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Abstract. We propose a new way of estimating a stochastic frontier model with

time-varying firm effects. By means of nonparametric smoothing of categorical data

we allow for completely unspecified time-varying firm effects. Furthermore it is well

established that smoothing of cell probabilities of sparse contingency tables improves

the finite sample performance compared to the frequency estimator. We are taking

advantage of this in a panel data context with time-varying firm effects. By Monte

Carlo simulations it is shown that smoothing of the time-varying firm effects works very

well compared to the parametric panel data method proposed by Cornwell, Schmidt &

Sickles (1990). The proposed method is applied on Indonesian rice farmer data. The

most pronounced difference in our analysis relative to previous studies that analyzed

this data is considerable larger average estimated efficiency levels. Thus the farmers

appear to be less inefficient than in previous studies.
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1. Introduction

It is common to estimate technological efficiency scores based on stochastic frontier

models designed for panel data with large N (number of firms) and small T (number

of time periods). Recent examples include Han, Orea & Schmidt (2005), Yao & Shively

(2007), Abdulai & Tietje (2007), Ahn, Lee & Schmidt (2007) and Millimet & Collier

(2008) among others. However the technical efficiency scores are normally based on

varying intercepts which are only consistent in the time dimension. Furthermore, the

focus in most studies has been on the N-asymptotics of the estimates of the production

function parameters instead on the finite time dimension properties of the firm effects.

The purpose of this paper is to improve the small sample approximations of the

technical efficiency scores without imposing restrictive structures on the time-varying

firm effects. Unlike existing methods we will leave these effects completely unspecified

by means of nonparametric smoothing of categorical variables, albeit in a semiparametric

setting.

It is well known that smoothing of sparse cell probabilities of contingency tables

improves the finite sample properties compared to the frequency estimator (Simonoff

1983, Burman 1987, Hall & Titterington 1987, Grund 1993, Burman 2004). If the

categorical variable has a natural ordering (e.g. bad, neutral, good) or the variable

is a discretization of a continuous variable, it makes sense to borrow information from

nearby data points. It has also been shown that gains can be made, in finite MSE (”mean

squared error”) sense, through smoothing of unordered variables by inducing some bias

to reduce variance (Brown & Rundell 1985). To smooth the unordered firm effect should

give efficiency gains compared to parametric estimation which splits the data for each

firm into subsets containing only T observations each.1 We therefore want to investigate

the extent for which this phenomenon applies to panel data estimation of time-varying

firm effects.

The main focus in earlier studies is to model time-varying firm effects, in a parametric

framework, without imposing restrictive assumptions on the effects. Some kind of re-

striction is needed to address identification, either by clustering firms into groups or by

restricting the time pattern. Cornwell et al. (1990) assume that the firm effects changes

quadratically over time. Lee (1993) and Ahn, Lee & Schmidt (2001) model firm effects

that change with one unspecified time factor that is common to all firms. Lee (2006)

extended the modeling to firm effects that change group-wise over time. Ahn, Lee &

Schmidt (2007) use a novel GMM framework to estimate a p-factor model that enables

firm effects to change over time by p unspecified time factors.

1The parametric approach is a direct analog to the unsmooth and inefficient frequency estimator of

contingency tables.
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Through nonparametric smoothing of categorical data we can avoid making poten-

tially restrictive assumptions about the bivariate structure of the time-varying firm ef-

fects. However naturally this comes with a cost: the estimator of the parameters of the

production function will be asymptotically biased under a fixed T assumption.2 This

is because the bias induced by smoothing does not shrink towards zero as N tends to

infinity.

The reminder of the paper is organized as follows: Section 2 presents the stochastic

frontier model. Section 3 proposes an estimation method for the model in Section 2.

Section 4 consists of Monte Carlo simulations. Section 5 provides an empirical example

while Section 6 concludes the paper.

2. A stochastic frontier model with time-varying firm inefficiencies

We assume there is an existing optimal technology at time t

(2.1) yt = f(xt)

where yt is optimal output at time t and xt is a k × 1 vector of inputs. If no further

assumptions are made the observed output for firm i at time t, yit, is either equal or less

than f(xit). We would like to call the difference inefficiency, however, in real life data

there may exist noise (weather, luck, measurement error etc.). We therefore assume the

following linear – stochastic – frontier model

(2.2) yit = δt + x′itβ − uit + ξit ≡ x′itβ + cit + ξit; i = 1, . . . , N, t = 1, . . . , T,

where xit is the k × 1 covariates vector, β is a k × 1 coefficient vector and cit = δt − uit

is the time-varying firm effects where δt is the frontier intercept at time t and uit (> 0)

is the measure of technical inefficiency of firm i at time t. ξit is an error term, for which

strict exogeneity is assumed, E(ξit|xis, cis) = 0, for all s, t ∈ T . 3

3. Estimation of the stochastic frontier model

The model (2.2) is no more than a special case of the commonly used partially linear

model. Let us derive an infeasible estimator by first taking the expectation of (2.2)

