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Abstract
This paper aims to identi�y heterogeneous causal e¤ects of an ordered dis-

crete variable chosen by individuals, without relying on parametric assump-
tions. The proposed nonparametric restrictions have set identifying power of
the value of the nonseparable structural function. When applied to an "un-
ordered" binary endogenous variable, our model can be used to answer the
question regarding whether a policy/treatment has a positive or negative im-
pact on an individual when his/her ranking in the unobserved characteristic is
given. The identi�cation result is applied to examine the e¤ects of Vietnam-
era veteran status on earnings. The empirical �ndings show that when other
observable characteristics are the same, military service had positive impacts
for those with low earnings potential, while individuals with high earnings po-
tential had negative impacts.

1 Introduction

Most welfare programs are designed to support certain groups of people. If "who
bene�ts" from such programs could be recovered from data, this would be informa-
tive in judging whether the targeted groups by the policy actually bene�t from it.
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By heterogeneous treatment responses we mean idiosyncratic treatment e¤ect even
after accounting for observed characteristics1. Several studies2 allowed for individual
heterogeneity in response. However, identi�cation is achieved by integrating it out3

in these studies. By identifying average responses, much information regarding the
distributional consequences of a policy - heterogeneity in responses - would be lost.
In this paper individual heterogeneity in responses is allowed by use of a non-additive
structural relation and our model identi�es heterogeneity by identifying partial di¤er-
ences of the structural relation. We demonstrate how "partial" information (the sign
and not the size of treatment e¤ect) regarding who bene�ts (individual heterogeneous
response) can be recovered from data by using quantiles rather than averages.
Suppose we are interested in how a variable (Y ) chosen by individuals, a¤ects

their outcome (W ) of interest, and suppose the economic decisions on W and Y (the
choice) can be described by the following triangular system.

W = h(Y;X1; U)

Y = g(Z;X2; V )

where X1 and X2 are vectors of characteristics that are exogenously given to individ-
uals such as age, gender, and race, Z is an exogenous covariate that is excluded in h;
and U and V are unobservable individual characteristics such as ability, preference,
level of e¤ort, or patience which are considered to be determinants of the outcome
and the choice, and which may be correlated with each other. The structural relations
may be derived from some optimization processes such as demand functions. If there
is not a well-de�ned economic theory behind, then the structural relations can be
simply understood as how the outcome and the choice are determined by other rel-
evant (both observable and unobservable) variables. The structural relations deliver
the information on "contingent" plans of choice or outcome when di¤erent values of
X1; X2, Z; U and V are given. The key implication of the nonseparable functional
form is that partial derivatives or partial di¤erences are themselves stochastic objects

1This is called "essential heterogeneity" by Heckman, Urzua, and Vytlacil (2006).
2The standard linear IV model cannot identify heterogeneus treatment e¤ects. See Heckman

and Navarro (2004) and Heckman and Urzua (2009). LATE by Imbens and Angrist (1994) can be
used to identify heterogeneous treatment e¤ects for the subpopulation characterized by "observed"
covariates.
For identi�cation under heterogeneous response see Heckman, Urzua, and Vytlacil (2006) for

binary endogenous variable, and Florens, Heckman, Meghir, and Vytlacil (2008), Athey and Imbens
(2006), Imbens and Newey (2009),Chernozhukov, Fernandez-Val, and Newey (2009), Hoderlein and
White (2009), among others. There is another line of research using random coe¢ cient models to
recover the distribution of the response, see Card (2001), Heckman and Vytlacil (1999), Arellano
and Bonhomme (2009), Gautier and Kitamura (2009) etc.

3The averaged objects however can exhibit a certain degree of heterogeneity by allowing for
treatment heterogeneity.
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that have distributions4.
Causal e¤ects of a variable indicate the e¤ects of the variable only, separated

from other possible in�uences. Thus, when the outcome is determined by the above
relationship, the causal e¤ects of changing the value of Y from ya to yb on W other
things being equal would be measured by the partial di¤erence of the structural
function, h

�(ya; yb; x; u) � h(ya; x; u)� h(yb; x; u)
for some �xed values for X1 = x and U = u: Individuals with di¤erent values for X1

and U may have di¤erent values of �(ya; yb; x; u); so, the heterogeneity can be both
observed and unobserved dimensional. If �(ya; yb; x; u) were identi�ed, then individ-
ual heterogeneous response could be identi�ed. This partial di¤erence, �(ya; yb; x; u);
is the major parameter of interest for identi�cation analysis in this paper and we focus
on heterogeneity in the unobserved characteristic ignoring the observed characteris-
tics, x.
When Y is binary, the causal e¤ects of Y can be expressed by

�(1; 0; x; u) = h(1; x; u)� h(0; x; u):

Adopting the notation of the potential outcomes approach, let W1i denote the hy-
pothetical outcome with a treatment and W0i the hypothetical outcome without a
treatment of the individual i whose observed and unobserved characteristics are x
and u. If we can assume that W1i and W0i are generated by the structural relation
then we can write

W1(i) �W0(i) = h(1; x; u)� h(0; x; u):
This way we map the problem in the potential outcomes approach into the structural
approach5. The identi�cation problem in the potential outcomes approach (identi�ca-
tion of the object on the left) is caused by the fact that eitherW1i orW0i is observed,
but not both, so the di¤erence of the two for each individual is never observed. The
identi�cation problem in the structural approach (identi�cation of the object on the

4If the structural function is linear, that is,

W = a+ bY + cX1 + U;

then partial derivative of this linear function with respect to Y is b: By imposing linearity, the
structural feature of interest that captures the causal e¤ect of Y is b; a constant: Thus, assuming a
linear structural relation corresponds to assuming a "homogenous" response.

5By the structural approach we mean the sort of analysis in classical simultaneous equations
systems model. This should be distinguished from "structural estimation" where the underlying
optimization processes such as preferences are fully speci�ed. Rather, the structural approach
we are considering simply assumes the existence of decision processes which can be expressed as
relationships between variables. Further speci�cation of the decision processes is not required. A
key characterization of the structural approach is that economic interpretation of certain functional
of the structural relation is justi�ed. One of the examples is partial derivatives or partial di¤erences
which can be interpreted as "ceteris paribus" impacts of a variable.
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right) arises because independent variation in each coordinate of the structural rela-
tion is hard to achieve from the observed data due to possible endogeneity.6

The potential outcomes approach focuses on the distribution of the potential out-
comes and does not utilize the information on the economic processes that generate
the potential outcomes. Instead of the left hand side object, W1i � W0i, this pa-
per focuses on identi�cation of the right hand side object, h(1; x; u) � h(0; x; u); by
assuming the existence of economic processes and by imposing restrictions on such
decision mechanisms. The proposed model does not assume continuity or di¤erentia-
bility and it is characterized by restrictions on the "modes" by which each variable -
observables and unobservaebles - is related. As long as the existence of the relations
and the restrictions imposed on them are "believed", our identi�cation results by
the structural approach can be informative. See the recent debate between Deaton
(2009)7 and Imbens (2009).
We advocate the structural approach for two reasons : as Deaton (2009) and

Heckman and Urzua (2009) argue econometric models guided by economic models
provide clearer interpretations of data analysis. Moreover, assuming the existence of
a structure derived from an economic model allows us to use restrictions that may
be justi�ed by economic arguments such as monotonicity or concavity of structural
relation, which can result in identi�cation of some parameters of interest. In contrast
with Imbens (2009)�s arguments, when a speci�c structural feature is aimed to be re-
covered (not the whole structure), the structural approach helps, rather than hinders
from, inference of casual information from data. On the other hand, the applicability
may be limited to the extent that the restrictions can be justi�ed since the identifying
power comes from the restrictions.
Our model could be used to determine who bene�ts by identifying the signs of

treatment e¤ect of individuals with di¤erent rankings of the scalar unobserved het-
erogeneity. Chesher (2003,2007a) study identi�cation of �(ya; yb; x; u) when Y is con-
tinuous, by the quantile-based control function approach (QCFA, hereafter). Chesher
(2005) showed how the QCFA proposed by Chesher (2003) can be used to �nd the
intervals that the values of the structural function lie in when the endogenous variable
is ordered discrete with more than three points in the support. Thus, Chesher (2005)
cannot be applied to a binary endogenous variable case. Moreover, Chesher (2005)�s

6Without selection or endogeneity problem, point identi�cation is achievable. Suppose that there
is no endogeneity problem, for example, suppose that data obtained from a randomized trial are
available. Then we still cannot observe both counterfactuals, W0 and W1, thus, the left hand side
object is not observed. However, if we believe that the counterfactuals are generated by a certain
structural relation, then we can still "point" identify the right hand side object by applying Matzkin
(2003) using quantiles.

7Deaton (2009) is based on the Keynes Lecture in Economics given at British Academy in October
2008. He addressed the issues in measuring e¤ectiveness of any development policy. Randomized
trials have been widely used and advocated as an alternative to various econometric methods which
inherently contain many shortcomings. He emphasized the importance of modelling individual
behavior in data analysis and criticized the movement to discard econometrics.
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rank condition is hard to be satis�ed with weak IV.
The contribution of this paper is to propose a model that relaxes Chesher (2005)�s

"strong" rank condition and that imposes one more restriction on the structure such
that it interval identi�es partial di¤erences of the structural relation. Our weak rank
condition can be applied to examples such as regression discontinuity designs, a case
with a binary endogenous variable or weak IV.

1.1 Related Studies

Since Roehrig (1988)�s recognition of the importance of nonparametric identi�cation,
there have been many studies that aim to clarify what can be obtained from data
without parametric restrictions8. When parametric assumptions are avoided, point
identi�cation is often not possible9 with a discrete endogenous variable. In such
cases one could aim to de�ne a set where the parameter of interest is located. This
partial identi�cation idea, which was developed by Manski (1990, 1995, 2003), has
been actively used in the setup that can be interpreted as a missing data problem -
selection or (interval) censoring as examples (Manski (1990, 1994), Balke and Pearl
(1997), Manski and Pepper(2000), Cross and Manski (2002), Heckman and Vytalcil
(1999), Blundell, Gosling, Ichimura, and Meghir (2007), Chernozhukov, Riggobon
and Stoker (2009), for example). It has been expanded into other economic models
such as consumer demand or labor supply analyses by adopting the restrictions from
economic theory recently (Blundell, Browning, and Crawford (2007), Hoderlein and
Stoye (2009), and Chetty (2009)). Set identi�cation de�ned by moment inequality
has been used in entry models (see Berry and Tamer (2007) for the recent survey),
panel data models (Honore and Tamer (2006)), discrete outcomes (Chesher (2007b))
etc.
The importance of the information regarding heterogeneous treatment e¤ects was

recognized earlier, but identi�cation of them has not been studied until quite recently.
Many parameters of interest are functionals of the distribution of individual treatment
e¤ects as Heckman, Smith, and Clements (1997) noted. Average treatment e¤ects
are found from the marginal distributions of the potential outcomes since the mean

8Nonparametric identi�cation under endogeneity has been studied by several authors under dif-
ferent frameworks : one could specify the whole structural system as in Roehrig (1988), and Matzkin
(2008), one could impose triangularity into the system as in Newey, Powell, and Vella (1999), Chesher
(2003), or Imbens and Newey (2009), or one could use an incomplete single equation IV model as
in Newey and Powell (2003), or Chernozhukov and Hansen (2005), or Chesher (2007b,2009), or one
could use a conditional independence restriction to deal with endogeneity as in Altonji and Matzkin
(2005) and Hoderlein and Mammen (2007).

9Under the "complete" system of equations as Roehrig (1988) and Matzkin (2008), identi�cation
analysis relies on di¤erentiability and invertibility of the structural functions. However, di¤erentia-
bility and invertibility fail to hold with discrete endogenous variables. Another well known example
is discussed by Heckman (1990) using the selection model - without parametric assumptions point
identi�cation is achieved by the identi�cation at in�nity argument, which may not hold in practice.
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is a linear operator. Other functionals such as quantiles require the knowledge of the
distribution of the individual treatment e¤ects10.
Some information regarding heterogeneity can be recovered by using quantiles.

