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Abstract. We study competition among market designers who create
new trading platforms, when boundedly rational traders learn to select among
them. We ask whether “Walrasian” platforms, leading to market-clearing trad-
ing outcomes, will dominate the market in the long run. If several market
designers compete, we find that traders learn to select non-market clearing
platforms with prices systematically above the market-clearing level, provided
at least one such platform is introduced by a market designer. This in turn leads
market designers to introduce non-market clearing platforms. Hence platform
competition induces non-competitive market outcomes.
Keywords: Market Institutions, Evolution of Trading Platforms, Learning,

Asymmetric Rationality.
JEL Classification: C72, D4, D83, L1.

Markets are not only characterized by demand and supply, but also by the rules
that govern the trading process. The “institutional” framework determines the set
of market participants, their available options, and the matching and information
structure of the market. In reality we observe a huge variety of different market
frameworks even for trading the very same good. Real estate, for example, is traded
at auctions as well as by personal bargaining. There is also a large amount of evidence
that these characteristics are crucial for the resulting trading outcome and for the
realized prices. Since the impact of the trading rules on market outcomes is difficult
to investigate with time-series of real-life market data (for a more detailed discussion
see Friedman 1993), empirical evidence mainly relies on laboratory experiments (for
an overview of the evidence see e.g. Plott 1982; Holt 1995; in the context of financial
markets see also Friedman 1993). While double auctions typically tend to generate
market clearing prices and quantities, posted-offer markets establish prices that tend
to be above the market clearing level, whereas the prices on posted-bid markets seem
to be below the Walrasian level (see e.g. Plott and Smith 1978). As a consequence,
some gains of trade are not realized on these trading platforms, and inefficiencies
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occur due to the design of the trading platform. In a similar way, Dutch or first—price
auctions are notorious for inducing overbidding and creating inefficient allocations
compared to second-price formats (see e.g. Kagel 1995). In a field study, Roth
and Ockenfels (2002) show that fixed ending—rules (“hard—close”) in online auctions
lead to late bidding (“sniping”); see also Ockenfels and Roth (2006). A laboratory
experiment by Ariely et al. (2005) confirmed this finding, and also showed that fixed
ending—rules lead to lower revenues for the seller (and less efficient allocations) than
automatic extensions of the auction (“soft ending”). All these studies suggest that
socially desirable features of market outcomes such as unbiased (market—clearing)
prices and efficient allocations are rather sensitive to details of the respective market
institution. Moreover, there seems to be a trade-off between efficiency and a price—
bias in favour of one of the market-sides.
A remarkable example for the coexistence of a variety of trading institutions is pro-

vided by Business to Business (B2B) trading platforms (for a comprehensive analysis
see e.g. Lucking-Reiley and Spulber 2001). The last decades have seen a proliferation
of B2B platforms, and despite the burst of the internet bubble there were more than
1000 B2B marketplaces active in Europe in 2003 (see European Commission 2003).
While most of the public and scientific attention is devoted to e-marketplaces target-
ing consumers (like e-bay or Yahoo), about 95% of the e-commerce is actually B2B
(see UNCTAD 2002). In 2004 B2B had an estimated volume of $1 trillion (see The
Economist 2004). In contrast with Business to Consumers or Consumer to Consumer
platforms, large quantities of relatively standardized products are traded at B2B ex-
changes. On these platforms agents seem to act either as buyers or as sellers, but not
as both (see European Commission 2003). B2B e-commerce is basically organized in
three different ways. The predominant modus in the early days of e-commerce were
platforms opened by buyers or sellers (or respective umbrella organizations). An ex-
ample is MetalSite, a platform organized by steel producers that suspended operations
in 2001. Currently, B2B e-commerce is typically organized either as e-procurement1

(where sellers use standardized software and exchange opportunities offered by plat-
forms such as Ariba or CommerceOne to design and allocate procurement contracts)
or via institutions operated by a third party (this holds e.g. for CheMatch - a trade
platform for chemical products - or for a large part of the product portfolio offered at
EnronOnline - a multi—commodity exchange run by Enron until 2002). Of all firms
active on B2B platforms, about one third operates on such platforms run by third
parties (see European Commission 2003). Both e-procurement software and market
designs of third parties show a variety of institutional arrangements. EnronOnline,
for instance, was organized as a posted offer market while competing platforms such
as AltraEnergy (or on the chemical sector CheMatch) are exchange platforms that
work like double auctions. The software solutions offered by Ariba and CommerceOne
include various institutional arrangements such as Dutch auctions or proxy—bidding

1For a recent discussion of the adoption of e-procurement in B2B and an overview of market
designs see e.g. Davila et al. (2003).
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(with hard and soft ending rules).2 As a bottom line, in B2B e-commerce there seems
to be a co-existence of platform designs with different propensities to generate market
clearing outcomes (see the experimental literature cited above).
Given the variety of different market institutions, and the variety of their efficiency

properties, one wonders which type(s) of trading institutions will be observed in
the long run. In particular, our paper investigates whether institutions promoting
efficient, market clearing outcomes will dominate less efficient trading platforms in
the long run. To answer this question, we are led to investigate the evolution of
market institutions. It is useful to distinguish between two aspects of this evolution,
namely the selection between existing institutions by the traders, and the emergence
of new institutions. New market institutions can either be introduced on purpose by
a market designer, or be the (unintended) by-product of the actions of the traders. In
what follows we will focus on market platforms introduced on purpose.3 If a trading
platform is introduced by a market designer who demands user fees, the design of a
new platform by the designer and the selection among existing ones by the traders
are closely interlinked. The market designer will try to introduce a new platform with
characteristics that attract many traders. This attractiveness in turn determines the
long run survival of the platform. In this paper we analyze this interplay between the
creation of new and the selection among existing trading platforms, and we investigate
the characteristics of the resulting platforms with respect to their ability to achieve
market clearing outcomes.
Trading platforms are created by profit-maximizing, risk-neutral market designers.

The designers compete with each other through platform designs. Each designer
chooses a trading fee that he demands from the traders for the use of his platform.
To capture the trade—off between efficiency and a price bias for one market side that
has been observed in laboratory studies (see above), we allow designers to choose
platform designs with systematic price biases, above or below the market clearing
price. Hence, through the trading fee each designer decides upon his share of the
surplus created through trade at his platform. But he can also favour one type of
trader with the introduction of a price bias. Any bias reduces the surplus generated at
the platform (and thereby ceteris paribus the revenue for the designer), but may also
make it more attractive for the favoured type of trader, which in turn may enhance
the platform’s survival probability.
To analyze this trade-off, we model competition between two market designers and

compare the results of this setting with the benchmark case of a monopolistic market
designer. After the platforms have been designed, traders decide which platform they
want to be active on (for the monopolistic case, there is of course no real choice

2Interestingly, CommerceOne applied for Chapter 11 bankruptcy in 2004 and was bought out
later. In general, entry and exit are still a frequent phenomenon in the market for B2B platforms,
suggesting that this industry is still at a relatively early stage of development. However, business
analysts identify a development from the creation of new platforms (the common business model in
the 1990’s) to buy-outs, which indicates some degree of maturity (see Key 2002).

3For an analysis of markets as a by-product of traders’ actions, see Kirchsteiger et al. (2005).
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- traders just trade at the only existing platform). The role of a trader (buyer or
seller) is exogenously given. Sellers are assumed to be firms with a constant returns
to scale production technology.4 Buyers are characterized by their demand functions,
and might be either consumers or other firms. For given platform characteristics,
the selection by traders gives rise to a coordination game. If each trader opts for
a particular platform no trader has an incentive to deviate from this platform -
independently of the design alternatives offered by the competing platform. If traders
were fully rational, we would have established a standard two stage game (Stage 1:
Market Design; Stage 2: Traders’ platform choice) with (network) externalities in the
Stage 2-subgame. Such a game typically exhibits a multiplicity of (subgame perfect)
equilibria. As in the battle of sexes, coordination of all traders on each platform
is clearly an equilibrium of the 2nd stage, next to a mixed strategy equilibrium
where traders are indifferent between platforms. To select among these equilibria,
we drop the assumption of fully rational traders and instead assume that traders are
boundedly rational but may learn to coordinate on a particular platform. Following
the game-theoretic learning literature (see Young 1993; Kandori et al. 1993; Ellison
2000), we use a Markovian model to analyze the platform choice of the traders. We
assume that the traders’ behaviour depends on the market outcomes generated by
the different platforms and thereby on the characteristics of all feasible platforms. We
are interested in the long term properties of this learning process, i.e. in its (limit)
invariant distribution. This invariant distribution in turn determines the payoffs of
the market designers. Hence, we establish a link between designer revenues and the
characteristics of all feasible platforms.
For the case of competing platforms we find that—in the long run—traders will al-

ways coordinate on a platform with prices above the market clearing level, provided
that such a platform has been introduced by at least one designer. This forces design-
ers to introduce platforms that are not market clearing, but that have a price bias
in favour of the sellers. On the other hand we find that a monopolistic designer will
always introduce a market clearing platform. Therefore competition at the designers’
level turns out to be detrimental for a competitive outcome at the traders’ level. We
regard this result as paradoxical.
The present paper is related to three strands of the literature. First, since we in-

vestigate the role of trading platforms with exogenously given buyers and sellers, our
paper is to some extent related to the two-sided markets literature (see Rochet and
Tirole 2006 for an overview). This literature is based on the assumption of network
externalities. It analyzes the impact of these externalities and of platform competition
on the structure of the fees demanded by the market designers (see e.g. Armstrong
2006; Belleflamme and Toulemonde 2004; Caillaud and Julien 2003; Rochet and Ti-
role 2003). In contrast, we want to investigate whether traders learn to coordinate
on market clearing trading platforms, if such platforms are feasible. Therefore we

4In Appendix B we investigate the robustness of our results with respect to decreasing returns
to scale.
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explicitly model the learning behaviour of the traders, whereas the two-sided market
literature assumes rational traders. Further, we ask whether platform competition
induces market designers to establish platforms with characteristics that achieve mar-
ket clearing outcomes. Consequently, we abstract from any network externalities that
are not internalized by the price at which trade takes place. In our model trading fees
demanded by the market designers are neutral insofar as the market outcome is only
influenced by the total fee imposed on both market sides, but not on the distribution
of the fees on the two market sides.5

Second, our paper is also related to the literature on competition between ex-
ogenously given trading institutions. Ellison and Fudenberg (2003) and Ellison et
al. (2004) analyze the circumstances under which different market institutions can
coexist in equilibrium. Due to their different research questions these papers do not
allow for institutions with systematic price biases. Kugler et al. (2006) investigate
the case of centralized versus decentralized trading institutions. All of these papers
rely on the assumption of rational traders, and do not allow for learning. In terms
of traders’ behaviour, the learning model of Gerber and Bettzüge (2007) is relatively
close to our paper. But since they focus on the possibility of multiplicity of active
trading platforms, they consider neither non-market-clearing platforms nor market
designers. The paper closest related to the one at hand is that of Alós-Ferrer and
Kirchsteiger (2008), which also analyzes the learning behaviour of traders who face
the choice between different, not necessarily market-clearing platforms. That paper,
however, deals only with the selection among different, exogenously given institutions
and does not consider competition between market designers.
In our model, rational market designers are confronted with boundedly rational,

learning traders.6 Hence, our paper belongs to a small but growing literature that
we would like to call “asymmetric rationality,” where fully rational firms or otherwise
sophisticated agents are confronted with a population of boundedly rational ones.
The basic motivation is that consumers and small traders do not have the resources
to obtain all the relevant information and fully optimize their behaviour, often relying
on behavioural rules of thumb instead. However, large firms, market designers, etc.
can be taken as comparatively sophisticated. Schlag (2004), Gabaix and Laibson
(2006), Hopkins (2007), and Spiegler (2006) apply this approach to the analysis of
industries facing boundedly rational consumers. See Ellison (2006) for an overview
of this literature.
The paper is organized as follows. Section 1 presents the basic model. Section 2

discusses the traders’ platform choice of the traders. Section 3 analyzes the design
of the platform. Section 4 concludes. All proofs are in Appendix A. In Appendix B
we analyze the robustness of our results with respect to boundedly rational designers
and with respect to decreasing returns to scale in production.