2This is a conjecture based on evidence from Monte Carlo simulations.
3Henderson & Simar (2005) have also modeled unspecified time-varying effects but with a fully

nonparametric specification of the production function. This is more general but inefficient if the number

of covariates is large due to the ”curse of dimensionality”. They do not make any Monte Carlo simulations

to probe the finite sample properties of their estimator. They also argue that their estimator is consistent

under Theorem 2.1 in Li & Racine (2003). However as we can judge this theorem does not subsume

discrete covariates. Although it could be extended to the case of mixed data as in Hall et al. (2007), we

do not see how it applies to the case where the number of discrete cells (i) increases at the same rate as

the number of observations (N).
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conditioning on cit

(3.1) E(yit|cit) = E(xit|cit)′β + cit

then subtract (3.1) from (2.2) gives

(3.2) yit −E(yit|cit) = (xit − E(xit|cit))
′ β + ξit.

The least squares estimator of β is under the standard assumptions
√

N -consistent and

asymptotically normally distributed. To obtain a feasible estimator the unknown func-

tions, E(xit|cit) and E(yit|cit), have to be estimated. Robinson (1988) showed that by

nonparametric regression under some regularity conditions these two expectations could

be estimated such that in turn the feasible estimator of β retains many of the prop-

erties of the infeasible estimator. However this is for the case of continuous covariates

of g(·). Robinson did not rule out the possibility of obtaining
√

N -consistency for the

case of discrete covariates with finite support. But this is not fulfilled in our case since

i is increasing with N . For the large N and fixed T case E(yit|cit) and E(xit|cit) can

never be estimated consistently (this of course applies for the parametric estimators as

well). The information about each firm only increases with T . When N increases we get

more firms but not more information about the already existing ones. Our conjecture is

therefore that the estimated β is asymptotically biased in fixed T settings.4

Nevertheless we argue that this bias will have little practical impact on the finite MSE

efficiency of the time-varying firm effects which is the primary interest of this paper since

the technical efficiency scores are based on these estimates.

Estimates of the time-varying firm effects, ĉit, are obtained by nonparametric kernel

regression of
(
yit − x′itβ̂

)
on (i, t). The estimated level of technical inefficiency for firm

i at time t is ûit = δ̂t − ĉit where δ̂t = maxj ĉjt.

For all conditional expectations, E(yit − x′itβ̂|cit), E(yit|cit) and E(xit|cit) the local

constant estimator is used

(3.3) Ê(Υjs|cit) =
(NT )−1

∑
j,s ΥjsL ((j, s), (i, t), λ)

p̂(i, t)

where

(3.4) p̂(i, t) = (NT )−1
∑

j,s

L ((j, s), (i, t), λ) ,

(3.5) L ((j, s), (i, t), λ) = `u × `o.

and Υjs stands for either one of the dependent variables (yit − x′itβ̂), yit or xit. In

the current setting the product kernel (3.5) consists of a univariate kernel that handles

4This is confirmed by the Monte Carlo simulations in Section 4.
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unordered data, `u, and a univariate kernel that handles ordered data, `o. The unordered

kernel is defined as

`u ((j, t), (i, t), λu) =

{
1, j = i

λu, otherwise.
(3.6)

Note that if λu = 0 the kernel is just an indicator function and p̂(i, t) is the unbiased

frequency estimator. On the other hand when λu = 1 the kernel is a uniform weighting

function and thus the firm effect is smoothed out (λu ∈ [0, 1]). Also note that if λu > 0

we are actually using information across firms.

For the time variable we use a kernel that takes the order into account,

`o ((i, s), (i, t), λo) =

{
1, s = t

λ
|s−t|
o , s 6= t.

(3.7)

This ordered kernel has the same properties as the unordered one at the limits of the

support. If λo = 0 the kernel is just the indicator function and if λo = 1 we have uniform

weights.5 Additionally note that this kernel uses the order of the variable. It ”borrows”

information from nearby cells depending on how far away s is from t. This is the main

difference to the unordered kernel that uses equal information from all other firms.

The most important implication using these two kernels arises when λu, λo > 0. In

this case information from all NT observations are used to some degree. This will be

particularly useful for the estimation of the time-varying firm effects, cit, which normally

are based on the T observations of each individual firm. When T is small, which is not

uncommon in applied settings, such estimators can be quite inefficient, statistically

speaking.