One particular object that has been the focus of research is the quantile treatment
e¤ect (QTE) de�ned by Lehman (1974) and Doksum (1974). The QTE is measured
by the di¤erence of quantiles of the marginal distributions of the potential outcomes.
One could recover the marginal distributions of the potential outcomes to �nd the
QTE. Imbens and Rubin (1997) and Abadie (2002) have results on identi�cation
of the marginal distributions of potential outcomes. Or one could model the QTE
as a linear function. See Abadie, Angrist, and Imbens (2002) under the LATE-
type assumption, Firpo (2007) under the matching assumption, and Frolich and
Melly (2009) under the regression discontinuity design. Abadie, Angrist, and Imbens
(2002) dealt with the selection problem using the LATE type assumption, thus, the
estimate from their method can be interpreted as a "causal" e¤ect on a particular
point of the distribution, not on the individuals. The QTE may measure the causal
e¤ect of a policy on a particular point of a distribution. However, the QTE should
not be interpreted as the causal e¤ects of the treatment on the individuals since the
individual ranked in the particular point in the marginal distributions of the potential
outcomes may not be the same individuals.
Another approach has been taken to recover heterogeneity in treatment e¤ects by

identifying the distribution of W1 �W0 directly11. Heckman, Smith and Clements
(1997) use the Hoe¤ding-Frechet bounds, and Fan and Park (2006) and Firpo and
Ridder (2008) used Makarov bounds to derive information on the distribution of the
treatment e¤ects from the "known" marginal distributions of the potential outcomes.
In our structural approach we do not have to recover the marginal distribution of
the potential outcomes, and the heterogeneity in response can be modeled by a non-
additive structural relation. We focus on the partial di¤erence of the structural
relation with respect to the binary variable. Our identi�cation results provide a way
to recover heterogeneity in responses among the observationally same individuals.
Chernozhukov and Hansen (2005) adopt the structural approach as here. Cher-

nozhukov and Hansen (2005)�s moment condition based on their IV-QR model pro-
vides a way to estimate h(1; x; u) and h(0; x; u) separately, as u-quantile functions
conditional on the IV under uniform normalization of U . Whether the di¤erence
obtained can be interpreted as causal e¤ect on the "individual" depends on whether

10When the treatment e¤ects are homogeneous the problem is trivial and the distribution of the
treatment e¤ects is degenerate.
11The quantiles of treatment e¤ects recovered from the distribution of W1i�W0i are examples of

D�� treatment e¤ects, while the quantile treatment e¤ects (QTE) are examples of �D�treatment
e¤ects discussed in Manski (1997). Neither of them is implied by the other, and they deliver di¤erent
information regarding distributional consequences of any policy. As Firpo and Ridder (2008) nicely
discussed, �D�treatment e¤ects, such as QTE can deal with the issues such as the impact of a
policy on the society (population) in general, while D��treatment e¤ects can be used to address
issues such as policy impacts on "individuals".

6



the rank similarity restriction holds. More detailed discussion on identi�cation of
heterogeneous treatment e¤ects using quantiles can be found in section 4.4.
Jun, Pinkse, and Xu (2009) report tighter bounds when a di¤erent rank condition

from Chesher (2005)�s is used, while other restrictions in Chesher (2005) are adopted.
If there is only one pair of values that satis�es their rank condition, the bounds are
essentially the same as Chesher (2005) bounds. When there are more such pairs of
instrumental values, then their identi�cation strategy that utilizes the Dynkin system
argument lead to tighter bounds than Chesher (2005)�s when their rank condition is
stronger than Chesher (2005)�s rank condition. Similar monotonicity restrictions to
ours have been adopted by Manski and Pepper (2000) and Bhattacharya, Shaikh, and
Vytlacil (2008). More discussion on these papers and how they are di¤erent from this
paper can be found in section 4.
The remaining part is organized as follows. Section 2 introduces the model for

"ordered" discrete endogenous variables and contains the main results on identi�ca-
tion. Section 3 discusses "unordered" binary endogenous variable as a di¤erent case
of discrete endogenous variable. We also discuss the testability of the restrictions
imposed by our model. We then illustrate the possibly useful information derived
from our identi�cation results by examining the e¤ects of the Vietnam-era veteran
status on the civilian earnings in section 5. Section 6 concludes.

2 Local Selection and Response Match (LSRM)
model - MLSRM

2.1 The quantile - based control function approach

While the control function approach can be described as conditioning on V = v,12

the quantile-based control function approach can be described as conditioning on the
v - quantile of Y given Z to correct for endogeneity13. We �rst introduce how the

12For the sample selection models - both parametric and non/semi - parametric models - the
propensity score function plays the role of control function (see Heckman and Robb (1986), Das,
Newey, and Vella (2001), and Heckman and Navarro (2004)). In the parametric nonlinear Tobit
model as in Smith and Blundell (1986), the �rst stage residual plays the role of control function. In
Newey, Powell and Vella (1999)�s nonparametric function with additively separable error under mean
independence restriction (with (2) being g(Z; V ) = �(Z) + V ), the residual obtained from the �rst
stage regression of Y on Z, v = y � �(z)), plays the role of control function. In Imbens and Newey
(2009) with non-additive error under full independence of unobservables and an IV, the distribution
of endogenous variable given covariates, v = FY jZ(yjz); plays the role of control function.
13Imbens and Newey (2009) showed that the two control function approaches are equivalent when

the endogenous variable is continuous and U is a scalar. Their Theorem 1 still applies to a discrete
endogenous variable, as is known with the propensity score for the binary endogenous variable,
however, what structural features are identi�ed has not been discussed.
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quantile based control function approach by Chesher (2003)14 works and why it fails
to achieve point identi�cation when the endogenous variable is discrete.
Suppose that the endogenous variable, Y; is continuous. In the following triangu-

lar15 system ignoring other covariartes than Z

W = h(Y; U) (1)

Y = g(Z; V ): (2)

It is impossible to identify the whole structure, fh; FU jZg in (1) even without endo-
geneity (Lemma in Matzkin (2003)) due to nonseparability : normalization of FU jZ
is required for identi�cation of the structural function, h16. Instead of recovering the
whole structure, we focus on the identi�cation of the structural function evaluated
at a speci�c quantile of the unobservable (u� = QU jV Z(�U jv; z)) - we need not know
what the exact value of the unobservable at that quantile - we call this function the
"structural quantile function (SQE)".
To be able to identify a structural function we need to observe independent varia-

tion in each coordinate of the function. When the unobserved heterogeneity, U; is not
independent of Y; we need to guarantee whether we can separately cause variation in
the endogenous variable other things being �xed17. Independent variation in Y can
be found by �xing U at u� = QU jV Z(�U jv; z) and by changing the value of Z for given
value of V = v. Note that when Y is continuously varying, for given value of Z there
is a one-to-one relationship between Y and V following the eq. (2). This implies
that conditioning on Y and Z can control the value of V by the invertibility of the
function g. When Y is discrete, the function g is not invertible any more, and thus,
knowing the values of Y and Z does not �x the value of V.
The value of the structural function evaluated at (y; u�) can be identi�ed by the

quantile of the conditional distribution of W given Y and Z (Chesher (2003)); rather
than the quantile of the conditional distribution of W given Y only (Matzkin (2003))
as follows :

h(y; u�) = QW jY Z(�U jy; z); (3)

where u� = QU jV Z(�U jv; z)
y = QY jZ(vjz):

14Chesher (2003) originally considers a recursive triangular equations system advocated by Strotz
and Wold (1960). See also Koenker (2005)�s exposition of Chesher (2003)�s approach in chapter 8.
15"Triangular" in the sense that Y is the determinant of W, while W is not a determinant of Y.

By imposing triangularity we exclude the possibility that the choice is a¤ected by the (expectation
of) outcome.
16g(z; v) is identi�ed by QY jZ(vjz):
17Under triangularity the covariation between U and Y is caused by the covariation between U

and V: Thus, the identi�cation problem in the triangular system is whether we can generate variation
in Y �xing V:
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As the value of Z changes from za to zb; the value of Y changes from ya to yb for
given value of V = v following the structural equation in (2), while the value of u� is
�xed because Z is independent of U and V:
When Y is continuously varying, once we identify the values of the structural

function, the partial di¤erence is also found by18

h(ya; u�)� h(yb; u�) = QW jY Z(�U jya; za)�QW jY Z(�U jyb; zb);
ya = QY jZ(vjza), yb = QY jZ(vjzb);

where za and zb are the values for Z

See <Figure 1>
With discrete Y , the equality in (3) fails to hold because the event of fY = y and

Z = zg corresponds to a set of values of V, rather than a point, which implies that
u� would lie in a set, rather than being �xed at a point under endogeneity. Causing
variation in Y by varying Z no longer generates an exogenous variation in Y when
Y is discrete. However, this still restricts the possible range where the value of the
structural function can lie if some more restrictions are imposed as Chesher (2005)
and the LSRM model. Note that the loss of point identifying power with discrete
regressors is due to the presence of endogeneity. If U and V are not correlated, then
we can point identify the structural function by quantiles of FW jY without the help
of Z: See <Figure 2>.

2.2 Restrictions of the model MLSRM

We introduce a model19 that interval identi�es the value of the structural function
evaluated at a certain point in the presence of an endogenous discrete variable by
applying the QCFA. The model, MLSRM ; is de�ned as the set of all the structures
that satisfy the restrictions
De�nition 1 : The variableW is a discrete, continuous, or mixed discrete contin-

uous random variable. The conditional distribution of Y given Z = z is discrete with
points of support y1 < y2 < ::: < yM ; invariant with respect to z and with positive
probability masses fpm(z)gMm=1: Cumulative probabilities fPm(z)gMm=1 are de�ned as

Pm(z) �
mX
l=0

pl(z) = FY jZ(y
mjz); m 2 f1; 2; :::;Mg;

p0(x) � 0:

18Note that the value of the structural function h(y; u�) are found by �xing u� = QU jV Z(�U jv; z)
and by changing z: Thus, whether we can recover all the values of the function h(y; u�) over the
whole support will depend on how strongly Y is related with Z as well as whether v� quantile of Y
given Z; QY jZ(vjz); would cover the whole points in the support of Y by varying Z.
19We adopt this de�nition of a model as a set of structures satisfying the restrictions following

Koopmans and Reiersol (1950).
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W

Y

Y

V = FY|Z

v

*

hÝy,uDÞ

D = QW|YZÝbU|ya ,zaÞ ? QW|YZÝbU|yb ,zbÞ

ya yb

FW|YZÝw|ya,zaÞ
FW|YZÝw|yb,zbÞ

FY|ZÝy|zaÞ FY|ZÝy|zbÞ

uD ¯ QU|VZÝbU|v,zÞ

Figure 1: The line, h(y; u�); is drawn by �xing the value of U at u�: Thus, the
causal e¤ect of changing Y from ya to yb should be measured by � since on the line,
h(y; u�); other thing (u�) is �xed. However, this cannot be identi�ed by Matzkin
(2003)�s idea using quantiles of FW jY since whenever we change the value of Y, the
change in FW jY includes the change in W due to the change in U in the presence
of endogeneity. Chesher (2003)�s suggestion is to use triangularity to control for the
covariation between Y and U . The auxiliary equation (2) under the triangularity
allows to control the source of endogeneity V when Y is continuous. Continuity
of Y and monotonicity of the strucutral function in the unobservable guarantee
that once the values of Y and Z are given the value of V is determined due to the
invertibility of the function g: If there exist values za and zb such that ya = QY jZ(vjza)
and yb = QY jZ(vjzb) then conditional distribution of W given Y and Z, FW jY Z ,
rather than FW jY will deliver the information on exogenous variation in Y: Thus, �
is identi�ed using the di¤erence of the quantiles of the two conditional distributions,
FW jY Z(wjya; za) and FW jY Z(wjyb; zb). Suppose there is no endogeneity, then Matzkin
(2003)�s identi�cation strategy of using quantiles of the conditional distribution ofW
given Y should be the same as Chesher (2003)�s strategy of using quantiles of the
conditional distribution of W given Y and Z: This observation can be used to test
exogeneity of an explanatory variable. See Lee (2009a).
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W

Y

Y

V = FY|Z

hÝy,uDÞ

ya yb

FY|ZÝy|zaÞ

FY|ZÝy|zbÞ

uD ¯ QU|VZÝbU|v,zÞ

**

Figure 2: Failure of point identi�cation by the QCFA with discrete Y : knowing the
values of Y and Z, for example, Y = ya and Z = za; corresponds to a range of
values of V of (**). Conditioning on Y and Z does not guarantee that V is �xed at
a particular point, which implies that all can be infered by conditioning on Y and Z
is that u� lies in a certain interval if U and V are correlated.

11



De�nition 2 : The latent variates are jointly continuously distributed and V is
normalized uniformly distributed on (0; 1) independent of Z.

Restriction A-EX imposes conditions on the structural functions that determine
W and Y; and will be maintained throughout.

Restriction A-EX (Exclusion)20

W = h(Y; U);

Y = g(Z; V );

with g(z; v) = ym; Pm�1(z) < v � Pm(z);
m 2 f1; 2; :::;M � 1g

The function h is weakly monotonic21 with respect to variation in scalar22 U; nor-
malized caglad, and nondecreasing. The function g evaluated at Z = z; g(z; v) is
QY jZ(vjz); the conditional v�quantile function of Y given Z = z: See <Figure 3>
The structure we aim to recover from data is de�ned as S � fh; g; FUV jZg: Since

the function g is recovered by g(z; v) = QY jZ(vjz); we focus on the structural relation
h: We also consider the conditional distribution of U given V and Z; FU jV Z ; rather
than joint distribution, FUV jZ ; since FUV jZ = FU jV ZFV jZ can be recovered once we
�nd FU jV Z as we normalize FV jZ to be uniform over (0; 1):
The value ym;m 2 f2; :::;M�1g; is an interior point of support of the distribution

of Y: The term u� is a value of U de�ned as

u� � QU jV Z(�U jv; z);
20Triangularity assumption enables us to avoid the issue of coherency that is possible due to

discrete endogenous variables when outcome is discrete (See Gourieroux, La¤ont, and Monfort
(1980), Blundell and Smith (1994), Tamer (2003), and Lewbel (2007)).
21This monotonicity restriction is one of the two key restrictions in QCFA identi�cation strategy.

