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Abstract

We study a two-period economy in which agents’ preferences take into account relative
economic position. The study builds on a decision theoretic analysis of the social emo-
tions that underly these concerns, i.e., envy and pride, which respond to social losses and
gains, respectively. The analysis allows individual differences in their relative importance
and, in the tradition of Prospect Theory, summarizes these differences in the geometric
properties of the externality function that represents relative outcome concerns.
Our main result is that envy leads to conformism in consumption behavior and pride

to diversity. We thus establish a link between emotions that are object of study in
psychology and neuroscience, and important features of economic variables, in the first
place the equilibrium distribution of consumption and income. This research provides
a tool to relate experimental and empirical studies of individual preferences for relative
position and important features of macro data.
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1 Introduction

Empirical and experimental literature has established the importance in individual choices of
relative outcome concerns, especially in consumption and income. External habits, keeping
up with the Joneses and other regarding preferences are common names used for this phe-
nomenon. Early classic contributions are Veblen (1899) and Dusenberry (1949); the latter
in particular is an early attempt to provide explanations of aggregate economic behavior
on the basis of individual preferences over relative position. Recent empirical works show
direct effects on well being of individuals, as measured by happiness indicators, of relative
income (see, for example, Luttmer, 2005, and Dynan and Ravina, 2007). Other works ex-
plain economic behavior as motivated in part by concerns for relative position. For example,
Charles, Hurst and Roussanov (2009) shows that visible consumption in luxury goods is
well explained by status seeking (and that the level of consumption is declining in the in-
come of the reference group). These studies use data sets and evidence of different nature,
some experimental and some empirical. Though at the moment there is no wide agreement
on the properties and strength of these features, these studies indicate that the effects are
significant.

Our paper studies at a theoretical level how different shapes of individual preferences of
agents with these social concerns affect the nature of the equilibrium and in particular the
degree of inequality in the economy. Our analysis is based on the decision theoretic analysis
of social preferences we pursued in Maccheroni, Marinacci, and Rustichini (2008). There we
provide behavioral conditions that deliver objective functions in which, to a standard utility
term that depends on agents’ own outcomes, is added a positional index that quantifies
agents’ relative outcome concerns that arise by comparing their own outcomes with those of
their peers. The positional index introduces a social dimension in agents’ objective functions
and establishes a direct link (in addition to prices) among their choices as agents’ well
being now also depends on their peers’ choices and outcomes. Since the foundation of the
representation is behavioral, the hypothesis underlying the representation are testable. Even
more important for the purpose of the current paper, these features of individual preferences
are reduced to few simple factors, which admit simple parametric representations that can
be used in the theoretical analysis of equilibrium behavior and thus provide a foundation for
calibration analysis.

Specifically, in Maccheroni et al (2008) we identify two basic social emotions that, through
agents’ attitudes toward them, determine the shape of the positional index, that is, envy and
pride. By envy we mean the negative emotion that agents experience when their outcomes
fall below those of their peers, and by pride the positive emotion that they experience when
they have better outcomes than their peers. Envy and pride can be viewed as the emotions
that arise when agents experience, respectively, a social loss and a social gain. Like attitudes
toward standard private losses and gains, also these social attitudes may well vary across
individuals. As detailed in the next section, the shape of the positional index reflects these
different attitudes, thus making it possible to carry out comparative statics analysis in agents’
attitudes toward envy and pride.
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Two-Period Economy Our investigation of the economic consequences of these social
preferences is based on an economy of Robinson Crusoe-type agents who live two periods
in their own “islands,” where they work/produce, consume, and save/store for their own
future consumption a single consumption good. With traditional “asocial” preferences these
agents would be on their own and the economy would be in equilibrium once they solve
their individual intertemporal problems. With social preferences, however, this is no longer
the case: even though their choices are still independent — that is, their outcomes are not
affected by peers’ choices — now agents’ well being also depends on their peers’ outcomes.
In this economy of Robinson Crusoes, agents are thus linked only via their relative outcome
concerns. This makes this setup especially well suited for our purposes since it allows to
study in “purity” the equilibrium consequences of these relative concerns, with no room left
for other possible interdependencies among agents’ actions that may affect the analysis.

Our main finding is that in these social economies envy leads to conformism in equilib-
rium, pride to diversity. Specifically, suppose that our Robinson Crusoes are identical and
that their labor supply is inelastic. In this case the choice problem they face is to select
consumption in each of the two periods they live. For, they can save in the first period and
store what saved for consumption in the next period. When deciding how much to consume
in the first period, agents face a trade-off: if they increase consumption today they will
increase their relative ranking today, but, ceteris paribus, also decrease their standing in the
next period. They thus compare a positive effect today with a possible negative effect in the
next period. This intertemporal trade-off (also noted, for example, in Binder and Pesaran,
2001, and Arrow and Dasgupta, 2007) points to a crucial feature of the preferences: the
attitudes they exhibit toward social gains and losses, that is, the relative strength of the
effect on individuals’ welfare of being either in a dominant or in a dominated position in
their reference group.

To better see how these social attitudes affect choices and the solution of the intertemporal
trade-offs, we consider as illustration the two polar cases of pure envy and pure pride. The
equilibrium set will be completely different in the two cases: it will be conformist in the case
of pure envy (all agents consume the same) and diversified in the pure pride case (identical
agents choose a different consumption). Agents with pure envy preferences only care about
the situation in which their consumption is below the average value. The positional index
has in this case a concave kink at the origin — defined by the simple inequality (7) below —
that turns out to force equilibria to be symmetric: all agents choose the same consumption.
A kink at zero, that is, at the reference point in the space of social gains and losses, is
consistent with the view originating in Prospect Theory that a change in sign induces a
change in marginal evaluations.

In contrast, agents with pure pride preferences have a positional index with a convex
kink at the origin, and this feature changes completely the structure of the equilibrium set.
This local convexity turns out to be enough to make all equilibria non-symmetric: although
agents are identical, they will choose different consumptions. Some will choose to have a
dominant position in the current period, at the expense of a dominated one in the future,
and others will choose the opposite.
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Since all agents are identical, the asymmetry in behavior caused by pride is noteworthy.
This asymmetry only arises out of social concerns, not because of any need of the agents to
equilibrate their actions in terms of overall available resources (in fact, in this economy of
Robinson Crusoes there is no trade). The transmission channel that our analysis examines is
saving behavior. Empirically, our analysis thus suggests that, ceteris paribus, in economies
where envy prevails agents’ saving behavior should be more homogeneous, with a lower
degree of inequality in outcomes in the economy. The opposite should be true if, instead,
pride prevails.1

Summing up, envy and pride — modeled here as the correspondents of social gains and
losses, with a similar psychological nature — turn out to have very different implications for
the underlying equilibria.2 This is a novel insight of our analysis, which is made behaviorally
well founded by the analysis of Maccheroni et al (2008), with its behavioral characterization of
agents’ objective functions, in particular of the shape of their positional indexes. Besides its
intrinsic interest, from the methodological standpoint this behavioral foundation is important
because it opens the possibility of an estimation of suitable parametric specifications of these
objective functions via micro and experimental data. Once these estimates are provided in
separate studies, the equilibrium effects could be determined and perhaps calibrated, just as
it is done typically with other features of preferences like risk aversion.

Related Literature and Outline There is a large literature that investigates the eco-
nomic consequences of relative outcome concerns. In Maccheroni et al (2008) we provide
a detailed bibliography. Recent relevant surveys include Sobel (2005), Clark, Frijters, and
Shields (2008), Fershtman (2008), and Heffetz and Frank (2008).

Our analysis is especially related to two strands of literatures. The first one considers
the link between the shape of positional indexes and some important features of the equi-
librium (see in particular Clark and Oswald, 1994 and 1998). The shape of these indexes
(in particular their concavity/convexity properties) is taken as a given: these results suggest
that a behavioral foundation would enlighten the conclusions. In this tradition, Dupor and
Liu (2003) focus on overconsumption.

The second strand models relative concerns via comparisons of ordinal ranks in outcomes.
For example, Frank (1985a) studies how these comparisons affect the demand of positional
goods, that is, goods on which consumers exhibit relative concerns, and that of nonpositional
ones.3 More recently, Hopkins and Kornienko (2004) use these comparisons in a game

1 It would be interesting to know whether these different saving behaviors would affect growth, at least
at a theoretical level. In our two-period analysis we cannot, however, address this question, which is left for
future research.

2As in Maccheroni et al (2008), we consider emotions as a first approximation explanation of behavior
that is sufficient for choice theoretic purposes, in an utilitarian tradition that traces its origin back at least
to Bentham’s classic pleasure and pain calculus. Evolutionary perspectives on relative concerns has been
recently considered by Rayo and Becker, 2007, and Samuelson, 2004.

3The distinction between positional and nonpositional goods is due to Hirsch (1976) (see also Frank,
1985b).
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theoretic approach to status and to its consequences on income distribution. Our paper
provides, inter alia, a link between these strands of literature and bases its analysis on
a behaviorally specified foundation, which, as mentioned before, reduces the concern for
relative positions to few simple factors.

The paper is organized as follows. Section 2 presents the basic elements of the social
decision theory we developed in Maccheroni et al (2008). Section 3 introduces the two-
period economy that we study, while Section 4 shows how overconsumption and workaholism
may arise in it. Section 5 contains the paper’s main result that shows how envy leads to
conformism in consumption behavior and pride to diversity. Section 6 concludes, while the
Appendix collects all proofs.