5Rochet and Tirole (2006) define two-sided markets by the non-neutrality of the fees. In their
terminology we model a one-sided market.

6In Appendix B we show the robustness of our results with respect to learning designers.
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1. The Model
We study the trade of a homogenous good at different market platforms, which are set
up by profit-maximizing market designers. For simplicity, we restrict our attention
to two competing market designers (referred to as competitive market design). As
a benchmark, we also analyze the case where only one market designer can set up
a trading platform (referred to as monopolistic market design). In this section, we
introduce the trading rules that are at the market designer’s disposal and analyze
trade and profits for a given choice of trading rules by the designers and a given
platform choice by buyers and sellers.

1.1. Market Platforms’ Design. Before trade takes place, market designers
decide upon the set of trading rules under which their respective platforms operate,
and the trading fees they demand from the traders. We do not aim at a complete
description of the different sets of rules the designers can introduce. Rather, we
characterize them by their ability to establish market clearing. Market designers
may choose to design platforms such that market clearing is guaranteed, or they may
pick platforms where the price is systematically biased above or below the market
clearing price. Denote by p∗i the market clearing price if at least one seller and at
least one buyer choose this platform and by βi > 0 the bias of platform i = 1, 2. The
actual price at which trade takes place at platform i is then given by pi = βip

∗
i . If the

actual price is not market clearing (i.e. βi 6= 1), the quantity traded is determined by
the short market side, and traders on the long market side are rationed. Sellers are
rationed equally if βi > 1. We do not specify any rationing rule for the buyers.
The common set of feasible biases is assumed to be a finite, regular grid B =

{βmin, βmin + δ, ..., 1, ...βmax − δ, βmax}, where 0 < βmin < 1 < βmax and δ is the step of
the grid. To understand why institutions with different price biases are feasible for the
designers, recall the experimental and empirical results mentioned in the introduction.
In our framework posted offer markets or first price auctions are characterized by
β > 1, posted bid markets or proxy-auctions with “hard—close” by a β < 1, while
double auctions can be represented by β = 1. We refer to the platform with β = 1 as
the market-clearing platform, and we assume that such a platform is always feasible.
|B| denotes the number of feasible biases.
After the platforms are set up, traders will use their observations and experience

to eventually learn which platform to use. Formally, we will analyze a learning process
with an infinite number of trading rounds. The designers’ long-run payoffs are the
expected per round charges. Furthermore, we assume that the charges of designer i
are a fixed share of the revenue generated by trade on i’s platform.7 Denote by fi
the trading fee demanded by designer i, and by ERi the expected per round revenue
generated on platform i. Then market designer i’s profits are given by πD,i = fiERi.
The set of feasible fees is the same for both designers. For simplicity we assume

7Our results would not change if we assume quantity-dependent charges instead of revenue-
dependent charges.
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that it is given by a finite, regular grid F = {fmin, fmin + γ, ...fmax − γ, fmax}, where
0 < fmin < fmax < 1.8 |F | denotes the number of feasible fees.
The trading fee can be imposed on the sellers’ side, on the buyers’ side, or divided

between both sides. However, the market clearing price, the realized price at which
trade is conducted, and the traded quantities depend only on the total fee, and not
on the distribution of the fee over the two market sides. Buyers at platform i pay pi
for each unit, market designers receive fipi, and sellers ultimately receive (1− fi) pi.
Hence, we do not need to specify on which market side the fee is imposed.
The characteristics of a platform i are denoted by si = (βi, fi), and the set of

feasible characteristics by S = B × F.

1.2. Traders. The good is supplied by a finite set M of at least two profit-
maximizing firms (sellers) that use the same constant returns to scale technology
with marginal costs of c > 0.9 When deciding his supply, a seller takes into account
the trading fee of the platform at which he operates. Hence, sellers supply a strictly
positive but finite quantity if and only if the price net of trading fee is equal to c.
As we will see, the assumption of a constant returns to scale technology allows us

to derive results for a very general class of learning models. That is, by focusing on
this case, we will obtain results that are robust to the details of the learning process.
In Appendix B we illustrate that for strictly decreasing returns to scale the results
depend on the details of the learning model. In particular, the results of the constant
returns to scale case can be replicated also for strictly decreasing returns to scale, but
not for the whole class of learning models we analyze here.
The good is demanded by a finite setN of buyers with |N | > 1. Each buyer n ∈ N

is endowed with a demand function dn(p) which might be different for different buyers.
All the demand functions are assumed to be strictly decreasing in p. Furthermore,
0 < dn(p) <∞ for all p, n. To avoid discontinuities in the designers’ profit functions
we also assume that limp→∞ pdn(p) = 0 for all n ∈ N.10
We call a platform active if both sellers and buyers are present and positive

quantities are traded, and inactive if not. The presence of both types of traders does
not ensure that the platform is active. To see this, note that due to the assumption
of a constant returns to scale technology the market clearing price of a platform i
where both sellers and buyers are present is given by p∗i (si) =

c
1−fi . The realized price

at which trade is conducted on platform i is then

pi(si) = βi
c

1− fi
. (1)

8The assumption that the fees are strictly positive can be justified by (unmodelled) setup costs
for the market designers.

9The assumption of identical sellers might seem restrictive at the first sight. Within our frame-
work, firms without access to the lowest cost technology would face zero market demand. Hence, our
assumptions only rule out the case where exactly one firm has access to the lowest-cost technology.
10Our results do not depend on the assumption that the value of demand goes to zero when the

price approaches infinity. However, the presentation is simplified by this assumption.
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If βi < 1, the net price received by the sellers is below the marginal costs. Hence,
supply is zero, and platform i is inactive despite both types of traders being present
on platform i.
Denote by Ni the set of buyers who choose platform i, and byMi the set of sellers

who choose platform i. Platform i is active if and only if |Ni| > 0, |Mi| > 0, and
βi ≥ 1. Let

DNi(p) =
X
n∈Ni

dn (p) (2)

denote the total demand at platform i. The quantities traded by a buyer n ∈ Ni,
qn,i(Ni,Mi, si), and by a seller m ∈Mi, qm,i(Ni,Mi, si), are given by

qn,i(Ni,Mi, si) =

½
dn(βi

c
1−fi ) if i is active,
0 otherwise,

(3)

qm,i(Ni,Mi, si) =

(
1
|Mi|DNi

³
βi

c
1−fi

´
if i is active,

0 otherwise.
(4)

In the single-designer case, traders cannot choose between different platforms, but
have to use platform i. Hence, Ni = N, Mi = M, and the market outcome is only
determined by the platform characteristics si.
If there is competition between market designers, trade can take place at different

platforms, and the outcome depends also on the way traders learn which platform
to use. This learning process is driven by the market outcomes of both platforms
(see above), and by the individual evaluations of these outcomes. For the latter
part note that if buyers trade strictly positive amounts, they are strictly better off
than without trade. Hence, inactive platforms are worse for buyers than active ones.
Furthermore, whenever a buyer trades a strictly positive quantity, he is not rationed
at all. It is thus natural to assume that buyers’ evaluation of active platforms is
monotonically decreasing in the price. Therefore, buyers’ evaluation of platform i
could be represented e.g. by11

πn,i(si) =

½
1
pi
= 1−fi

βic
if i is active,

0 otherwise
(5)

If both platforms i and j are active (i.e. positive amounts are traded),

p(si) < p(sj)⇐⇒ πn,i(si) > πn,j(sj). (6)

This implies in particular that if βi = βj = 1 and fi < fj, then πn,i(si) > πn,j(sj).
The sellers’ evaluation of the platforms are determined by the respective profits.

An inactive platform gives of course zero profits. Furthermore, whenever βi > 1,

11We do not use this particular payoff function. If demand is derived from utility maximization,
though, the realized (indirect) utility must be a strictly monotone transformation thereof.



On the Evolution of Market Institutions: The Platform Design Paradox 9

sellers trading on platform i are on the long market side, and equally rationed. Hence,
the sellers’ evaluation of platform i is given by

πm,i(Ni,Mi, si) =

( h
1
|Mi|DNi

³
βi

c
1−fi

´i
(βi − 1)c if i is active,

0 otherwise.
(7)

Note that for βi > 1 the sellers’ profits are strictly positive provided that platform
i is active. On the other hand, for βj = 1, πm,j(Nj,Mj, sj) = 0 irrespective of whether
platform j is active or not. So as long as there exists an active non-market clearing
platform, its outcome is always strictly better for the sellers than the outcome of a
market clearing platform. That is, for all fi, fj,

|Ni| > 0, |Mi| > 0 and βi > βj = 1⇒ πm,i(Ni,Mi, si) > πm,j(Nj,Mj, sj) (8)

2. The Traders’ Platform Choice
In our model, market designers first choose their platforms’ characteristics and then
buyers and sellers decide which platform to join. If there is only one market designer,
traders’ choices are trivial — they simply opt for the existing platform. With more
than one market designer, traders have to choose between the two platforms. For
any given si, sj the choice of platform constitutes a coordination game. If all traders
choose platform i, no trader has an incentive to deviate to the other platform j.
Furthermore, if βi and βj are strictly larger than 1, full coordination on any platform
is even a strict Nash equilibrium. Hence, nothing guarantees coordination on any
particular platform, and therefore traders have to learn which platform to use. In
this section, we introduce the learning process, and analyze long-run trading patterns
and platform revenues for a given configuration of designs.

