbitrarily nasty

asymptotic behavior. However, it is worth noting that if we maintain assumption 1 of a

Functional Central Limit Theorem,

√
TϕT (θ0)−

√
TρT (θ0) = OP (1)

a sufficient condition to ensure that Kleibergen’s modified test statistic is well-behaved under

the sequence of local alternatives θT = θ0 + γ λT√
T

is:

√
TρT

(
θT − γ

λT√
T

)
= O(1)

The proof of Theorem 3.1 in the appendix allows us to think that this condition is plausible,

since it precisely states that the rate of convergence of any GMM estimator θ̂T (∥θ̂T − θT ∥ =

OP (λT /
√
T )) precisely comes from the fact (see Lemma A.1 in the appendix) that:

√
TρT (θ̂T ) = OP (1)

To put it differently, Kleibergen’s modified score test is well-behaved under a given sequence

of local alternatives insofar as this sequence behaves as well as any GMM estimator. Such a

result is not surprising. The novel feature introduced by nearly-weak instruments asymptotics

is that the rate of sequences of local alternatives must be assessed not only in the parameter

space (∥θT − θ0∥ = O(λT /
√
T )) but also in the moments space (

√
TρT (θ0) = O(1)).

5 Conclusion

To conclude, we have proposed a general framework where weaker patterns of identification

may arise without giving up the efficiency goal of statistical inference. We actually believe
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that even fragile information should be processed optimally for the purpose of both efficient

estimation and powerful testing.

Our main contribution has been to consider that several patterns of identification may arise

simultaneously. This heterogeneity of identification schemes paved the way for the device of

optimal strategies for inferential use of information of poor quality. More precisely, we focus

on a case where asymptotic efficiency of estimators is well-defined through the variance of

asymptotically normal distributions. The price to pay for this maintained tool was to assume

that the set of moment conditions that are not genuinely weak was sufficient to identify the true

unknown value of the parameters. In this case, normality was characterized at heterogeneous

rates smaller than the standard root-T in different directions of the parameter space. Finally,

we were able to show that in such a case standard efficient estimation procedures still hold

and are even feasible without requiring the prior knowledge of the identification schemes.

As emphasized in the survey of Andrews and Stock (2007), there are three main topics related

to inference with weak identification: hypothesis tests and confidence intervals that are robust

to weak instruments; point estimation; pretesting for weak instruments. Andrews and Stock

(2007) have focused on the first topic "for which a solution is closer at hand than it is for

estimation". Our paper focuses on point estimation as well as power. This can only be done

because we consider that the worst case scenario of genuine weak identification is not always

warranted. As far as testing for strong/weak identification is concerned, the framework put

forward in the present paper allows us in a companion paper (Antoine and Renault (2010b))

to add to the available literature that includes Hahn and Hausman (2002) and Hahn, Ham

and Moon (2009) among others.
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Appendix

Notations:

- For any vector v with element (vi)1≤i≤H , we define: ∥v∥2 =
∑H

i=1 v
2
i .

- For any matrix M with elements mij that is not a vector, we define: ∥M∥ = maxi,j |mij |.

- Idl denotes the identity matrix of size l.

- [M ]k. denotes the k-th row of the matrix M .

- col[M ] denotes the subspace generated by the columns of the matrix M .

- col[M ]⊥ denotes the subspace orthogonal to the one generated by col[M ].

We start with a preliminary result useful for the proofs of consistency and rates of convergence.

Lemma A.1 (i) Under assumptions 1 and 2,

∥ρ̃T (θ̃T )∥ = OP

(
1√
T

)
with ρ̃T (θ) = [IdK̃

... OK̃,K−K̃ ]N ′
TρT (θ)

where θ̃T is the GMM-estimator deduced from the partial set of moment conditions as follows:

θ̃T = argmin
θ∈Θ

Q̃T (θ) = argmin
θ∈Θ

[
ϕ̃′
T (θ)Ω̃T ϕ̃T (θ)

]
with ϕ̃T (θ) = [IdK̃

... OK̃,K−K̃ ]N ′
TϕT (θ)

where Ω̃T is a sequence of symmetric positive definite random matrices of size K̃ converging

towards a positive definite matrix Ω̃.

(ii) Under assumptions 1, 2 and 3(v),

∥ρT (θ̂T )∥ = OP

(
1√
T

)
where θ̂T is the GMM-estimator defined in (2.5).

Proof of lemma A.1: first, we prove (ii); second, we show how (i) directly follows.