2 Social Decision Theory

In this preliminary section we summarize the essential features of the social decision theory
we introduced and axiomatized in Maccheroni et al (2008).

Following Savage (1954)’s tradition, acts are measurable functions f : S → R from a state
space S to a consequence space C.4 In social decision theory, an agent o has preferences over
acts’ profiles

¡
fo, (fi)i∈I

¢
that represent the situation in which agent o takes act fo, while

each member i of the agent’s reference group I takes act fi. Agent o then evaluates this
situation according to:

V
¡
fo, (fi)i∈I

¢
=

Z
S
u (fo (s)) dP (s) +

Z
S
(

Ã
v (fo (s)) ,

X
i∈I

δv(fi(s))

!
dP (s) . (1)

The first term of this representation is familiar. The index u (fo (s)) represents the agent’s
intrinsic utility of the realized outcome fo (s), and P represents his subjective probability
over the state space S. The first term thus represents his direct subjective expected utility
from act fo.

The effect on o’s welfare of the outcome of the other individuals is reported in the second
term. The index v (fo (s)) represents the social value that o attaches to outcome fo (s).
Given a profile of acts, agent o’s peers will get outcomes (fi (s))i∈I once state s obtains.
If o does not care about the identity of who gets the value v (fi (s)), then he will only be
interested in the distribution of these values. This distribution is represented by the termP

i∈I δv(fi(s)) in (1) above, where δx is the measure giving mass one to x.

The positional index ( is an externality that models agent o’s relative outcome concerns.
It is increasing in the first component and stochastically decreasing in the second. These
monotonicity properties of ( reflect o’s different attitudes towards his own outcomes and
those of his peers. In particular, ( is increasing in the first component because o positively
values his own outcome fo (s), while ( is stochastically decreasing in the second one since

4 In Maccheroni et al (2009) we use the Anscombe and Aumann (1963) version of Savage’s setting, where
consequences are lotteries.

5



o negatively values his peers’ outcomes, and so benefits from a stochastically dominated
distribution of their outcomes.

As mentioned in the Introduction, the social emotions that underlie these negative atti-
tudes toward peers’ outcome are envy and pride. This is discussed at length by Maccheroni
et al (2008), who provide the behavioral axioms that deliver the choice criterion (1), with
these monotonicity properties of the positional index (.

The index v : C → R may or may not be equal to u : C → R. In particular, the
two indices are equal if agent o evaluates his peers’ outcomes only through his own utility
function, that is, according to the user value that their outcomes have for him. In contrast,
if peers’ outcomes are valued beyond their user value, say because of status concerns, then
the indices u and v may differ as the latter keeps track of this further social concerns about
peers’ outcomes. For example, we can envy our neighbor’s Ferrari both because we would
like to drive it (user value) and because of its symbolic/status value. The index ν reflects
the overall, cumulative, “outcome externality” that the agent perceives, that is, his overall
relative outcome concerns. Thus, u and v agree if user value considerations prevail, but they
may well differ if symbolic/status considerations matter.

Specifications In Maccheroni et al (2008) we study several possible specifications of the
general choice criterion (1). Among them, the following average specification is especially
important:

V
¡
fo, (fi)i∈I

¢
=

Z
S
u (fo (s)) dP (s) +

Z
S
(

Ã
v (fo (s)) ,

1

|I|
X
i∈I

v (fi (s))

!
dP (s) . (2)

Here, agent o only cares about the average social value |I|−1Pi∈I v (fi (s)). For example, if
v (x) = x, then (2) becomes

V
¡
fo, (fi)i∈I

¢
=

Z
S
u (fo (s)) dP (s) +

Z
S
(

Ã
fo (s) ,

1

|I|
X
i∈I

fi (s)

!
dP (s) ,

where only the average outcome |I|−1Pi∈I fi (s) appears, as it is the case in many specifi-
cations used in applications.

It is also possible to give behavioral conditions such that in (2) we actually have ( (z, t) =
γ (z − t) for some increasing γ : R→ R with γ (0) = 0. Here relative concerns are modelled
through the difference between the value of o’s outcome and that of the peers’ average
outcome. This is the simple and convenient specification that we will use in this paper.
That is, we will study an economy where agents rank acts’ profiles according to

V
¡
fo, (fi)i∈I

¢
=

Z
S
u (fo (s)) dP (s) +

Z
S
γ

Ã
v (fo (s))− 1

|I|
X
i∈I

v (fi (s))

!
dP (s) . (3)
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2.1 Kinks and Comparative Envy

As observed in the Introduction, an outcome profile where your peers get a socially better
outcome than yours can be viewed as social loss; conversely, a profile where you get more
than them can be viewed as a social gain. In particular, individuals might well have different
attitudes toward such social gains and losses, similarly to what happens for standard private
gains and losses. The distinction between gains and losses is inspired by Prospect Theory,
with its focus on private gains and losses. While there is no presumption that preferences
in social and private domains are the same (there is indeed some evidence that they are
not), we keep the basic intuition that the change across domains may change the evaluation
of one additional unit, that is, may introduce a discontinuity in marginal utility. Kinks in
the objective function add to the mathematical complexity of the analysis, but they are
necessary to study appropriately this view.

These different social attitudes will play a key role in the paper and it is therefore
important to understand how to model them via the positional index (. Given a “fair” event
E with P (E) = 1/2, say that an agent o that features the choice criterion (1) is more envious
than proud (or averse to social losses), relative to a given xo ∈ C, if

V (xo, xo) ≥ V (xo, xiEyi) (4)

for all xi, yi ∈ C such that (1/2) v (xi) + (1/2) v (yi) = v (xo).5 The intuition is that agent
o tends to be more frustrated by envy than satisfied by pride. That is, assuming wlog that
v (xi) ≥ v (yi), he is more scared by the social loss (xo, xi) than lured by the social gain
(xo, yi).

Maccheroni et al (2008) show that agent o is more envious than proud, relative to an
xo ∈ C, if and only if

((v (xo) , v (xo) + h) ≤ −((v (xo) , v (xo)− h), ∀h > 0. (5)

In particular,
D+( (v (xo) , v (xo)) ≤ D−( (v (xo) , v (xo)) . (6)

In other words, a concave kink at v (xo) reveals a more envious than proud attitude at
xo. In the special case ( (z, t) = γ (z − t) — that is, in (3) — condition (6) becomes

γ0+ (0) ≤ γ0− (0) . (7)

Here, a kink at 0 thus reveals a global (i.e., at all points x0) more envious than proud attitude.
This is a remarkable feature of the specification (3), which makes it especially tractable.

5Here, xiEyi denotes the act that gives xi if event E obtains and yi otherwise. It can be proved that the
choice of E is immaterial in the definition (events E with P (E) = 1/2 are often called ethically neutral in
decision theory).
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3 Social Equilibria in a Storage Economy

Our analysis is based on a two-period storage economy where agents have the specification
(3) of the general choice criterion (1). We later specialize this economy in order to focus
on two distinct important economic phenomena that arise with our preferences, that is,
overconsumption/workaholism and conformism/anticonformism.

We consider economies with a continuum of individually negligible agents. There are two
main reasons for this modeling choice: it simplifies an already complicated derivation and
it allows to abstract from strategic interactions among agents that might otherwise arise, so
that we can better focus on the interdependencies due to the social dimension of preferences,
as will be shown momentarily.

Formally, the set I of agents is a complete nonatomic probability space (I,Λ, λ). In
particular, we denote by Mn the collection of all Λ-measurable functions φ : I → Rn and by
Ln the subset of Mn consisting of bounded functions.

There is a single consumption good, which can be either consumed or saved. We consider
a storage economy, in which a storage technology is available that allows agents to store for
their own future consumption any amount of the consumption good that they do not consume
in the first period.

As we will see momentarily, in the storage economy there is no room for trade: each
agent produces, consumes, and saves/stores for his own future consumption. There are no
markets and prices, and, with conventional asocial objective functions, this economy is in
equilibrium (Definition 1) when agents just solve their individual intertemporal problems
(8).

As a result, it is an equilibrium notion limited in scope, with no need of considering any
form of mutual compatibility of agents’ choices. If, however, agents have our social objective
functions, this is no longer the case. In fact, when agents’ own consumption choices are
affected by their peers’ choices, a link among all such choices naturally emerges. Even
without any trading, in this case there is a sensible notion of mutual compatibility of the
agents’ choices and, therefore, a more interesting equilibrium notion becomes appropriate
(Definition 2).

In storage economies, therefore, interaction among agents is only due to the social dimen-
sion of consumption. This allows us to study the equilibrium effects of this social dimension
in “purity,” without other factors intruding into the analysis. This is why we consider these
economies. Later, in Section 6, we will briefly discuss a market economy.

We turn now to the formal model. We assume that the storage technology gives a real
(gross) return R > 0. Agents live two periods and in each of them they work and consume;
in period one they can also store. In the first period each agent i selects a consumption/effort
pair (ci,0, ei,0) ∈ R2+, evaluated by a utility function ui : R2+ → R. Effort is transformed in
consumption good according to an individual production function Fi,0 : R+ → R+.
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In the second period there is technological uncertainty, described by a stochastic pro-
duction function Fi,s : R+ → R+ that depends on a finite space S of states of Nature,
endowed with a probability P . With the usual abuse of notation we set S = {1, 2, ..., S} and
S0 = {0, 1, 2, ..., S}, and we write ps instead of P (s). The production functions {Fi,s}s∈S0
use a physical capital, whose amount is exogenously fixed in each period and state (capital
accumulation is thus not studied here).