2.1. The Learning Process. We consider a social learning process defined by
(i) the information available to each trader, (ii) the way traders revise their plat-
form choices whenever they have the opportunity, (iii) the opportunities to revise a
platform choice, and (iv) the way traders make mistakes when choosing a platform.
The information available to a trader is not only his own experience (as it would

be in a reinforcement learning model, for instance). Rather, each trader observes the
prices and the quantities of both platforms (including the observation of the inactive-
ness of a platform). We also assume that an individual trader does not have enough
information on other traders or is not able to perform all the necessary computa-
tions in order to predict the future behaviour of the other traders. Hence, individual
traders cannot accurately predict the future outcomes of the platforms. Furthermore,
they also lack the capability necessary to always compute an exact (but myopic) best
reply to the current choices of all other traders.
What can a trader do in such a situation? From his individual, myopic standpoint,

if he considers himself to be small relative to market size, the best thing he can do
is to evaluate the outcomes of both platforms, and switch to the other platform if he
perceives the other platform’s outcome as better. A trader can perceive this behaviour
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as approximately rational, since when he switches, the implied changes in prices and
traded quantities will most of the time be small, and hence this behaviour is close to
best reply. Of course, this could also be interpreted as imitation of successful traders
of the own market type. We want to stress, though, that the described behaviour
does not require the observation of any evaluation conducted by other traders, but
merely the observation of prices and traded quantities in both platforms.
With this learning rule the switching decision of each trader depends on the trad-

ing outcomes of both platforms in the last trading round. These trading outcomes
depend on the distribution of the traders over both platforms. Hence, the distrib-
ution of traders over platforms depends on the last period’s distribution of traders
over platforms. A state ω specifies which trading platform is chosen by each buyer
and each seller. The state space is given by Ω = {1, 2}|N | × {1, 2}|M |, and trader k’s
platform choice in state ω ∈ Ω is denoted by ω(k) ∈ {1, 2}. The following notation
will prove convenient:

Ni (ω) = {n ∈ N |ω(n) = i} (9)

Mi (ω) = {m ∈M |ω(m) = i} (10)

i.e. Ni (ω) ⊆ N is the set of buyers who are on platform i in state ω, andMi (ω) ⊆M
the set of sellers who are on platform i in state ω. By definition, all those traders
who are not on platform i have to be on the other platform j.
The state of the process at time t = 0, 1, 2, ... is given by ω(t) ∈ Ω. That is,

ω(t)(k) ∈ {1, 2} denotes the platform chosen by trader k at time t.

Unperturbed Learning Process. We first concentrate on the unperturbed
learning process, where traders switch platforms only because of learning, but not
because of experimentation (experimentation is introduced in the next subsection).
If an agent is able to revise his choice for a given period t+1, he takes the new market
outcomes of both platforms in period t and evaluates them. As explained above, we
postulate the following learning rule:

Assumption A: A trader, who gets the opportunity to revise, observes the outcomes
of both platforms in the last period. He chooses the platform whose outcome
he evaluates as best. In case of indifference, he stays with his old platform.

Whenever trader k receives a revision opportunity at period t, he will choose the
platform with the period t − 1 outcome that he evaluates highest. If, by chance,
the outcomes of both platforms are equally evaluated, the trader sticks to his former
platform choice. For instance, in the case in which one platform is inactive and
the other is active but yields zero profits for the sellers, sellers do not switch. This
assumption could be justified by small but positive switching costs.12

12See Oechssler (1997) for a discussion. In Alós-Ferrer, Kirchsteiger, and Walzl (2006), we inves-
tigate a different tie-breaking rule. Indifferent traders randomize their platform choice, i.e., every
platform is chosen with a strictly positive but not necessarily identical probability. All our results
(in particular Theorem 1) are robust towards such a modification of the tie-breaking rule.
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But when are agents allowed to revise their choices? It is common in learning
models to explicitly introduce some inertia allowing for the possibility that not all
agents are able to revise strategies simultaneously (or, for instance, accounting for
idiosyncratic switching costs). Different specifications of how revision opportuni-
ties arrive give rise to different dynamics and often affect the results. Rather than
adopting a specific formulation, here we follow Alós-Ferrer and Kirchsteiger (2008)
and postulate a general class of dynamics encompassing the standard examples (and
many others).13 This general dynamics is defined by the following assumptions.

Assumption B1: For every agent k and state ω there is strictly positive probability
that agent k is the only trader of his own market side who is able to revise his
platform choice.

Notice that B1 implies that every agent has strictly positive probability of being
able to revise at any given state. It allows also that the revision probability depends
on the state ω and on the identity of the trader, k.
Since we have two clearly differentiated populations, we introduce a weak form of

independence between the revision opportunities in those populations (it can actually
be considered as an anonymity requirement).

Assumption B2: For every agent k and state ω, if k is the only one of his own
market side who is allowed to revise, either no trader of the other market side
is able to revise his platform choice, or there is a strictly positive probability
for each trader of the other market side to be allowed to revise.

This assumption explicitly excludes non-anonymous situations where, say, when-
ever seller number 17 gets the opportunity to revise, buyers 3 and 6 also get the
opportunity to revise. Assumptions B1 and B2 are rather general. They are fulfilled
by the standard models considered in the literature of learning in games. In these
models, revision opportunities are either modelled through independent probabilities
(a case we call independent inertia; see e.g. Samuelson 1994; Kandori and Rob 1995)
or assumed to arrive in an asynchronous way (a case we term asynchronous learning;
see e.g. Blume 1995; Binmore and Samuelson 1997; Benaïm and Weibull 2003).14

That is, our formulation covers the following standard examples.
Independent Inertia. For each agent k and each state ω there is an exogenous,

equal, independent, and strictly positive probability ρ < 1 that agent k does not get
a revision opportunity.
Asynchronous Learning. Each period, only one agent (i.e. either a buyer or a

seller) is (randomly) selected and allowed to revise his strategy.

13See Alós-Ferrer (2003) for a discussion. Learning processes fulfilling the B1 correspond to
“regular” learning processes in Alós-Ferrer and Netzer (2007).
14The reason we explicitly choose Assumptions B1, B2 is that, in the literature of learning in

games, many models are not robust to minute changes in the dynamic assumptions. We want to
make explicit that our model is not so sensible to the details of the dynamics.
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Asynchronous Learning within Types. In our case, it is natural to conceive a
dynamics where in every period, only one buyer and one seller are selected (randomly
and independently) and given the opportunity to revise.
Obviously, B1 and B2 are fulfilled by all these types of learning. The specification

above allows for more general learning processes than those described by independent
inertia or asynchronous learning. Since the revision probability is allowed to be a
function of the state ω, it might depend e.g. on the difference between the evaluation
of the outcomes of both platforms (so that unsatisfied traders are more likely to
revise), or on idiosyncratic characteristics of the currently chosen platform.
Assumptions A, B1, and B2 define a stationary Markov chain on the (finite) state

space Ω. Given two states ω,ω0 ∈ Ω, denote by P 0 (ω,ω0) the probability of transition
from ω to ω0 in one period for the unperturbed learning process. The transition matrix
is given by P 0 = [P 0 (ω,ω0)]ω,ω0∈Ω. An absorbing set of the unperturbed dynamics
is a minimal subset of states which, once entered, is never abandoned. An absorbing
state is an element which forms a singleton absorbing set, i.e. P 0 (ω,ω) = 1.15

As a first step in the analysis of long-run trading patterns, we determine the
absorbing sets of the unperturbed learning dynamics. Depending on the design of
the two platforms, there exist multiple such absorbing sets. The reason is that no
trader ever switches to a platform which does not have an agent of each market side
and/or has a bias below 1 and is therefore inactive. Moreover, indifferent traders do
not switch. In particular, sellers never switch to a market-clearing platform as it does
not offer a positive profit for them. These considerations lead to the following results.

Lemma 1. Assume A, B1, and B2. Let i 6= j, ΩBi = {ω|Ni(ω) = N} and ΩBj =
{ω|Nj(ω) = N}. All absorbing sets of the unperturbed dynamics are singletons.
Depending on platforms’ characteristics, the absorbing states are as follows.

(a) If βi > 1 and βj > 1, the monomorphic states ω∗k (k = i, j) such that Nk(ω
∗
k) =

N,Mk(ω
∗
k) =M and every state in Ω0 = {ω|πm,i = πm,j,πn,i = πn,j}.16

(b) If βi > 1 and βj = 1, the monomorphic state ω∗i , the cross-state ω0i with
Ni(ω

0
i ) = N , Mi(ω

0
i ) = ∅, and every state in ΩBj (which includes ω

∗
j and ω0j ).

(c) If βi = βj = 1, the elements in ΩBi and ΩBj , plus, if and only if p(si) = p(sj),
every state with two active platforms.

(d) If βi > 1 and βj < 1, the monomorphic state ω∗i , and all states in which platform
i is inactive (for βj < 1, platform j is always inactive).

(e) If βi = 1 and βj < 1, the elements of ΩBi and all states in which platform i is
inactive.

15Our analysis of Markov chains as defined by the learning dynamics uses the methods and con-
cepts introduced in Kandori et al. (1993) and Young (1993). Detailed overviews can be found e.g.
in Ellison (2000), Fudenberg and Levine (1998) or Samuelson (1997).
16Ω0 is non-empty as it always contains cross-states ω0i (i = 1, 2) (see (b)).



On the Evolution of Market Institutions: The Platform Design Paradox13

(f) If βi < 1 and βj < 1, all states ω ∈ Ω.

Perturbed Learning Process. In order to select among the multiple absorb-
ing states, we now turn to the analysis of the stability properties of the platforms
with respect to experimentation. The dynamics is enriched with a perturbation in
the form of experiments (or mistakes) in the following way. With an independent,
small probability ε > 0, each agent, in each round, might experiment (or make a mis-
take or “mutate”), and simply pick a platform at random,17 independently of other
considerations.
The dynamics with experimentation is called perturbed learning process. Its tran-

sition matrix is denoted by P ε. Since experiments make transitions between any two
states possible, the perturbed process has a single absorbing set formed by the whole
state space (i.e. the process is irreducible) and there is a unique probability distribu-
tion over states με ∈ ∆ (Ω) which, if taken as initial condition, would be reproduced
in probabilistic terms after updating (more precisely, με · P ε = με). This με is called
the invariant distribution of P ε. For the perturbed dynamics P ε the limit invariant
distribution μ∗ = limε→0 με exists and is an invariant distribution of the unperturbed
process P 0 (see e.g. Kandori et al. 1993; Young 1993; Ellison 2000). It singles out a
stable prediction of the unperturbed dynamics, in the sense that, for any ε > 0 small
enough, the play approximates that described by μ∗ in the long run. Thereby μ∗(ω)
is the probability that (for small ε) the process will be in state ω in the long-run. The
states in the support of μ∗, i.e. {ω ∈ Ω |μ∗ (ω) > 0} are called stochastically stable
states or long-run equilibria. The set of stochastically stable states is the union of
some absorbing sets of the original, unperturbed chain (ε = 0).
We call a platform active in the long-run if there is a positive probability for

trade at this platform in the long-run, i.e., if there is a stochastically stable state
with platform i being active.18

Theorem 1. Assume A, B1, and B2.