From assumption 1(i), the objective function is written as follows:

TQT (θ) ≡ Tϕ′
T (θ)ΩTϕT (θ) =

[
ΨT (θ) +

√
TρT (θ)

]′
ΩT

[
ΨT (θ) +

√
TρT (θ)

]
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where the empirical process (ΨT (θ))θ∈Θ, is asymptotically Gaussian. Since θ̂T is the minimizer

of QT , we have:

QT (θ̂T ) ≤ QT (θ
0) ⇔ Tρ′T (θ̂T )ΩT ρT (θ̂T ) + 2

√
Tρ′T (θ̂T )ΩTΨT (θ̂T ) + Ψ′

T (θ̂T )ΩTΨT (θ̂T )

≤ Tρ′T (θ
0)ΩT ρT (θ

0) + 2
√
Tρ′T (θ

0)ΩTΨT (θ
0) + Ψ′

T (θ
0)ΩTΨT (θ

0) (A.1)

Following the notations introduced in assumption 2, we define: NTρT (θ) = [ρ̃T (θ)
′ ρ̆T (θ)

′]′.

From assumption 2(iv), we have: ρ̃T (θ
0) = 0 for any T . From assumptions 2(ii) and (iii), we

have: ∥Λ̆T ρ̆T (θ)∥ = OP (1). Following assumption 3(v), we distinguish two cases8:

(a) the additional restrictions are well-specified, ρ̆T (θ0) = 0, and we have:

(A.1) ⇒ Tρ′T (θ̂T )ΩTρT (θ̂T ) + 2
√
Tρ′T (θ̂T )ΩTΨT (θ̂T ) + hT ≤ 0 (A.2)

with hT = Ψ′
T (θ̂T )ΩTΨT (θ̂T )−Ψ′

T (θ
0)ΩTΨT (θ

0).

(b) the additional restrictions are not well-specified, but genuinely weak, Λ̆T =
√
TIdK−K̃

which implies ∥
√
T ρ̆T (θ)∥ = OP (1), and we have:

(A.1) ⇒ Tρ′T (θ̂T )ΩTρT (θ̂T ) + 2
√
Tρ′T (θ̂T )ΩTΨT (θ̂T ) + hT + ϵT ≤ 0 (A.3)

with ϵT = OP (1).

Hence, we can always write:

Tρ′T (θ̂T )ΩTρT (θ̂T ) + 2
√
Tρ′T (θ̂T )ΩTΨT (θ̂T ) + hT + νT ≤ 0 (A.4)

with hT defined above and νT = OP (1): actually, νT = 0 in case (a) and νT = ϵT in case (b).

Then, after defining µT as the smallest eigenvalue of ΩT , it follows that:

TµT ∥ρT (θ̂T )∥2 − 2
√
T∥ρT (θ̂T )∥ × ∥ΩTΨT (θ̂T )∥+ hT + νT ≤ 0

8Note that a combination of these two cases also works similarly: by combination, we have in mind that

some components of ρ̆T (θ0) are well-specified whereas some others are not well-specified but genuinely weak.
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In other words, xT ≡ ∥
√
TρT (θ̂T )∥ solves the inequality:

x2T − 2∥ΩTΨT (θ̂T )∥
µT

xT +
hT + νT

µT
≤ 0

Therefore, we must have ∆T ≥ 0

with ∆T =
∥ΩTΨT (θ̂T )∥2

µ2
T

− hT + νT
µT

and
∥ΩTΨT (θ̂T )∥

µT
−
√

∆T ≤ xT ≤ ∥ΩTΨT (θ̂T )∥
µT

+
√

∆T

We want to show that xT = OP (1), that is

∥ΩTΨT (θ̂T )∥
µT

= OP (1) and ∆T = OP (1)

which amounts to show that:

∥ΩTΨT (θ̂T )∥
µT

= OP (1) and
∥ΩTΨT (θ

0)∥
µT

= OP (1)

Denote by det(M) the determinant of any square matrix M . Since det(ΩT )
P→ det(Ω) > 0, no

subsequence of µT can converge in probability towards zero and thus we can assume (for T

sufficiently large) that µT remains lower bounded away from zero with asymptotic probability

one. Therefore, we just have to show that:

∥ΩTΨT (θ̂T )∥ = OP (1) and ∥ΩTΨT (θ
0)∥ = OP (1)

Denote by tr(M) the trace of any square matrix M . Since tr(ΩT )
P→ tr(Ω) and the sequence

tr(ΩT ) is upper bounded in probability, so are all the eigenvalues of ΩT . Therefore the required

boundedness in probability follows from the functional CLT in assumption 1(i) which ensures:

sup
θ∈Θ

∥ΨT (θ)∥ = OP (1)
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This completes the proof of (ii).