In the second period too, each agent i works and consumes. He thus selects in each state
s a consumption/effort pair (ci,s, ei,s) ∈ R2+, again evaluated by the same utility function ui
of the first period.

Finally, effort is a limited resource: for each i there is a vector hi ∈ RS+1
+ such that ei,s

cannot exceed hi,s for all s ∈ S0.

Summing up, the intertemporal problem of agent i in the storage economy is:

max
(ci,ei)∈Bi

Ui (ci, ei) , (8)

where

Ui (ci, ei) = ui (ci,0, ei,0) + β
X
s∈S

psui(ci,s, ei,s), ∀ (ci, ei) ∈ RS+1
+ ×RS+1

+ ,

and Bi is the subset of RS+1
+ ×RS+1

+ consisting of all (ci, ei) such that:

(i) (ci, ei) ∈ RS+1
+ ×QS

s=0 [0, hi,s];

(ii) ci,0 ≤ Fi,0 (ei,0);

(iii) ci,s = Fi,s (ei,s) +R (Fi,0 (ei,0)− ci,0) for all s ∈ S.

The set Bi is never empty since in every period and state each agent can consume all he
produces. Next we make a first assumption on the storage economy.

H.1 For each agent i ∈ I:

(i) ui : R2+ → R is continuous.
(ii) Fi,s : R+ → R+ is increasing and continuous for all s ∈ S0.

This assumption guarantees that the (nonempty) setBi is compact, and that the objective
function Ui is continuous. By the Weierstrass Theorem, problem (8) thus admits a solution.

Say that a consumption/effort profile (c, e) ∈MS+1×MS+1 is feasible if (ci, ei) ∈ Bi for
all i ∈ I.

Definition 1 A feasible consumption/effort profile (c∗, e∗) is an asocial equilibrium for the
storage economy if

Ui (c
∗
i , e

∗
i ) ≥ Ui (ci, ei) , ∀ (ci, ei) ∈ Bi,

for λ-almost all i ∈ I.
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As mentioned before, this equilibrium notion just requires that agents individually solve
their problems (8), with no interaction whatsoever among themselves.

We turn now to our social preferences, adapted to our continuum setup. Assume that the
preferences of our agents are represented by the preference functional (3). Given a common
social value function v : R+→ R, the social objective function Vi of each agent now depends
on the entire profile of consumption and effort, as follows:

Vi (c, e) = Ui (ci, ei) + γi

µ
v (ci,0)−

Z
I
v (c0) dλ

¶
+ β

X
s∈S

ps

·
γi

µ
v(ci,s)−

Z
I
v (cs) dλ

¶¸
,

for all (c, e) ∈ LS+1
+ × LS+1

+ . Here we are assuming that only consumption has a social
dimension, while effort (and so leisure) is only valued privately. That is, consumption is
more positional than effort/leisure, in the terminology of Hirsch (1976) and Frank (1985).
This was a classic assumption in Veblen’s analysis, and is justified by the lower degree of
observability of effort relative to consumption. For this reason, effort is not an argument of
the function γ.

Remark. In the social objective function Vi there are both outcomes that are socially valued
(i.e., consumption) and outcomes that are only privately valued (i.e., effort). Moreover, there
are two periods, 0 and 1, and so Vi is an intertemporal criterion. Though, strictly speaking,
these features are not covered by the basic representation (1), and so by (3), simple extensions
of these basic representations cover them (see Maccheroni et al, 2008, for details).

The equilibrium notion relevant for our social preferences is a Nash equilibrium for a
continuum of agents.

Definition 2 A feasible consumption/effort profile (c∗, e∗) ∈ LS+1 × LS+1 is a social equi-
librium for the storage economy if

Vi (c
∗, e∗) ≥ Vi

¡
ci, c

∗
−i, ei, e

∗
−i
¢
, ∀ (ci, ei) ∈ Bi, (9)

for λ-almost all i ∈ I.

This equilibrium notion requires a mutual compatibility of agents’ choices and is thus
qualitatively very different from that of Definition 1, a difference entirely due to the social
dimension of our preferences.

A key theoretical issue is the existence of social equilibria. To prove this result, which
ensures that there are no inconsistencies in our analysis, we need the following mild assump-
tion. Point (i) says that the effort and production capacities are limited, while the other
points are standard assumptions.

H.2 The following conditions are satisfied:
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(i) supi∈I (Fi,s (hi,s) + hi,s) <∞ for all s ∈ S0.

(ii) γi : R→ R is increasing and continuous, with γi (0) = 0, for all i ∈ I.

(iii) the real valued functions u(·) (x, y), h(·),s, F(·),s (z), and γ(·) (t) are Λ-measurable
on I for each fixed (x, y, z, t) ∈ R3+ ×R and s ∈ S0.

(iv) v : R+ → R is increasing and continuous.

We can now prove a general existence result for storage economies. The proof relies on
existence results of Schmeidler (1973) and Balder (1995).

Theorem 1 In a storage economy satisfying assumptions H.1 and H.2 there exists a social
equilibrium.

4 Consumerism: Overconsumption and Workaholism

The first phenomenon we consider is how overconsumption and workaholism can arise in a
social equilibrium. This is an often mentioned behavioral consequence of concerns for relative
consumption and here Proposition 1 shows how it emerges in our general analysis.6

We focus on a single period version of the storage economy. In fact, as pointed out in the
Introduction, trade-offs arise in more general intertemporal settings (i.e., consuming more
today leads to lower saving and, possibly, to lower future consumption). The tendency to
overconsumption and workaholism that here we identify in the single period setting might
be then offset by other forces.

To ease notation, we drop the subscripts 0; that is, ci and ei stand for ci,0 and ei,0,
respectively. The asocial problem of each agent i ∈ I is then given by

max
(ci,ei)∈Bi

ui (ci, ei) (10)

where Bi =
©
(ci, ei) ∈ R2+ : 0 ≤ ei ≤ hi, ci = Fi (ei)

ª
.

Here a feasible consumption/effort profile (c∗, e∗) ∈ L × L is an asocial equilibrium if
(c∗i , e

∗
i ) is a solution of problem (10) for λ-almost all i ∈ I.

H.3 For each agent i ∈ I:

(i) ui is twice continuously differentiable on R2++, ∂ui/∂x > 0, and the Hessian matrix
∇2ui is negative definite.

(ii) Fi is twice differentiable on R++, F 0i > 0 and F 00i < 0.

Lemma 1 If H.1, H.2, and H.3 hold, then there exists a (λ-a.e.) unique asocial equilibrium.
6Empirical evidence on this phenomenon can be found, for example, in Bowles and Park (2005) and

the references therein. Recent anecdotal evidence is reported in Rivlin (2007), who describes Silicon Valley
workaholic executives as “working class millionaires.”
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The social objective functions Vi take the form

Vi (c, e) = ui (ci, ei) + γi

µ
v (ci)−

Z
I
v (c) dλ

¶
,

and a feasible pair (c∗, e∗) ∈ L× L is a social equilibrium if (9) holds.

To state the result we need a condition and some notation. The special form that Bi has
in this case guarantees that a consumption/effort profile (c, e) ∈M×M is feasible if and only
if ei ∈ [0, hi] and ci = Fi (ei) for all i ∈ I. Under H.2-(i), feasible profiles are thus determined
by effort profiles that belong to the supnorm closed and convex set E = {e ∈ L : 0 ≤ e ≤ h}.
The value of the social objective function can be thus written as

Wi (e) = ui (Fi (ei) , ei) + γi

µ
v (Fi (ei))−

Z
I
v (Fι (eι)) dλ (ι)

¶
∀e ∈ E, i ∈ I. (11)

An equilibrium (c∗, e∗) is internal if e∗ ∈ intE and strongly Pareto inefficient if it is strongly
Pareto dominated, that is, there is ε > 0 and a feasible (c, e) ∈M ×M such that

Vi (c, e) ≥ Vi (c
∗, e∗) + ε

for λ-almost all i ∈ I.
We can now state the needed assumption.

H.4 The following conditions are satisfied:

(i) v is differentiable on R++ and v0 > 0.

(ii) γi is differentiable on R for all i ∈ I, and inf(i,t)∈I×R γ0i (t) > 0.

(iii) sup
|x|,|y|,|t|≤n, i∈I

|ui(x, y) + γi (t)| <∞ and sup
|x|≤n, i∈I

|v0(x) + F 0i (x)| <∞

for all n ∈ N.7
(iv) W : E → L is strictly differentiable on intE.8

Proposition 1 If H.1-H.4 hold, then internal social equilibria are strongly Pareto inefficient
and exhibit overconsumption and workaholism.9

Overconsumption and workaholism thus characterize equilibria in the single period ver-
sion of the storage economy. We studied here in detail the Pareto inefficiency of the equilibria
to stress the negative features of these equilibria.

This result confirms a well known intuition about social preferences (see, e.g., Dupor and
Liu, 2003, for a related point). The next section will show a genuine novel economic insight
of our analysis.