(a) Suppose βi < 1. Then, platform i is not active in the long-run.

(b) Suppose βi = βj = 1. Then, platforms i and j are active in the long-run.

(c) Suppose βi > 1 and βj ≤ 1. Then, platform i is active and j is inactive in the
long-run.

The intuition for this theorem is straightforward. Since there is no trade on a
platform with βi < 1, it will never be active. Furthermore, on a market clearing

17We mean that an institution is picked up according to a pre-specified probability distribution
having full support. The exact distribution does not affect the results, as long as it has full support,
and does not depend on ε.
18In the following, whenever we say absorbing sets or states, we refer to the unperturbed dynamics.

Since the perturbed dynamics is irreducible, no confusion should arise.
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platform the sellers’ profits are always zero. Hence, sellers do not care at which
platform they are if they have to choose between two market clearing platforms.
Consequently, both platforms are active in the long run if both are market clearing.
Finally, a seller is never worse off at platform i with βi > 1 than at platform j with
βj ≤ 1, even if there are no buyers at i. A buyer, on the other hand, is worse off at
j than at i when he finds no seller at j. So sellers have an unambiguous tendency
to learn to use i, whereas buyers do not always have a tendency towards j. As a
consequence, all traders will coordinate on the non-market clearing platform i in the
long run. On the level of the platform design, it is thus easy to compete with a market
clearing platform by introducing a platform design with a positive price bias.

2.2. The Long Run Trading Patterns. We now proceed to analyze long run
trading patterns (i.e. the stochastic stability of platforms) for a given design config-
uration si = (βi, fi) and sj = (βj, fj).
As a benchmark, we start with the case of identical platform design. To analyze

platforms with identical characteristics (si = sj), we observe that, for every state
ω ∈ Ω we can uniquely define a so-called mirror state eω by changing the platform
affiliation of all traders, that is, eω is the only state such that Mj(eω) = Mi(ω) and
Nj(eω) = Ni(ω). Then,
Lemma 2. Suppose si = sj. Then, the distribution of traders over the platforms is
symmetric in the long run, i.e., μ∗(ω) = μ∗(eω) ∀ω ∈ Ω.

Theorem 1 already identifies the set of long-run active platforms (i.e. stochasti-
cally stable states with active platforms) whenever at least one platform i has a price
bias βi ≤ 1. Hence we are left with design configurations si and sj where both price
biases favour sellers (i.e. βi, βj > 1). There, Lemma 1(a) implies that full coordina-
tion on each platform and states with indifference of both buyers and sellers are the
only candidates for stochastically stable states. To pin down stochastic stability, it
proves useful to distinguish the two platforms with respect to their prices.

Lemma 3. Suppose βi,βj > 1 and pi = βic
1−fi <

βjc

1−fj = pj. Then, (a) only monomor-
phic states can be stochastically stable. (b) ω∗i is stochastically stable.

According to Lemma 3, the platform with trade at a lower price is always sto-
chastically stable as it is preferred by buyers as long as it is active. The only other
candidate for stochastic stability is coordination on the high price institution. While
all our previous results did not depend on the modelling details such as (i) absolute
population size of buyers and sellers, (ii) the relative size of these populations, (iii)
the heterogeneity of buyers, (iv) the price elasticity of demand, (v) the grid size δ,
and (vi) details of the learning process (e.g. adjustment speed, asymmetries between
buyers and sellers), these details do matter now as the following results illustrate.

Lemma 4. Suppose βi,βj > 1, pi =
βic
1−fi <

βjc

1−fj = pj, so that ω∗i is stochastically
stable.
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(a) in a dynamics with independent inertia, ω∗j is also stochastically stable if and
only if there is at least one buyer en ∈ N such that

den
µ

βjc

1− fj

¶
(βj − 1) >

1

|M |− 1DN\{en}
µ

βic

1− fi

¶
(βi − 1). (11)

(b) in a dynamics with asynchronous learning, ω∗j is also stochastically stable if and
only if there is at least one buyer en ∈ N such that

1

|M |− 1den
µ

βjc

1− fj

¶
(βj − 1) > DN\{en}

µ
βic

1− fi

¶
(βi − 1). (12)

The condition in part (a) is violated whenever buyers are identical, |N | ≥ |M |,
and the price elasticity of demand is sufficiently high. It can be satisfied for βj > βi
whenever buyers are sufficiently heterogeneous (i.e. ∃ en ∈ N such that den(p) >> dn(p)
∀n 6= en), or buyers are identical and |M | >> |N |, or d(p) is sufficiently inelastic.
The stochastic stability of ω∗j is harder to establish if the dynamics is slow as e.g.

under asynchronous learning. The condition in part (b) is violated whenever buyers
are identical and the price elasticity of demand is sufficiently high (in contrast to
the case of independent inertia, this holds independently of the sizes of populations
|M | and |N |). The condition can be fulfilled for βj > βi if buyers are sufficiently
heterogeneous or buyers are identical and demand is sufficiently inelastic.

Remark 1. The proofs of the previous lemmata (see Appendix A) rely on transition
paths involving at most two simultaneous mutations. Thus the speed of convergence
is relatively high. Since the number of required mutations does not increase with
population size, our dynamics escapes the well-known critique that for large popula-
tions the long run may actually be “too long” to be relevant (see Kandori et al. 1993;
Ellison 1993). We find this point important, because real-world designers are not in-
finitely long-lived, and some market institutions (e.g. online platforms) appear to go
out of business relatively quickly if lacking customers. Since the speed of convergence
of the trader-learning process is quick, we think that our results remain relevant.

2.3. Platform Revenues and Designers’ Profits. Till now we have analyzed
the learning dynamics of the traders and the resulting long run pattern of trades.
Next we turn to the revenues generated by the platforms, which in turn determine
the profits of the market designers.
When analyzing the market designers’ choice of the characteristics of the trading

platforms we will assume that platform designers are long-lived, patient, and (rela-
tively) rational agents when compared with individual buyers or sellers. Hence, the
designers consider a platform profitable if it is active in the long-run, and they ignore
revenues made during the adjustment process to the limit invariant distribution.19

19Otherwise, market designers’ payoffs would depend on the initial distribution of the traders over
the platforms. In the absence of a plausible theory on the initial distribution, the results would be
arbitrary. Further, as pointed out in Remark 1, convergence to full coordination is fast, and hence
the assumption is, to some extent, justified.
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Given the platform characteristics s = (si, sj), the long-run expected revenues per
round ERi(s) depend on the limit invariant distribution. The profits of designer i
are given by πD,i(s) = fiERi(s) implying that πD,i(s) ≥ 0 for all s.
Consider first a platform i with βi < 1.

Lemma 5. Suppose βi < 1. Then πD,i ((βi, fi) , sj) = 0 for all feasible fi, sj.

Unsurprisingly, a platform with βi < 1 does not generate any profit for the de-
signer as it is always inactive. Hence, we are left with platform configurations (si, sj)
where both platforms have a price bias weakly larger than one. In this case expected
revenues at platform i depend not only on the design of platform i but also on the
design of the other platform as the following results indicate.

Lemma 6. Consider a platform configuration s = (si, sj) with si = (βi, fi), sj =
(βj, fj) and prices pi = βi

c
1−fi , pj = βj

c
1−fj .

(a) If si = sj and βi, βj ≥ 1, then, πD,k(s) = 1
2
fkpkDN (pk) > 0 for k = 1, 2.

(b) If βi = βj = 1 and fi < fj, then fkpkDN (pk) > πD,k(si, sj) > 0 for k = 1, 2.

(c) If βi > 1 and βj ≤ 1, then πD,i(si, sj) = fipiDN (pi) and πD,j(sj, si) = 0.

The first part of this lemma shows that for identical platforms the designers’ long
run profits are identical and strictly positive. This follows from the symmetry of
the limit invariant distribution (Lemma 2). With two market clearing institutions,
none of the platforms can reap all long term revenues even if the fees differ. Finally
and most importantly, when a non-market clearing and a market clearing platform
compete, the designer of the former makes strictly positive profits, whereas the profits
of a designer of a market clearing institution are zero, because all traders coordinate
on the non-market clearing platform in the long run (see Theorem 1 (c)).

3. The Platform Design
We now compare the design choices by a monopolistic designer and by two competing
designers.

3.1. Monopolistic Market Design. As a benchmark, we briefly consider the
case where only one platform is available, with characteristics s = (β, f). In this case
traders have no choice but to use this platform and designer’s profits are given by:

πD(s) =

(
f βc
1−fDN

³
βc
1−f

´
if β ≥ 1

0 otherwise.
(13)

It follows that a monopolistic designer introduces a market clearing platform — as
long as the grid of feasible fees is fine enough.
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Proposition 1. Suppose there is only one platform available. Then, the designer
chooses a market clearing platform, i.e. β∗ = 1, if γ is sufficiently small.

The intuitive reason for this result is as follows. Suppose revenues pDN(p) are
maximized at price p∗. Note that this price can be attained with different (β, f)
combinations and that p∗ = βc

1−f is increasing both in β and f . Since the monopolist
designer’s profits are fpDN(p), he will try to reach p∗ with that (β, f) combination
that has the highest fee, and hence the lowest possible β ≥ 1.

3.2. Competitive Market Design. In order to reflect that platform designers
are “more rational” than individual buyers and sellers, we simply consider them
rational players in the normal-form game defined by their payoff functions.20 That
is, both designers choose their platforms simultaneously and payoffs are given as in
Section 2.3. The sets of pure strategies of designer i and j are given by Si = Sj =
B × F . We also allow designers to use mixed strategies, i.e. choose a probability
distribution over S rather than picking up a particular characteristic for sure.
Denote by σi the (mixed) strategy of designer i. The expected payoff of i is

πD,i(σi,σj) =
X
sj∈S

X
si∈S

σj(sj)σi(si)fiERi(si, sj). (14)

Since the sets of pure strategies are finite, a Nash equilibrium of the designers’
game always exists (possibly in mixed strategies). To characterize these equilibria,
we need the following Lemma.