A crucial part of nonparametric analysis is to select an appropriate bandwidth vec-

tor. We have considered both least squares cross-validation (LSCV) and AICc (corrected

Akaike information criterion) (Hurvich et al. 1998). Our Monte Carlo simulations indi-

cate that the latter works better in finite samples. Li & Racine (2004) also compare the

LSCV and AICc selectors and come to the same conclusion.

4. Monte Carlo Simulations

In this section the finite sample performance of the proposed estimator is compared

to the parametric estimator proposed by Cornwell et al. (1990) (hereafter the CSS es-

timator). We chose the CSS estimator for two reasons. First, it allows for arbitrary

dependencies between the regressors and the time-varying firm effects. This type of

5These two kernels are adopted from Ouyang et al. (2009) who show in addition that with some

probability irrelevant discrete covariates are smoothed out when selecting the bandwidths by least squares

cross-validation (LSCV).
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model is far more popular among applied researchers than models based on the assump-

tion of no dependencies. Hence we are following accepted practice (see Kumbhakar 1990,

for an ML-estimator based on the assumption of no dependencies). Second, the estima-

tor is purely parametric which enables an explicit and correct data-generating process

(DGP).6 We were also considering the more general p-factor estimator proposed by Ahn

et al. (2007), however, this method involve critical instrumenting which we would like to

avoid both for the complexity this puts on the DGP and for the potential limitation this

estimator may encounters due to the scarceness of appropriate instruments in real-life

applications.

The Monte Carlo Simulations are divided into three sections. In all three sections the

time-pattern of the CSS estimator is a polynomial of degree two. However we alter the

time-pattern specifications of the DGP’s to compare the performance of the estimator

based on the semiparametric partially linear model (henceforth PLM) to the CSS estima-

tor when the latter is correctly specified (the time-pattern of the DGP is a polynomial of

degree two), over-specified (the time-pattern of the DGP is linear) and misspecified (the

time-pattern of the DGP is a sine curve). The motivation to use a quadratic specification

for the time pattern for the CSS estimator is that we have observed the frequent use of

this function in applied work. Recent examples include Choi, Stefanou & Stokes (2006),

Rodŕıguez-Álvarez, Tovar & Trujillo (2007), Rungsuriyawiboon & Stefanou (2008) and

Weill (2008) among others. The common use of this time-pattern can be derived back

to the original paper by Cornwell et al. (1990). The motivation for a quadratic time-

pattern made by Cornwell et al. is that it should allow for productivity growth. Many

of the following applied papers refer to Cornwell et al. to explain why they have chosen

the quadratic specification. We believe that productivity growth can be characterized

by a vast bulk of functions and instead of just picking on out of many we prefer to let

the data pick one for us.

The general specification for the three different DGP’s is

(4.1) ykit = β1z1it + β2z2it + ckit + εit.

where k = 1, 2, 3 represents the tree DGP’s depending on the specification of the time-

varying firm effects, ckit. The slope coefficients are set to β1 = β2 = 1 and the error

term, εit, is normal distributed with mean zero and unit variance.

The construction of ckit is quite involved since we want to make sure that (4.1) is

characterizing a production function and also to make sure that the impact of ckit does

not change for different DGP’s. To accomplish this we first obtain values from three

different time-patterns

6The firm effects are of course not explicitly modeled but the time pattern is, in a finite sample this

should give efficiency gains compared to the semiparametric model.
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(4.2) a1it = 0.6a1i + 0.3a2it + 0.6a3it
2,

(4.3) a2it = 0.6a1i + 0.6a2it

and

(4.4) a3it = 0.6a1i + 0.3a2it + 0.2a3i sin(2πt),

where ajit ∼ uniform(0, 1), j = 1, 2, 3 and t = 0.1, 0.2, . . . , 0.1 × T (T = 5, 10, 20).

In the next step we standardize all three variables akit, k = 1, 2, 3 and add the min-

imum plus 0.1 to each separate variable. Thus the three different time-varying firm

effect components, ckit, j = 1, 2, 3, are positive with minimum 0.1 and unit variance.

Note that the manipulations of akit do not change the functional form. Thus c1it is

upwards-sloping quadratic, c2it is upwards-sloping linear and c3it is a upwards-sloping

sine curve. These specifications are all examples of time-patterns that could characterize

productivity growth.

The regressors zjit, j = 1, 2, are computed by first standardizing

(4.5) x1it = N(0, 1) + 1.6cit,

(4.6) x2it = N(0, 1) + 0.6cit,

and second, to characterize inputs, we make these values positive (and nonzero) by

adding the minimum of each variable plus 0.1. Thus the final variables zjit, j =

1, 2 ranges from 0.1 and upwards with unit variance. Note that correlation is in-

duced between the time-varying firm effects and the regressors (corr(cit, z1it)≈ 0.85

and corr(cit, z2it)≈ 0.5). Finally note that since all variables, z1it, z2it and ckit are posi-

tive the conditional mean of the model (4.1) is positive. For a production function the

conditional mean of course should be positive otherwise we could have negative output.