This enables us to use the equivariance property of quantiles. In many applications this can be justi-
�ed - under certain regularity conditions many optimization frameworks predict that the equilibrium
relations are monotonic in certain variables - law of demand as a typical example. See monotone
comparative statics by Milgrom and Shannon (1994) and also monotone comparative statics under
uncertainty by Athey (2002).
22There is a tradeo¤ between using a vector and a scalar unobserved heterogeneity - allowing

for a vector unobserved heterogeneity in the structural relation would be more realistic and the
usual monotonicity restriction may not be required (See Altonji and Matzkin (2005), Hoderlein
and Mammen (2007), Imbens and Newey (2009), and Chalak, Schennach, and White (2008), and
Chernozhukov, Fernandez-Val, and Newey (2009) for identi�cation analysis without monotonicity),
but what can be identi�ed is objects with the heterogeneity in response averaged out. On the other
hand, the quantile approach can be adopted to recover heterogeneous treatment response if a scalar
(index) unobserved heterogeneity is assumed, however, this may be considered to be restrictive since
many examples such as models with measurement error cannot be dealt with. See Chesher (2008)
for examples where the unobserved elements cannot be collapsed into a scalar index.
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1

1

P1ÝzvÞ P2ÝzvÞ

P1ÝzvvÞ P2ÝzvvÞ

y1

y1

y 2

y2

y3

y3

Threshold Crossing structure with monotonicity in V

A B

Figure 3: V is normalized to uniform (0,1). Under the threshold crossing structure
with monotonicity of g in v; the value of Y is determined by the value of V and
the cuto¤ points are determined by Z: Note that by construction and independence
of V and Z, V is not a¤ected by Z but for given value of V , Z will determnine the
values of Y by a¤ecting the cuto¤ points. As we change the value of Z from z0 to z00

there are groups of people with certain V� characteristics who shift their choice of
Y: Those whose V-ranking is in "A" change the value of Y from y2 to y1 as the value
of Z changes from z0 to z00; while those whose V-ranking is in "B" change the value
of Y from y3 to y2 as the value of Z changes from z0 to z00: The causal interpretation
is justi�ed only for these groups.
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W

Y

Y

V = FY|Z

v

ym

Failure of Chesher Rank Condition –weak IV

ym+1

FY|ZÝy|zvvÞ
FY|ZÝy|zvÞ

hÝy,uDÞ
uD ¯ QU|VZÝbU|v,zÞ

Figure 4: Failure of Chesher (2005) strong rank condition : weak IV

where �U ; v 2 (0; 1) and z lies in a set of instrumental values of Z to be speci�ed
shortly.

Restriction CSupp (Common Support) The support of the conditional dis-
tribution of W given Y and Z has the support that is invariant across the values of
Y and Z:
The common support restriction is imposed for sharpness.
Restriction RC (Rank Condition) There exist instrumental values of Z,

fz0m; z00mg; such that

Pm(z0m) � v � Pm(z00m)
for m 2 f1; 2; :::;M � 1g:
Chesher (2005)�s rank condition is that there exist values of Z, z0m; and z

00
m such

that
Pm(z0m) � v � Pm�1(z00m)

thus, if Chesher (2005)�s rank condition holds, our rank condition also holds since
Pm�1(z00) � Pm(z00): In this sense, Chesher (2005)�s rank condition is stronger than
our rank condition Note also that Chesher (2005)�s strong rank condition is not
satis�ed with M = 1; a binary case or when the instrument is weak. See <Figure 4>
and <Figure 5>.

Restriction C-FI (Conditional Full Independence)23 : FU jV Z(ujv; z) =
FU jV (ujv) conditional on v; for all z 2 fz0m; z00mg:
23Restriction C-FI does not have to hold for all values of z in the support of Z; but it should

hold for the values of Z that satisfy Restriction RC. We call those values that satisfy Restriction
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V = FY|Z

v

Failure of Chesher Rank Condition –Binary endogenous variable

FY|ZÝy|zvvÞ

FY|ZÝy|zvÞ

hÝy,uDÞ
uD ¯ QU|VZÝbU|v,zÞ

10

Figure 5: Failure of Chesher (2005) strong rank condition : When the number of
points in the support of Y is two, binary endogenous variable, Chesher (2005)�s
strong rank condition fails.

De�ne V � (Pm�1(z); Pm+1(z)]24.
Restriction LSRM (Local Selection Response Match)25 : The conditional

distribution of U given V , FU jV Z(u
�jv; z) is monotonic in v 2 V : We impose a

further restriction on h and FU jV Z(ujv; z) over this range of v : if FU jV Z(u�jv; z) is
weakly nonincreasing in v; then h(ym+1; u�) � h(ym; u�); and if FU jV Z(u�jv; z) is
weakly nondecreasing in v then h(ym+1; u�) � h(ym; u�); for m 2 f1; 2; :::;Mg for
u� � QU jV Z(�U jv; z): See <Figure 6>
Notation : The case in which FU jV Z(u�jv; z) is nonincreasing in v is called PS

(Positive Selection) and the other case,NS (Negative Selection) for ease of exposition.
The case in which h(ym+1; u�) � h(ym; u�) is called PR (Positive Response) and the
other case, NR (Negative Response).
In the returns to schooling example Restriction LSRM allows that ability can

be correlated both positively and negatively, but if ability is positively correlated
schooling, then the return to schooling should not be negative and vice versa. In the
job training example, Restriction LSRM allows that the unobserved heterogeneity
(for example, ability) that determines wage can be correlated with both positively

RC as "instrumental values". Although we indicate Z as IV, what is required in identi�cation is the
existence of at least two distinct values of Z that satisfy the rank condition. This is the reason why
instrumental "values" are more exact expression, rather than instrumental variables (See Chesher
(2007a)).
24For a binary endogenous variable V � [0; 1]:
25Comments by Songnian Chen and Adam Rosen clari�ed the statement of the restriction and its

interpretation.
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Implications on            from Restriction LSRMFU|V

FU|V

0 U

FU|V=v v

FU|V=v vv

FU|V=v vvv

Positive Response Negative Response

u 1
D u2

D

Figure 6: "Local" nature of Restriction LSRM : The information on endogeneity is
contained in FU jV - if Y is exogenous, then FU jV is not a¤ected by the values of V:
Monotonicity of FU jV (u�jv) does not have to be global, all is required is monotonicity
in some small neighborhood u�: For v0 � v00 � v000; FU jV (u�1jv) is decreasing in v; while
FU jV (u

�
2jv) is increasing in v 2 V:
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and negatively with the job training decision (or the unobserved heterogeneity that
determines the participation decision such as motivation), but if more capable worker
decides to participate, then the treatment e¤ects should not be negative. In the labour
supply decision example Restriction LSRM allows the unobserved heterogeneity that
determines labour supply decision (such as taste for career) can be positively or
negatively correlated with the unobserved heterogeneity that determines the fertility
decision(e.g. taste for children), but if females who prefer spending their time for
their career are less likely to prefer having more children, then the impact of fertility
on labour supply decision should not be positive. In veteran status and earnings
example Restriction LSRM allows that the unobserved heterogeneity that determines
earnings such as ability can be positively or negatively correlated with the unobserved
heterogeneity that determines whether to join the army or not such as risk attitude,
but if they are positively correlated, then the impacts of veteran status should not
be negative.
If there is no endogeneity the distribution of U given V is independent of V under

the triangular structure; thus, u� � QU jV Z(�U jv; z) would not vary even though the
endogenous variable may be discrete. Therefore, point identi�cation is achieved even
if the explanatory variable is discrete.

2.3 The bounds on the values of the structural relation

We have the following interval identi�cation for h(ym; u�); where u� � QU jV Z(�U jv; z)
for m 2 f1; 2; :::;M � 1g: For m =M; the bound in Theorem 1 is not applied26.

Theorem 1 Under Restriction A-EX,FI,RC,and LSRM, there are the inequalities
for m 2 f1; 2; :::;M � 1g and � � (�U ; v) for u� � QU jV Z(�U jv; z)

qLm(� ; y
m; zm) � h(ym; u�) � qUm(� ; ym; zm)

where z 2 zm = fz0m; z00mg; � � (�U ; v);
qLm(� ; y

m; zm) = minfQW jY Z(�U jym; z0m); QW jY Z(�U jym+1; z00m)g;
qUm(� ; y

m; zm) = maxfQW jY Z(�U jym; z0m); QW jY Z(�U jym+1; z00m)g; :

The interval is not empty.

Proof. See Appendix.

To identify all the values of the structural function, say, h(y1; u�); h(y2; u�); :::; h(yM�1; u�);
for �xed u�; we need to guarantee the rank condition holds for all m 2 f1; 2; :::;M �
1g:There should exist two values of Z; fz0m; z00mg for each m; such that Pm(z0m) �
v � Pm(z00m): Therefore, how closely y and z are related and whether we have enough
variation in Z are key to the identi�cation of the whole function.

26The bounds cannot be applied to m =M: This restricts the identi�cation results when M = 2,
as we will see in the next section.
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Corollary 2 Under Restriction A-EX, if U and V are independent, the value of
h(ym; u�); u� = QU jV Z(�U jv; z) is point identi�ed by QW jY (�U jym) and QW jY Z(�U jym; z) =
QW jY (�U jym); for all Z 2 SUPP (Z):

Proof. See Appendix.

2.4 Sharpness

Suppose a set identi�es the value of the structural feature. Then all distinct "admit-
ted27" structures that are "observationally equivalent28" to the true structure should
produce a value of the structural feature that is contained in the identi�ed set. All
such structures that generate the point in the set are indistinguishable by data. See
<Figure 7 >.
If the identi�ed set is not sharp, some of the points in the set are not possible

candidates for the value of the structural feature, which would make the identi�ed
set less informative. Sharpness guarantees that every point in the identi�ed set is a
possible candidate for the true value of the structural feature of interest. Distinct
structures may have produced di¤erent points in the identi�ed set, but the distinct
structures (i) should all satisfy the restrictions of the model (consistent with the
model), (ii) should be observationally equivalent (consistent with the data), and (iii)
any point in the interval should be considered to be the possible value of the structural
feature29. See <Figure 8 >.
Sharpness is assumed in many studies30 on inference in partially identi�ed models.

If sharpness were not guaranteed, then the con�dence set of the identi�ed set would
not be correct since they would contain some parts of the identi�ed set where the
true value of the structural feature never lies in. See <Figure 9 >.

Theorem 3 Under Restrictions CSUPP, A-EX,C-FI,RC,and LSRM, the bounds I(� ; ym; z)
� [qLm(� ; y

m; zm); q
U
m(� ; y

m; zm)]; speci�ed in Theorem 1 for each m = 1; 2; ::;M � 1
and for some � � (�U ; v), are sharp.
27That is, those structures thay satisfy all the restrictions.
28Observationall equivalent structures are those that are indistinguishable from the distribution

we observe by data.
29Let S0 be the true structure that generates the distribution of observables available to us, F 0Y jX .

Denote 
0 = fS : FSY jX = F 0Y jXg the set of observationally equivalent structures: The model, M
is de�ned to be the set of the structures that satisfy the restrictions. The modelM set identi�es
the structural feature, �(S0); if we can �nd a set de�ned by the distribution function such that for
any structure that is admitted and observationally equivalnet to the true structure, the structural
feature of such structure lies in the set.
The identi�ed set is called sharp if for any value in the identi�ed set �M(F 0Y jX); there exists an

admissible structure byM, which is observationally equivalent to S0:
30For example, Galichon and Henry (2009) assumes "internal consistency" for their test to be

constructed. "Internal consistency" corresponds to sharpness.
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M

I0
BMÝFY|X

0 Þ

Figure 7: Set identi�cation : the value of the structural feature (�(S)) generated by
any structure that is admitted by the model and observationally equaivalent to the
true structure should lie in the set �M(F 0Y jX). Note that there can be some parts of
the set, �M(F 0Y jX); where �(S) never lies. Sharpness of the identi�ed set guarantees
that there will be no such parts, in which case, the set can be described as "the
smallest set that exhausts all the information from the data and the model" as some
authors de�ne sharpness.

M

I0 BMÝFY|X
0 Þ

Figure 8: Sharpness : showing sharpness involves showing that for each point in the
set there exists at least one structure that is admitted and observationally equivalent
to the true structure.
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M

I0 BMÝFY|X
0 Þ

When the identified set is not sharp :

Figure 9: If the identi�ed set is not sharp, the identi�ed set may contain some parts
(the dark circle inside the identi�ed set) that the true value of the structural feature
does not lie in. If such parts are with positive measure, then the con�dence set (the
dotted circle outside the identi�ed set) constructed would be misleading.

Proof. See Appendix.