Lemma 7. Let (σ∗i ,σ
∗
j ) be a Nash equilibrium (possibly in mixed strategies). Then,

for any pure strategy si = (βi, fi) of player i such that σ∗i (si) > 0, it holds that βi ≥ 1.

Lemma 7 is an immediate consequence of the fact that there is no trade at a
platform with β < 1. Therefore, only platforms weakly biased in favour of the
sellers will be chosen in equilibrium. We now show that, actually, in any equilibrium,
both designers will introduce platforms that lead to prices strictly above the market
clearing level - platforms that lead to market clearing prices will not be designed in
equilibrium. This result holds as long as the grid of feasible biases is fine enough.

Theorem 2. Let (σ∗i ,σ
∗
j ) be a Nash equilibrium (possibly in mixed strategies). For

any pure strategy si = (βi, fi) of player i such that σ∗i (si) > 0, it holds that βi > 1 if
δ is sufficiently small.

We have thus established the paradoxical result that competition among plat-
form designers will induce them to select biased platforms which implement non-
competitive market outcomes. As we have seen, competition between a market clear-
ing and a non-market clearing platform leads to full coordination of the traders on

20As shown in Appendix B.1, our main results do not change if we consider boundedly rational
market designers who learn the same way as traders do.
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the latter platform (see Theorem 1 (c)). Hence, designers do not introduce a market
clearing platform when facing platform competition.
In general, nothing more can be said about the specific characteristics of the

Nash equilibria. A brief examination of Lemma 4 should convince the reader that
a full characterization of the Nash equilibria will depend on the exact shape of the
limit invariant distribution, and not only on its support. This distribution in turn
depends on the details of the dynamics, e.g. whether learning opportunities arise
simultaneously among traders or asynchronously. In contrast, the last theorem holds
for any specification of the learning dynamics satisfying assumptions B1 and B2.
Still, one might suspect that competition leads to platforms close to the market

clearing one, i.e. to platforms with βi = 1 + δ. If this hypothesis would be correct,
the chosen platforms would nearly resemble market clearing ones as long as the grid
of feasible biases is fine enough. The next proposition, however, shows that this
hypothesis is in general false. For simplicity, consider identical buyers with a demand
function d(p) and denote the price elasticity of demand by εp(p) = −pd

0(p)
d(p)

.

Proposition 2. Assume independent inertia, identical buyers and |M | = |N |. If δ
and γ are sufficiently small and εp is not much larger than one, then there exists
no Nash equilibrium (σ∗i ,σ

∗
j ) (neither in pure nor in mixed strategies) where both

designers introduce only platforms with βi = βj = 1 + δ.

Beyond the features highlighted in Theorem 2, equilibrium designs are rather
sensitive to details of the economy and the learning process. It cannot be excluded
that in equilibrium designers choose ”near market clearing” platform characteristics
for some specifications of the learning dynamics and/or of the demand functions. But
in general the equilibrium choices are not ”near market clearing” platforms.

4. Discussion
We have shown that if several trading platforms are available, traders will learn to
coordinate on a platform with prices systematically above the market clearing level,
if such a platform is feasible. This forces competing market designers to create such
non-market clearing platforms. On the other hand a monopolistic market designer will
always introduce a market clearing platform in order to maximize his profits. Hence,
we derive the paradoxical result that platform competition induces non-competitive
market outcomes. This result could also explain why so many B2B platforms exhibit
institutional designs that are notorious for biased (non-market clearing) prices (e.g.
posted offer markets, proxy auctions with “hard-close” or Dutch auctions).
The results of our paper depend of course on our key assumptions. First, we

have focused on boundedly rational traders who choose platforms myopically. For
fully rational designers and traders, our set-up would correspond to a two stage game
where, in stage 1, designers (simultaneously) choose platform designs, and in stage 2,
traders coordinate on platforms. The second stage thereby resembles a coordination
problem or a game with network externalities. Naturally, this structure induces a
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multiplicity of equilibria - in particular, there is a subgame perfect equilibrium where
all traders coordinate on a market-clearing platform (with monopolistic trading fees).
Our analysis of the coordination problem in stage 2 using a learning dynamics can
be interpreted as an equilibrium selection device, which rejects the above-described
equilibrium and selects only configurations with non-market clearing platform designs.
Second, we assumed asymmetric rationality in the sense that designers are more

sophisticated than traders. Furthermore, by focusing on long-run profits we have
implicitly assumed that it is much harder for designers to change the properties
of their platforms than for traders to switch trading platforms, or that platform
providers are much more patient than traders. Cases such as the downfall of Enron
Online or the bankruptcy of CommerceOne illustrate, however, that this assumption
may not be fully justified. Sometimes platform providers indeed suffer rather quickly
from a lack of traders, and are removed from the market at short notice. But our
modelling framework can cope with cases where platform designers and traders revise
their decisions with equal speed. In Appendix B we investigate the case of boundedly
rational designers who have to learn how to design a platform through a regular
(trial-and-error) design revision process (i.e., designers are as myopic or impatient as
traders). Our main results carry over to such a setting. Hence, while asymmetric
rationality is a crucial ingredient of our model, it is not the driving force behind the
emergence of non-market clearing institutions. Furthermore, our results also hold
when the traders’ learning process shows a relatively high speed of convergence. In
real life this would imply that a market designer can enter and remain in the market
with a superior design, because traders can coordinate on the respective platform at
short notice. In this sense our model allows for the “free entry” of superior platform
designs, and still non-market clearing institutions emerge in equilibrium.
Third, we have assumed sellers to be producers endowed with a technology with

constant returns to scale. Although this is a focal, economically meaningful case,
it clearly simplifies the analysis and allows for a clear-cut derivation of the results.
Under production technologies exhibiting decreasing returns to scale, the results are
less strong and a characterization of the limit invariant distribution requires both a
further specification of the learning behaviour of the traders and a further specifica-
tion of demand and supply. In Appendix B we provide an extended example with
decreasing returns to scale where our main result still holds. It shows, however, that
the optimality of a price bias is no longer independent of details like learning veloci-
ties. Nonetheless, this clearly illustrates that the scope of the paradox identified here
goes beyond the constant returns to scale case.
These robustness checks show that neither the assumption of constant returns to

scale nor that of rational designers drive our results. Rather, it is indeed platform
competition that leads to the emergence of non-market clearing trading platforms.
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APPENDIX

A. Proofs
The proofs rely on the well-known characterization of the invariant distribution of
a Markow Chain developed by Freidlin and Wentzell (1984) and its implications for
stochastic stability as discussed by Kandori et al. (1993) or Young (1993), which we
briefly review here. Lemma 3.1 from Freidlin andWentzell (1984) states the following.
Fix an ω ∈ Ω. An ω− tree T is a tree in Ω with root ω, i.e. a graph on Ω such that
for every state ω0 6= ω there exists a unique directed path from ω0 to ω. Let Tω be the
set of all ω− trees and define qω ≡

P
T∈Tω Π(ω0,ω00)∈TP (ω

0,ω00) (i.e. qω is the product
of all transition probabilities on a given ω−tree summed over all ω−trees). Then,
the invariant distribution for fixed ε is given by με(ω) =

qωP
ω∈Ω qω

. Relying on this
result, Kandori et al. (1993) or Young (1993) observe that in the limit as ε → 0,
μ∗(ω) is determined by those ω−trees that imply the smallest possible number of
mutations necessary to form a tree in Ω. Given two states ω and ω0, let c(ω,ω0) (the
transition cost from ω to ω0) denote the minimal number of experiments necessary
for a transition (or link) from ω to ω0 along a positive probability path starting in
ω and leading to ω0. The cost of an ω−tree is the sum of all costs along links in
it. Let γ(ω) (the stochastic potential of ω) be the minimal cost of an ω−tree. A
state ω is stochastically stable if and only if its stochastic potential is minimal, i.e.
γ(ω) ≤ γ(ω0) for all ω0 ∈ Ω. Let A be the set of absorbing sets. If X ∈ A, all states
in X have the same stochastic potential, denoted γ(X).

Proof of Lemma 1. (a) Let β1 > 1 and β2 > 1. Monomorphic states are absorbing
because at the corresponding platform both buyers and sellers make strictly positive
profits and the other platform is inactive. Thus traders stay at the active one. More-
over, elements of Ω0 are absorbing because traders do not switch if the respective
profits are identical on both platforms. It is now enough to show that there exists a
positive probability path from any other to a monomorphic state or a state in Ω0.
Consider ω /∈ Ω0 ∪ {ω∗i } ∪ {ω∗j}. At least one platform has to be active. If only

platform i is active, the monomorphic state ω∗i is reached with positive probability
because buyers and sellers receive positive profits at platform i and zero profits at
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platform j. Hence, suppose that both platforms are active. Suppose that p(si) 6= p(sj)
and (without loss of generality) that p(si) < p(sj). Then, buyers strictly prefer
platform i to platform j. By B1 and B2, there is positive probability that all buyers
at j receive revision opportunity in successive periods and only sellers at platform j
receive revision opportunity. Then, buyers will switch away from j and no new seller
will switch to j. Thus, either the monomorphic state ω∗i is eventually reached, or
j becomes inactive Now suppose that p(si) = p(sj). Buyers are indifferent and will
never switch. As ω /∈ Ω0, sellers prefer one platform and there is a positive probability
path to a state with an inactive platform or a state in Ω0.
(b) Let βj = 1 and βi > 1. Monomorphic states are absorbing, because at the

corresponding platform both buyers and sellers make weakly positive profits and the
other platform is inactive. Thus traders do not switch. Cross states are absorbing
because traders do not switch if profits are identical on both platforms. Finally,
sellers receive zero profits at platform j. Hence, they are indifferent between an
inactive platform i and platform j, so they never switch. Buyers strictly prefer an
active platform j to an inactive platform due to strictly positive profits. Therefore,
all states in ΩBj = {ω|Nj(ω) = N} are absorbing.
It remains to show that there exists a positive probability path from any ω /∈

ΩBj ∪ {ω0i } to a monomorphic state or a state in ΩBj . In such a state ω, at least one
platform has to be active. If only platform i is active, buyers and sellers strictly prefer
i to j and ω∗i is reached with positive probability. If only platform j is active, buyers
strictly prefer j to i while sellers do not switch at all. Hence, a state in ΩBj is reached
with positive probability. If both platforms are active, sellers strictly prefer i and,
by B1 and B2, there is positive probability that all sellers at j but only buyers at i
receive revision opportunities in successive periods. Hence, sellers will switch away
from j and no new buyer will switch to j. Thus, either the monomorphic state ω∗i is
eventually reached, or j becomes inactive.
(c) Let βi = βj = 1. Then, sellers never switch. Suppose first that p(si) 6= p(sj).