For all three DGP’s 100 Monte Carlo simulations of all six combinations N = 50, 100, 200

and T = 5, 10, 20 are conducted.

4.1. Correctly specified time-pattern. In this subsection the results from the Monte

Carlo simulations based on the DGP with a quadratic time-pattern is presented (i.e. the

CSS estimator is based on a correct specification).7

Table 1 provides some results on how well the estimator for β1 of the partially linear

model perform.8 Table 2 shows the counterparts for the CSS model.

7Boxplots of the time-varying firm effects for the three DGP’s are provided in Appendix 3.

8The measures are bias, variance and mean square error.
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N T Bias Var. MSE

50 5 0.162 0.018 0.044

100 5 0.196 0.009 0.048

200 5 0.176 0.004 0.035

50 10 0.132 0.007 0.025

100 10 0.126 0.004 0.020

200 10 0.127 0.002 0.018

50 20 0.056 0.004 0.007

100 20 0.057 0.002 0.005

200 20 0.062 0.001 0.005

Table 1. Summary statistics of

Monte Carlo simulations for β1 of the

PLM model (CSS correctly specified)

N T Bias Var. MSE

50 5 -0.006 0.044 0.044

100 5 0.042 0.016 0.018

200 5 0.006 0.008 0.008

50 10 0.006 0.011 0.011

100 10 0.003 0.005 0.005

200 10 -0.002 0.003 0.003

50 20 -0.004 0.004 0.004

100 20 -0.003 0.002 0.002

200 20 0.004 0.001 0.001

Table 2. Summary statistics of

Monte Carlo simulations for β1 of the

correctly specified CSS model

Note the overall features of these two Tables: the bias of the PLM estimates do not

decrease with N (but with T ), the CSS estimates seem as unbiased as expected and the

variance of the PLM and the CSS estimates decreases with both N and T . Judging from

Table 1 and Table 2 the PLM slope estimates are less precise than the CSS estimates

measured by MSE. The simulations for β2 (placed in the appendix) show a similar

pattern although the PLM estimates are comparable and a bit better when T = 5.

The general conclusion is that the CSS method is slightly better when estimating the

slope coefficients although the PLM estimates are comparable in a few cases especially

when T = 5. This result was expected since the CSS estimator is unbiased and uses all

NT observations to reduce variance.

Table 3 contains the results for the estimates of the time-varying firm effects for each

model, cit.9 The P-values presented in the two tables are conducted from two-sided

Wilcoxon rank sum tests where the null hypothesis is that the location shift parameter

equals zero, i.e. that the two methods works equally well.10

The PLM estimates of the time-varying firm effects are significantly closer to the true

effects (cbit) compared to the CSS estimates when T equals 5 or 10, and when T = 20

the results are indistinguishable. This example reveals the merits of smoothing. Despite

9The values presented are obtained as the median of
∑

i,t
(ĉbit−cbit)

2

NT
, b = 1, . . . , 100, where cbit is

the true time-varying firm effect for firm i at time t while b indicate the Monte Carlo replication.
10The hypothesis tests are based on the two distributions:

∑
i,t

(ĉP LM
bit −cbit)

2

NT
and

∑
i,t

(ĉCSS
bit −cbit)

2

NT
, b = 1, . . . , 100.
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N T PLM CSS Ratio P-value

50 5 0.484 0.796 0.608 0.000

100 5 0.469 0.717 0.654 0.000

200 5 0.416 0.681 0.610 0.000

50 10 0.274 0.350 0.783 0.000

100 10 0.262 0.337 0.776 0.000

200 10 0.248 0.318 0.782 0.000

50 20 0.176 0.175 1.009 0.290

100 20 0.166 0.166 1.000 0.850

200 20 0.167 0.165 1.010 0.222

Table 3. Summary statistics of Monte Carlo simulations for the time varying firm

effects of each model (CSS correctly specified)

the correct and explicitly modeled time pattern of the CSS model the PLM estimator is

better or equally good in finite samples.

The inefficiency levels have also been estimated (see Appendix). The PLM results

for these inefficiencies are even stronger, compared to the CSS estimates, than for the

time-varying firm effects. The PLM estimates are significantly better for all settings

and when T = 5 the measure of fit values are at least four times larger for the CSS

estimates. The CSS estimator generally estimates the average time-varying effect very

well when N is large (it is a consistent estimator of the average when the time-pattern

is correctly specified). However the maximum of the time-varying effects, maxj ĉjt, are

generally poorly estimated along with each single time-varying effect (these estimates

are only consistent when T is large). And because of this the estimated efficiency levels,

ûit = maxj ĉjt − ĉit, are poorly estimated.