(i) easily follows after realizing that assumption 3(v) is irrelevant since dealing with the addi-

tional moment restrictions and that an inequality similar to (A.4) can be obtained as follows:

Q̃T (θ̃T ) ≤ Q̃T (θ
0) ⇔ T ρ̃′T (θ̃T )Ω̃T ρ̃T (θ̃T ) + 2

√
T ρ̃′T (θ̃T )Ω̃T Ψ̃T (θ̃T ) + h̃T ≤ 0

with h̃T = Ψ̃′
T (θ̃T )Ω̃T Ψ̃T (θ̃T )− Ψ̃′

T (θ
0)Ω̃T Ψ̃T (θ

0). �

Proof of Theorem 2.1 (Consistency):

Consider the GMM-estimators θ̂T defined in (2.5) and θ̃T deduced from the partial set of

moment conditions as follows:

θ̃T = argmin
θ∈Θ

Q̃T (θ) = argmin
θ∈Θ

[
ϕ̃′
T (θ)Ω̃T ϕ̃T (θ)

]
with ϕ̃T (θ) = [IdK̃

... OK̃,K−K̃ ]N ′
TϕT (θ)

where Ω̃T is a sequence of symmetric positive definite random matrices of size K̃ converging

towards a positive definite matrix Ω̃. The proof of consistency of θ̂T is divided into two steps:

(1) we show that θ̃T is a consistent estimator of θ0; (2) we show that Plim[θ̂T ] = Plim[θ̃T ].

(1) The weak consistency of θ̃T follows from a contradiction argument. If θ̃T were not consis-

tent, there would exist some positive ϵ such that:

P
[
∥θ̃T − θ0∥ > ϵ

]
does not converge to zero. Then we can define a subsequence (θ̃Tn)n∈N such that, for some

positive η:

P
[
∥θ̃Tn − θ0∥ > ϵ

]
≥ η for n ∈ N

From assumption 2(ii), we have:

α ≡ inf
∥θ−θ0∥>ϵ

∥d̃(θ)∥ > 0
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Note that since c is bounded and the orthogonal matrix MT is norm-preserving, [Λ̃T
... OK̃,K−K̃ ]N ′

TρT (θ)

converges to d̃(θ) uniformly on Θ by assumption 1. Then, by assumption2(ii), we have:

inf
∥θ−θ0∥>ϵ

∥[Λ̃T
... OK̃,K−K̃ ]N ′

TρT (θ)∥ ≥ α

2
for all T sufficiently large

That is, for all T sufficiently large, we have:

inf
∥θ−θ0∥>ϵ

∥Λ̃T ρ̃T (θ)∥ ≥ α

2
where ρ̃T (θ) = [IdK̃

... OK̃,K−K̃ ]N ′
TρT (θ)

Since ∥Λ̃T ∥/
√
T = o(1) by assumption 2(ii) and

√
T ρ̃(θ̃T ) = OP (1) by Lemma A.1, we get

a contradiction when considering a subsequence Tn. We conclude that θ̃T is a consistent

estimator of θ0.

(2) We now show that: θ0 = Plim[θ̂T ], by showing that it is true for any subsequence. If we

could find a subsequence which does not converge towards θ0, we could find a sub-subsequence

with a limit in probability θ1 ̸= θ0 (by assumption Θ is compact). To avoid cumbersome

notations with sub-subsequences, it is sufficient to show that: Plim[θ̂T ] = θ1 ⇒ θ1 = θ0.

Consider the criterion function: QT (θ) = ϕ
′
T (θ)ΩTϕT (θ). We show that:

(i) QT (θ̃T ) = OP (1/∥Λ̆T ∥2)

(ii) θ1 ̸= θ0 ⇒ ∥Λ̆T ∥2QT (θ̂T )
T→ ∞.

This would lead to a contradiction with the definition of GMM estimators: QT (θ̂T ) ≤ QT (θ̃T ).

To show (i) and (ii), we assume without loss of generality that the weighting matrices ΩT ,

Ω̃T , Ω and Ω̃ are all identity matrices; otherwise, this property would come with a convenient

rescaling of the moment conditions.

TQT (θ) = Tϕ
′
T (θ)ϕT (θ)

= ∥
√
T [IdK̃

... OK̃,K−K̃ ]ϕT (θ)∥2 + ∥
√
T [OK−K̃,K̃

... IdK−K̃ ]ϕT (θ)∥2

= ∥
√
T [IdK̃

... OK̃,K−K̃ ]ϕT (θ)∥2 + ∥[OK−K̃,K̃

... IdK−K̃ ](Ψ(θ)−
√
TρT (θ))∥2
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From Lemma A.1: ∥
√
T [IdK̃

... OK̃,K−K̃ ]ϕT (θ̃T )∥ = OP (1).

From assumption 2(ii): [OK−K̃,K̃

... Λ̆T ]N
′
TρT (θ) → d̆(θ) uniformly.