Buyers strictly prefer an active to an inactive platform and are indifferent between two
inactive platforms. Hence, states in ΩBi = {ω|Ni(ω) = N} and ΩBj = {ω|Nj(ω) = N}
are absorbing. It is enough to show that there exists a positive probability path from
any state outside ΩBj ∪ΩBi to a state inside this joint set. Consider ω /∈ ΩBj ∪ΩBi . In
ω, at least one platform has to be active. If only one is active, buyers strictly prefer
this platform to the other. Hence, a state in ΩBi or Ω

B
j (dependign on which was the

active platform) is reached with positive probability. If both platforms are active,
suppose without loss of generality that p(si) < p(sj). Then, buyers strictly prefer
platform i and there is a positive probability path to an element in ΩBi .
Consider now the case p(si) = p(sj). States in ΩBi and ΩBj are absorbing, because

buyers strictly prefer an active to an inactive platform. Also, every state with two
active platforms is absorbing, because buyers are indifferent between active platforms.
Consider a state ω with exactly one active platform (i, say) which is not in ΩBi . Then,
buyers strictly prefer i to j and there is a positive probability path to a state in ΩBi .
(d) Let βi > 1 and βj < 1. Then, platform j is always inactive. If platform i



On the Evolution of Market Institutions: The Platform Design Paradox24

is active, buyers and sellers strictly prefer platform i to platform j. Hence, ω∗i is
absorbing. If platform i is inactive, buyers and sellers do not switch at all. Hence,
every state with an inactive platform i is absorbing.
To complete the proof consider a non-monomorphic state ω with an active plat-

form i. Then, buyers and seller strictly prefer platform i to platform j and there is a
positive probability path to ω∗i .
(e) Let βi = 1 and βj < 1. Then, sellers never switch and platform j is always

inactive. If platform i is active, buyers strictly prefer i to j. Hence, every state in ΩBi
is absorbing. If platform i is inactive, buyers and sellers do not switch at all. Hence,
every state with an inactive platform i is absorbing. Consider a state ω /∈ ΩBi with
an active platform i. Then, buyers strictly prefer platform i to platform j and there
is a positive probability path to a state in ΩBi .
(e) Ift βi, βj < 1, neither buyers nor sellers switch, hence every state is absorbing.

Proof of Theorem 1. (a) For βi < 1, no trade occurs at platform i independent of
the number of buyers or sellers at platform i.
(b) Let X ∈ A, then γ(X) ≥ |A| − 1 as at least one mistake is needed for a

transition between any two absorbing sets. A transition between any two absorbing
states ω,ω0 with ||Mi(ω)| − |Mi(ω

0)|| + ||Ni(ω)| − |Ni(ω0)|| = 1 is possible with one
mistake. Also a transition from a cross-state ω0i to ω∗j is possible with one mistake:
Consider ω0i and a buyer who (by mistake) switches to platform j. As platform i
is inactive and buyers receive strictly positive profits at platform j, by Assumptions
B1 and B2 there is a positive probability path of the unperturbed dynamics to ω∗j .
Hence γ(X) = |A|− 1 for all X ∈ A and every state in A is stochastically stable.
(c) Let βj = 1. The absorbing states are ω∗i ,ω

0
i , and the states in Ω

B
j . A transition

from ω∗i to an element in ΩBj ∪ {ω0i } needs at least two mistakes because buyers and
sellers receive strictly positive profits at i. Hence, γ(ω) > |A|− 1 for ω ∈ ΩBj ∪ {ω0i }.
A transition between any two states ω,ω0 ∈ ΩBj with ||Mj(ω)| − |Mj(ω

0)|| = 1 is
possible with one mistake. A transition from the cross-state ω0j to ω∗i is possible
with one mistake: Consider ω0j and a buyer who (by mistake) switches to platform
i. As platform j is inactive and buyers receive strictly positive profits at platform i,
by Assumptions B1 and B2 there is a positive probability path of the unperturbed
dynamics to ω∗i . In the same way, one can also construct a positive probability path
(with one mistake by a seller) from ω0i to ω∗i . Hence, γ(ω

∗
i ) = |A| − 1 and ω∗i is the

only stochastically stable state.
Let βj < 1. Then, A consists of ω∗i and the states without active platforms. A

transition from ω∗i to a state with two inactive platforms needs at least two mistakes
because buyers and sellers receive strictly positive profits at i. Hence, γ(ω) > |A|− 1
for ω ∈ A\{ω∗i }. A transition between any two states ω,ω0 ∈ A\{ω∗i } with ||Mi(ω)|−
|Mi(ω

0)|| + ||Ni(ω)| − |Ni(ω0)|| = 1 is possible with one mistake. A transition from
the cross-state ω0j to ω∗i is possible with one mistake as well, exactly as in the case
βj = 1. Hence, γ(ω∗i ) = |A|− 1 and ω∗i is the only stochastically stable state.

Proof of Lemma 2. Follows directly from P (ω,ω0) = P (eω, eω0) ∀ω,ω0 ∈ Ω which
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holds for si = sj due to platform symmetry (recall Assumption A).

Proof of Lemma 3. If pi < pj, buyers strictly prefer platform i to platform j
whenever it is active. Lemma 1(a) implies that the states ω∗i , ω

∗
j , ω

0
i , and ω0j form the

only absorbing sets. A single experiment suffices for a transition from a cross state
to a monomorphic state: Consider without loss of generality ω0i and suppose a buyer
switches (by mistake). Then, platform j is active and platform i is not. Buyers and
sellers strictly prefer platform j, and there is a positive probability path to ω∗j . In
contrast, at least two experiments are necessary for a positive probability path from a
monomorphic state to another monomorphic state or a cross-state: Consider without
loss of generality ω∗i . As long as only one trader switches (by mistake), platform
j remains inactive and platform i is strictly preferred by buyers and sellers. As a
consequence, γ(ω0i ) ≥ 5, γ(ω0j ) ≥ 5, γ(ω∗i ) ≥ 4, and γ(ω∗j ) ≥ 4. There is a positive
probability path with two experiments from ω∗j to ω

∗
i : Consider ω

∗
j and suppose that

a buyer and a seller switch (by mistake) to platform i. Then, platform i is active and
buyers strictly prefer platform i to platform j. By Assumptions B1 and B2, there is
a positive probability that only buyers and sellers at j receive revision opportunity.
But then, ω∗i is reached with positive probability. Hence, γ(ω

∗
i ) = 4 < 5 ≤ γ(ω0i ) and

γ(ω∗i ) = 4 < 5 ≤ γ(ω0j ) which shows Part (a). Part (b) follows from γ(ω∗j ) ≥ 4.
Proof of Lemma 4. By the proof of Lemma 3, γ(ω∗i ) = 4 if βi,βj > 1 and pi < pj.
By Lemma 1(a), only the monomorphic states can be stochastically stable. Hence, a
necessary and sufficient condition for the stochastic stability of ω∗j is γ(ω

∗
j ) = 4.

Since pi < pj, buyers never switch to platform j as long as i is active. Hence,
ω∗j has to be reached through switching of all sellers to platform j and a subsequent
switch of all buyers to the only remaining active platform.
In case (a), under independent inertia there is positive probability that all sellers

at platform j simultaneously receive the opportunity to revise. If one seller and buyeren ∈ N are already present at platform j, sellers will switch to j if den( βjc

1−fj )(βj − 1) >
1

|M |−1DN\{en}
³

βic
1−fi

´
(βi − 1). Hence, this condition is sufficient for the stochastic

stability of ω∗j . To see that it is also necessary suppose that it is violated. Then no
seller will switch to j after one seller and any buyer en induced trade on this platform.
As a consequence, more than 2 experiments are needed to reach ω∗j .
Consider part (b) (asynchronous learning). Suppose one seller and buyer en switch

to platform j by mutation. By B1 and B2, with positive probability in the subsequent
rounds only sellers and buyers at platform i receive the opportunity to revise. If
1

|M |−1den( βjc

1−fj )(βj − 1) > DN\{en}
³

βic
1−fi

´
(βi − 1) it follows that 1

|Mj |den( βj
1−fj )(βj − 1) >

1
|M |−|Mj |DN\{en}

³
βi
1−fi

´
(βi−1) for allMj with 1 ≤ |Mj| ≤ |M |−1. Hence, sellers prefer

platform j whenever it is active and there are at least one and less than |M | sellers
already there. Thus, there is a positive probability path with just two mutations from
ω∗i to ω

∗
j where first all sellers move to platform j and subsequently all buyers switch

to j as it is the only active platform. Hence, the condition displayed in the Lemma is
sufficient for the stochastic stability of ω∗j . To see that it is also necessary, suppose it
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is not fulfilled. Then a seller at platform i prefers to stay there if all other sellers are
at platform j together with any buyer en. Under asynchronous learning this implies
that at least a third mutation is needed to reach ω∗j , which implies that this state
cannot be stochastically stable by Theorem 1(a).

Proof of Lemma 5. Follows from the fact that trade is never possible on platforms
with βi < 1 (see Theorem 1(a)).

Proof of Lemma 6. (a) follows from Lemma 2 as the price and the traded quantity
in ω at platform i are identical to those in eω at platform j. (b) follows from Theorem
1(b). (c) follows from Theorem 1(c).

Proof of Proposition 1 For β < 1 the profits for a monopolistic designer are zero,
whereas for β ≥ 1 and for 0 < f < 1 the profits are strictly positive. Hence, β∗ ≥ 1.
Now assume for a moment that β and f are continuous variables with f ∈ [0, 1] and
β ∈ [1,∞). Denote p = βc

1−f and recall that limp→∞ dn(p)p = 0 for all n ∈ N . Hence,
it must hold that 0 < f∗ < 1. Differentiating the designer’s profits yields (for β ≥ 1)

∂πD
∂f

(β, f) = pDN(p) + f
∂p

∂f
[DN(p) + pD

0
N(p)]

∂πD
∂β

(β, f) = f
∂p

∂β
[DN(p) + pD

0
N(p)]

where ∂p
∂f
= βc

(1−f)2 > 0 and ∂p
∂β
= c

1−f > 0. Let the optimal price be p∗ = β∗c
1−f∗ .

Since 0 < f∗ < 1, the first order conditions for the designer’s optimum imply that
∂πD
∂f
(β∗, f∗) = 0, thus DN(p∗) + pD0

N(p
∗) < 0. This implies that ∂πD

∂β
(β∗, f∗) < 0,

hence the designer’s profits are maximized at the corner solution β∗ = 1.
In our model β and f are not continuous variables. However, if the grid of feasible

fees is fine enough, the optimal fee approximates the one of the continuous case, and
hence the optimal β is 1 also in the discontinuous case. Hence we conclude that a
monopolistic market designer would introduce a market clearing platform.