7This implies W (E) consists of bounded functions.
8See pages 30-32 of Clarke (1983) for the properties of strict differentiability.
9That is, λ-a.e., c∗i > ĉi and e∗i > êi, where (c∗, e∗) and (ĉ, ê) are, respectively, social and asocial consump-

tion and effort equilibrium pairs.
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5 Equilibrium Conformism and Anticonformism

We now study how conformism and anticonformism can characterize the consumption choices
of agents in social equilibria, depending, as anticipated in the Introduction, on whether either
envy or pride prevails among agents.

Since the rise of anticonformism is our main interest, in order to better focus on this
issue we consider a version of the storage economy in which agents are identical (so that the
social dimension of their preferences is the only possible cause of heterogeneous consumption
choices). We also assume that labor is supplied inelastically, say ei,s = ēs > 0 for all i ∈ I

and s ∈ S0. To ease notation, we set F0 (ē0) = x̄0 > 0 and Fs (ēs) = x̄s > 0, and we drop
effort as argument of the utility function u. This is the version of the two-period economy
that we discussed in the Introduction.

In this case, the asocial intertemporal problem of each identical agent i is

max
ci∈[0,x̄0]

U (ci) , (12)

where U (ci) = u (ci) + β
P

s∈S psu (x̄s +R (x̄0 − ci)) for all ci ∈ [0, x̄0]. A (first period)
consumption profile c ∈M is feasible if it belongs to the set C = {c ∈M : 0 ≤ c ≤ x̄0}, and
is an asocial equilibrium if ci solves problem (12) for λ-almost all i ∈ I. Clearly, all asocial
equilibria are symmetric (i.e., constant λ-almost everywhere) provided U is unimodal.

H.5 The following conditions are satisfied:

(i) u : R+ → R is continuous on R+, strictly concave, strictly increasing, and differ-
entiable on (0,+∞).

(ii) U 0+ (0) > 0 > U 0− (x̄0).

Lemma 2 If H.5 holds, then there exists a (λ-a.e.) unique asocial internal equilibrium.

Given γ : R→ R and v : R+→ R and c ∈ C, agent i’s social objective function becomes

Vi (c) = u (ci) + β
X
s∈S

psu(x̄s +R(x̄0 − ci) + γ

µ
v (ci)−

Z
I
v (cι) dλ (ι)

¶
+β

X
s∈S

ps

·
γ

µ
v (x̄s +R (x̄0 − ci))−

Z
I
v (x̄s +R (x̄0 − cι)) dλ (ι)

¶¸
.

Here a c∗ ∈ C is a social equilibrium if Vi (c∗) ≥ Vi
¡
ci, c

∗
−i
¢
for all ci ∈ [0, x̄0] and for λ-almost

all i ∈ I.
We will use the following assumption on γ and v.

H.6 The following conditions are satisfied:

(i) v : R+ → R is continuous, concave, and strictly increasing on R+.
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(ii) γ : R→ R is increasing and γ (0) = 0.

We can now state the main result of the paper. We consider two polar cases, one in
which agents exhibit pure envy, that is, γ (t) = 0 for all t ≥ 0, and one in which they exhibit
pure pride, that is, γ (t) = 0 for all t ≤ 0.10 We show that envy leads to conformism, that is,
all social equilibria are symmetric, while pride leads to diversity, that is, all social equilibria
are asymmetric. The intuition behind the theorem is easier to see if one considers a simple
case of a two-player game where only relative concerns matter. As the function γ changes
from the pure envy to the pure pride preference, the set of Nash equilibria is easily seen to
change from symmetric to the asymmetric one. In our continuum case, with both direct and
indirect effects, things are more complicated. In this regard, observe how the presence of a
kink D+γ (0) > 0 is key for the result.

Theorem 2 Suppose assumptions H.5 and H.6 hold. Then:

(i) All social equilibria are asymmetric provided γ (t) = 0 for all t ≤ 0 and D+γ (0) > 0.

(ii) All social equilibria are symmetric provided γ (t) = 0 for all t ≥ 0, and D+γ (t) > 0 for
all t < 0.

Moreover, in (ii) condition D−γ (0) = 0 implies that the asocial symmetric equilibrium
is the unique social equilibrium.

6 Conclusions

We have derived simple and general conclusions on the relationship between the degree of
inequality in an economy and the relative weight of envy and pride in the objective function
of the typical agent in the economy. As we remarked in the Introduction, the diversity in
consumption behavior caused by pride is the most remarkable part of the result because
agents are identical. By point (i) of Theorem 2, in all equilibria necessarily some agents
will choose to consume more today, that is, to have a dominant position today, while other
agents will choose the opposite, that is, they will save more today in order to consume more
tomorrow and have then a dominant position. This diversity in equilibrium behavior is
entirely due to the social dimension of preferences. In fact, in this storage economy there is
no trade and agents’ actions do not need to equilibrate in terms of resources, as remarked in
the Introduction.

In the storage economy there was no room for trade. A simple modification of the storage
economy that allows trade is to change the “saving technology” by assuming that agents no
longer can store the consumption good for future consumption. They can, however, borrow
and lend amounts of the consumption good, which is now also a real asset. Agents can
save by lending any amount of the consumption good that they do not consume in the first

10Though for simplicity we consider this case, the result holds more generally under a weaker condition
that only requires agents to be more proud than envious.
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period. As a result, in the (real) asset economy agents interact by trading in the real asset
market.

Though for brevity we do not study in detail this economy, it is worth observing that
here conformism/anticonformism correspond to no trade/trade. In fact, conformism means
that all social equilibria are symmetric, and, by the market clearing condition, it is easy to
see that in such equilibria there is no trade in the real asset market. In contrast, this market
operates in the asymmetric equilibria of the anticonformism case. As a result, in this market
economy, envy leads to autarky, pride to trade.

7 Appendix: Proofs and Related Material

7.1 Chain Rules for Dini Derivatives

Let a, b ∈ R with a < b. If f, g : (a, b)→ R, set

lim supx→a+ f (x) ≡ lim
δ→0+

sup
h∈(0,δ)

f (a+ h) = inf
δ>0

sup
h∈(0,δ)

f (a+ h) ,

lim inf x→a+ f (x) ≡ lim
δ→0+

inf
h∈(0,δ)

f (a+ h) = sup
δ>0

inf
h∈(0,δ)

f (a+ h) ,

lim supx→b− f (x) ≡ lim
δ→0+

sup
h∈(0,δ)

f (b− h) = inf
δ>0

sup
h∈(0,δ)

f (b− h) ,

lim inf x→b− f (x) ≡ lim
δ→0+

inf
h∈(0,δ)

f (b− h) = sup
δ>0

inf
h∈(0,δ)

f (b− h) .

These limits always exist in [−∞,+∞],11 with the conventions:

(−∞) ·
+ (+∞) = (+∞) ·

+ (−∞) = +∞ = (−∞) ·− (−∞) = (+∞) ·− (+∞) ,
(−∞) +

·
(+∞) = (+∞) +

·
(−∞) = −∞ = (−∞)−

·
(−∞) = (+∞)−

·
(+∞) .

It is easy to see that lim supx→a+ f (x) = sup { lim supn→∞ f (xn) : (a, b) 3 xn → a+},
and that there exists (a, b) 3 x̄n → a+ such that limn→∞ f (x̄n) = lim supx→a+ f (x).

12

Let f : [a, b]→ R, and set

D+f (c) ≡ lim supx→c+
f (x)− f (c)

x− c
and D+f (c) ≡ lim inf x→c+

f (x)− f (c)

x− c

for all c ∈ [a, b), and, analogously,

D−f (c) ≡ lim supx→c−
f (x)− f (c)

x− c
and D−f (c) ≡ lim inf x→c−

f (x)− f (c)

x− c

for all c ∈ (a, b]. It is easy to see that, if c ∈ [a, b) is a local maximum, then

D+f (c) ≤ D+f (c) ≤ 0,
11To be precise, we should write d > δ > 0, where d ∈ (0, b− a), rather than δ > 0. But, no confusion

should arise.
12With analogous results for the other limits.
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and, analogously, if c ∈ (a, b] is a local maximum, then

0 ≤ D−f (c) ≤ D−f (c) .

Next we provide a chain rule that will be useful in the sequel:

Proposition 2 Let v : [α, β]→ [a, b] be strictly increasing, onto, and concave. Then, given
any f : [a, b]→ R, we have:

(i) D+ (f ◦ v) (γ) = v0+ (γ)D+f (v (γ)) provided either γ ∈ (α, β) or γ = α and either
v0+ (α) 6= +∞ or D+ (f) (v (α)) > 0.

(ii) D+ (f ◦ v) (γ) = v0+ (γ)D+f (v (γ)) provided either γ ∈ (α, β) or γ = α and either
v0+ (α) 6= +∞ or D+f (v (α)) > 0.

(iii) D− (f ◦ v) (γ) = v0− (γ)D−f (v (γ)) provided either γ ∈ (α, β) or γ = β and v0− (β) 6= 0.

(iv) D− (f ◦ v) (γ) = v0− (γ)D−f (v (γ)) provided either γ ∈ (α, β) or γ = β and v0− (β) 6= 0.