Thus the estimates of the slopes are generally better for the CSS model while the

opposite is true for the time-varying firm effects.

4.2. Over-specified time-pattern. The second subsection presents the Monte Carlo

results when the CSS model is over-specified. The results presented in Table 4, Table 5

and Table 6 reveal a similar pattern as in the previous subsection, i.e. the estimates of

the slope coefficients are generally more precise for the CSS estimator while the opposite

is true for the time-varying firm effects.

Unlike the results from the previews subsection the PLM-estimated firm effects are

not only significantly better for T = 5, 10 but also for T = 20.
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N T Bias Var. MSE

50 5 0.153 0.018 0.041

100 5 0.185 0.009 0.044

200 5 0.165 0.004 0.031

50 10 0.090 0.007 0.016

100 10 0.086 0.004 0.012

200 10 0.088 0.002 0.010

50 20 0.028 0.004 0.005

100 20 0.031 0.002 0.003

200 20 0.037 0.001 0.003

Table 4. Summary statistics of

Monte Carlo simulations for β1 of the

PLM model (CSS over-pecified)

N T Bias Var. MSE

50 5 -0.006 0.044 0.044

100 5 0.042 0.016 0.018

200 5 0.006 0.008 0.008

50 10 0.006 0.011 0.011

100 10 0.003 0.005 0.005

200 10 -0.002 0.003 0.003

50 20 -0.004 0.004 0.004

100 20 -0.003 0.002 0.002

200 20 0.004 0.001 0.001

Table 5. Summary statistics of

Monte Carlo simulations for β1 of the

over-specified CSS model

N T PLM CSS Ratio P-value

50 5 0.430 0.791 0.544 0.000

100 5 0.430 0.717 0.600 0.000

200 5 0.392 0.681 0.576 0.000

50 10 0.234 0.348 0.672 0.000

100 10 0.220 0.342 0.643 0.000

200 10 0.210 0.318 0.660 0.000

50 20 0.157 0.176 0.888 0.046

100 20 0.150 0.166 0.903 0.000

200 20 0.149 0.166 0.900 0.000

Table 6. Summary statistics of Monte Carlo simulations for the time varying firm

effects of each model (CSS over-pecified)

4.3. Misspecified time-pattern. In the third subsection the CSS model is misspeci-

fied when the DGP time-pattern is an upwards-sloping sine curve. Unlike the two other

simulations these results favor the PLM estimator as the determinant of the slope co-

efficients (at least when T is larger than 5). A clear pattern for the CSS estimator is

that the estimated slope coefficients as well as the firm effects are getting worse as T
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N T Bias Var. MSE

50 5 0.100 0.017 0.027

100 5 0.129 0.008 0.025

200 5 0.109 0.004 0.016

50 10 0.217 0.008 0.055

100 10 0.210 0.004 0.048

200 10 0.214 0.002 0.048

50 20 0.221 0.005 0.053

100 20 0.174 0.002 0.033

200 20 0.159 0.001 0.026

Table 7. Summary statistics of

Monte Carlo simulations for β1 of the

PLM model (CSS misspecified)

N T Bias Var. MSE

50 5 -0.004 0.044 0.044

100 5 0.043 0.016 0.018

200 5 0.007 0.008 0.008

50 10 0.227 0.009 0.061

100 10 0.214 0.004 0.050

200 10 0.208 0.003 0.047

50 20 0.447 0.005 0.204

100 20 0.285 0.003 0.084

200 20 0.236 0.002 0.057

Table 8. Summary statistics of

Monte Carlo simulations for β1 of the

misspecified CSS model

increases. The CSS estimates are converging to biased values and when T is large the

bias is worse since the sine curve is more pronounced.

N T PLM CSS Ratio P-value

50 5 0.334 0.788 0.424 0.000

100 5 0.333 0.721 0.463 0.000

200 5 0.309 0.681 0.453 0.000

50 10 0.529 1.022 0.518 0.000

100 10 0.528 1.005 0.525 0.000

200 10 0.564 1.082 0.521 0.000

50 20 0.413 3.394 0.122 0.000

100 20 0.338 1.549 0.218 0.000

200 20 0.302 1.121 0.269 0.000

Table 9. Summary statistics of Monte Carlo simulations for the time varying firm

effects of each model (CSS misspecified)

Overall, when the CSS model is misspecified the PLM estimator is preferable.