Thus: QT (θ) = OP (1/(∥Λ̆T ∥2)).

∥Λ̆T ∥2QT (θ̂T ) ≥

∥∥∥∥∥∥Λ̆T ∥√
T

[IdK̃
... OK̃,K−K̃ ]Ψ(θ̂T ) + ∥Λ̆T ∥[IdK̃

... OK̃,K−K̃ ]ρT (θ̂T )

∥∥∥∥∥
2

≥

[
∥Λ̆T ∥∥[IdK̃

... OK̃,K−K̃ ]ρT (θ̂T )∥ −
∥Λ̆T ∥√

T
∥[IdK̃

... OK̃,K−K̃ ]Ψ(θ̂T )∥

]2

From assumption 2(ii): ∥Λ̆T ∥√
T
∥[IdK̃

... OK̃,K−K̃ ]Ψ(θ̂T )∥ = OP

(
∥Ψ(θ̂T )∥

)
= OP (1), while:

∥Λ̆T ∥∥[IdK̃
... OK̃,K−K̃ ]ρT (θ̂T )∥ ≥

∥Λ̆T ∥∥[Λ̃T
... OK̃,K−K̃ ]ρT (θ̂T )∥
∥Λ̃T ∥

with ∥[Λ̃T
... OK̃,K−K̃ ]N ′

TρT (θ̂T )∥ → ∥d̃(θ1)∥ ̸= 0. Thus,

∥Λ̆T ∥∥[Λ̃T
... OK̃,K−K̃ ]ρT (θ̂T )∥
∥Λ̃T ∥

→ +∞

And we get the announced result. �

Proof of Theorem 3.1 (Rate of convergence):

From Lemma A.1, ∥ρT (θ̂T )∥ = OP (1/
√
T ). We know that NT is bounded. Hence, we have:

∥N ′
TρT (θ̂T )∥ = OP (1/

√
T ). Recall also that from assumption 2(iii), the first K̃ elements

of NTρT (θ
0) are identically zero. The mean-value theorem, for some θ̃T between θ̂T and θ0

(component by component), yields to:∥∥∥∥∥[Λ̃T 0]N ′
T

∂ρT (θ̃T )

∂θ′

(
θ̂T − θ0

)∥∥∥∥∥ = OP

(
∥Λ̃T ∥√

T

)

Note that (by a common abuse of notation) we omit to stress that θ̃T actually depends on the

component of ρT . Define now zT as follows:

zT ≡ ∂d̃(θ0)

∂θ′
(θ̂T − θ0) (A.5)
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Since
[
∂d̃(θ0)/∂θ′

]
is full column rank by assumption 3(iii), we have:

(
θ̂T − θ0

)
=

[
∂d̃′(θ0)

∂θ

∂d̃(θ0)

∂θ′

]−1
∂d̃′(θ0)

∂θ
zT

Hence, we only need to prove that ∥zT ∥ = OP (∥Λ̃T ∥/
√
T ). By definition of zT , we have:

zT =

[
∂d̃(θ0)

∂θ′
− [Λ̃T 0]N ′

T

∂ρT (θ̃T )

∂θ′

](
θ̂T − θ0

)
+ wT with ∥wT ∥ = OP

(
∥Λ̃T ∥√

T

)
(A.6)

However, since θ̃T
P→ θ0 and [Λ̃T 0]N ′

T [∂ρT (θ)/∂θ
′] converges uniformly on the interior of Θ

towards
[
∂d̃(θ)/∂θ′

]
by assumption 3(iv), we have:[
∂d̃(θ0)

∂θ′
− [Λ̃T 0]N ′

T

∂ρT (θ̃T )

∂θ′

](
θ̂T − θ0

)

=

[
∂d̃(θ0)

∂θ′
− [Λ̃T 0]N ′

T

∂ρT (θ̃T )

∂θ′

][
∂d̃′(θ0)

∂θ

∂d̃(θ0)

∂θ′

]−1
∂d̃′(θ0)

∂θ
zT

= DT zT

for some matrix DT such that ∥DT ∥
P→ 0. Therefore: ∥zT ∥ ≤ ϵT ∥zT ∥ + ∥wT ∥ with ϵT → 0.

Hence, ∥zT ∥ = OP (∥Λ̃T ∥/
√
T ) and we get: ∥θ̂T − θ0∥ = OP (∥Λ̃T ∥/

√
T ). �

Proof of Theorem 3.2: Without loss of generality, we write the diagonal matrix ΛT as:

ΛT =



λ1T IdK1

. . .

λLT IdKL

λL+1,T IdKL+1

. . .