7.2 Proofs and Related Analysis

For each agent i ∈ I, set

Wi (x, y, z) ≡
X
s∈S0

πsui(xs, ys) +
X
s∈S0

πs [γi (v(xs)− zs)] (13)

for all (x, y, z) ∈ RS+1
+ ×RS+1

+ ×RS+1, where π0 = 1 and πs = βps for all s ∈ S. Notice that
Vi (c, e) =

X
s∈S0

πsui(ci,s, ei,s) +
X
s∈S0

πsγi

µ
v(ci,s)−

Z
I
(v ◦ cs) dλ

¶
=Wi

Ã
ci, ei,

·Z
I
(v ◦ cs) dλ

¸
s∈S0

!

for all (c, e) ∈ LS+1
+ × LS+1

+ .

Lemma 3 If (c∗, e∗) is a social equilibrium, then (c∗, e∗) ∈ LS+1 × LS+1 and (c∗i , e∗i ) is
a solution of problem max(x,y)∈Bi

Wi (x, y, z) where zs ≡
R
I (v ◦ c∗s) dλ for all s ∈ S0, for

λ-almost all i ∈ I. The converse is true up to a λ-negligible variation of (c∗, e∗).13

The simple proof is omitted.

Lemma 4 If H.1 holds, then Bi is compact and nonempty for all i ∈ I.

13A λ-negligible variation of a function on a measure space (I,Λ, λ) is a function that coincides λ-almost
everywhere with the original one.
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Proof. Since Fi,s is increasing, then

Bi =

(
(x, y) ∈ RS+1

+ ×
SY
s=0

[0, hi,s] : Fi,0 (y0) ≥ x0, xs = Fi,s (ys) +R (Fi,0 (y0)− x0) ∀s ∈ S

)
that is

Bi =
³
[0, Fi,0 (hi,0)]×

QS
s=1 [0, Fi,s (hi,s) +RFi,0 (hi,0)]×

QS
s=0 [0, hi,s]

´
∩
n
(x, y) ∈ RS+1

+ ×RS+1
+ : Fi,0 (y0)− x0 ≥ 0

o
∩
n
(x, y) ∈ RS+1

+ ×RS+1
+ : Fi,1 (y1) +R (Fi,0 (y0)− x0)− x1 = 0

o
...

∩
n
(x, y) ∈ RS+1

+ ×RS+1
+ : Fi,S (yS) +R (Fi,0 (y0)− x0)− xS = 0

o

(14)

which is compact since the functions (x, y) 7→ Fi,0 (y0)−x0 and (x, y) 7→ Fi,s (ys)+R (Fi,0 (y0)− x0)

−xs are continuous for all s ∈ S. Moreover, for all y ∈QS
s=0 [0, hi,s],

³
(Fi,s (ys))

S
s=0 , (ys)

S
s=0

´
∈

Bi, which implies Bi 6= ∅. ¥

Proof of Theorem 1. For each agent i, consider the strategy set Bi ⊆ RS+1
+ × RS+1

+

and the payoff function Wi (x, y, z) =
P

s∈S0 πsui(xs, ys) +
P

s∈S0 πs [γi (v(xs)− zs)] for all
(x, y, z) ∈ RS+1

+ ×RS+1
+ ×RS+1, where π0 = 1 and πs = βps for all s ∈ S.

Since RS+1
+ ×RS+1

+ and RS+1 are Polish spaces, assumptions 2.1 and 2.2 of Balder (1995)
hold. Since Bi is nonempty and compact for all i ∈ I, assumption 2.3 of Balder (1995) holds.
For every i ∈ I, Wi : RS+1

+ × RS+1
+ × RS+1 → R is continuous, and so assumptions 2.4 and

2.6 of Balder (1995) hold.

Assumptions H.1.ii and H.2.iii guarantee that the real valued functions on I×
³
RS+1
+ ×RS+1

+

´
defined by (i, (x, y)) 7→ Fi,0 (y0)−x0 and by (i, (x, y)) 7→ Fi,s (ys)+R (Fi,0 (y0)− x0)−xs are
Caratheodory functions for all s ∈ S, hence they are Λ×B

³
RS+1
+ ×RS+1

+

´
-measurable and

the graphs of the correspondences i 7→
n
(x, y) ∈ RS+1

+ ×RS+1
+ : Fi,0 (y0)− x0 ≥ 0

o
and i 7→n

(x, y) ∈ RS+1
+ ×RS+1

+ : Fi,s (ys) +R (Fi,0 (y0)− x0)− xs = 0
o
are Λ × B

³
RS+1
+ ×RS+1

+

´
-

measurable.
Moreover, the functions i 7→ Fs (i, hs (i)) are Λ-measurable for all s ∈ S0, since i 7→

(i, hs (i)) is Λ-measurable on I and (i, t) 7→ Fi,s (t) is a Caratheodory function on I × R+.
Therefore the graph of the correspondence i 7→ [0, Fi,0 (hi,0)]×

QS
s=1 [0, Fi,s (hi,s) +RFi,0 (hi,0)]×QS

s=0 [0, hi,s] is Λ×B
³
RS+1
+ ×RS+1

+

´
-measurable.

By (14), for all i ∈ I, the graph of the correspondence B : i 7→ Bi is Λ×B
³
RS+1
+ ×RS+1

+

´
-

measurable and assumption 2.5 of Balder (1995) holds.
For every z ∈ RS+1, W(·) (·, z) : (i, (x, y)) 7→Wi ((x, y) , z) is a Caratheodory function on

I ×
³
RS+1
+ ×RS+1

+

´
. Hence, it is Λ × B (Rn)-measurable, and so assumption 2.7 of Balder

(1995) holds.
Now define gs : I ×RS+1

+ ×RS+1
+ → R by gs (i, (x, y)) = v (xs) for all s ∈ S0. Let s ∈ S0,

clearly gs (i, (·, ·)) is continuous on RS+1
+ × RS+1

+ for all i ∈ I and gs (·, (x, y)) is constant —
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hence Λ-measurable — on I for all (x, y) ∈ RS+1
+ × RS+1

+ . Therefore gs is a Caratheodory
function for all s ∈ S0, in particular, it is Λ× B (Rn)-measurable.

For all i ∈ I, inf(x,y)∈Bi
gs (i, (x, y)) = inf(x,y)∈Bi

v (xs) ≥ v (0), sup(x,y)∈Bi
gs (i, (x, y)) =

sup(x,y)∈Bi
v (xs) ≤ supxs∈[0,Fi,s(hi,s)+RFi,0(hi,0)] v (xs) = v (Fi,s (hi,s) +RFi,0 (hi,0)), and i 7→

v (Fi,s (hi,s) +RFi,0 (hi,0)) is Λ-measurable and bounded (by H.2.i). Therefore, assumption
3.4.2 of Balder (1995) holds.

Finally, nonatomicity of λ guarantees that assumption 3.4.1 of Balder (1995) holds too.
Therefore, by Theorem 3.4.1 of Balder (1995) there exists a λ-measurable almost every-

where selection (c∗, e∗) of the correspondence B : i 7→ Bi such that for λ-almost all i,
(c∗i , e

∗
i ) ∈ argmax (x,y)∈Bi

¡P
s∈S0 πsui(xs, ys) +

P
s∈S0 πs [γi (v(xs)−ms (c

∗, e∗))]
¢
where

ms (c
∗, e∗) =R

I gs (ι, (c
∗
ι , e

∗
ι )) dλ (ι) =

R
I v
¡
c∗ι,s
¢
dλ (ι). Since Bi is never empty, wlog, we can assume that

(c∗i , e
∗
i ) ∈ Bi for all i ∈ I. Then, by Corollary, we only have to check that (c∗, e∗) is bounded.

This is easily obtained, setting Ξ = maxs∈S0 (supi∈I (Fi,s (hi,s) + hi,s)) which is finite by
H.2.i, and observing that, for all i ∈ I, Bi ⊆ [0, Fi,0 (hi,0)]×

QS
s=1 [0, Fi,s (hi,s) +RFi,0 (hi,0)]×QS

s=0 [0, hi,s] ⊆ [0,Ξ]×
QS

s=1 [0, (1 +R)Ξ]×QS
s=0 [0,Ξ]. ¥

Proof of Lemma 1. For all i ∈ I, problem (10) is equivalent to max0≤y≤hi ui (Fi (y) , y).
Setting Ui (y) = ui (Fi (y) , y) for all y ∈ R+ it is easily checked that

U 0i (y) = ∇ui (Fi (y) , y)
"

F 0i (y)
1

#
= F 0i (y)

∂ui
∂x

(Fi (y) , y) +
∂ui
∂y

(Fi (y) , y)

and

U 00i (y) =

"
F 0i (y)
1

#|
∇2ui (Fi (y) , y)

"
F 0i (y)
1

#
+ F 00i (y)

∂ui
∂x

(Fi (y) , y) .

H.3 guarantees that U 00i < 0 on (0, hi), in particular, Ui is concave on [0, hi] and U 0i is strictly
decreasing on (0, hi).

If U 0i never vanishes, since derivatives have the Darboux property, then Ui is either strictly
increasing or decreasing on [0, hi] and the maximum is achieved at y∗i = hi or y∗i = 0 (and
nowhere else).

If U 0i vanishes at some y∗i in (0, hi), then y∗i is the unique maximum (U 0i is strictly
decreasing on (0, hi)).