Proof of Lemma 7. Assume to the contrary that there exists a pure strategy
si = (βi, f i) with σ∗i (si) > 0 and βi < 1. By Lemma 5 this pure strategy gives
designer i a profit of zero against all strategies of j. Hence, πD,i(si,σ∗j ) = 0, and,
since σ∗i is an equilibrium strategy, πD,i(σ∗i ,σ

∗
j ) = 0.

Suppose that, in equilibrium, j chooses only platforms with βj < 1. That is,
βj < 1 for all sj = (βj, fj) ∈ S with σ∗j (sj) > 0. If designer i chooses with certainty a

platform s0i with β
0
i > 1, Lemma 6(c) implies that πD,i(s

0
i,σ

∗
j ) = f

0
i

β0ic
1−f 0i

DN
³

β0ic
1−f 0i

´
> 0.

Since πD,i(σ∗i ,σ
∗
j ) = 0, this contradicts that (σ

∗
i ,σ

∗
j ) is a Nash equilibrium.

Thus, there must exist an sj with βj ≥ 1 such that σ∗j (sj) > 0. Then, if de-
signer i deviates to the pure strategy s0i = sj, πD,i(s0i,σ

∗
j ) = σ∗j (sj)fiERi(s

0
i, sj) +P

sj∈S8sj
σ∗j (sj)πD,i(s

0
i, sj). Since by Lemma 6(a) ERi(s

0
i, sj) > 0, we conclude that

πD,i(s
0
i,σ

∗
j ) > 0, again contradicting that (σ

∗
i ,σ

∗
j ) is a Nash equilibrium.
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Proof of Theorem 2. By the previous lemma, only platforms with β ≥ 1 will
be designed in equilibrium. Assume by contradiction that there exist some pure
strategies si = (βi, fi) with σ∗i (si) > 0 and βi = 1. Denote a strategy of this type
by si = (1, fi) and let p = c

1−fi
. Denote the carrier or support of σ∗j by C(σ

∗
j ) =©

sj = (βj, fj) ∈ S
¯̄
σ∗j (sj) > 0

ª
.

Let πD,i(si,σj) denote the expected payoff if designer i chooses si for sure and j
chooses the probability distribution σj. Suppose that, for all sj ∈ C(σ∗j ) we actually
had that βj > 1.This implies by Lemma 6(c) that πD,i(σ∗i ,σ

∗
j ) = πD,i(si,σ

∗
j ) = 0.

Take any s0i = s
0
j ∈ C(σ∗j ). By Lemma 6(a), and recalling that πD,i(si, sj) ≥ 0 for all

si, sj, we obtain that

πD,i(s
0
i,σ

∗
j ) ≥ σ∗j (s

0
j)f

0
jERj(s

0
i, s

0
j) > 0.

Hence, player i would have an incentive to deviate from σ∗i , a contradiction.
We conclude that there exists some sj ∈ C(σ∗j ) with βj = 1. Let C1(σ∗j ) =©

sj = (βj, fj) ∈ C(σ∗j ) |βj = 1
ª
. Notice that, since si = (1, fi), we have by Lemma

6(c) that πD,i(si, sj) = 0 for all sj ∈ C(σ∗j ) with βj > 1. Then, by Lemma 6(a,b),

πD,i(si,σ
∗
j ) <

X©
σ∗j (sj)fipDN (p)

¯̄
sj ∈ C1(σ∗j )

ª
However, for any s0i with β0i > 1 and f

0
i = fi,

πD,i(s
0
i,σ

∗
j ) ≥

X©
σ∗j (sj)fiβ

0
ipDN (β

0
ip)
¯̄
sj ∈ C1(σ∗j )

ª
due to Lemma 6(c) (the inequality follows from the fact that πD,i(s0i, sj) ≥ 0 for all
sj). This latter expression is continuous in β0i. Thus, for β

0
i approaching one from

above, πD,i(s0i,σ
∗
j ) > πD,i(si,σ

∗
j ) = πD,i(σ

∗
i ,σ

∗
j ). Hence, if the grid is fine enough

21

player i has an incentive to deviate from σ∗i to an institution with β0i > 1 but close
enough to 1, a contradiction.

Proof of Proposition 2. Lemma 4 (a) implies that if βic
1−fi <

βjc

1−fj , ω
∗
j is stochastically

stable iff

d

µ
βjc

1− fj

¶
(βj − 1) > d

µ
βic

1− fi

¶
(βi − 1). (*)

Part (b) follows from (a). To see (a), assume to the contrary that β = 1+δ for all
platform characteristics in the support of σ∗i and σ∗j . Denote by f i and f j the highest
fee of a platform in the support of σ∗i and σ∗j , respectively. Without loss of generality
assume that f j ≥ f i. We can distinguish three cases:
(i) f j > f i: Condition (*) shows that full coordination on platform sj = (1+δ, f j)

is not stochastically stable vis a vis any platform characteristics in the support of σ∗i .
Hence, this strategy earns designer j zero profits, and since it is assumed to be in

21The grid can be assumed to be ex ante fine enough by a uniform continuity argument.
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the support of j’s equilibrium strategy, j’s equilibrium profits would be zero. But j
could always guarantee himself a strictly positive profit by playing the same (possibly
mixed) strategy as i. Hence, case (i) is inconsistent with Nash equilibrium.
(ii) f i = f j > fmin. Condition (*) shows that full coordination on platform

si = (1 + δ, f i) is not stochastically stable vis a vis any platform characteristics in
the support of σ∗j but platform sj = (1 + δ, f j). Furthermore, Lemma 2 implies that
μ∗(ω∗i ) = μ∗(ω∗j ) =

1
2
if si is chosen by i and sj is chosen by j. Therefore,

πD,i(si,σ
∗
j ) = σ∗j (sj)

1

2
f i
(1 + δ)c

1− f i
|N |d

µ
(1 + δ)c

1− f i

¶
.

But choosing the alternative platform design s0i with f
0
i = f j − γ, and β0i = 1 + δ

implies that 1+δ
1−f 0i

c < 1+δ
1−fj

c and d
³
1+δ
1−fj

c
´
δ < d

³
1+δ
1−f 0i

c
´
δ. Hence, again by (*)

μ∗(ω∗i ) = 1 if s
0
i is chosen by i and sj is chosen by j, which yields

πD,i(s
0
i,σ

∗
j ) ≥ σ∗j (sj)(f i − γ)

(1 + δ)c

1− f i + γ
|N |d

µ
(1 + δ)c

1− f i + γ

¶
.

If the grid of F is fine enough, i.e. if γ is small enough, this implies πD,i(s0i,σ
∗
j ) >

πD,i(si,σ
∗
j ), a contradiction with Nash equilibrium.

(iii) f i = f j = fmin - both designers choose si = sj = (1 + δ, fmin) for sure. Then
Condition (*) guarantees the existence of a β

0
j > 1 + δ and a f 0j > fmin such that

platform j is stochastically stable vis a vis sj if the grid F is sufficiently fine, i.e.
if γ is sufficiently small. Furthermore, if εp is not much larger than 1, designer j’s

profits from full coordination on his platform with design s0j, i.e. |N | f 0j
β0jc

1−f 0j
d
³

β0jc

1−f 0j

´
,

is strictly larger than the respective profit from choosing sj, i.e. |N | f j (1+δ)c1−fj
d
³
(1+δ)c

1−fj

´
.

It remains to show that no decrease in μ∗(ω∗j ) overcompensates this effect. To see
this suppose that β

0
j > βj = 1 + δ in such a way that d(p0j)(β

0
j − 1) > |M ||N |d(pi)δ

(feasible if δ is sufficiently small). Then sellers prefer platform j with characteristics
s0j whenever it is active, while buyers prefer platform i with characteristics si. With
independent inertia and |M | = |N |, this establishes symmetry of the transition matrix
P and hence μ∗(ω∗i ) = μ∗(ω∗j ) = 1/2. Therefore, choosing in this case β

0
j > 1 + δ and

f 0j > f j does not reduce μ∗(ω∗j ) while it strictly increases revenue in ω∗j . Hence, sj
with βj = 1 + δ and f i = fmin can not be a best response to si = (1 + δ, fmin).

B. Robustness of the Results
We have derived our results under two crucial assumptions. First, designers are
assumed to be rational while traders are not (asymmetric rationality). Even though
this assumption seems to be justified in a wide range of applications, one might be
interested in the robustness or our results with respect to the (bounded) rationality
of designers. We will discuss the case of learning designers in Section B.1. Second,
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we assumed that sellers have a constant-returns-to-scale technology. In Section B.2
we will analyze an example with decreasing returns that illustrates the robustness of
our findings.

B.1. Boundedly Rational Designers. To account for learning designers, we
have to extend the state space by the feasible design configurations, and we have
to redefine the (unperturbed learning process). The state space is given by Ω =
{1, 2}n × {1, 2}m × S2. A state ω ∈ Ω denotes the location of buyers and sellers and
the design of both platforms. Traders learn according to Assumption A. The learning
process of designers is defined as follows.

Assumption C A designer who gets the opportunity to revise, observes the revenues
and designs of platforms in the last period. If revenues differ, he chooses the
design which led to a higher revenue (imitation). If both platforms generate
zero profits, he randomizes with positive probability in the next round over all
possible design alternatives (innovation).22 In case of identical positive profits
at both platforms designers stick to their former choice (inertia).

We further assume B1 and B2 (on the enlarged state space and for three instead of
two different types of players).23 The perturbations are defined as in Section 2.1. The
perturbed process is again irreducible. We now prove the counterpart of Theorem 1
in the modified learning model.

Proposition 3. Assume A, B1, B2, and C. Then, βi > 1 for i = 1, 2 in every
stochastically stable state.