For all three sections the CSS estimates of the inefficiencies generally exaggerates how

inefficient a firm really is. This is especially true when T = 5. One example is presented

in Figure 1. Figure 1 shows the average inefficiencies over time for the CSS estimates
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and the PLM estimates compared to the true average inefficiencies for the DGP when

the CSS specification is correct and N = 200 and T = 5 (in Appendix Figure 6 and

Figure 7 show similar plots for the other two DGP’s).

1 2 3 4 5

0
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3

4

time

A
ve

ra
ge

 in
ef

fic
en

ci
es

True inefficencies
Parametetric (CSS)
Semiparametric (PLM)

Figure 1. Average inefficiency over time when N = 200 and T = 5 (CSS correctly specified)

For the first time point the CSS average is about twice as large as the true average

inefficiency. The CSS-estimated time-varying firm effects are likely to contain a lot of

noise when T = 5 since the estimator only uses information over T . Noise will cause

some extra variability, i.e. the estimated time-varying effects will be more spread out.

In turn this will imply that the estimated frontier farm, maxj ĉjt, will be further away

from the other estimates, ĉit, and the estimated inefficiencies, ûit = maxj ĉjt − ĉit, will

be exaggerated.

To summarize all three subsections we conclude that if focus is on estimating technical

efficiency scores (or inefficiency levels) based on the time-varying firm effects the PLM

estimator is a natural choice. This is true even if the CSS model is correctly specified,

in finite samples (small T ).

5. Empirical Application: Indonesian rice farmers

In this section Indonesian rice farmer data is analyzed. The Indonesian Ministry of

Agriculture surveyed the data from six villages in West Java (Erwidodo 1990). This is a
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balanced panel of 171 rice farmers over six growing seasons (three wet and three dry).11

Output is measured in kilograms of rice produced, and inputs are seed (kg), urea (kg),

trisodium phosphate (kg), labor (hours) and land (hectares). We assume the commonly

used Cobb-Douglas production function. Thus we are using log-transformed inputs and

output.12

In Table 10 the estimated slope coefficients of the two models are presented. 13 The

intra proportions of the PLM estimates are similar to the the intra proportions of the

estimated CSS coefficients. The coefficient of Land is largest, of Labor second largest

and so forth. Hence with the CSS estimates as a reference point the PLM estimates

seem plausible.

PLM CSS

Seed 0.112 0.145

Urea 0.100 0.107

TSP 0.037 0.068

Labor 0.259 0.295

Land 0.442 0.379

In-sample R2 0.93 0.95

Out-of-sample R2 0.94 0.80

Table 10. Estimated elasticities

Ahn et al. (2007) concluded that all of the six parametric models they estimate roughly

indicated constant returns-to-scale (the sums of the estimated elasticities are around

one). Judging from the estimated elasticities in Table 10 this seems valid for the partially

linear model as well.

Let us now put attention on the estimates of primary interest, i.e. the technical effi-

ciencies. In Table 11 summary statistics of the CSS estimated firm effects are presented.

The CSS estimates show a lot of variation. One farm in period 6 is 15 % as efficient as

11One piece of information not considered in previous studies that analyzed this data is gap in the

survey between the dry season of 1978 and the wet season 1982/1983. For the PLM estimator we will

take this gap into account. This is natural since the ordered kernel is designed to use this kind of

information.
12Ahn et al. (2007) have an excellent comparison of different panel data estimators based on this

data set and since we are using the same functional form the results are directly comparable.
13The In-sample R2 ≡ corr(yit, ŷit)

2 is computed on the whole sample while the Out-of-sample R2 is

computed by first randomly splitting the sample into one training sample and one evaluation sample. The

training sample is used to obtain estimates of the coefficients (and the bandwidths for the semiparametric

model) and in the second step the evaluation data is used together with the estimates obtained from the

training data to construct fitted values that in turn are used to obtain R2 ≡ corr(yit, ŷit)
2. The training

data consist of 145 farmers while the evaluation contains 26 farms (N = 145 + 26 = 171).
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t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

Min. 0.22 0.31 0.32 0.38 0.33 0.15

1st Qu. 0.42 0.47 0.47 0.49 0.45 0.30

Median 0.50 0.55 0.55 0.57 0.54 0.39

Mean 0.53 0.56 0.56 0.58 0.56 0.41

3rd Qu. 0.63 0.63 0.62 0.64 0.63 0.49

Max. 1.00 1.00 1.00 1.00 1.00 1.00

Table 11. Summary statistics of estimated technical efficiency scores for the CSS

specification

the most efficient farm this period. And for the same period 75 % of the farms are less

than 50 % as efficient as the frontier farm (for all time periods the third quartile firm

is less than 65 % as efficient). The overall view is that the CSS-estimates appear quite

noisy just as could be expected from estimation on six observations (T = 6). This is

also supported by the in-sample and out-of-sample R2-values (see Table 10). The out-of-

sample R2 for CSS is 0.95 and it drops to 0.8 when the out-of-sample procedure is used

instead. Estimates that contain a lot of noise should not perform well in out-of-sample

prediction.