We can conclude that if an equilibrium profile (c∗, e∗) exists, then it is, λ-a.e. unique
since it must satisfy c∗i = Fi (y

∗
i ) and e∗i = y∗i for λ-almost all i ∈ I. ¥

For any function f on R, set

D±f(t) = lim sup
h→0±

f(t+ h)− f(t)

h
and D±f(t) = lim inf

h→0±
f(t+ h)− f(t)

h
. (15)

Next proposition shows that H.1, H.2, and H.4-(iii) imply that W : E → L is well defined.
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Proposition 3 If H1-H2 hold, then W(·) (e) : i 7→ Wi (e) is Λ-measurable for all e ∈ E.
Moreover, W (e) ∈ L for all e ∈ E provided

sup
i∈I

Ã
sup

(x,y,z)∈[0,n]2×[−n,n]
|ui (x, y) + γi (z)|

!
<∞ ∀n ∈ N. (16)

Proof. Fix e ∈ E. The function i 7→ Fi (e (i)) is Λ-measurable, since i 7→ (i, e (i)) is Λ-
measurable from I to I ×R+ and (i, t) 7→ Fi (t) is a Caratheodory function from I ×R+ to
R+. H.2-(i) implies that the function i 7→ Fi (e (i)) is also bounded.

Set m∗ =
R
v (Fι (eι)) dλ (ι).

For every i ∈ I, the real valued function onR2+ defined by (x, y) 7→ ui(x, y)+γi (v(x)−m∗)
is continuous, and for every (x, y) ∈ R2+, the real valued function on I defined by i 7→
ui(x, y)+ γi (v(x)−m∗) is Λ-measurable. Hence, the real valued function on I×R2+ defined
by

(i, (x, y)) 7→ ui(x, y) + γi (v(x)−m∗) (17)

is Λ×B ¡R2+¢-measurable (being a Caratheodory function).
Conclude that i 7→ (i, Fi (ei) , ei) is Λ-measurable from I to I × R2+ (since i 7→ Fi (e (i))

is Λ-measurable), and its composition with (17) delivers measurability of W(·) (e).
Finally supi∈I |Wi (e)| = supi∈I |ui (Fi (ei) , ei) + γi (v(Fi (ei))−m∗)|. By H.2.i, it follows

that Ξ = supi∈I (Fi (hi) + hi) <∞ hence (0, 0) ≤ (Fi (ei) , ei) ≤ (Fi (hi) , hi) ≤ (Ξ,Ξ) for all
i ∈ I, moreover v (Fi (ei)) ∈ [v (0) , v (Ξ)] and v (Fi (ei)) −m∗ ∈ [v (0)−m∗, v (Ξ)−m∗] for
all i ∈ I, thus supi∈I |Wi (e)| ≤ supi∈I

³
sup(x,y,z)∈[0,Ξ]2×[v(0)−m∗,v(Ξ)−m∗] |ui (x, y) + γi (z)|

´
which is finite if (16) holds. ¥

Lemma 5 If H.1-H.3 and H.4.i hold, then all social equilibria (c∗, e∗) are such that c∗i ≥ ĉi
and e∗i ≥ êi λ-a.e. If (c∗, e∗) is internal and D+γi > 0, then, e

∗
i > êi and c∗i > ĉi λ-a.e..

Proof. Notice that, by Lemma 3, if a pair (c∗, e∗) ∈ L × L is a social equilibrium, then,
setting m∗ =

R
(v ◦ c∗) dλ, (c∗i , e∗i ) is a solution of problem

max
(x,y)∈Bi

ui(x, y) + γi (v(x)−m∗) . (18)

For all i ∈ I, problem (18) is equivalent to max0≤y≤hi ui (Fi (y) , y) + γi (v(Fi (y))−m∗).
If (c∗, e∗) is a social equilibrium and (ĉ, ê) is the asocial equilibrium, then for λ-almost

all i ∈ I,

e∗i ∈ arg max
0≤y≤hi

ui (Fi (y) , y) + γi (v(Fi (y))−m∗) ,

c∗i = F (e∗i ) , m∗ =
Z

v (Fι (e
∗
ι )) dλ (ι) ,

êi ∈ arg max
0≤y≤hi

ui (Fi (y) , y) , ĉi = F (êi) .

If e∗i = hi or êi = 0, then e∗i ≥ êi and c∗i = Fi (e
∗
i ) ≥ Fi (êi) = ĉi.

If e∗i = 0 and êi > 0, then:
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• either U 0i never vanishes in (0, hi),14 then Ui is strictly increasing (it cannot be strictly
decreasing, otherwise êi = 0), but also γi (v(Fi (·))−m∗) is increasing and the in-
clusion 0 ∈ argmax0≤y≤hi ui (Fi (y) , y) + γi (v(Fi (y))−m∗) = argmax0≤y≤hi Ui (y) +

γi (v(Fi (y))−m∗) is absurd,

• or U 0i vanishes at êi ∈ (0, hi), then U 0i — being strictly decreasing — must be positive in
a right neighborhood of 0, again ui (Fi (·) , ·) + γi (v(Fi (·))−m∗) is strictly increasing
in a right neighborhood of 0, which is absurd.

It follows that, if e∗i = 0, then êi = 0, thus e∗i ≥ êi and c∗i = Fi (e
∗
i ) ≥ Fi (êi) = ĉi.

Finally, if e∗i ∈ (0, hi), then
D+ [ui (Fi (·) , ·) + γi (v(Fi (·))−m∗)] (e∗i ) ≤ 0 (19)

that is U 0i (e
∗
i ) + F 0i (e

∗
i ) v

0 (Fi (e∗i ))D
+γi(v(Fi (e

∗
i ))−m∗) ≤ 0 and

U 0i (e
∗
i ) ≤ −F 0i (e∗i ) v0 (Fi (e∗i ))D+γi(v(Fi (e

∗
i ))−m∗). (20)

By monotonicity, D+γi ≥ 0, therefore U 0i (e∗i ) ≤ 0, which implies e∗i ≥ êi because from the
proof of Lemma 1 we know that Ui is concave on [0, hi] with a unique maximum. Again
c∗i = Fi (e

∗
i ) ≥ Fi (êi) = ĉi.

Suppose that (c∗, e∗) is an internal social equilibrium and D+γi > 0. Then (20) delivers
U 0i (e

∗
i ) < 0, which implies e∗i > êi because from the proof of Lemma 1 we know that Ui is

concave on [0, hi] with a unique maximum. It follows that c∗i = Fi (e
∗
i ) > Fi (êi) = ĉi. ¥

Proposition 4 If assumptions H.1-H.4 hold, then all internal social equilibrium profiles
(e∗, c∗) are strongly inefficient.

Proof. Suppose, per contra, that (c∗, e∗) ∈ L×L is a social equilibrium with e∗ ∈ int (E) and
(c∗, e∗) is not strongly inefficient. Let f : L → R be defined by f (ξ) = essinfλ [ξ −W (e∗)]
for all ξ ∈ L. Then, f (W (e∗)) = 0 and f (W (e)) ≤ 0 for all e ∈ E. Moreover, f is a concave
niveloid.15

Next we show that there is no concave niveloid f : L→ R such that e∗ solves the problem
maxe∈E (f ◦W ) (e), which is absurd.

First observe that Gateaux differentiability of W guarantees that for all e ∈ intE there
exists a linear and continuous operator ∇W (e) : L→ L such that

lim
t→0

W (e+ tk)−W (e)

t
= ∇W (e) (k) ∈ L (21)

for all k ∈ L. Arbitrarily choose e ∈ intE and k ∈ L, (21) means that

lim
t→0

°°°°W (e+ tk)−W (e)

t
−∇W (e) (k)

°°°°
sup

= 0.

14Ui is defined in the proof of Lemma 1.
15A functional f :M → R is a niveloid (see Maccheroni, Marinacci, and Rustichini, 2006) if, for all ψ and

ϕ in M and c ∈ R, we have: (i) ϕ ≥ ψ implies f (ϕ) ≥ f (ψ); (ii) f(ϕ+ c) = f(ϕ) + c.
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A fortiori, for all i ∈ I, Wi(e+tk)−Wi(e)
t →∇W (e) (k)i as t→ 0, but for all i ∈ I

Wi (e+ tk)−Wi (e)

t
=

ui (Fi (ei + tki) , ei + tki) + γi
¡
v(Fi (ei + tki))−

R
v (Fι (eι + tkι)) dλ (ι)

¢
t

+

− ui (Fi (ei) , ei) + γi
¡
v(Fi (ei))−

R
v (Fι (eι)) dλ (ι)

¢
t

.

It is relatively easy to show that, this implies

∇W (e) (k)i = kiU
0
i (ei) + γ0i

¡
v(Fi (ei))−

R
v (Fι (eι)) dλ (ι)

¢×
× ¡v0(Fi (ei))F 0i (ei) ki − R v0 (Fι (eι))F 0ι (eι) kιdλ (ι)¢ (22)

for λ-almost all i ∈ I.
If f : L → R is concave niveloid, then it is Lipschitz and its superdifferential at each

point consists of probability charges that are absolutely continuous with respect to λ.
By a chain rule for the Clarke differential (see Theorem 2.3.10 in Clarke, 1983), we have

that f ◦W is Lipschitz near e and ∂ (f ◦W ) (e) ⊆ ∂f (W (e)) ◦ ∇W (e). That is, for all
µ ∈ ∂ (f ◦W ) (e) there is ν ∈ ∂f (W (e)) such that µ = ν ◦∇W (e). Therefore, for all k ∈ L

µ (k) = ν (∇W (e) (k)) =
I

∇W (e) (k) dν

=
I

kiU
0
i (ei) + γ0i v(Fi (ei))− v (Fι (eι)) dλ (ι) v0(Fi (ei))F

0
i (ei) ki − v0 (Fι (eι))F

0
ι (eι) kιdλ (ι) dν (i) .