λL,T IdKL


=



Λ̃T O

O Λ̆T


with L ≤ K,

∑L
l=1Kl = K and λlT = o(λl+1,T ). For convenience, we also rewrite the (p,K)-

matrix
[
∂c′(θ0)

∂θ M−1′
]

by stacking horizontally L blocks of size (p,Kl) denoted Jl, (l = 1, · · · , L)

as follows:

∂c′(θ0)

∂θ
M−1′ =

(
J1 · · · JL JL+1 · · · JL

)
=
(

∂d̃′(θ0)
∂θ′

∂d̆′(θ0)
∂θ′

)
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with J ′
1 ≡


[
M−1 ∂c(θ0)

∂θ′

]
[1.]

...[
M−1 ∂c(θ0)

∂θ′

]
[K1]

 and J ′
l ≡


[
M−1 ∂c(θ0)

∂θ′

]
[K1+···+Kl−1+1.]

...[
M−1 ∂c(θ0)

∂θ′

]
[K1+···+Kl.]

 for l = 2, · · · , L

Recall also that by assumption 3(iii), the columns of ∂d̃′(θ0)
∂θ span the whole space Rp. We now

introduce the square matrix of size p, R = [R1 R2 · · · RL] which spans Rp. The idea is that

each (p, sl)-block Rl defined through col[Jl] collects the directions associated with the specific

rate λlT , l = 1, · · · , L and
∑L

l=1 sl = p. Then, the matrix ÃT is built as:

ÃT =

[
λ1TR1

... λ2TR2
... · · ·

... λLTRL

]
By convention, λlT = o(λl+1,T ) for any 1 ≤ l ≤ L− 1. We now explain how to construct the

matrix R. The idea is to separate the parameter space into L subspaces. More specifically:

- RL is defined such that: J ′
iRL = 0 for 1 ≤ i < L and rk[RL] = rk[JL]. In other words, RL

spans col[J1 J2 · · · JL−1]
⊥.

- RL−1 is defined such that: J ′
iRL−1 = 0 for 1 ≤ i < L− 1 and rk[RL−1 RL] = rk[JL−1 JL].

- and so on, until R2 is defined such that: J ′
1R2 = 0 and rk[R2 · · · RL] = rk[J2 · · · JL].

- Finally, R1 is defined such that R = [R1 R2 · · · RL] is full rank.

We now check that limT [Λ
−1
T M−1 ∂c(θ

0)
∂θ′ ÃT ] exists and is full column rank. First, recall that

we have:

lim
T

(
Λ−1
T M−1∂c(θ

0)

∂θ′
ÃT

)
= lim

T

 Λ̃−1
T 0

0 Λ̆−1
T

 ∂d̃(θ0)
∂θ′

∂d̆(θ0)
∂θ′

 ÃT

 = lim
T

 Λ̃−1
T

∂d̃(θ0)
∂θ′ ÃT

0



since Λ̆−1
T = o(∥Λ̃−1

T ∥) and ∥ÃT ∥ = O(Λ̃T ).
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We now show that [Λ̃−1
T

∂d̃(θ0)
∂θ′ ÃT ] converges to a block diagonal matrix of rank p.

Λ̃−1
T

∂d̃(θ0)

∂θ′
ÃT

=


λ−1
1T IdK1

. . .

λ−1
LT IdKL


[
λ1T

∂d̃(θ0)

∂θ′
R1

... λ2T
∂d̃(θ0)

∂θ′
R2

... · · ·
... λLT

∂d̃(θ0)

∂θ′
RL

]

- The L diagonal blocks are equal to J ′
lRl; these (Kl, sl)-blocks are full column rank sl by

construction of the matrices Rl with
∑L

l=1 sl = p.

- The lower triangular blocks converge to zero since λjT = o(λlT ) for any 1 ≤ j < l ≤ L.

- The upper triangular blocks converge to zero by construction of the matrices Rl since J ′
lRi = 0

for any 1 ≤ l < i ≤ L. �

Proof of Corollary 3.3 (Extended Theorem 3.2):

From assumption 4(i):

∂ϕT (θ
0)

∂θ′
−A−1

T

∂c(θ0)

∂θ′
= OP

(
1√
T

)
⇔ ∂ϕT (θ

0)

∂θ′
−N−1

T Λ−1
T M−1

T

∂c(θ0)

∂θ′
= OP

(
1√
T

)
⇒ ∂ϕT (θ

0)

∂θ′
ÃT −N−1

T Λ−1
T M−1

T

∂c(θ0)

∂θ′
ÃT = OP

(
∥Λ̃T ∥√

T

)

⇒ ∂ϕT (θ
0)

∂θ′
ÃT −N−1H = OP

(
∥Λ̃T ∥√

T

)

with H full column rank matrix from Theorem 3.2. �

Proof of Theorem 3.4 (Asymptotic distribution):