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

Min. 0.62 0.66 0.69 0.67 0.60 0.60

1st Qu. 0.75 0.76 0.78 0.79 0.71 0.71

Median 0.80 0.79 0.82 0.83 0.76 0.76

Mean 0.80 0.80 0.82 0.83 0.77 0.77

3rd Qu. 0.86 0.84 0.85 0.87 0.82 0.82

Max. 1.00 1.00 1.00 1.00 1.00 1.00

Table 12. Summary statistics of estimated technical efficiency scores for the PLM

specification

The technical efficiency estimates for the PLM on the other hand are much less vari-

able (Table 12). For period 6 the least efficient farm is 60 % as efficient as the frontier

efficient farm compared to the 15 % for the CSS estimates. The least efficient farm in

every time period is actually comparable to the 3rd quartile firms of the CSS estimates.

The bandwidths selected by AICc are 0.012 for the firm index and virtually zero for the

time variable. Thus a small amount of information from all the 171 firms is used to es-

timate the technical efficiencies for each time period. Put differently the Indonesian rice

farmers in West Java have something in common that helps us to reduce the variance

in this sample.
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Figure 2. Variation of technical efficiency over time

There is also some variation in the time dimension for both models. Figure 2 shows

how the average estimated technical efficiencies develop over time. The PLM estimates

varies around 0.8 while the CSS estimates varies around 0.55 until period 6 where the

curve dips to below 0.4. There is a risk that the CSS method exaggerates the inefficiency

of the farmers, just like it did in the Monte Carlo simulations when T = 5.

An overall summary of the empirical results could be as follows. Although the esti-

mated elasticities do not differ much between the CSS and the PLM models, the esti-

mated technical efficiencies are very different. The difference is twofold: firstly the CSS

estimates appear more variable and secondly the average levels of the PLM estimated

efficiencies are higher.

6. Conclusion

In this paper we have proposed a new way to estimate fully unspecified time-varying

firm effects by means for existing methodology of smoothing categorical variables.

Monte Carlo simulations indicate that smoothing improves the finite sample accu-

racy of the estimated time-varying firm effects and the inefficiency levels even if the

parametric estimator is based on a correctly specified time pattern. On the other hand

the simulations indicate that the smoothed estimator does not improve estimation of the

slope coefficients when the time-pattern is correctly or over-specified. In most panel data

applications the slope coefficients are the main objective and thus, if one put trust in
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a special time-pattern one should go ahead and make the parametric estimation. How-

ever for stochastic frontier estimation where the time-varying firm effects are of primary

interest the proposed estimation method should be considered.

The method is applied to Indonesian rice farmer data. The average level of estimated

technical efficiencies is considerably higher compared to previews studies. We argue that

this is due to noisy estimates of the time-varying farm effects that are only based on six

observations each for the parametric models. The proposed estimator uses some infor-

mation across farms which make the estimated time-varying farm effects less variable

and hopefully less noisy. We find the result quite compelling. To some extent it makes

sense that rice farmers in West Java share some common structure. The proposed semi-

parametric estimator should be able to smooth out some noise captured by an estimator

that does not use this information.

The gains with our estimator are two-fold: no explicit structure has to be induced

on the time-varying firm effects and smoothing of these effects may actually accumulate

information across firms that even make the estimator superior to estimators based on

explicit time-pattern structures.

Usage of traditional panel data analysis to estimate technical efficiency scores is not

completely satisfactory since the accuracy depends on T . However as long as there are

limited possibilities for obtaining data sets where the time dimension is large, these

methods will be used. In the light of this our proposed estimator could contribute to

better small sample approximations of technical efficiency scores.
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7. Appendix

N T Bias Var. MSE

50 5 -0.036 0.007 0.008

100 5 -0.058 0.003 0.006

200 5 -0.052 0.001 0.004

50 10 -0.106 0.003 0.014

100 10 -0.099 0.002 0.011

200 10 -0.099 0.001 0.011

50 20 -0.093 0.001 0.010

100 20 -0.088 0.001 0.008

200 20 -0.101 0.000 0.011

Table 13. Summary statistics of

Monte Carlo simulations for β2 of the

PLM model (CSS correctly specified)

N T Bias Var. MSE

50 5 0.016 0.015 0.015

100 5 -0.002 0.006 0.006

200 5 0.003 0.003 0.003

50 10 -0.004 0.003 0.003

100 10 0.004 0.002 0.002

200 10 0.004 0.001 0.001

50 20 -0.000 0.001 0.001

100 20 0.003 0.001 0.001

200 20 -0.009 0.000 0.000

Table 14. Summary statistics of

Monte Carlo simulations for β2 of the

correctly specified CSS model

Swedish University of Agricultural Sciences, Department of Economics, Box 7013, 750