If, as assumed per contra, e∗ is a local maximum of f ◦W on E, then ∂ (f ◦W ) (e∗) 3 0,
and there exists a probability charge ν ∈ ∂f (W (e∗)) such that ν ◦∇W (e∗) = 0, that is, for
all k ∈ L

I

kiU
0
i (e

∗
i ) + γ0i v(Fi (e

∗
i ))− v (Fι (e

∗
ι )) dλ (ι) v0(Fi (e

∗
i ))F

0
i (e

∗
i ) ki − v0 (Fι (e

∗
ι ))F

0
ι (e

∗
ι ) kιdλ (ι) dν (i) = 0

(23)

But, for all i ∈ I, problem (18) is equivalent to

max
0≤y≤hi

ui (Fi (y) , y) + γi (v(Fi (y))−m∗) . (24)

Therefore, if (c∗, e∗) is an internal social equilibrium,

• c∗i = Fi (e
∗
i ) for all i ∈ I.

• e∗i is a solution of problem (24) for λ-almost all i ∈ I.

• m∗ =
R
v (Fι (e

∗
ι )) dλ (ι).

In particular, first order conditions implied by the second point, see (19) and recall that
now γi is differentiable, amount to U 0i (e

∗
i ) + γ0i (v(Fi (e

∗
i ))−m∗) v0(Fi (e∗i ))F

0
i (e

∗
i ) = 0 for

λ-almost all i ∈ I. Which plugged into (23) delivers,Z
v0 (Fι (e∗ι ))F

0
ι (e

∗
ι ) kιdλ (ι)

Z
I
−γ0i (v(Fi (e∗i ))−m∗) dν (i)
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= 0 for all k ∈ L.
Since v0 and F 0ι are positive and λ is σ-additive, then

R
v0 (Fι (e∗ι ))F 0ι (e∗ι ) kιdλ (ι) > 0 for

some k ∈ L (e.g. kι = 1 for all ι ∈ I) and it must be the case that
R
I −γ0i (v(Fi (e∗i ))−m∗) dν (i) =

0, which is absurd since γ0i is bounded away from 0. ¥

Proof of Proposition 1. It follows from Lemma 5 and Proposition 4. ¥

Proof of Lemma 2. Clearly U is continuous and strictly concave on [0, x̄0]. Therefore
argmaxx∈[0,x̄0]U (x) is a singleton. The conditions on the directional derivatives provide
internality. ¥

Proof of Theorem 2. Set

W (x) = U (x) + γ (v (x)−m∗0) + β
X
s∈S

ps [γ (v(x̄s +R(x̄0 − x))−m∗s)]

for all x ∈ [0, x̄0], and ys = x̄s +R(x̄0 − x) for all s ∈ S. For all x∗ ∈ [0, x̄0),

D+W (x∗) ≤ lim suph→0+
U (x∗ + h)− U (x∗)

h

+̇ lim suph→0+
γ (v (x∗ + h)−m∗0)− γ (v (x∗)−m∗0)

h

+̇β
X
s∈S

ps lim suph→0+
γ (v(y∗s −Rh)−m∗s)− γ (v (y∗s)−m∗s)

h

and

D+W (x∗) ≥ lim inf h→0+
U (x∗ + h)− U (x∗)

h

+ lim inf h→0+
γ (v (x∗ + h)−m∗0)− γ (v (x∗)−m∗0)

h

+ β
X
s∈S

ps lim inf h→0+
γ (v(y∗s −Rh)−m∗s)− γ (v (y∗s)−m∗s)

h
.

Analogously, for all x∗ ∈ (0, x̄0],

D−W (x∗) ≤ lim suph→0−
U (x∗ + h)− U (x∗)

h

+̇ lim suph→0−
γ (v (x∗ + h)−m∗0)− γ (v (x∗)−m∗0)

h

+̇β
X
s∈S

ps lim suph→0−
γ (v(y∗s −Rh)−m∗s)− γ (v (y∗s)−m∗s)

h
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and

D−W (x∗) ≥ lim inf h→0−
U (x∗ + h)− U (x∗)

h

+ lim inf h→0−
γ (v (x∗ + h)−m∗0)− γ (v (x∗)−m∗0)

h

+ β
X
s∈S

ps lim inf h→0−
γ (v(y∗s −Rh)−m∗s)− γ (v (y∗s)−m∗s)

h
.

(i) Consider any symmetric consumption profile, where all agents consume the same
amount x∗ ∈ [0, x̄0] in the first period (i.e. c∗i = x∗ for all i ∈ I), and y∗s = x̄s +R(x̄0 − x∗)
in each state in the second period. Then

m∗0 (c
∗) =

Z
I
v (x∗) dλ (ι) = v (x∗) and m∗s (c

∗) =
Z
I
v (x̄s +R (x̄0 − x∗)) dλ (ι) = v(y∗s) ∀s ∈ S.

For x∗ ∈ [0, x̄0)

D+W (x∗) ≥ U 0+ (x
∗) + lim inf h→0+

γ (v (x∗ + h)− v (x∗))− γ (0)

h

+ β
X
s∈S

ps sup
δ>0

inf
h∈(0,δ)

γ (v(y∗s −Rh))− v (y∗s))− γ (v (y∗s)− v (y∗s))
h

= U 0+ (x
∗) + lim inf h→0+

γ (v (x∗ + h)− v (x∗))− γ (0)

h

since γ|(−∞,0] ≡ 0. Moreover v0 : R+ → R defined by v0 (h) = v (x∗ + h) − v (x∗) for all
h ∈ [0,+∞) is concave, strictly increasing and continuous with v0 (0) = 0 and (v0)

0
+ (0) =

v0+ (x∗), thus D+W (x∗) ≥ U 0+ (x∗) +D+ (γ ◦ v0) (0). The assumption D+γ (0) > 0 allows to
apply a chain rule for Dini derivatives so that D+W (x∗) ≥ U 0+ (x∗)+(v0)

0
+ (0)D+γ (v0 (0)) =

U 0+ (x∗) + v0+ (x∗)D+γ (0). Analogously, for x∗ ∈ (0, x̄0]

D−W (x∗) ≤ U 0− (x
∗) −̇β

X
s∈S

ps lim inf h→0+
γ (v(y∗s +Rh)− v (y∗s))− γ (0)

h
.

since γ|(−∞,0] ≡ 0. Moreover, for all s ∈ S, vs : R+ → R defined by vs (h) = v (y∗s +Rh) −
v (y∗s) for all h ∈ [0,+∞) is concave, strictly increasing and continuous with vs (0) = 0 and
(vs)

0
+ (0) = Rv0+ (y∗s), thus D−W (x∗) ≤ U 0− (x∗) −̇β

P
s∈S psD+ (γ ◦ vs) (0). The assumption

D+γ (0) > 0 allows to apply a suitable chain rule so that

D−W (x∗) ≤ U 0− (x
∗) −̇βR

X
s∈S

psv
0
+ (y

∗
s)D+γ (0) .

Summing up:

D+W (x∗) ≥ U 0+ (x
∗) + v0+ (x

∗)D+γ (0) ∀x∗ ∈ [0, x̄0) and
D−W (x∗) ≤ U 0− (x

∗) −̇βR
X
s∈S

psv
0
+ (y

∗
s)D+γ (0) ∀x∗ ∈ (0, x̄0] .
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• If x∗ ∈ (0, x̄0), then, since u is differentiable on (0,+∞), U is differentiable at x∗ and
U 0+ (x∗) = U 0− (x∗) = U 0 (x∗). Thus

— either U 0 (x∗) ≥ 0, then D+W (x∗) > 0 and x∗ is not a maximizer.
— either U 0 (x∗) < 0, then D−W (x∗) < 0 and x∗ is not a maximizer.

• If x∗ = 0 then U 0+ (0) > 0 and D+W (x∗) > 0, thus x∗ is not a maximizer.

• If x∗ = x̄0 then U 0− (x̄0) < 0 and D−W (x∗) < 0, thus x∗ is not a maximizer.

(ii) Notice that if c∗ ∈ L is a social equilibrium, then, setting m∗0 =
R
I v (cι) dλ (ι) and

m∗s =
R
I v(x̄s +R(x̄0 − cι))dλ (ι) for all s ∈ S, c∗i is a solution of problem

max
x∈[0,x̄0]

U (x) + γ (v (x)−m∗0) + β
X
s∈S

ps [γ (v (x̄s +R(x̄0 − x))−m∗s)] (25)

for λ-almost all i ∈ I.
Let c∗ : I → R be an asymmetric social equilibrium and I∗ ∈ Λ be such that λ (I∗) = 1

and c∗i is a solution of problem (25) for all i ∈ I∗.
There is at least one agent, call him i0 ∈ I∗, such that v

¡
c∗i0
¢
< m∗0. For, assume per

contra v (c∗i ) ≥ m∗0 for all i ∈ I∗. Then,
¡
v ◦ c∗ − RI v (c∗ι ) dλ (ι)¢ ≥ 0 λ-a.e. andZ

I

µ
v (c∗i )−

Z
I
v (c∗ι ) dλ (ι)

¶
dλ (i) = 0.