Proof. Throughout this proof, we adopt the convention that for a given plat-
form i the other platform is denoted by −i.
First, observe that the monomorphic state ω∗i with βi ≥ 1 (and β−i = βi) is an

absorbing state of the unperturbed process. Second, each cross-state with designers
randomizing over all designs forms a (non-singleton) absorbing set.
A platform i with a positive number of buyers and sellers can not have a price

bias βi < 1 in any absorbing set. To see this, consider a state ω with Ni(ω) 6= ∅
and Mi(ω) 6= ∅ and βi < 1. Case 1: Suppose β−i ≥ 1 and platform −i is active.
Then, there is a positive probability that i imitates −i (inducing βi ≥ 1) without
any migration of buyers and sellers. Both platforms yield positive profits and have
the same design. For this case Assumption C implies that designs can only change
if a cross state is reached. But a cross state (with randomizing designers) forms an
absorbing set. Hence, the unperturbed process never reaches a state with βi < 1 and
a positive number of buyers and sellers at i again. Case 2: Suppose β−i ≥ 1 and
platform −i is inactive or β−i < 1. Then, both platforms generate profits of zero

22For simplicity, we assume that designers randomize over S with full support.
23This specification also allows for different learning speeds for traders and designers, allowing

e.g. for the likely situation where buyers and sellers revise with a larger probability than designers.
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and designers randomize. With positive probability, platform i will have βi > 1 and
generate positive profits for designers, buyers, and sellers while β−i < 1. Then, ω∗i
with βi > 1 is reached with positive probability.
Moreover, a state where both platforms are active and one has bias βi > 1 and the

other bias β−i = 1 can not be part of an absorbing set. To see this, observe that from
such a state there is always a positive-probability path to ω∗i because sellers strictly
prefer platform i and there is a positive probability that they are the only ones with
an opportunity to revise for sufficiently many periods.
Hence, absorbing sets are of three kinds. First, states where all active platforms

have price biases β > 1. Denote the set of such absorbing sets by A0 and the set of
all other absorbing sets by A1. Second, states where either two active platforms have
price bias β = 1, or the only active platform has price bias β = 1. Last, cross states
where no platform has a positive number of buyers and sellers.
To prove the Proposition, we compare the stochastic potential of absorbing sets

in A0 and A1. First, observe that it takes at least two mistakes to leave an absorbing
set in A0. If only one platform i is active, the corresponding absorbing state will be
ω∗i . Because both types of traders receive positive profits, mistakes by both types
of traders are needed to induce another active platform. It takes also more than
one mistake to reach a cross state. If both platforms are active, designers generate
positive profits and designs will only change to β ≤ 1 if a cross state is reached
(inertia and imitation do not lead to platforms with β ≤ 1; and designers innovate
only in cross-states). However, from a state with two active platforms, it takes more
than one mistake by traders to reach a cross-state.
If there is only one active platform i, with bias βi = 1, then platform −i also has

β−i = 1 due to imitation. At i all buyers and at least one seller are assembled. The
different absorbing states differ only with respect to the number of sellers and can be
connected to a (restricted) tree with one mistake per absorbing set (see the proof of
Theorem 1). This tree can be connected to the cross states with one mistake. If two
active platforms have price bias β = 1, prices have to be the same at both platforms
and sellers do not make any profits on both platforms. The respective absorbing sets
can be connected with one mistake (i.e., a switching seller) per absorbing set, and the
resulting tree can again be connected to the cross states with one mistake. Hence,
there is a tree with root in some cross state connecting all absorbing sets in A1 with
one mistake per absorbing set. But a cross state can be left with one mistake towards
a monomorphic state in A0 (due to innovation, there is a positive probability that
there is a platform i with βi > 1, and with one mistake, this platform becomes active
and is strictly preferred by all traders). Denote by eω ∈ A0 the state which minimizes
the number of mistakes needed to form a tree restricted to A0. For a tree in Ω, the
minimal cost of a eω-tree is |A1| + xeω where xeω is the minimal number of mistakes
needed to connect all states in A0 to the respective eω-subtree. Now consider a state
ω̂ ∈ A1. To construct a minimal-cost ω̂-tree, we take the eω-tree, delete the outgoing
link of ω̂ (which has cost one), and add a (least-resistance) link from eω to a state in
A1 (of cost larger than one). Hence, γ(ω̂) > γ(eω).
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In every stochastically stable state traders are therefore located at a platform
i with βi > 1. We conclude that boundedly rational platform designers exhibit
qualitatively the same behaviour as rational ones: Platform competition forces them
to introduce non-market clearing platforms only.

B.2. Decreasing Returns to Scale. Consider the following example. Two iden-
tical sellers produce with costs given by c(q) = 1

2
q2. For given prices (pi) and fees

(fi) at a platform i, their profit is πm,i(q, pi) = (1 − fi)piq − 1
2
q2 and maximization

leads to the supply function s(pi) = (1 − fi)pi. Two identical buyers, each with
income of one unit, consume q units of the commodity traded at the platforms and
x units of a second commodity which price is normalized to 1. The buyers’ util-
ity is given by πn(q, x) = 2

√
q + x and utility maximization for a given price pi at

the respective platform yields the buyer’s demand function d(pi) = 1/p2i . Equat-
ing demand and supply gives the market clearing price at platform i in state ω
p∗i (ω) = ri(ω)

1/3(1 − fi)−1/3 (with ri(ω) = |Ni(ω)|
|Mi(ω)|). Traders’ and designers’ profits

depend on state and design and are calculated the same way as before. For our
purposes it suffices to note that sellers are not rationed whenever βi ≤ 1 and their
corresponding profit πm,i(Mi(ω), Ni(ω), si) =

1
2
(1−fi)4/3β2i r

2/3
i is increasing in βi and

decreasing in fi. Analogously, sellers are rationed for βi > 1 and profits amount to
πm,i(Mi(ω), Ni(ω), si) = (1−fi)4/3 1βi r

2/3
i (1− 1

2β3i
) which is also monotonically decreas-

ing in fi but reaches a (global) maximum at βi = 21/3.24

For expositional ease we further specify the learning model and assume indepen-
dent inertia within types. That is, in every round any seller m ∈ M is allowed to
revise his location decision with probability ρS ∈]0, 1[ while every buyer is allowed to
revise with probability ρB ∈]0, 1[.
Full coordination on any platform is an absorbing state (both types of traders get

strictly positive profits on any active platform). Analogously to Lemma 1, it is easy
to see that the monomorphic states and the states in Ω0 = {ω|πm,i = πm,j,πm,i =
πm,j} form the only absorbing sets. Moreover, only the monomorphic states can
be stochastically stable. The designers’ profits, though, depend not only on the
support of the limit invariant distribution μ∗, but also on its weights for the different
(monomorphic) states. Hence, analyzing this setting requires a direct application of
Lemma 3.1 in Freidlin and Wentzell (1984).
To economize notation, identify a state with a pair (k, l) where k is the number

of selelrs and l the number of buyers present at platform i. Let P ∗i = P ((1, 1),ω
∗
i )

and P ∗j = P ((1, 1),ω∗i ). It is easy to see that a minimal-cost tree in Tω∗i is as fol-
lows. State (1, 1) is connected to ω∗i , with transition probability P

∗
i . States (0, 0),

(0, 1) , and (1, 0) are connected to (1, 1) with transition probabilities P ((0, 0), (1, 1)) =
ε2, P ((0, 1), (1, 1)) = ε(1 − ρB)

2, and P ((1, 0), (1, 1)) = ε(1 − ρS)
2. All other

states are directly connected to ω∗i , with transition probabilities P ((0, 2),ω
∗
i ) = ερS,

P ((1, 2),ω∗i ) = ρS, P ((2, 0),ω∗i ) = ερB, and P ((2, 1),ω∗i ) = ρB. Hence, the product

24We assume for simplicity from now on that δ is such that 21/3 ∈ B.
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of transition probabilities in this tree is ρ2Bρ
2
S(1− ρB)

2(1− ρS)
2P ∗i . The probabilities

for ω∗j can be derived by a permutation of indices B and S, thus the corresponding

product is ρ2Bρ
2
S(1−ρB)2(1−ρS)2P ∗j . In the limit,

μ∗(ω∗j )

μ∗(ω∗i )
is determined by the quotient

of these two products, which simplifies to P ∗i /P
∗
j . This leads to the following useful

result (as sellers and buyers are identical profits only depend on the number of sellers
and buyers at a platform).

Lemma 8. Suppose πm,i(1, 1, si) > πm,j(1, 1, sj). Then for every κ > 0 there is a
ρS < 1 such that μ∗(ω∗j ) < κ for all ρS > ρS.

Proof. It is easy to see that ω∗i is the only stochastically stable state if and only
if πm,i(1, 1, si) > πm,j(1, 1, sj) and πn,i(1, 1, si) > πn,j(1, 1, sj) (as it then needs more
than 2 mistakes to get from ω∗i to ω∗j ). If πn,i(1, 1, si) = πn,j(1, 1, sj), P ∗i = ρS(1 −
ρB)ρB+

1
2
ρB(1−ρS)ρS+ 1

2
ρBρS and P ∗j =

1
2
ρB(1−ρS)ρS. If πn,i(1, 1, si) < πn,j(1, 1, sj),

P ∗i = ρS(1− ρB)ρB and P ∗j = ρB(1− ρS)ρS. Hence, in both cases P ∗i /P
∗
j approaches

zero if ρS → 1 and limρS→1 μ
∗(ω∗j ) = 0.

Intuitively, if sellers learn much faster then buyers, only the platform that offers
higher revenues to sellers will survive with a positive probability if both platforms
are active. This induces the following strict Nash-Equilibrium.

Proposition 4. There exists a ρS < 1 such that, for all ρS > ρS, the platform profile
(s∗i , s

∗
j) with f

∗
i = f

∗
j = fmin and β∗i = β∗j = 2

1/3 is a strict Nash equilibrium.

Proof. As sellers’ profits decrease in fi and reach their global maximum at
β = 21/3 it is clear that πm,i(1, 1, si) < πm,i(1, 1, s

∗
i ) for any si 6= s∗i . Suppose both s∗i

and some institution si 6= s∗i are available, and let ω be the state where all traders are
at si. By Lemma 8, for any κ > 0 there exists ρS such that μ∗(ω) < κ for all ρS > ρS.
Hence, for κ small enough (and since there are finitely many strategies), we obtain
πD,i(si, s

∗
j) < πD,i(s

∗
i , s

∗
j) for all si 6= s∗i ; thus (s∗i , s∗j) is a strict Nash equilibrium.

It can be shown that, for ρS large enough, βi ≤ 1 is not chosen by any designer in
any pure strategy equilibrium. Moreover, in any mixed strategy equilibrium (σ∗1,σ

∗
2)

there is a least one designer i where si ∈ C(σ∗i ) implies that βi > 1.25 Note also that
the condition on ρS is a sufficient, but not a necessary one. For a smaller ρS we cannot
characterize the limit invariant distribution, and hence do not know the equilibrium
behaviour of the designers. The result might hold even for ρS < ρS, depending on
the details of the demand and supply conditions.
These results illustrate that the “Platform Design Paradox”, i.e. the fact that

competition between market designers might lead to the design of non-market clearing
institutions, also appears in the case of decreasing returns to scale.

25A proof of these claims and more detailed exposition of the material discussed in Appendix B
is available on request.