To show sharpness of the bounds, I(� ; ym; zm), for given � � (�U ; v) and m we
need to show that for every point in the interval there exists at least an observa-
tionally equivalent structure to S0 (that generates F 0W jY Z), which is admitted by
MLSRM and generates the value of the structural function: To show the existence
of such a structure we construct a distribution of the unobservables (F aU jV Z(ujv; z))
and a structural function (ha) that crosses an arbitrary point in the identi�ed in-
terval31 (w� 2 I(� ; ym; zm)) in such a way that they satisfy the restrictions of the
model and that the assumed function (ha) combined with the constructed distribu-
tion (F aU jV Z(ujv; z))) generates the same distribution of observables as F 0W jY Z ; which
is what we observe32.
31The value w� takes should be an element of the support of W; which can be countable.
32In contrast with sharpness proofs in the potential outcomes approach (see for example, Firpo

and Ridder (2008), Heckman and Vytlacil (2001)), to show whether the points in the identi�ed
set are consistent with the model we need to construct the underlying structural relation and the
distribution of the unobservables since the model is characterized by the restrictions imposed on
them.
Consider a binary endogenous variable case. In the potential outcomes framework FW1W0jX is the

hidden data generating process to be recovered from the observed data, FW jX ; thus, sharpness proof
involves the construction of FW1W0jX using FW jX that is consistent with the model and data. In the
structural approach the underlying economic data generating process is fh(1; u�); h(0; u�); FU jV g
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2.4.1 Sharpness of Chesher (2005) bounds

Note that our sharpness proof can be used to show sharpness of Chesher (2005)
bounds since once chesher (2005)�s strong rank condition is satis�ed, our structure
that satis�es Restriction LSRM is a special case of the structures admitted by Chesher
(2005) model - we have already shown the existence of at least one admitted structure
that is observationally equivalent to the true structure. See Appendix.

2.5 Many instrumental values

If there are many pairs of values of Z that satisfy Restriction RC, then the bounds
should be found by taking intersection of the bounds found for each pair. Formally
this can be stated as :

Corollary 4 Under Restriction A-EX,FI,RC,and LSRM, there are the inequalities
for m 2 f1; 2; :::;M � 1g and � � (�U ; v)

QLm(� ; y
m;Zm) � h(ym; u�) � QUm(� ; ym;Zm)
where � � (�U ; v)

u� � QU jV Z(�U jv; z)
Zm = fzm : Pm(z0m) � v � Pm(z00m); with zm = fz0m; z00mgg

QLm(� ; y
m;Zm) = max

zm
qLm(� ; y

m; zm); zm 2 Zm

QUm(� ; y
m;Zm) = min

zm
qUm(� ; y

m; zm); zm 2 Zm

qLm(� ; y
m; zm) = minfQW jY Z(�U jym; z0m); QW jY Z(�U jym+1; z00m)g

qUm(� ; y
m; zm) = maxfQW jY Z(�U jym; z0m); QW jY Z(�U jym+1; z00m)g

This intersection interval can be empty.

De�neQm � [QLm(� ; ym;Zm); QUm(� ; ym;Zm)] and qm = [qLm(� ; ym; zm); qUm(� ; ym; zm)]:
Then the Corollary can be written as Qm = \zmqm: By taking intersection of each
bound de�ned by each pair of instrumental values satisfying Restriction RC we have
smaller bounds when we have more pairs of instrumental values.

2.6 Testability of Restriction LSRM

The identifying power of a model comes from the restrictions imposed by the model
and the applicability of identi�cation results depends on the credibility of the restric-
tions imposed. If we could test the restrictions using data, credibility of restrictions

for given u� in the triangular structure when ignoring other covariates, X: Therefore, the sharpness
proof involves the construction of fh(1; u�); h(0; u�); FU jV g using FW jY X and consistency with the
model and the data should be shown.
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can be con�rmed. As Koopmans and Reiersol (1950) noted the general rule of testa-
bility is that if there exists an observationally more restrictive model than the other
such that both models identify the same structural feature, then the restrictions
imposed by the observationally more restrictive model can be tested. Lee (2009b)
generalizes Koopmans and Reiersol (1950)�s principle into the set identifying models
and show that the identi�ed set of an observationally more restrictive model should
be included by that of a less restrictive model.33

Consider Manski (1990), Manski (1997)�s Monotone Treatment Response (MTR)
model, andManski and Pepper (2000)�s Monotone Treatment Response andMonotone
Treatment Selection (MTR-MTS) model. Since the models are nested, if the true data
generating structure satis�es MTR and MTS, then the identi�ed set by MTR-MTS
should be included by the identi�ed set by MTR. Another example is the case with
Chesher (2005) model andMLSRM . If the strong rank condition is satis�ed,MLSRM

is contained by Chesher (2005) model, thus,MLSRM is observationally more restric-
tive. Lee (2009b) implies that LSRM bound should be equal to or smaller than
Chesher (2005) bound.
LSRM restriction is "not directly testable34", in other words, LSRM restriction

does not have any implication on the distribution of the observables, but it can be
falsi�ed when the strong rank condition in Chesher (2005) is satis�ed. The strong rank
condition is "directly testable35", thus, once the strong rank condition is satis�ed we
can say that the model,MLSRM is observationally more restrictive than the model in
Chesher (2005). In this case, the identi�ed interval by MLSRM should be included by
the identi�ed interval by Chesher (2005) if restriction LSRM is satis�ed. Therefore,
if the bounds constructed by Chesher (2005) is smaller than the bounds formed by
LSRM model, then this implies that the LSRM restriction is not the right description
of the true underlying structure that generated the data.
We cannot "con�rm36" whether the LSRM holds, but we can "refute" the restric-

tion by comparing QW jY Z(�U jym; z00) with QW jY Z(�U jym+1; z00):
33Suppose that a model,M1; identi�es a structural feature, �(S); by a set �1(FSY jX); for S 2M1;

and another model,M2; identi�es the same structural feature, �(S); by �2(FSY jX); for S 2M2:

Theorem (Lee (2009b) IfM1 �M2 , then �1(FSY jX) � �
2(FSY jX); for 8S 2M1 \ 
0:

34Note that LSRM is a restriction imposed on the structural relation and the distribution of
the unobservables. The restrictions imposed on the structure are not testable unless they have
implications on the distribution of the observables.
35Data are informative about whether the rank condition is satis�ed since the rank condtion is

about the conditional distribution of Y on Z:
36Lee (2009b) also de�nes the framework of testability under the general structural setup allowing

for partial identi�cation.
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Interval by Chesher (2005)

FY|ZÝy|zvÞ

FY|ZÝy|zvvÞ

hÝy,uDÞ

uD ¯ QU|VZÝbU|v,zÞFW|YZÝw|ym ,zvÞ

FW|YZÝw|ym ,zvvÞ

PmÝzvÞ ² v ² Pm?1ÝzvvÞ
ym?1

Figure 10: Chesher (2005) strong rank condition is that there exist values of Z; z0m
and z00m such that P

m(z0m) � v � Pm�1(z00m) : the arrow indicates the Chesher bound.
Note that if Chesher (2005)�s strong rank condition holds our rank condition always
holds since Pm(z0) � v � Pm�1(z00) � Pm(z00): Note also that for this rank condition
to hold IV should be very strong - Chesher (2005) demonstrate that Angrist and
Krueger (1999) quarter of birth IV does not satisfy his rank condition.

3 Binary Endogenous Variable

In this section we apply the LSRMmodel to a binary endogenous variable and identify
the signs of the ceteris paribus impacts of the binary variable - the treatment e¤ects.
As Chesher (2005) noted, models for an ordered discrete endogenous variable can not
directly be applied to binary endogenous variables due to the "unordered" nature
of binary variables. The values of binary endogenous variable Y; 0 and 1, do not
indicate any order. Despite this fact, when we apply the same restrictions asMLSRM

to binary endogenous variables we can bound the values of partial di¤erences. We
adopt the same restrictions inMLSRM ; but the unordered nature leads to di¤erent
identi�cation results.
Although in many empirical studies, the distribution of the treatment e¤ects can

deliver a valuable information for any policy design, quantiles of the distribution
of di¤erences of potential outcomes, W1 �W0; have been considered to be di¢ cult
to point identify without strong assumptions.37 However, partial di¤erences of the
structural quantile function which are interval identi�ed by the quantile-based control
function approach, can provide bounds for quantiles of treatment e¤ects.

37Note that in general, quantiles of treatment e¤ects, QW1�W0jX(� jx) 6= QW1jX(� jx)�QW0jX(� jx);
where the right hand side is the QTE:
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Failure of Chesher Rank Condition –Interval by  LSRM

ym+1

FY|ZÝy|zvvÞ
FY|ZÝy|zvÞ

FW|YZÝw|ym ,zvÞ

FW|YZÝw|ym+1,zvvÞ

Figure 11: Failure of Chesher (2005) strong rank condition : when our rank condi-
tion holds we can de�ne the sharp interval by the quantiles of the two distributions
FW jY X(wjym; z0) and FW jY X(wjym+1; z00) (not FW jY X(wjym; z00) as in Chesher (2005)).
The arrow indicates the LSRM bound. The graph is drawn for the case with the non-
negative response case. Note that unless Chesher (2005) rank condition holds we are
not sure whether the quantiles of FW jY X(wjym; z00) is below or above h(ym; u�): This
is why we cannot de�ne the identi�ed interval by the quantiles of FW jY X(wjym; z00)
if Chesher (2005)�s rank condition is not satis�ed. If Chesher (2005)�s rank condi-
tion holds then Chesher (2005) bounds should be equal to or larger than the LSRM
bounds. See <Figure 12>.

24



W

Y

Y

V = FY|Z

v

ym ym+1

A B

FY|ZÝy|zvÞ
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FW|YZÝw|ym ,zvvÞ

Figure 12: Testability of LSRM : when Chesher (2005) rank condition is satis�ed
Chesher bound(A) should be larger than or equal to LSRM bound(B) - if not, Re-
striction LSRM is not satis�ed by the true structure.

3.1 The bounds on the values of the structural quantile func-
tion

The model interval identi�es h(1; u�) and h(0; u�) as the following corollary.

Corollary 5 Under Restriction A-EX,FI,RC,and LSRM there are the inequalities
for � � (�U ; v)

qL(� ; y; z) � h(y; u�) � qU(� ; y; z)
where y 2 f0; 1g

z 2 z = fz0; z00g; � � (�U ; v);
u� � QU jV Z(�U jv; z)

qL(� ; y; z) = minfQW jY Z(�U j0; z0); QW jY Z(�U j1; z00)g;
qU(� ; y; z) = maxfQW jY Z(�U j0; z0); QW jY Z(�U j1; z00)g; :

The bounds are sharp.

Proof. See Appendix.
The identi�ed intervals for h(1; u�) and h(0; u�) are the same: Nevertheless, this

is still informative in the sense that the identi�ed interval restricts the possible range
that the values h(1; u�) and h(0; u�) lie in, and under Restriction LSRM we can
identify the bounds on partial di¤erences, h(1; u�)� h(0; u�) as we can see in the next
subsection.
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3.2 Identi�cation of heterogeneous treatment response, W1�
W0

In this subsection we show that we can use Corollary 5 to recover heterogeneous
treatment e¤ects.
Following the notation from the potential outcomes framework, we can link the

structural equations and the potential outcomes as the following :

W = YW1 + (1� Y )W0;

where W = h(Y; U);

and Y 2 f0; 1g:

where W1 and W0 are de�ned in the introduction.
We assume that the potential outcomes are generated by the following structural

relation

W1 = h(1; X; U);

W0 = h(0; X; U):

The treatment e¤ects for each individual is W1 �W0, which may be heteroge-
neous, varying over individuals even after conditioning on the observables. However,
since we do not observe both W1 and W0 for each individual; W1 �W0 can not be
directly measured. The identi�cation in the policy evaluation literature has focused
on identifying some features of the distribution ofW1�W0; such as averages or quan-
tiles from the marginal distributions of the counterfactuals, W1 andW0 under certain
restrictions:
Corollary 5 can be used to derive some information on quantiles of the distribution

of W1 �W0. Note that

W1 �W0 = h(1; X; U)� h(0; X; U):

Thus, the identi�cation of the heterogeneous treatment e¤ect,W1�W0 is achieved
by identi�cation of h(1; U) � h(0; U); the ceteris paribus impacts for the same U .
Theorem 6 states the identi�cation result of (possibly) heterogeneous treatment
e¤ects, W1 �W0:

Theorem 6 De�ne � � h(1; u�)�h(0; u�); the ceteris paribus impact of Y 2 f0; 1g.
Under Restriction A-EX,FI,RC,and LSRM, � is identi�ed by the following intervals:

BL � � � BU

BU = maxf0; QW jY Z(�U j1; z00)�QW jY Z(�U j0; z0)g
BL = minf0; QW jY Z(�U j1; z00)�QW jY Z(�U j0; z0)g

26



V

PÝzvÞ PÝzvvÞ

gÝzv,vÞ = 0 gÝzv,vÞ = 1 gÝzv,vÞ = 1

gÝzvv,vÞ = 0 gÝzvv,vÞ = 0 gÝzvv,vÞ = 1

Compliers Always­takers

0 1

Never­takers

ChangingZfromzv to zvv
willchange the value ofY
from1 to 0 without affecting
the value ofv due to independence

Those withthe value
v 5 ßPÝzvÞ, PÝzvvÞà
correspond to compliers

Figure 13: The structural vs. potential outcomes approaches

Proof. The result follow from Corollary 5 and Restriction LSRM. Either upper or
lower bound is always 0 due to Restriction LSRM.
Discussion

1. The rank condition restricts the group in the whole population that the identi-
�cation of causal impacts is possible into those who are ranked between P (z0)
and P (z00); where P (z) = Pr(Y = 0jZ = z). When the value of Z changes from
z0 to z00; their treatment status changes from y = 1 to y = 0:We call this group
"compliers" following the potential outcomes framework. <Figure 13> shows
how we map our framework into the potential outcomes framework. The names
never-takers, compliers, de�ers and always-takers refer to the setting of a ran-
domized experiment with noncompliance, where the instrument is the random
assignment to the treatment and the endogenous regressor is an indicator for
the actual receipt of the treatment.