Therefore, v ◦ c∗ = R
I v (c

∗
ι ) dλ (ι) λ-a.e. and c∗ = v−1

¡R
I v (c

∗
ι ) dλ (ι)

¢
λ-a.e., which is

absurd since c∗ is asymmetric. Analogously, for all s ∈ S there exists is ∈ I∗ such that
v(x̄s +R(x̄0 − c∗is) < m∗s for all s ∈ S.

Suppose agent i1 is such that c∗i1 = maxs∈S c
∗
is
. Then, v(x̄s+R(x̄0−c∗i1)) ≤ v(x̄s+R(x̄0−

c∗is)) < m∗s for all s ∈ S. Since v is concave, by the Jensen inequality,

v
¡
c∗i0
¢
< m∗0 < v

¡
c∗i1
¢
and v(x̄s +R(x̄0 − c∗i1)) < m∗s < v(x̄s +R(x̄0 − c∗i0)) ∀s ∈ S.

In particular 0 ≤ c∗i0 < c∗i1 ≤ x̄0. Since v is continuous and increasing, there is ε > 0 small
enough so that

0 ≤ c∗i0 < c∗i0 + ε < c∗i1 − ε < c∗i1 ≤ x̄0, (26)

v (x) < m∗0 and m∗s < v(x̄s +R(x̄0 − x)) ∀s ∈ S,∀x ∈ £0, c∗i0 + ε
¢
, (27)

m∗0 < v (x) and v(x̄s +R(x̄0 − x)) < m∗s ∀s ∈ S,∀x ∈ ¡c∗i1 − ε, x̄0
¤
. (28)

Since c∗i0 is a maximizer for W on [0, x̄0], the first order conditions guarantee that

0 ≥ D+W
¡
c∗i0
¢ ≥ lim inf h→0+ U

¡
c∗i0 + h

¢− U
¡
c∗i0
¢

h

+ lim inf h→0+
γ
¡
v
¡
c∗i0 + h

¢−m∗0
¢− γ

¡
v
¡
c∗i0
¢−m∗0

¢
h

+ β
X
s∈S

ps lim inf h→0+
γ
¡
v
¡
x̄s +R(x̄0 − c∗i0)−Rh

¢−m∗s
¢− γ

¡
v
¡
x̄s +R(x̄0 − c∗i0)

¢−m∗s
¢

h

= U 0+
¡
c∗i0
¢
+ lim inf h→0+

γ
¡
v
¡
c∗i0 + h

¢−m∗0
¢− γ

¡
v
¡
c∗i0
¢−m∗0

¢
h

.
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In fact, the third summand is null because of γ|[0,+∞) ≡ 0 and (27). Consider the function
v0 : R+ → R defined by v0 (h) = v

¡
c∗i0 + h

¢ − m∗0 for all h ∈ [0,+∞), v0 is concave,
strictly increasing and continuous with v0 (0) = v

¡
c∗i0
¢ −m∗0 and (v0)

0
+ (0) = v0+

¡
c∗i0
¢
. The

condition D+γ|(−∞,0) > 0, equation (27), and a suitable chain rule deliver 0 ≥ D+W
¡
c∗i0
¢ ≥

U 0+
¡
c∗i0
¢
+ lim inf h→0+

γ(v0(h))−γ(v0(0))
h = U 0+

¡
c∗i0
¢
+ v0+

¡
c∗i0
¢
D+γ

¡
v
¡
c∗i0
¢−m∗0

¢
, that is,

U 0+
¡
c∗i0
¢ ≤ −v0+ ¡c∗i0¢D+γ

¡
v
¡
c∗i0
¢−m∗0

¢
< 0. (29)

Analogously, the first order conditions at c∗i1 guarantee that

0 ≤ D−W
¡
c∗i1
¢ ≤

≤ lim suph→0−
U
¡
c∗i1 + h

¢− U
¡
c∗i1
¢

h

+̇ lim suph→0−
γ
¡
v
¡
c∗i1 + h

¢−m∗0
¢− γ

¡
v
¡
c∗i1
¢−m∗0

¢
h

+̇β
X
s∈S

ps lim suph→0−
γ
¡
v
¡¡
x̄s +R

¡
x̄0 − c∗i1

¢¢−Rh
¢−m∗s

¢− γ
¡
v
¡
x̄s +R

¡
x̄0 − c∗i1

¢¢−m∗s
¢

h
=

U 0−
¡
c∗i1
¢
+̇β

X
s∈S

ps inf
δ>0

sup
h∈(0,δ)

γ
¡
v
¡¡
x̄s +R

¡
x̄0 − c∗i1

¢¢
+Rh

¢−m∗s
¢− γ

¡
v
¡
x̄s +R

¡
x̄0 − c∗i1

¢¢−m∗s
¢

−h

since the second summand is null because of γ|[0,+∞) ≡ 0 and (28). Consider, for all s ∈ S

the function vs : R+ → R defined by vs (h) = v
¡¡
x̄s +R

¡
x̄0 − c∗i1

¢¢
+Rh

¢−m∗s for all h ∈
[0,+∞) is concave, strictly increasing and continuous with vs (0) = v

¡
x̄s +R

¡
x̄0 − c∗i1

¢¢−m∗s
and (vs)

0
+ (0) = Rv0+

¡
x̄s +R

¡
x̄0 − c∗i1

¢¢
. Equation (28) implies vs (0) = v(x̄s+R(x̄0− c∗i1)−

m∗s < 0, then D+γ|(−∞,0) > 0 and a suitable chain rule deliver

0 ≤ D−W
¡
c∗i1
¢ ≤ U 0−

¡
c∗i1
¢
+̇β

X
s∈S

ps inf
δ>0

sup
h∈(0,δ)

γ (vs (h))− γ (vs (0))

−h
= U 0−

¡
c∗i1
¢ −̇βX

s∈S
ps (vs)

0
+ (0)D+γ (vs (0))

= U 0−
¡
c∗i1
¢ −̇βRX

s∈S
psv

0
+

¡
x̄s +R

¡
x̄0 − c∗i1

¢¢
D+γ (vs (0)) .

That is,
U 0−
¡
c∗i1
¢ ≥ βR

X
s∈S

psv
0
+

¡
x̄s +R

¡
x̄0 − c∗i1

¢¢
D+γ (vs (0)) > 0. (30)

Denoting by ĉ the unique (internal) asocial equilibrium it follows, from the differentia-
bility of u on (0,+∞), that U 0+ (ĉ) = U 0− (ĉ) = U 0 (ĉ) = 0. Thus, since U 0+ and U 0− are
decreasing, from (29) and (30) it follows that

U 0+
¡
c∗i0
¢
< 0 = U 0+ (ĉ)⇒ c∗i0 > ĉ,

U 0−
¡
c∗i1
¢
> 0 = U 0− (ĉ)⇒ c∗i1 < ĉ,
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and c∗i0 > c∗i1 , which contradicts (26). Therefore, c
∗ is not a social equilibrium.

Finally suppose D−γ (0) = 0 and c∗ : I → R is a symmetric equilibrium with c∗i = x∗ for
λ-almost all i ∈ I. Then

0 ≥ D+W (x∗) ≥ U 0+ (x
∗) + sup

δ>0
inf

h∈(0,δ)
γ (v (x∗ + h)− v (x∗))− γ (0)

h

+ β
X
s∈S

ps sup
δ>0

inf
h∈(0,δ)

γ (v(y∗s −Rh))− v (y∗s))− γ (0)

h

if x∗ ∈ [0, x̄0), and

0 ≤ D−W (x∗) ≤ U 0− (x
∗) +̇ inf

δ>0
sup
h(0,δ)

γ (v (x∗ − h)− v (x∗))− γ (0)

−h

+̇β
X
s∈S

ps inf
δ>0

sup
h(0,δ)

γ (v(y∗s +Rh))− v (y∗s))− γ (0)

−h

if x∗ ∈ (0, x̄0]. Then, γ|[0,+∞) ≡ 0 delivers

0 ≥ D+W (x∗) ≥ U 0+ (x
∗) + β

X
s∈S

ps sup
δ>0

inf
h∈(0,δ)

γ (v(y∗s −Rh))− v (y∗s))− γ (0)

h

= U 0+ (x
∗)− β

X
s∈S

ps lim suph→0−
γ (v(y∗s +Rh))− v (y∗s))− γ (0)

h

if x∗ ∈ [0, x̄0), and

0 ≤ D−W (x∗) ≤ U 0− (x
∗) +̇ inf

δ>0
sup
h(0,δ)

γ (v (x∗ − h)− v (x∗))− γ (0)

−h

= U 0− (x
∗) +̇ lim suph→0−

γ (v (x∗ + h)− v (x∗))− γ (0)

h

if x∗ ∈ (0, x̄0]. By a suitable chain rule, 0 ≥ D+W (x∗) ≥ U 0+ (x∗)−βR
P

s∈S psv
0− (y∗s)D−γ (0),

that is, 0 ≥ D+W (x∗) ≥ U 0+ (x∗) if x∗ ∈ [0, x̄0), and 0 ≤ D−W (x∗) ≤ U 0− (x∗) +̇v0− (x∗)D−γ (0),
that is, 0 ≤ D−W (x∗) ≤ U 0− (x∗) if x∗ ∈ (0, x̄0]. Therefore x∗ is a maximizer for U . ¥
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