07 Uppsala, Sweden.

E-mail address: Daniel.Wikstrom@ekon.slu.se
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N T Bias Var. MSE

50 5 -0.033 0.007 0.008

100 5 -0.055 0.003 0.006

200 5 -0.047 0.001 0.004

50 10 -0.094 0.003 0.011

100 10 -0.087 0.002 0.009

200 10 -0.087 0.001 0.009

50 20 -0.070 0.001 0.006

100 20 -0.066 0.001 0.005

200 20 -0.078 0.000 0.007

Table 15. Summary statistics of

Monte Carlo simulations for β2 of the

PLM model (CSS over-specified)

N T Bias Var. MSE

50 5 0.016 0.015 0.015

100 5 -0.002 0.006 0.006

200 5 0.003 0.003 0.003

50 10 -0.004 0.003 0.003

100 10 0.004 0.002 0.002

200 10 0.004 0.001 0.001

50 20 -0.000 0.001 0.001

100 20 0.003 0.001 0.001

200 20 -0.009 0.000 0.000

Table 16. Summary statistics of

Monte Carlo simulations for β2 of the

overspecified CSS model

N T Bias Var. MSE

50 5 -0.022 0.007 0.007

100 5 -0.042 0.002 0.004

200 5 -0.030 0.001 0.002

50 10 -0.033 0.003 0.004

100 10 -0.031 0.002 0.003

200 10 -0.035 0.001 0.002

50 20 -0.104 0.002 0.013

100 20 -0.055 0.001 0.004

200 20 -0.052 0.001 0.003

Table 17. Summary statistics of

Monte Carlo simulations for β2 of the

PLM model (CSS misspecified)

N T Bias Var. MSE

50 5 0.016 0.015 0.015

100 5 -0.002 0.006 0.006

200 5 0.003 0.003 0.003

50 10 0.050 0.004 0.006

100 10 0.053 0.002 0.005

200 10 0.052 0.001 0.004

50 20 0.104 0.002 0.012

100 20 0.071 0.001 0.006

200 20 0.049 0.001 0.003

Table 18. Summary statistics of

Monte Carlo simulations for β2 of the

misspecified CSS model
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Figure 3. The true time-varying firm effects over time for the quadratic time-pattern
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Figure 4. The true time-varying firm effects over time for the linear time-pattern
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Figure 5. The true time-varying firm effects over time for the sine time-pattern

N T PLM CSS Ratio P-value

50 5 0.404 1.615 0.250 0.000

100 5 0.412 1.828 0.226 0.000

200 5 0.340 2.346 0.145 0.000

50 10 0.319 0.744 0.429 0.000

100 10 0.348 0.827 0.421 0.000

200 10 0.313 1.017 0.308 0.000

50 20 0.220 0.354 0.620 0.000

100 20 0.229 0.443 0.516 0.000

200 20 0.248 0.509 0.488 0.000

Table 19. Measurement of fit (see section 4.1) for the technical inefficiency levels of

each model based on the Monte Carlo simulations (CSS correctly specified)
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N T PLM CSS Ratio P-value

50 5 0.463 1.569 0.295 0.000

100 5 0.438 1.683 0.260 0.000

200 5 0.369 2.251 0.164 0.000

50 10 0.266 0.697 0.382 0.000

100 10 0.252 0.773 0.326 0.000

200 10 0.243 0.949 0.256 0.000

50 20 0.164 0.313 0.522 0.000

100 20 0.184 0.363 0.508 0.000

200 20 0.163 0.456 0.358 0.000

Table 20. Measurement of fit for the technical inefficiency levels of each model based

on the Monte Carlo simulations (CSS over-pecified)

N T PLM CSS Ratio P-value

50 5 0.361 1.594 0.227 0.000

100 5 0.318 1.757 0.181 0.000

200 5 0.297 2.211 0.134 0.000

50 10 0.429 0.566 0.758 0.000

100 10 0.433 0.590 0.734 0.000

200 10 0.413 0.669 0.617 0.000

50 20 0.405 0.618 0.656 0.000

100 20 0.313 0.385 0.814 0.000

200 20 0.180 0.332 0.542 0.000

Table 21. Measurement of fit for the technical inefficiency levels of each model based

on the Monte Carlo simulations (CSS misspecified)
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Figure 6. Average inefficiency over time when N = 200 and T = 5 (CSS over-specified)
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Figure 7. Average inefficiency over time when N = 200 and T = 5 (CSS misspecified)