Mean-value expansion of the moment conditions around θ0 for θ̃T between θ̂T and θ0,

ϕT (θ̂T ) = ϕT (θ
0) +

∂ϕT (θ̃T )

∂θ′
(θ̂T − θ0) (A.7)
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combined with the first-order conditions,

∂ϕ
′
T (θ̂T )

∂θ
ΩTϕT (θ̂T ) = 0

yields to:

∂ϕ
′
T (θ̂T )

∂θ
ΩTϕT (θ

0) +
∂ϕ

′
T (θ̂T )

∂θ
ΩT

∂ϕT (θ̃T )

∂θ′
(θ̂T − θ0) = 0

⇔ Ã′
T

∂ϕ
′
T (θ̂T )

∂θ
ΩT

√
TϕT (θ

0) + Ã′
T

∂ϕ
′
T (θ̂T )

∂θ
ΩT

∂ϕT (θ̃T )

∂θ′
ÃT Ã

−1
T (θ̂T − θ0) = 0

⇔ Ã−1
T

√
T (θ̂T − θ0) = −

[
Ã′

T

∂ϕ
′
T (θ̂T )

∂θ
ΩT

∂ϕT (θ̃T )

∂θ′
ÃT

]−1

Ã′
T

∂ϕ
′
T (θ̂T )

∂θ
ΩT

√
TϕT (θ

0) (A.8)

⇒ Ã−1
T

√
T (θ̂T − θ0) = OP (1)

We then get the expected result after justifying the invertibility of
[
Ã′

T
∂ϕ

′
T (θ̂T )
∂θ ΩT

∂ϕT (θ̃T )
∂θ′ ÃT

]
for T large enough.

Lemma A.2 (Extension of Corollary 3.3) Under assumptions 1 to 5, for any consistent esti-

mator θT s.t. ∥θT − θ0∥ = OP (∥Λ̃T ∥/
√
T ),

Plim

[
∂ϕT (θT )

∂θ′
ÃT

]
exists and is full column rank

Proof: Mean-value expansion of the k-th row of ∂[ϕT (θT )/∂θ
′] around θ0 for θ̃T between θ̂T

and θ0: [
∂ϕT (θT )

∂θ′
ÃT

]
k.

=

[
∂ϕT (θ

0)

∂θ′
ÃT

]
k.

+ (θT − θ0)′
∂

∂θ

[
∂ϕT (θ̃T )

∂θ′
ÃT

]
k.

⇔
[
∂ϕT (θT )

∂θ′
ÃT

]
k.

−
[
∂ϕT (θ

0)

∂θ′
ÃT

]
k.

=

√
T

∥Λ̃T ∥
(θT − θ0)× ∥Λ̃T ∥√

T

∂

∂θ

[
∂ϕT (θ̃T )

∂θ′
ÃT

]
k.
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From assumption 4(ii), the Hessian term is such that:

∂

∂θ

[
∂ϕT (θ̃T )

∂θ′

]
k.

=
∂

∂θ

[
A−1

T

∂c(θ̃T )

∂θ′

]
k.

+OP

(
∥Λ̃T ∥√

T

)

=
∂

∂θ

[
N−1

T Λ−1
T M−1

T

∂c(θ̃T )

∂θ′

]
k.

+OP

(
1√
T

)
= OP

(
1

λlT

)
+OP

(
1√
T

)
from assumption 4(ii)

= OP

(
1

λlT

)
(A.9)

for any k such that K1 + · · ·+Kl−1 < k ≤ K1 + · · ·+Kl and l = 1, · · · , L.

Recall that: ÃT = [λ1TR1
... · · ·

...λLTRL]. To get the final result, we distinguish two cases to

show that the RHS of the following equation is op(1).([
∂ϕT (θT )

∂θ′

]
k.

−
[
∂ϕT (θ

0)

∂θ′

]
k.

)
λiTRi =

√
T

∥Λ̃T ∥
(θT − θ0)× ∥Λ̃T ∥√

T

∂

∂θ

[
∂ϕT (θ̃T )

∂θ′

]
k.

λiTRi

- For 1 ≤ i ≤ l, λiT = o(λlT ) and the result directly follows from equation (A.9)

- For i > l, λlT = o(λiT ) and the result follows from nearly-strong identification assumption 5.