2. In some sense we can only identify the signs of the impacts. These results
allow the identi�cation of the heterogeneous treatment e¤ects : 4 would be
understood as the treatment e¤ects of the �U�ranked individuals in the sub-
population whose V - ranking is P (z0) < v � P (z00). By varying �U ; we could
obtain the whole distribution of the treatment e¤ects for this sub population.
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4 Discussion

4.1 Comparison with Manski and Pepper (2000) and Bhat-
tacharya, Shaikh and Vytlacil (2008)

Manski and Pepper (2000) and Bhattacharya, Shaikh and Vytlacil (2008) adopt
certain monotonicity in the structural relations. Under MTS(Monotone Treatment
Selection)-MTR (Monotone Treatment Reponse) restrictionManski and Pepper (2000)
estimated the upper bounds on the returns to schooling. With monotonicity in re-
sponse, the lower bound is always zero.38 The two restrictions together de�ne the
bounds on the mean outcome, and the restrictions together can be tested, but whether
each is true is not testable39.
Manski and Pepper (2000) develop their arguments by assuming that both se-

lection and response are increasing, but assuming that both are decreasing also leads
to identi�cation of average e¤ects. However, as LSRM restriction, weakly increas-
ing response should be matched with weakly increasing selection and vice versa.
MTR is equivalent to monotone response assumption in our model, and MTS holds if
FU jV (ujv) is weakly decreasing in v over the whole support of U: Since LSRM allows
the direction (either PSPR or NSNR) of the match to vary over the support of U;
while MTR-MTS allow the match - either positive response with positive selection or
negative response with negative selection - to be determined a priori for the mean,
Roughly speaking, LSRM restriction can be described as a local version of MTR-MTS.
Another di¤erence is that Manski and Pepper (2000) identi�es average treatment ef-
fects, thus the heterogeneity in treatment e¤ects can be found for the subpopulation
de�ned by the observed characteristics, while LSRM model can recover heterogeneity
in treatment e¤ects among the observationally same individuals.
Bhattacharya, Shaikh and Vytlacil (2008) compare Shaikh and Vytlacil (2005)

bounds with Manski and Pepper (2000)40 by applying them to binary outcome and
binary endogenous variable case. Bhattacharya, Shaikh and Vytlacil (2008)�s bounds
are found under the restriction that the binary endogenous variable is determined by
an IV monotonically. When IV, Z and Y are binary, their monotonicity is equivalent
to ours. Note also that when Y is binary, we can always reorder 0 and 1 due to
the "unordered nature" of a binary variable. Thus, the restrictions in Bhattacharya,

38In the returns to schooling example, MTR implies that each individual would earn more with
more education, thus, on average, counterfactual wage function would be increasing with school-
ing. On the other hand, MTS implies that when college graduates are compared with high school
graduates college graduates�"counterfactual" wage for di¤erent hypothetical schooling is on average
higher than those for high school graduates.
39Okumura and Usui (2009) impose concavity to Manski and Pepper (2000) framework and showed

that interval can be shortened. However, when the endogenous variable is binary Okumura and Usui
(2009) bounds would be the same as those of Manski and Pepper (2000).
40In fact, what they consider is MTR-MIV in Manski and Pepper (2000) with the upper bound

of the outcome 1 and the lower bound 0 when the outcome is binary.
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Shaikh and Vytlacil (2008) are equivalent to our restrctions. In contrast with their
claim, when Manski and Pepper (2000) is applied to a binary case, the direction of
the monotonicity of response and selection does not have to be determined a priori41.
Data will inform about the direction of the monotonicity, however, the direction of
MTR and MTS should be matched into a certain way42.
The advantage of LSRM (Local Selection Response Match) assumption is that it

allows the match to vary with di¤erent quantiles unlike MTS-MTR in Manski and
Pepper (2000) or Bhattacharya, Shaikh and Vytlacil (2008). However, LSRM may
not be very informative when the outcome is binary in practice, since the values that
the partial di¤erence di¤erence can take are -1,0, and 1, while it is legitimate to apply
to binary outcomes in theory.

4.2 Comparison with Jun, Pinkse, and Xu (2009)

Jun, Pinkse, and Xu (2009, JPX(2009) hereafter) devise a new rank condition that
can be applied to the Chesher (2005) setup. They include all the restrictions from
Chesher (2005) except for the Chesher (2005)�s strong rank condition and conclude
that their bound is tighter than Chesher (2005) bounds and when a continuous IV
exists, point identi�cation can be achieved when a continuous IV is available even
with a discrete endogenous variable in the presence of endogeneity.
Although their identi�cation stretegy can produce a di¤erent identi�ed interval

from Chesher (2005) interval, their conclusion that their bound is "tighter" and point
identi�cation is achieved seems to be a bit misleading. First of all, their conclusion
of tighter bounds seems to be drawn by comparing Chesher (2005) bounds with their
bounds applied to a binary endogenous variable. This is not comparable because
Chesher (2005) bounds cannot be applicable to binary endogenous variable since

41When the endogenous variable is oredered discrete with more than two points in the support,
the direction should be assumed a priori to �nd the bounds.
42Following the notation of Manski and Pepper (2000) if data show that E(yjz = 0) � E(yjz = 1);

then this is the case where non-decreasing MTR and non-decreasing MTS are matched because

E(yjz = 0) = E(y(0)jz = 0)
MTR
� E(y(1)jz = 0)

MTS
� E(y(1)jz = 1) = E(yjz = 1):

Whereas if the data say E(yjz = 0) � E(yjz = 1); then this is the case where non-increasing
MTR matched with non-increasing MTS as follows :

E(yjz = 0) = E(y(0)jz = 0)
MTR
� E(y(1)jz = 0)

MTS
� E(y(1)jz = 1) = E(yjz = 1):

The counterfactural E(y(1)jz = 0) can be bounded by E(yjz = 0) and E(yjz = 1); and the data
will inform us of which is the upper/lower bound - the direction of the match will be determined by
data.
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Chesher (2005) rank condition is not satis�ed for binary endogenous variable. The
Chesher (2005) bound is not de�ned for binary endogenous variable. To claim that
their bounds are "tighter" than Chesher (2005) bounds, they should consider an
ordered discrete endogenous variable with more than three points in the support.
However, when applied to an ordered discrete variable, if there are more than one
pair of values of IV that satisfy the Chesher (2005) rank condition, there is no clear
conclusion can be drawn regarding whether Chesher (2005)�s min-max rank condition
is stronger than their rank condition in the sense that whenever either of the rank
condition holds, the other holds. This would be determined by data in principle43

depending on the nature of the relationship between IV and the endogenous variable.
If their rank condition is stronger, then the bound found by their model should be
smaller as we have demonstrated by our LSRM bounds and Chesher (2005) bounds
comparison in section 2.6 Lee (2009b). Secondly, their example 2 to show point
identi�cation, does not seem to be enough since in such a case their Lemma 4 is not
applicable.

4.3 Applicability to regression discontinuity designs (RDD)

The regression discontinuity design is a quasi-experimental design with the proba-
bility of receiving treatment changes discontinuously as a function of one or more
underlying variables (See Hahn, Todd, and Van der Klaauw (2001), Lee and Lemieux
(2009), and the recent special issue of Journal of Econometrics, 2008). The regression
discontinuity methods can be useful since geographic boundaries and eligibility for a
program often creates discontinuities in the treatment assignment rule that can be
exploited. Under this design if the continuity condition at the threshold point of the
"forcing variable" holds, the causal e¤ects of individuals with the forcing variable just
above and below the threshold point are shown to be identi�ed (See Hahn, Todd and
Van der Klaauw (2001) for average treatment e¤ects, and see Frandsen (2009) and
Frolich and Melly (2009) for QTE).
However, the continuity condition (Assumption (A1) in Hahn, Todd, and Van

der Klaauw (2001)) is not usually satis�ed in many applications. When the RDD
is available, our rank condition44 is guaranteed to hold, thus, as long as Restriction
LSRM is applicable into the context of interest, our model can be applicable to an RD
design even when all other variables are not continuous in the treatment - determining
variable at the threshold. For example, age or date of birth are often only available
at a monthly, quarterly, or annual frequency level. Studies relying on an age-based
cuto¤ thus typically rely on discrete values of the age variable when implementing an

43Rank condition is testable using data in principle. Checking whether the rank conditions are
satis�ed is a di¤erent issue.
44Suppose a threshold point t0 of a variable T is known by a policy design such that the treatment

status (Y ) is partly determined by this vairiable. Then we can construct a binary variable Z such
that Z = 1(T > t0): In such a case, our rank condition holds.
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Figure 14: QTE

RD design.
Under the assumptions in Hahn et al (2001), the causal interpretation is possible

on the sub-group of individuals at the discintinuity threshold, and uninformative
about other groups. On the other hand, when the LSRM model is applicable, causal
interpretation is plausible on the subgroup of individuals whose V -ranking is between
P (z0) and P (z00).

4.4 Di¤erent approaches to heterogeneous treatment response

We discuss three di¤erent approaches to recover heterogeneous treatment e¤ects. The
three approaches can answer di¤erent policy questions.

Quantile Treatment E¤ect(QTE) Quantile treatment e¤ect(QTE) de�ned by
Lehman (1974) and Doksum (1974) has been used to recover heterogenous treatment
e¤ects by several papers45. QTE is de�ned as the horizontal di¤erences of the marginal
distributions of the potential outcomes.

Interpretation of QTE QTE can be used to investigate the impacts of any
policy on, for example, median individuals in the distributions with and without a

45Imbens and Rubin (1997) proposes a way to identify the marginal distributions of the potential
outcomes under the LATE assumptions. Abadie (2002) reports the identi�cation results of the
marginal distributions of the potential outcomes to develop the tests of equality, �rst and second-
order stochastic dominance. Abadie, Angrist, and Imbens (2002) speci�ed the QTE as the linear
functions rather than recovering QTE from the marginal distributions. What Abadie, Angrist, and
Imbens (2002) identify is not the quantiles of W1 �W0; rather, it is the impact of the treatment on
the quantiles of an outcome distribution, the quantile treatment e¤ects (QTE). Firpo (2007) studies
the identi�cation and estimation of the marginal distributions of the potential outcomes under the
unconfoundedness assumptions. Frolich and Melly (2009) and Frandsen (2009) study QTE under
the regression discontinuity design.
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Figure 15: 25% of the population has bene�tted from the treatment.

policy, which can be informative in the study of changes in inequality. However, QTE
would not be used to derive information on the impacts of the policy on individuals
because the ranks of individuals may vary across the treatment status. That is,
the median ranked individuals in each potential outcome distribution may not be
the same individuals. Moreover, even the rank is preserved across the treatment
status, the size of the QTE would not necessarily be the same as the quantiles of the
treatment e¤ects.

Quantiles of treatment e¤ects recovered from the distribution of the treat-
ment e¤ect, FW1�W0 Another line of studies focuses on the distribution of the
treatment e¤ects, FW1�W0 : Examples are Heckman, Smith, and Clements (1997), Fan
and Park (2009), and Firpo and Ridder (2008). Their object of identi�cation is
FW1�W0 ; and the identi�cation results are found by the bounds studied in the statis-
tics literature such as Hoe¤ding bounds, or Makarov bounds. These bounds are found
once the marginal distributions of the potential outcomes �rst. Heckman, Smith, and
Clements (1997) assumed that the potential outcomes are normally distributed, and
Fan and Park (2009) assume that experimental data are available so that the mar-
ginal distributions of the potential outcomes are found. The studies mentioned above
report partial identi�cation of the distribution of the treatment e¤ects. Once FW1�W0

is found, then functionals of FW1�W0 ; such as the quantiles of the treatment e¤ects
can be found following the de�nition of the quantiles.
The information on FW1�W0 can be useful in �nding out the proportion of the pop-

ulation that bene�t from the treatment. For example, if the 0.75 quantile of FW1�W0

is zero, then this means that 25% of the population bene�t from the treatment.
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Quantiles of treatment e¤ects (Q - TE) recovered from partial di¤erences
Heterogeneous treatment e¤ects, W1�W0, under the potential outcomes framework,
can be measured by partial di¤erences under the structural framework, as W1 �
W0 = h(1; x; u) � h(0; x; u): Note that the heterogeneity in both observable and
unobservable dimensions can be recovered by varying the values of x and u of the
partial di¤erences h(1; x; u)� h(0; x; u). That is, for �xed values of x; heterogeneity
in responses is identi�ed for individuals ranked di¤erently in the outcome. We call
this object quantiles of treatment e¤ects.
h(1; x; u)�h(0; x; u) are not the same as the quantiles of FW1�W0 : This is because

the quantile parameter(�) used in our structural framework is the ranking of the
outcome, W; which is the same as that of the unobserved heterogeneity (U) under
the monotonicity in scalar unobservable variable, while the quantile parameter for
FW1�W0 is the ranking of the treatment e¤ects, W1 �W0:

Comparison of the three

1. QTE vs Q - TE from partial di¤erences : In general, they should be di¤er-
ent even with the rank preservation assumption. Chernozhukov and Hansen
(2005) identify h(1; x; u) and h(0; x; u) separately using IV-QR. They identify
the quantiles of the marginal distribution of the potential outcomes by identi-
fying the structural functions h(1; x; u) and h(0; x; u) without identifying the
distribution of the potential outcomes. Thus, as long as the rank of U is
preserved (the rank similarity condition in their paper), we can interpret the
QTE as Q-TE, which is what they call structural quantile e¤ects. Whether we
can interprete what they identify as "causal e¤ect on individual" will depend
on whether the rank similarity condition holds. Our object of identi�cation is
h(1; x; u) � h(0; x; u): Thus by de�nition of partial di¤erences, our object can
be interpreted as causal e¤ects of Y other things being equal. We do not have
to rely on the rank similarity restriction.

2. Q - TE from FW1�W0 vs. Q - TE from partial di¤erences : The knowledge
of FW1�W0 ; and thus the knowledge of QW1�W0 can answer the questions of
proportion of the population that bene�t from the treatment. Our identi�-
cation results can answer the questions of "who bene�ts" from the treatment
by identifying "who" using the observed characteristics and the ranking of the
unobserved heterogeneity. That is, we can identify whether the treatment ef-
fects are positive or not for the individuals with characteristics X = x and the
ranking of the unobservable is �U: Our results can then recover the proportion
of population whose treatment e¤ects are positive.
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4.5 Inference

The inference results under set identi�cation can be categorized into two46 : the one
is by Horowitz and Manski (2000) or Imbens and Manski (2004), Stoye (2008) and
the other is by Chernozhukov, Hong and Tamer (2007), and many others recently.
The �rst line of studies estimates the bounds which are explicitly de�ned by the
identi�cation results and deal with the construction of the con�dence intervals of the
bounds. In the second line of the studies the identi�ed set is not necessarily de�ned
explicitly, rather they are de�ned by the (conditional) moment inequality conditions
implicitly, and the inference methods are based on the moment inequality conditions.
Our identi�cation results do not provide any moment conditions to be adopted, thus,
more relevant to the �rst line of studies.
The con�dence intervals of the bounds with ordered discrete endogenous variables

can be found by Imbens and Manski (2004) if there is only one pair of instrumental
values. When there are more than two instrumental values, the bounds are found
by intersecting the intervals found by each pair. In this case the bounds and the
con�dence intervals can be found by using Chernozhukov, Lee, and Rosen (2009).
When the endogenous variable is binary, the inference problem is somewhat dif-

ferent. The inference problem from the identi�cation results would be (i) estimating
the upper bounds or lower bounds as the di¤erences the two quantile functions,
QW jY Z(�U j1; z00)�QW jY Z(�U j0; z0); (ii) testing whether the con�dence interval of ei-
ther upper bound or the lower bound contains zero since what we identify is the sign
of the partial di¤erences and (iii) constructing the con�dence intervals for the iden-
ti�ed interval. If all the covariates are discrete then the quantiles would be found by
the de�nition of the quantiles of the distribution de�ned in each cell de�ned by the
values of the covariates. If there are reasons to believe that this distribution is smooth
then we would have to impose smoothness in estimating. If some of the covariates
are continuous we could use some existing nonparametric methods (see Chaudhuri
(1991) or Chaudhuri, Doksum, Samarov (1997)) for the quantiles. (i) and (ii) can be
done by existing methods, but (iii) requires extra consideration.
The major inference issue in our identi�cation results would be testing whether

zero is included in the con�dence set of the upper/lower bounds as the model identi�es
the sign of the treatment e¤ect. This can be done by constructing the con�dence
intervals of the upper/lower bounds. However, constructing the con�dence intervals
of the identi�ed set needs more care since either upper or lower bound is always zero,
thus, it needs not be estimated. This may lead to a bigger identi�ed interval than
the con�dence interval of the estimated upper/lower bound. This is where the usual
ways of constructing the con�dence set fail to apply.

46We mention this categorization as it is more relevant to the inference problem in this paper.
However, this is not the only possible categorazation ; one can categoraze the inference approaches
by whether the con�dence set covers a speci�c point of the parameter of interest, or the identi�ed
set itself.
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5 Empirical Illustration

We illustrate how our results can be used in recovering more heterogeneous infor-
mation by examining the e¤ects of the Vietnam-era veteran status on the civilian
earnings using the data used in Abadie (2002)47. We use a sample of 11,637 white
men, born in 1950-1953, from March Current Population Surveys of 1979 and 1981-
1985. Annual earnings are used as an outcome, and the veteran status is the binary
endogenous variable of concern.
Veterans have been provided with various forms of bene�ts in terms of insurance,

schooling, etc. Whether they are compensated for their service enough has been an
important political issue and there has not been any consensus on this matter. Using
a linear 2SLS, Angrist (1990) reports negative impacts of veteran status on earnings
later in life. Abadie (2002) as well report negative LATE estimates. These results
show that on average military service had a negative impact on earnings possibly due
to the loss of labour market experience.
The concern about selection of veteran status has led to the use of IV : those

who joined the army may be systematically di¤erent in unobserved characteristics,
thus the causal e¤ects of veteran status on earnings may be biased. As in Angrist
(1990) random variation in enrollment induced by the Vietnam era draft lottery is
used as the instrument to identify the e¤ects of veteran status on civilian earnings.
The lottery was conducted every year between 1970 and 1974. The lottery assigned
numbers from 1 to 365 to dates of birth in the cohorts being drafted. Men with the
lowest numbers were called to serve up to a ceiling48. We construct a binary IV
based on the lottery number the threshold point being chosen by the government. It
would be natural to believe that this IV is not a determinant of earnings, while it
will a¤ect the veteran status.
The �ndings in this section show that when age, gender, and race are controlled,

the veteran status had negative impacts for individuals with high earnings potential,
while it had positive e¤ects for those with low earnings potential. This information
may be useful in evaluating the e¤ects of net bene�ts. The costs of military service
must be larger than the bene�ts provided by the government for those with high
earnings potential, while the bene�ts may be su¢ cient for those with low earnings
potential. Considering the fact that bene�ts in terms of insurance, pension, or ed-
ucation opportunity should be targeted at people with less potentials, the �ndings
indicate that the compensation was enough for this group. However, the military ser-
vice may have higher opportunity costs for individuals with high earnings potential.
This �ndings may be used against conscription.

47The data are obtainable in Angrist Data Archive :
http://econ-www.mit.edu/faculty/angrist/data1/data
48The value of the ceiling varied from 95 to 195. The eligibility is determined by the Department

of Defense depending on the needs in the year. We follow Abadie(2002) and the threshold value is
100.
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Figure 16: Distributions of annual income for veterans and nonveterans

5.1 The bounds on the causal e¤ects of Vietnam era veteran
status on earnings

By applying his identi�cation results of the marginal distribution of the potential
outcomes for compliers, Abadie (2002) reports that the veteran status appears to re-
duce lower quantiles of the earnings distribution, leaving higher quantiles una¤ected.
<Figure 16> shows that the cumulative distributions of annual wage of veterans and
non-veterans. This is the reproduction of the �gure 1 in Abadie (2002). The graph
shows that there are di¤erences in the lower quantiles and the upper quantiles, but
the average does not seem to be a¤ected. For the lower quantiles veterans�s annual
earnings are higher than those of non-veterans, and for the upper quantiles the op-
posite happens. However, as was mentioned, we cannot make any causal conclusion
regarding the e¤ects of the veteran status on the earnings based on the simple com-
parison of the two since the veteran status is likely to be selected by the individuals
because it was possible to avoid enrollment for the reasons such as student status, or
occupation or family. Moreover, there was a selection process among the volunteers
or those drafted based on their health conditions or any felony experience.
Let W be annual earnings, Y be the veteran status, Z be the binary variable

determined by the draft lottery. We control age, race, and gender so that the group
we are considering is observationally homogenous. The unobserved variables U and V
indicate a scalar index for "earnings potential" and "participation preference" each.
Note that there can be many factors that determine these indexes, but we assume
that these multi-dimensional elements can be collapsed into a "scalar" single index.
To apply the identi�cation results in Theorem 6 we investigate whether the data

satisfy Restriction RC in the model. The participation rate49 among the draft-non-

49Note that P (z) is not the usual propensity score, and 1� P (z) is the propensity score.
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Figure 17: LSRM bounds on heterogeneous treatment e¤ects of Vietnam era veteran
status among the observationally similar individuals

eligible (Z = 0) is about 0.14 and the participation rate among eligible is 0.22.

P (Z = 1jX = x) = 0:78 < P (Z = 0jX = x) = 0:86 (RC)

Thus, z0 = 1 and z00 = 0 in our framework. The compliers (or draftees) are de�ned as
those whose V -ranking is between 78% and 86%. Note that the V- ranking is never
observed, so we cannot tell whether an individual is a complier or not.
The bounds for the partial di¤erences, QW jY Z(�U j1; z00)�QW jY Z(�U j0; z0); would

be found by the di¤erences in the quantiles of earnings for the veterans who were
not eligible and those of non-veterans who were draft-eligible.

The LATE can be found by the model in Imbens and Angrist (1994). LATE allows
for heterogeneous treatment e¤ects for di¤erent subpopulation de�ned by observed
covariates. However, unobserved heterogeneity is integrated out. Without loss of
generality we assume that U is uniformly distributed on (0,1). Then LATE can be
calculated as

LATE =

Z 1

0

(Z P (z00)

P (z0)

�
h(1; QU jV (ajb)� h(0; QU jV (ajb))

�
dFb

)
dFa:

LATE is found by integrating out the heterogeneity for compliers, therefore, hiding
useful information regarding heterogeneity. Abadie (2002) reported that the veteran
status seems to have on average negative impact of $1,278, on the annual earnings for
compliers when estimated by Imbens and Angrist (1994). Our quantile based analysis
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Figure 18: The implications on FU jV from the identi�cation results and Restriction
LSRM : Among the "compliers/draftees"(people whose V-rank is between 78%
and 86%), those who are more likely to join the army (higher V ) are more likely to
be high ranked in the income distribution (higher U).

reveals that the veteran status had positive impacts for the low-ranked individuals
in the income distribution, but negative impacts for the high-ranked individuals (see
<Figure 17>). LATE is found without any assumptions on the underlying structure.
By imposing the existence of underlying structure and by imposing some restrictions
on the structure we could derive more heterogeneous information from data than
LATE. How credible the restrictions are, therefore, should be discussed.
The implications of the LSRM restriction on the distribution on the unobservable

can be described as in <Figure 18>. The results in <Figure 17> are interpreted
as the causal e¤ects for those who change their participation decision as the value
of Z changes. The implication from the results should be considered to be true for
those group. Among the compliers (the people ranked between 78% and 86%), those
who are more likely to join the army (higher V ) are more likely to be high ranked
in the income distribution. To the extent that we believe this implication on the
distribution of the unobservable the bounds would be considered to be informative
regarding the population.
In <Figure 19> we report the estimated partial di¤erences of the structural quan-

tile function for given quantiles, and the QTE obtained by estimating the marginal
distributions of the potential outcomes for compliers following Abadie(2002). The
quantiles are found by conditioning several covariates - the subpopulation of white
males, aged 26-29. Over almost all quantiles the sign and magnitude of the two
estimates contradict each other. This shows that QTE can be very di¤erent from
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quantiles of treatment e¤ects, and this could be because of failure of rank preser-
vation condition. In such a case focusing on identi�cation of the distributions of
the potential outcomes would not be informative in identifying the causal e¤ects on
individuals.
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QTE : Abadie (2002) Bounds 95% CI 95% CI

Figure 19: QTE vs. Q - TE : Over almost all quantiles the sign and magnitude of the
two estimates contradict each other. This shows that QTE can be very di¤erent from
quantiles of treatment e¤ects, and this could be because of failure of rank preservation
condition. In such a case focusing on identi�cation of the distributions of the potential
outcomes would not be informative in identifying the causal e¤ects on individuals.

5.2 Caveats

The set identi�cation result of this paper is applied to recover heterogeneous impacts
of the Vietnam-era military service on the earnings later in life. The causal interpre-
tation is justi�ed on the group of compliers. Heterogeneity in responses is recovered
for di¤erent earnings potentials. If there exists heterogeneity in responses between
draftees and volunteers, then our �ndings cannot be extrapolated into volunteers.

6 Conclusion

The presence of endogeneity and discreteness of the endogenous variable causes the
loss of the identifying power of the quantile-based control function approach(QCFA)
in the sense that the model based on the QCFA does not produce point identi�cation.
We propose a model that set identi�es the structural features when one of the regres-
sors is ordered discrete. We then apply the model to binary endogenous variable, and
found that the "unordered" nature of binary variable restricts the identi�cation re-
sults. However, our structural approach turns out to be useful in de�ning the bounds
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on the heterogeneous treatment e¤ects, which has not been studied so far under the
structural framework without distributional assumptions. The fact that endogeneity
causes the loss of identifying power emphasizes the need for testing of exogeneity of
a variable. The discussion in this paper suggests one way of doing it.