Note that when the same degree of global identification weakness is assumed, the asymptotic

theory is available under assumptions 1 to 4, since lemma A.2 holds without the nearly-strong

identification assumption 5. �

Proof of Theorem 3.6 (J-test):

Plugging (A.8) into (A.7), we get:

√
TϕT (θ̂T ) =

√
TϕT (θ

0)− ∂ϕT (θ̃T )

∂θ′
ÃT

[
Ã′

T

∂ϕ
′
T (θ̂T )

∂θ
ΩT

∂ϕT (θ̃T )

∂θ′
ÃT

]−1

Ã′
T

∂ϕ
′
T (θ̂T )

∂θ
ΩT

√
TϕT (θ

0)

⇒ TQT (θ̂T ) =
[√

TϕT (θ
0)
]′
Ω

′1/2
T [IdK − PX ] Ω

1/2
T

[√
TϕT (θ

0)
]
+ oP (1)

with ΩT = Ω
′1/2
T Ω

1/2
T and PX = X(X ′X)−1X ′ for X = Ω

1/2
T

∂ϕT (θ̂T )
∂θ′ ÃT . �
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Proof of Theorem 3.7 (Wald-test):

To simplify the exposition, the proof is performed with ΛT as defined in example 3.3. In

step 1, we define an algebraically equivalent formulation of H0 : g(θ) = 0 as H0 : h(θ) = 0

such that its first components are identified at the fast rate λ1T , while the remaining ones are

identified at the slow rate λ2T without any linear combinations of the latter being identified

at the fast rate. In step 2, we show that the Wald test statistic ξWT (h) on H0 : h(θ) = 0

asymptotically converges to the proper chi-square distribution with q degrees of freedom and

that it is numerically equal to the Wald test statistic ξWT (g) on H0 : g(θ) = 0.

- Step 1: The space of fast directions to be tested is:

I0(g) =

[
col

∂g′(θ0)

∂θ

]
∩

[
col

∂d̃′1(θ
0)

∂θ

]

Denote n0(g) the dimension of I0(g). Then, among the q restrictions to be tested, n0(g) are

identified at the fast rate and the (q − n0(g)) remaining ones are identified at the slow rate.

Define q vectors of Rq denoted as ϵj (j = 1, · · · , q) such that
[
(∂g′(θ0)/∂θ)ϵj

]q1
j=1

is a basis of

I0(g) and
[
(∂g′(θ0)/∂θ)ϵj

]q
j=q1+1

is a basis of

[
I0(g)

]⊥ ∩
[
col
(
∂g′(θ0)

∂θ

)]
We can then define a new formulation of the null hypothesis H0 : g(θ) = 0 as, H0 : h(θ) = 0

where h(θ) = Hg(θ) with H invertible matrix such that H ′ = [ϵ1 · · · ϵq]. The two formulations

are algebraically equivalent since h(θ) = 0 ⇐⇒ g(θ) = 0. Moreover,

Plim

[
D−1

T

∂h(θ0)

∂θ′
ÃT

]
= B0 with DT =

 λ1T Idn0(g) 0

0 λ2T Idq−n0(g)


and B0 a full column rank (q, p)-matrix.
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- Step 2: we show that the 2 induced Wald test statistics ξWT (g) and ξWT (h)are equal.

ξWT (g) = Tg′(θ̂T )

∂g(θ̂T )

∂θ′

[
∂ϕ

′
T (θ̂T )

∂θ
S−1
T

∂ϕT (θ̂T )

∂θ′

]−1
∂g′(θ̂T )

∂θ


−1

g(θ̂T )

= TH ′g′(θ̂T )

H
∂g(θ̂T )

∂θ′

[
∂ϕ

′
T (θ̂T )

∂θ
S−1
T

∂ϕT (θ̂T )

∂θ′

]−1
∂g′(θ̂T )

∂θ
H ′


−1

Hg(θ̂T )

= ξWT (h)

Then, we show ξWT (h) is asymptotically distributed as a chi-square with q degrees of freedom.

First, a preliminary result naturally extends the above convergence towards B0 when θ0 is

replaced by a λ2T -consistent estimator θ∗T :

Plim

[
D−1

T

∂h(θ∗T )

∂η′
ÃT

]
= B0

The proof is very similar to lemma A.2 and is not reproduced here. The Wald test statistic

ξWT (h) now writes:

ξWT (h) =
[√

TD−1
T h(θ̂T )

]′D−1
T

∂h(θ̂T )

∂θ′
Ã−1

T

[
Ã′

T

∂ϕ
′
T (θ̂T )

∂θ
S−1
T

∂ϕT (θ̂T )

∂θ′
ÃT

]−1

ÃT
∂h′(θ̂T )

∂θ
D−1

T


−1

×
[√

TD−1
T h(θ̂T )

]
From lemma A.2, [

Ã′
T

∂ϕ
′
T (θ̂T )

∂θ
S−1
T

∂ϕT (θ̂T )

∂θ′
ÃT

]
P→ Σ nonsingular matrix

Now, from the mean-value theorem under H0 we deduce:

√
TD−1

T h(θ̂T ) =
√
TD−1

T

∂h(θ∗T )