Appendix I - proofs
A.1 Proof of Theorem 1 : bounds by MLSRM

Proof. We adopt Lemma 2 in Appendix in Chesher (2005).
To show that the value of the structural function h(y; u�); evaluated at y = ym

and u� � QU jV Z(�U jv; z); is set-identi�ed by the model, MLSRM ; we need to show
every structure admitted by MLSRM that is observationally equivalent to the true
data generating structure, S0; h(ym; u�) lies in the identi�ed set.
Recall that we de�ne V � (Pm�1(z); Pm+1(z)]:
Suppose that QU jV Z(�U jv; z) is weakly increasing in v 2 V . Then we have for

Y = ym;

h(ym; QU jV Z(�U jPm�1(z0m); z0m)) � QW jY Z(�U jym; z0m) (A-1)

� h(ym; QU jV Z(�U jPm(z0m); z0m))
h(ym; QU jV Z(�U jPm�1(z00m); z00m)) � QW jY Z(�U jym; z00m) (A-2)

� h(ym; QU jV Z(�U jPm(z00m); z00m))

and for Y = ym+1

h(ym+1; QU jV Z(�U jPm(z0m); z0m)) � QW jY Z(�U jym+1; z0m) (A-3)

� h(ym+1; QU jV Z(�U jPm+1(z0m); z0m))
h(ym+1; QU jV Z(�U jPm(z00m); z00m)) � QW jY Z(�U jym+1; z00m) (A-4)

� h(ym+1; QU jV Z(�U jPm+1(z00m); z00m))

Under Restriction RC, Pm(z0m) � v � Pm(z00m); when QU jV Z(�U jv; z) is weakly
increasing in v; then :

QU jV Z(�U jv; z00m) � QU jV Z(�U jPm(z00m); z00m)
QU jV Z(�U jPm(z0m); z0m) � QU jV Z(�U jv; z0m)

and because h is weakly increasing in U ,

h(ym; QU jV Z(�U jv; z00m)) � h(ym; QU jV Z(�U jPm(z00m); z00m)) (B-1)

h(ym; QU jV Z(�U jPm(z0m); z0m)) � h(ym; QU jV Z(�U jv; z0m)): (B-2)

Combining (A-4) and (B-1) we can �nd the upper bound for h(ym; QU jV Z(�U jv; z00m))

h(ym; QU jV Z(�U jv; z00m)) � h(ym; QU jV Z(�U jPm(z00m); z00m))
� h(ym+1; QU jV Z(�U jPm(z00m); z00m))
� QW jY Z(�U jym+1; z00m)
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The �rst inequality is due to (B-1) and the second inequality is due to Restriction
LSRM, and the third inequality is due to (A-4).
The lower bound for h(ym; QU jV Z(�U jPm(z0m); z0m)) can be found by (A-3) and

(B-2) :

QW jY Z(�U jym; z0m) � h(ym; QU jV Z(�U jPm(z0m); z0m)) � h(ym; QU jV Z(�U jv; z0m)):

The �rst inequality is due to (A-3), the second is due to (B-2).
Finally, under the conditional full independence (C-FI) and exclusion

Restrictions (A-EX), there is for z 2 fz0m; z00mg for u� � QU jV Z(�U jv; z);

QW jY Z(�U jym; z0m) � h(ym; u�) � QW jY Z(�U jym+1; z00m)

Similarly, when QU jV X is weakly decreasing in v 2 V; we have

QW jY Z(�U jym+1; z00m) � h(ym; u�) � QW jY Z(�U jym; z0m)

A.2 Proof of Theorem 2 : Sharpness

Notation : The case in which FU jV Z(u�jv; z) is nonincreasing in v is called PS
(Positive Selection) and the other case,NS (Negative Selection) for ease of exposition.
The case in which h(ym+1; u�) � h(ym; u�) is called PR (Positive Response) and the
other case, NR (Negative Response).
De�ne

h�1(ym; w) � sup
u
fu : h(ym; u) � wg: (*)

This implies
h(ym; h�1(ym; w)) � w (**)

with equality holding when h(ym; u) is strictly increasing in u:

Lemma 7 (Lemma 1 in Chesher (2005)) Under Restriction A-EX and FI, the con-
ditional distribution of W given Y = ym and Z = z is

FW jY Z(wjym; z) =
1

pm(z)

Z Pm(z)

Pm�1(z)

FU jV (h
�1(ym; w)js)ds; (Key)

where pm(z) = Pr(Y = ymjZ = z)
for z 2 fz0m; z00mg:
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This lemma is the key in the construction of the distribution of the unobserv-
ables.50 The left hand side of (Key) is what we observe and this object is generated
by the process in the right hand side of (Key). The information regarding endogene-
ity is contained in the distribution of the unobservables, FU jV : There can be many
di¤erent forms of FU jV that produce the same observed data FW jY Z : That is, the
shape of the distribution of the observables is not determined by the distribution of
the unobserved variables completely in contrast with when the endogenous variable
is continuous.
Proof. In Part 1 we construct a structure Sa � fha; F aU jV Z(ujv; z)g and in Part 2 we
show that (i) the constructed structure is observationally equivalent to the true structure
(F S

a

W jY Z = F
0
W jY Z) and (ii) they are admitted by LSRM model (Sa 2MLSRM):

Part 1. Construction of a structure :
Let I(� ; ym; zm) denote the identi�ed interval, say, [QW jY Z(�U jym; z0m); QW jY Z(�U jym+1; z00m)]:

The sharpness of the other case, I(� ; ym; zm) � [QW jY Z(�U jym+1; z00m); QW jY Z(�U jym; z0m)]
can be shown similarly. w� 2 I(� ; ym; zm) � [QW jY Z(�U jym; z0m); QW jY Z(�U jym+1; z00m)]:

1-A Construction of the distribution of the unobservables.
We construct the conditional distribution of the unobservables as the following based on

the key relation described in (Key) for all m 2 f1; 2; :::;Mg with PM(z) = 1; P 0(z) = 0
:

F aU jV Z(u
�jv; z) = F aU jV Z(h

�1
a (y

l; wl)jv; z)

�

0BBBBBBBBBBB@

F 0W jY Z(w
1jy1; z);

F 0W jY Z(w
2jy2; z);
� � �

F 0W jY Z(w
ljyl�1; z);

F 0W jY Z(w
ljyl; z);

F 0W jY Z(w
l+1jyl+1; z);
� � �

F 0W jY Z(w
M jyM ; z);

if 0 < v � P 1(z)
if P 1(z) < v � P 2(z)

� � �
if P l�2(z) < v � P l�1(z)
if P l�1(z) < v � P l(z)
if P l(z) < v � P l+1(z)

� � �
if PM�1(z) < v � 1

1CCCCCCCCCCCA
,(A)

where u� = h�1a (y
m; w�) = h�1a (y

1; w1)

= h�1a (y
2; w2) = � � � = h�1a (yM ; wM)

50See Chesher (2007b, 2009) for the proof of sharpness in the structural approach. Note that in
his proofs the key relation was

FS
a

WY jZ(w
�; yjz) = F aUY jZ(h�1a (y; w�); yjz)

since how Y is determined given Z is not speci�ed as it is under triangularity. The proofs in Chesher
(2007b, 2009) are by construction of the distribution of the unobservables using the observables, and
the construction of the structural function is not required since the information on the structural
relation is included in the threshold crossing function (Pm(y)). The proof in Chesher (2007b) is
concerned with constructing FU jY Z ; and using FY jZ the object of interest FUY jZ can be recovered.
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Figure 20: w� is an arbitrary point in the identi�ed interval. We construct a structural
relation and a distribution of the unobservables by whose interaction w� is generated.
Construction of the distribution of the unobservables in (A) - note that u� can be
written in terms of the inverse function of the structural relation evaluated at di¤erent
points of Y: For given w� and ym; wl; l = 1; 2; :::;M; should be found such that
wl = ha(y

l; u�):

Note that u� can be expressed using h�1a (y
m; w�) by (B-1) and there are many pairs of

(yl; wl) that produce the same value u� (see <Figure 20>) where w� is an arbitrary point
in the identi�ed interval, and w1; w2; :::; wM are values such that w1 = ha(y1; u�); w2 =
ha(y

2; u�); :::; wM = ha(y
M ; u�). The value assigned to F aU jV Z(u

�jv; z) is determined by
how u� is expressed and the value of v: Crucial part is when u� is expressed as interms
of yl and v lies in the intervals (P l�2(z); P l�1(z)] and (P l�1(z); P l(z)]. If P l�2(z) <
v � P l�1(z); assign F 0W jY Z(w

ljyl�1; z) into F aU jV Z(u�jv; z) and if P l�1(z) < v � P l(z);
assign F 0W jY Z(w

ljyl; z) to F aU jV Z(u�jv; z): This way, we can garantee the LSRM to hold.
Note that in both intervals of V; the value of the conditional distribution of the observables
evaluated at the same value W = wl:

1-B Construction of a structural function51. Note that under the common support
restriction any point in the identi�ed interval, w� 2 I(� ; ym; zm) whose value is in the
support of W; can be written as

w� = Q0W jY Z(�mjym; z0m) for some �m � �U

That is,
�m � F 0W jY Z(w

�jym; z0m) for some �m � �U
51Unlike other bounds studies we need to construct the structural relation since we need

to show monotonicity of the structural function in the unobservable and restriction LSRM.
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wD = QW|YZ
0 Ýb|ym,zmv Þ forsome b ³ bU

QW|YZÝbU|ym ,zmv Þ

QW|YZÝbU|ym+1,zmvv Þ

FW|YZÝw|ym ,zmv Þ

Figure 21: Any point in the interval, w� 2 I(� ;m; zm); can be expressed using the
quantiles of FW jY Z(wjym; z0m) under the common support restriction.

Note also that for vm 2 (Pm�1(z0m); Pm(z0m)] by construction

F aU jV Z(h
�1
a (y

m; w�)jvm; z0m) = F 0W jY Z(w
�jym; z0m) � �m

thus by de�nitionof quantiles,

h�1a (y
m; w�) = QaU jV Z(�mjvm; z) for some vm 2 (Pm�1(z0m); Pm(z0m)]

From this we have

w� = ha(y
m; QaU jV Z(�mjvm; z)) for some vm 2 (Pm�1(z0m); Pm(z0m)]

Choose vm 2 (Pm�1(z0m); Pm(z0m)] such that u� = QU jV Z(�U jv; z0m) = QU jV Z(�mjvm; z0m):
Then we have

w� = ha(y
m; u�):

that is, there exists a structural relation (that satis�es all the restrictions imposed by the
model) which crosses an arbitrary point, w�; in the identi�ed interval.By this logic we
construct the structural function as

ha(y
m; u�) � Q0W jY Z(�mjym; z0m) for some �m � �U (B)

The whole structural function for given u� can be de�ned as follows

ha(y; u
�) �

MX
m=1

[Q0W jY Z(�mjym; z)]1(y = ym) (B-1)
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The proof uses the fact that u� can be written in di¤erent ways in terms of structural
relation as well as quantiles of the distribution of the unobservables as we described in (A)
and (B).

Part 2
The construction in Part 1 has been chosen to be admitted by MLSRM ; and to be

observationally equivalent to S0: In Part 2 we show how this is the case.
Part 2 - A : Observational equivalence52 (F S

a

W jY Z = F
0
W jY Z)

We need to show that F S
a

W jY Z = F
0
W jY Z ; for S

a = fha; F aU jV Zg constructed as in Part
1 : for pm(z) = Pr(Y = ymjZ = z); for all m 2 f1; 2; :::;Mg; and for each z 2 fz0m; z00mg;

F S
a

W jY Z(wjym; z) =
1

pm(z)

Z Pm(z)

Pm�1(z)

F aU jV Z(h
�1
a (y

m; w)js)ds

=
1

pm(z)

Z Pm(z)

Pm�1(z)

F 0W jY Z(wjym; z)ds

= F 0W jY Z(wjym; z)

the �rst equality is due to lemma 1 in Chesher (2005), the second equality is due to
construction in (B) in Part 1, that is, F aU jV Z(h

�1
a (y

m; w)jv; z) = F 0W jY X(wjym; z); for
v 2 (Pm�1(z); Pm(z)] and the last equality is due to integration over the constant and the
de�nition of pm(z).

Part 2 - B : Sa 2MLSRM

0. Rank condition : this can be shown using the data. We suppose this restriction
is satis�ed.
1. Monotonicity of ha(ym; u�) in u�

Since we normalize ha(ym; u�) to be nondecreasing in u� we consider whether ha(y; u�)
is nondecreasing in u�: Recall that ha(ym; u�) = ha(ym; QU jV Z(�mjvm; z)) � Q0W jY Z(�mjym; z);
where u� � QU jV (�U jv) = QU jV Z(�mjvm; z):

First, �x vm; then ha(ym; u�) is weakly increasing in u� since higher �m implies higher
u� � QU jV (�mjvm); as well as higher Q0W jY Z(�mjjym; z). Next �x �m; if we observe higher
u�; then it is because of higher vm if FU jV (ujvm) is nonincreasing in vm and lower vm
if FU jV (ujvm) is nondecreasing in vm;for (Pm�1(z); Pm(z)]: However, regardless of the
direction of the monotonicity, for vm 2(Pm�1(z); Pm(z)]; Y = ym:Thus, the value of vm
does not a¤ect the value of ha as long as Y is �xed at Y = ym: That is, for �xed �m; and
Y; ha(y; u

�) is constant as u� increases due to change in vm:
2. Proper distribution
Now we need to check whether the constructed distribution is proper : since each

F 0W jY Z(wjym; z); for all m 2 f1; 2; :::;Mg is a proper distribution, F 0W jY Z(wjym; z) lies
between zero and one; and weakly increasing in w. Thus, the constructed distribution

52That is, the data distribution that is generated by the structure constructed in part 1
is actually what we observe. Note that this can be shown becasue we have constructed the
structure using the observed distribution.
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F aU jV Z(u
�jv; z) lies between zero and one, but to guarantee nondecreasing property of

F aU jV Z(u
�jv; z) in u�; we need to show that as w increases, u� � h�1a (y; w) increases.

Let wr � ha(y; r) � w and wr0 � ha(y; r
0) � w0 for r � h�1a (y

m; w) and r0 �
h�1a (y

m; w0): Suppose on the contrary that w < w0 as r � r0: Then since ha is weakly
increasing in r :

ha(y; r
0) � ha(y; r) � w < w0

The �rst inequality is due to weak monotonicity in u (nondecreasing by normalization )
and the second inequality is due to wr = ha(y; r) < w by (**) and the last inequality
is due to the assumption made to derive contradiction. This implies that there exists a
larger r than r0 satisfying ha(y; r0) � w0; which causes a contradiction due to the fact that
r0 6= h�1a (y; w

0) and r = h�1a (y; w
0) since h�1a is de�ned as the largest value of u that

satis�es ha(y; u) � w0. Thus we conclude that as r � r0, w � w0, in other words, as
F 0W jY Z(wjym; z) is weakly increasing as w increases for given Y = ym, we have weakly
increasing F aU jV Z(ujv; z): Therefore, F aU jV Z(ujv; z) is a proper distribution.
3. Conditional Full Independence of FU jV Z(u

�jv; z) with respect to z 2
fz0m; z00mg; where u� = h�10 (yl; wl); for �xed value of v 2 (Pm�1(z); Pm(z)]: Let (yl; wl); (ym; wm)
be the pairs that produce the same value, u�; that is, u� = h�1a (y

m; wm) = h�1a (y
l; wl);

l;m 2 f1; 2; :::;M � 1g for l 6= m or m� 1:
Recall that pm(z) � Pr(Y = ymjZ = z): Then we have for v 2 (Pm�1(z); Pm(z)]

F aU jV Z(u
�jv; z) = F aU jV Z(h

�1
0 (y

l; wl)jv; z)
= F 0W jY Z(w

mjym; z)

=
1

pm(z)

Z Pm(z)

Pm�1(z)

F 0U jV (h
�1
0 (y

m; wm)js)ds

=
Pr(U � h�10 (ym; wm) \ Pm�1(z) � V � Pm(z))

pm(z)

= F 0U jV (h
�1
0 (y

m; wm)jv)
= F 0U jV (u

�jv)

the �rst equality is by de�nition, the second equality is by construction in (A) in part
1, the third equality is due to lemma 1 in Chesher (2005), and the fourth equality follows
by de�nition.
4. LSRM : Now we check whether the constructed Sa = fha; F aU jV Zg satisfy the

speci�ed match.
For �xed u� we can express u� as the following :

u� = h�1a (y
m; w�) = h�1a (y

m+1; wm+1) (4-1)

Note that F aU jV Z(u
�jv; z) is monotonic in v 2 V since we constructed F aU jV Z(u

�jv; z)
as piecewise constant.

Step 1 : linking the distributions of the unobservables and the observables
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(4-2)-(4-5) link the distribution of the unobservables with the distribution of the ob-
servables, and they are found by using the de�nition of u� and the construction Part 1-A.

Using the construction in Part 1, for u� = h�1a (y
m+1; wm+1) and v = Pm(z0) de�ne

� 0m as

� 0m � F aU jV Z(u
�jPm(z0m); z0m)

= F aU jV Z(h
�1
a (y

m+1; wm+1)jPm(z0m); z0m) (4-2)

= F 0W jY Z(w
m+1jym; z0m)

the �rst equality is due to u� = h�1a (y
m+1; wm+1) and the second equality is by the

construction of of the conditional distribution of the unobservables in (A). This is key to
exclude the possibility of NR

For u� = h�1a (y
m; w�) and v = Pm(z00m) de�ne �

00
m as

� 00m � F aU jV Z(u
�jPm(z00m); z00m)

= F aU jV Z(h
�1
a (y

m; w�)jPm(z00m); z00m) (4-3)

= F 0W jY Z(w
�jym; z00m)

Note that for u� = h�1a (y
m+1; wm+1) and v = Pm+1(z00m) :

� 00m+1 � F aU jV Z(u
�jPm+1(z00m); z00m)

= F aU jV Z(h
�1
a (y

m+1; wm+1)jPm+1(z00m); z00m) (4-4)

= F 0W jY Z(w
m+1jym+1; z00m)

Also, for Pm(z0m) < v < P
m(z00m); we have

53

� � F aU jV Z(u
�jv; z00m)

= F aU jV Z(h
�1
a (y

m+1; wm+1)jv; z00m) (4-5)

= F 0W jY Z(w
m+1jym; z00m)

Step 2 : Order of (4-2)-(4-5) :
Note Pm(z0m) � Pm(z00m) � Pm+1(z00m): Then PS implies that

� 00m+1 � � 00m � � � � 0m; (*PS)

53This is for Pm�1(z00) � Pm(z0): Other cases can be shown similarly.

� � F aU jV Z(rjv; z
00)

= F aU jV Z(h
�1
a (y

m+1; wm+1)jv; z00) (4-50)

=

 
F 0W jY Z(w

m+1jym; z00) if Pm�1(z00) � Pm(z0)
F 0W jY Z(w

m+1jym+1; z0) if Pm(z00) � Pm+1(z0)

!
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FU|V=PmÝzvÞ

bm

bm?1

FU|V=Pm?1ÝzvÞ

uD ¯ QU|VZÝbU|v,zÞ

Figure 22: That conditioning on Y and Z corresponds to an interval, V, is the cause of
loss of point idenifying power Note that u� � QU jV (�U jv) = QU jV Z(�mjPm(z0); z0) =
QU jV Z(�m�1jPm�1(z0); z0)

since we are comparing the values of the three conditional distributions evaluated at the
same value u� = h�1a (y

m; w�) = h�1a (y
m+1; wm+1): And NS implies that

� 00m+1 � � 00m � � � � 0m (*NS)

Step 3 : Quantile expressions for w and u�

Now we express u� and w� and wm+1 as quantiles of the distributions so that we can
�nd the order of the two, ha(ym; u�) and ha(ym+1; u�) using (PS) and (NS). (4-2)-(4-5)
imply (4-6) and (4-7) under continuity of W and U :

u� = QaU jV Z(�
0
mjPm(z0m); z0m)

= QaU jV Z(�
00
mjPm(z00m); z00m) (4-6)

= QaU jV Z(�
00
m+1jPm+1(z00m); z00m)

= QaU jV Z(� jv; z00m); for Pm(z0m) < v < Pm(z00m)

w�
(a)
= Q0W jY Z(�

00
mjym; z00m) (4-7)

wm+1
(b)
= Q0W jY Z(� jym; z00m)

(c)
= Q0W jY Z(�

00
m+1jym+1; z00m)

(a) follows from (4-3), (b) from (4-5) and (c) is by (4-4).
Step 4 : Match?
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Finally we use the construction of the structural function using (4-6). Then we can
determine the direction of the response : we have 54

ha(y
m; u�)� ha(ym+1; u�)

= ha(y
m; QU jV Z(�

00
mjPm(z00m); z00m)� ha(ym+1; QU jV Z(� 00m+1jPm+1(z00m); z00m))

= Q0W jY Z(�
00
mjym; z00m)�Q0W jY Z(�

00
m+1jym+1; z00m)

= Q0W jY Z(�
00
mjym; z00m)�Q0W jY Z(� jym; z00m)�

� 0 if PS
� 0 if NS

�
the �rst equality is by (4-6) : u� = QU jV Z(� 00mjPm(z00m); z00m) = QU jV Z(� 00m+1jPm+1(z00m); z00m);
the second equality is by construction of the distribution of the unobservables (see <Figure
22>), and the third equality is by (c) in (4-7). Then the inequality follows because � 00m � �
(*PS) and � 00m � � (*NS), and the property of quantiles:

A.3 Proof of Theorem 4 in section 3 : bounds by MB.

Proof. We adopt the lemma above when m = 1 with P 0(z) = 0 and P 1(z) = P (z),
where P (z) = Pr(Y = 1jZ = z) and when m = 2 with P 2(z) = 1 and P 1(z) = P (z).

Suppose that QU jV Z(�U jv; z) is weakly increasing in v. Then we have

h(0; QU jV Z(�U j0; z0)) � QW jY Z(�U j0; z0) (A-1)

� h(0; QU jV Z(�U jP (z0); z0))
h(0; QU jV Z(�U j0; z00)) � QW jY Z(�U j0; z00) (A-2)

� h(0; QU jV Z(�U jP (z00); z00))
h(1; QU jV Z(�U jP (z0); z0)) � QW jY Z(�U j1; z0) (A-3)

� h(1; QU jV Z(�U j1; z0))
h(1; QU jV Z(�U jP (z00); z00)) � QW jY Z(�U j1; z00) (A-4)

� h(1; QU jV Z(�U j1; z00))

We use (A-1) and (A-4).

QW jY Z(�U j0; z0) � h(0; QU jV Z(�U jP (z0); z0)) (A-1)

h(1; QU jV Z(�U jP (z00); z00)) � QW jY Z(�U j1; z00) (A-4)

Under Restriction RC, P (z�) � v � P (z00); when QU jV Z(�U jv; z) is weakly increasing in
v; then :

QU jV Z(�U jv; z00) � QU jV Z(�U jP (z00); z00)
QU jV Z(�U jP (z�); z0) � QU jV Z(�U jv; z0)

54Recall that this is the case for Pm�1(z00) � Pm(z0): The other case can be shown
similarly.
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and because h is monotonic in u and normalized nondecreasing,

h(1; QU jV Z(�U jv; z00)) � h(1; QU jV Z(�U jP (z00); z00)) (B-1)

h(1; QU jV Z(�U jP (z�); z0)) � h(1; QU jV Z(�U jv; z0)): (B-2)

Combining (A-4) and (B-1) we can �nd the upper bound for h(1; QU jV Z(�U jv; z00))

h(1; QU jV Z(�U jv; z00)) � h(1; QU jV Z(�U jP (z00); z00)) � QW jY Z(�U j1; z00)

Use the Restriction LSRM : h(1; u) � h(0; u); for all values of z and u in the support
of Z and U: Applying Restriction LSRM to (B-2)

h(0; QU jV Z(�U jP (z�); z0)) � h(1; QU jV Z(�U jP (z�); z0)) � h(1; QU jV Z(�U jv; z0)): (C)

Applying (A-1) to (C), we have the lower bound for h(1; QU jV Z(�U jv; z0))

QW jY Z(�U j0; z0) � h(1; QU jV Z(�U jv; z0)):

Finally, under the conditional independence restriction and exclusion Restriction C-FI
and AB-EX, there is for z 2 fz0; z00g for u� � QU jV Z(�U jv; z)

QW jY Z(�U j0; z0) � h(1; u�) � QW jY Z(�U j1; z00) (D-1)

Consider next the identi�cation of h(0; u�):
Under Restriction RC, P (z�) � v � P (z00); when QU jV Z(�U jv; z) is weakly increasing

in v; then :

QU jV Z(�U jv; z00) � QU jV Z(�U jP (z00); z00)
QU jV Z(�U jP (z�); z0) � QU jV Z(�U jv; z0)

and because h is monotonic in U and normalized nondecreasing,

h(0; QU jV Z(�U jv; z00)) � h(0; QU jV Z(�U jP (z00); z00)) (B-3)

h(0; QU jV Z(�U jP (z�); z0)) � h(0; QU jV Z(�U jv; z0)): (B-4)

using (A-4) and (B-3), and Restriction LSRMwe can �nd the upper bound for h(0; QU jV Z(�U jv; z00))

h(0; QU jV Z(�U jv; z00))
(a)

� h(0; QU jV Z(�U jP (z00); z00))
(b)

� h(1; QU jV Z(�U jP (z00); z00))
(c)

� QW jY Z(�U j1; z00)

(a) is due to (B-3), (b) follows from Restriction LSRM; and (c) is from (A-4).
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Applying (A-1) to (B-4) we have

QW jY Z(�U j0; z0)
(a)

� h(0; QU jV Z(�U jP (z�); z0))
(b)

� h(0; QU jV Z(�U jv; z0)):

(a) follows from (A-4) and (b) is from (B-4). Thus, the lower bound for h(0; QU jV Z(�U jv; z0))

QW jY Z(�U j0; z0) � h(0; QU jV Z(�U jv; z0)):

Finally, under the conditional independence restriction and exclusion Restriction C-FI
and A-EX, there is for z 2 fz0; z00g

QW jY Z(�U j0; z0) � h(0; u�) � QW jY Z(�U j1; z00)

Note that the identi�ed intervals for h(0; u�) and h(1; u�) are the same as we see in
(D-1) and (D-2).
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