∂θ′

(
θ̂T − θ0

)
=

[
D−1

T

∂h(θ∗T )

∂θ′
ÃT

]√
TÃ−1

T

(
θ̂T − θ0

)
with

[
D−1

T

∂h(θ∗T )

∂θ′
ÃT

]
P→ B0 and

√
TÃ−1

T

(
θ̂T − θ0

)
d→ N (0,Σ−1)

Finally we get

ξWT (h) =
[√

TÃ−1
T (θ̂T − θ0)

]′
B′

0(B0ΣB
′
0)

−1B0

[√
TÃ−1

T (θ̂T − θ0)
]
+ oP (1)
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Following the proof of Theorem 3.6 we get the expected result. �

Proof of Proposition 4.1 (Equivalence between CU-GMM and 2S-GMM):

FOC of the CU-GMM optimization problem can be written as follows (see Antoine, Bonnal

and Renault (2007)):

√
T
∂ϕ

′
T (θ̂

CU
T )

∂θ
S−1
T (θ̂CU

T )
√
TϕT (θ̂

CU
T )− P

√
T
∂ϕ

′
T (θ̂

CU
T )

∂θ
S−1
T (θ̂CU

T )
√
TϕT (θ̂

CU
T ) = 0

where P is the projection matrix onto the moment conditions. Recall that:

P
√
T
∂ϕ

(j)

T (θ̂CU
T )

∂θ
= Cov

(
∂ϕ

(j)

T (θ̂CU
T )

∂θ
, ϕT (θ̂

CU
T )

)
S−1
T (θ̂CU

T )
√
TϕT (θ̂

CU
T )

With a slight abuse of notation, we define conveniently the matrix of size (p,K2) built by

stacking horizontally the K matrices of size (p,K), Cov
(
∂ϕj,T (θ̂

CU
T )/∂θ, ϕT (θ̂

CU
T )

)
, as

Cov

(
∂ϕ

′
T (θ̂

CU
T )

∂θ
, ϕT (θ̂

CU
T )

)

≡

[
Cov

(
∂ϕ

(1)

T (θ̂CU
T )

∂θ
, ϕT (θ̂

CU
T )

)
. . . Cov

(
∂ϕ

(j)

T (θ̂CU
T )

∂θ
, ϕT (θ̂

CU
T )

)
. . . Cov

(
∂ϕ

(K)

T (θ̂CU
T )

∂θ
, ϕT (θ̂

CU
T )

)]

Then, we can write:

P
√
T
∂ϕT (θ̂

CU
T )

∂θ
= Cov

(
∂ϕ

′
T (θ̂

CU
T )

∂θ
, ϕT (θ̂

CU
T )

)(
IdK ⊗ [S−1

T (θ̂CU
T )

√
TϕT (θ̂

CU
T )]

)
≡ HT

where HT = OP (1). Next, pre-multiply the above FOC by Ã′
T /

√
T to get:

Ã′
T

∂ϕ
′
T (θ̂

CU
T )

∂θ
S−1
T (θ̂CU

T )
√
TϕT (θ̂

CU
T )− Ã′

T√
T
HTS

−1
T (θ̂CU

T )
√
TϕT (θ̂

CU
T ) = 0

To get the equivalence between both estimators, we now show that the second element of the

LHS is equal to oP (1).

From assumption 1, we have:
√
TϕT (θ̂

CU
T ) =

√
TρT (θ̂

CU
T ) + ΨT (θ̂

CU
T ) with ΨT a Gaussian

process. Hence, we have:

Ã′
T√
T
HTS

−1
T (θ̂CU

T )
√
TϕT (θ̂

CU
T ) =

Ã′
T√
T
HTS

−1
T (θ̂CU

T )ΨT (θ̂
CU
T )−

Ã′
T√
T
HTS

−1
T (θ̂CU

T )
√
TρT (θ̂

CU
T )
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The first term of the RHS is obviously op(1) since ∥ÃT ∥ = o(
√
T ). The same remains to be

shown for the second term,

Ã′
T√
T
HT

√
TS−1

T (θ̂CU
T )ρT (θ̂

CU
T )

A result and proof similar to Lemma A.1 for θ̂CU
T yield to: ∥

√
TρT (θ̂

CU
T )∥ = OP (1).

Also, we already know that HT = OP (1) and ∥ÃT ∥ = o(
√
T ). So, we combine these results to

get:
Ã′

T√
T
HT

√
TS−1

T (θ̂CU
T )ρT (θ̂

CU
T ) = op(1)

We conclude that both estimators are always defined by the same set of equations. In order

to deduce that they are equivalent, we need assumption 5 in order to get the same asymptotic

theory. When the same degree of global identification weakness is assumed, the asymptotic

theory holds without assumption 5. �


