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Abstract

This paper uses unusual data �consisting of agents�strategically reported preferences as well

as their underlying preferences �to study strategic behavior in the course allocation mechanism

used at Harvard Business School. We show that the mechanism is manipulable in theory,

manipulated by students in practice, and that these manipulations cause meaningful welfare

losses. However, we also �nd that ex-ante welfare is higher than under the random serial

dictatorship (RSD), which is the only known mechanism that is anonymous, strategyproof and

ex-post e¢ cient. This discrepancy between ex-ante and ex-post performance of RSD is speci�c

to the multi-unit assignment problem and can be traced to the callous behavior induced by

RSD.

Keywords: multi-unit assignment, market design, random serial dictatorship, ex-ante e¢ ciency,

ex-post e¢ ciency, strategyproofness, strategic behavior, �eld data.

.

�We are extremely grateful to Sheila Connelly, Assistant Director, MBA Registrar Services, for providing us with

the data and sharing her extensive knowledge about the HBS course allocation mechanism with us. For suggestions,

we thank Susan Athey, Drew Fudenberg, Fuhito Kojima, Paul Milgrom, David Parkes, Ariel Pakes, Parag Pathak,

Al Roth, and seminar audiences at ASSA 2008, Dagstuhl 2007, Paris Sorbonne and Harvard. Financial support from

the European Research Council, the Belgian National Science Foundation (FNRS) and the Division of Research at

Harvard Business School is gratefully acknowledged.
yDepartment of Economics, Harvard University and Harvard Business School. Email: ebudish@hbs.edu
zFNRS, Université Libre de Bruxelles (Solvay Brussels School of Economics and Management and ECARES), and

CEPR. Email: Estelle.Cantillon@ulb.ac.be

1



1 Introduction

In recent years, economists have been called upon to provide advice on the practical design of

allocation procedures in a broad range of settings. Applications have been as diverse as the spec-

trum auctions and the allocation of advertising slots on internet portals on the one hand, and the

assignment of students to schools and doctors to hospitals, on the other hand. A common di¢ culty

that economists have faced in all these settings is that there usually is no perfect solution: that is,

there usually does not exist a mechanism that incorporates all of the constraints of the environ-

ment and, at the same time, satis�es all of the e¢ ciency and fairness properties desired by market

participants. Instead, the relevant choice set is typically comprised of second-best solutions, each

of which makes di¤erent kinds of compromises. Theory provides some guidance on how to choose,

but theory alone is usually insu¢ cient as it fails to provide a sense of magnitudes (Roth, 2002)

This paper quanti�es some of the trade-o¤s that market designers face by studying a speci�c

market design problem, the multi-unit assignment problem, and a speci�c solution, the course

allocation mechanism used at the Harvard Business School (HBS) for which we have unusual data.

Speci�cally, in addition to students�actual (strategic) reports of their preferences under the HBS

mechanism, we have survey data on their underlying truthful preferences, which we argue in the

paper can be taken as the true preferences. The combination of truthful and stated preferences is

powerful for two reasons. First, it allows us to directly evaluate actual equilibrium play of a non-

strategyproof mechanism in terms of the truthful preferences, which is highly unusual for �eld data

(unlike, for example, experimental data). Second, we can use the truthful preferences to simulate

equilibrium outcomes in alternative mechanisms, with the advantage over numerical simulations

that the counterfactual now incorporates realistic preference heterogeneity. Some of the lessons

we draw are speci�c to the multi-unit assignment problem, others apply to market design more

generally.

The multi-unit assignment problem consists in allocating objects among agents without using

monetary transfers. Agents demand several objects. The course allocation problem is one example

of multi-unit assignment problems: students need to �ll their schedule with several courses, courses

have limited capacities and, for this reason, it may not be possible to give every student his most

desired set of courses. Other examples include the assignment of tasks within an organization, the

allocation of shared scienti�c resources amongst its users, sport drafts, and the allocation of airport

slots in many countries. In all these examples, money transfers are ruled out a priori or restricted,

so that prices cannot be set to equalize supply and demand.

There is no perfect solution to the multi-unit assignment problem because of the intrinsic

con�ict between strategyproofness, e¢ ciency and fairness. If we require ex-post e¢ ciency and
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strategyproofness, we are left with some form of dictatorship over bundles of objects as the only

candidate (variants of this result have been shown by Sönmez, 1999; Papai, 2001; Klaus and Miya-

gawa, 2001; Konishi et al, 2001; Ehlers and Klaus, 2003; Hat�eld, 2005; Kojima, 2007). Obviously,

dictatorship over bundles results in very unequal outcomes ex-post and is thus unacceptable in most

applications. Budish (2008) relaxes strategyproofness and ex-post e¢ ciency to strategyproofness in

large markets and approximate ex-post e¢ ciency. He proposes a solution, approximate competitive

equilibrium from approximately equal incomes, that has attractive fairness properties. Other solu-

tions have been used in practice. Broadly speaking, these solutions fall into two categories: draft

mechanisms where agents choose one object at a time (see e.g. Brams and Stra¢ n, 1979, for an

an application to sports drafts) and bidding mechanisms where some kind of fake currency is used

to express preferences (e.g. Krishna and Unver, 2008; Sönmez and Unver, 2010, for applications to

course allocation). None of these mechanisms elicit truthful preference reports however.

We begin in sections 2 and 3 by studying the theoretical properties of the course allocation

mechanism used at HBS. In the HBS mechanism, students submit their preferences over individual

courses. The mechanism then allocates courses one-at-a-time to students on the basis of their

submitted preferences and a random priority number. At each round, each student receives his

most preferred course among those that are available and that he has not received yet. The

random priority number determines a student�s choosing order in each round. Students choose in

increasing order in odd rounds and in decreasing order in even rounds.

We argue that the HBS mechanism is a reasonable candidate to allocate courses: it satis�es

several criteria for fairness and it is consistent with ex-post pareto e¢ ciency if students reveal their

preferences truthfully. We also show that truthtelling is a Nash equilibrium when preferences are

perfectly correlated or when they are independent (theorem 1). However, when preferences are

partially correlated, truthful play is no longer a Nash equilibrium. In fact, we show that it is

easy to �nd pro�table deviations from truthful behavior in the HBS mechanism: students should

underreport their preference for unpopular courses, and overreport their preference for popular

courses (Theorem 2). This incentive is intrinsic to the HBS mechanism and does not vanish in

large markets. We provide a partial characterization of equilibrium behavior and equilibrium run-

out times for courses (Theorems 3, 4).

We then bring the theory to data in sections 4 and 5. We �rst provide support that our survey-

based preference data can indeed be taken as the true preferences of the students. We do this in

three ways. First, we argue that students had no incentive to misreport in the survey organized by

the administration. Second, we compare our preference data with reported preferences in a second

survey that we ran asking again students for their preferences over courses. Third, we show that the

relationship between our preference data and actual behavior is consistent with all the predictions
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from equilibrium play.

In section 6, we quantify the e¤ect of strategic behavior by comparing equilibrium play with

non-equilibrium but truthful behavior in the HBS mechanism. Thus our counterfactual exercise is

what would happen if the social planner knew students�preferences and used the HBS mechanism

to allocate courses. Strategic behavior increases congestion, in the sense that popular courses

reach capacity earlier. We also document that strategic behavior hurts students and that this

e¤ect is sizeable. Speci�cally, strategic behavior yields ex-post ine¢ cient outcomes: on average,

the allocation resulting from the HBS mechanism leaves at least 1.5 mutually bene�cial trades

per student on the table, involving 15% of allocated course seats. Strategic behavior also hurts

students on a number of ex-ante measures of welfare. For example, two simple measures that the

HBS administration emphasizes are the likelihood that students obtain their single favorite course

and the average rank of the ten courses students receive. Strategic play reduces the likelihood of

receiving one�s favorite course from 83% to 60%, and increases the expected average rank from

7.76 to 8.35 (lower is better, and 5.50 is the best possible). Intuitively, there is an asymmetry

between the bene�ts and the costs of strategic behavior. Holding other students�behavior �xed,

strategic behavior by a student bene�ts that student because it increases his chance of getting a

preferred bundle of courses. At the same time, the fact that other students act strategically causes

the popular courses to reach capacity earlier which hurts the typical student. The empirical results

show that the costs outweigh the bene�ts.

Because strategic behavior hurts students it is natural to compare the HBS mechanism with

random serial dictatorship (RSD), which is an anonymous mechanism like the HBS mechanism,

but is both ex-post e¢ cient and strategyproof. We turn to this comparison in section 7. In RSD,

students receive a random priority number that determines their order and they get to choose

all their courses at once in that order. Thus, the �rst student in the order gets to choose all his

preferred courses, but the last student gets to choose only from unpopular courses. Clearly, ex-post,

the lucky students are likely to prefer their allocation under RSD than under the HBS mechanism;

the unlucky ones will have the reverse preference. In other words, ex-post, we cannot pareto rank

the allocations from the HBS mechanism and those from RSD. Ex-ante, however, we �nd that most

students prefer the HBS mechanism to RSD. We also �nd that the HBS mechanism does better

on di¤erent measures of expected social welfare. For example, using RSD instead of the HBS

mechanism would reduce the likelihood of receiving one�s favorite course from 60% to 47%, and

increase the average rank of the courses that a student receives from 8.35 to 9.84. Theoretically,

we trace the origin of this poor performance to the fact that the lucky students in RSD make their

last choices independently of whether these courses would be some unlucky student�s �rst choice

(Theorem 5). We use the term �callous� to describe the behavior induced by RSD. Callousness
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is speci�c to environments where agents require more than one good. In fact, in unit demand

assignment problems such as school choice, Pathak (2006) and Che and Kojima (2009) show that

RSD has attractive welfare properties.

An important empirical hurdle that we face in our analysis is that our data consist of preferences

over individual courses whereas students�preferences are eventually driven by their preferences over

distributions over bundles of courses. This problem is common in empirical settings where due to

restrictions on actions by agents we only get partial information about their preferences.

We develop a series of comparison results that indicate under which conditions we can say

with certainty that a particular student strictly prefers one mechanism or one strategy pro�le

over another. These conditions place restrictions on the mapping from preferences over courses

to preferences over bundles, and on the mapping between preferences over sure outcomes and

preferences over lotteries. Speci�cally, consider two distributions over bundles and a preference

order over these bundles. If one distribution �rst order stochastically dominates the other, we can

say with certainty that this distribution is preferred to the other, irrespective of any information

about preference intensities or risk attitudes. The notion of ordinal e¢ ciency (Bogomolnaia and

Moulin, 2001) is based on this �rst order stochastic dominance partial order. Suppose now that

the two distributions cannot be ranked according to this f.o.s.d. criterion. There exist assumptions

on preference intensities and risk attitudes such that one distribution is preferred to the other,

and other assumptions for which the reverse ranking obtains. Our comparison results allow us

to disentangle partially these three sources of discrepancy between ex-post and ex-ante welfare

(distribution over outcomes, preference intensities, and risk attitude). They provide us with a

sense of where the magnitudes are coming from.

Our �ndings are useful at three levels. At the level of the speci�c mechanism, our results

suggest that the HBS mechanism is �awed but nevertheless a sensible choice relative to the extant

alternatives. At the level of the problem, multi-unit assignment, our results suggest where to look

for better solutions to the multi-unit assignment problem. One should seek a mechanism that, while

not strategyproof, is likely to induce truthful reporting in realistic market environments, and that

more resembles HBS than RSD in terms of its fairness and ex-ante e¢ ciency characteristics. Such

an approach is taken in Budish (2008). Finally, at the level of market design as a �eld, our study

of a speci�c mechanism yields two generalizable lessons that contribute to recent active debates in

the literature. First, we have identi�ed a new reason (callousness) for the poor ex-ante performance

of RSD in environments where agents require several objects and highlighted that, consequently,

ex-post e¢ ciency may not even be a proxy for ex-ante e¢ ciency in such environments. So caution

should be used when studying the former but hoping for the latter. Second, strategyproofness should

not be an in�exible requirement when designing new markets. We elaborate on these themes in
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the conclusion.

2 Model

2.1 Environment

Courses. There is a �nite set of C courses, C.1 Courses have capacities q = (q1; :::; qC): There

are no other goods in the economy other than seats in courses. In particular, there is no divisible

numeraire like money.

Students. There is a continuum of students described by the interval [0; S]. The use of a continuum

of students is a technical, rather than substantive, assumption. It simpli�es proofs and helps clarify

the key forces behind the results.

Preferences and Demand. Students are allowed to consume any bundle that consists of 0 or 1

seats of each course, and at most m > 1 courses in total.

Each student s is endowed with a von Neumann-Morgenstern utility function us that indicates

her utility from each bundle of courses, including singletons.

Associated with each utility function us is an ordinal preference relation Ps de�ned over per-

missible bundles of courses. We assume that the utility functions are such that students�ordinal

preferences over individual courses are strict, and that their ordinal preferences over bundles are

responsive to their preferences for individual courses (Brams and Stra¢ n, 1979, Roth, 1985).2

Let rs(c) 2 N denote course c�s rank in student s�s preferences over individual courses. Thus
rs(c) < rs(c

0) if and only if cPsc0; with rs(c) = 1 if cPsc0 for all c0 6= c: This allows us to de�ne the
demand for individual courses:

De�nition 1 (Demand for Courses). The demand for course c is de�ned asDc(�) =
R S
0 1frs(c)��g

qc
;

� = 1; :::; C:

The allocation problem is non-trivial if at least one capacity constraint binds. Thus, in the rest

of our analysis we assume that there exists at least one course c such that Dc(m) > 1:

Feasible Allocations. An allocation in this environment is an assignment of courses to students.
1We use the terms "students" and "courses" because of our application. We could equally use the generic terms

"agents" and "objects".
2Preferences are responsive if, for any student s, courses c; c0, and bundle of courses X with c; c0 =2 X and jXj < m,

cPsc
0 () (X [ c)Ps(X [ c0): Also, cPs; () (X [ c)Ps(X [ ;).

While restrictive, survey evidence suggests that responsiveness is a reasonable assumption in the case of Harvard

Business School, and the HBS elective curriculum is explicitly designed to avoid overlap or interdependence amongst

courses. The course-allocation mechanism proposed in Budish (2008) relaxes the responsiveness assumption.
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We denote by as � C student s�allocation of courses. An allocation is feasible if jasj � m for

all s and
R S
0 1fc2asg � qc for all c: We denote by A the set of feasible allocations. A random

assignment is a probability distribution over feasible allocations. We denote by L(A) the set of
random assignments.

Ex-Ante and Ex-Post E¢ ciency. A random assignment is ex-ante Pareto e¢ cient if there is no

other random assignment that all students weakly prefer and at least one student strictly prefers. A

feasible allocation is ex-post Pareto e¢ cient if there is no other feasible allocation that all students

weakly prefer and at least one student strictly prefers.

Information. We assume that the realization of students� preferences is common knowledge.

Since we are working with a continuum, this is equivalent to assuming that students�preferences

are private information but that the distribution over preferences is common knowledge.

2.2 Allocation Mechanisms

We focus attention on two speci�c course-allocation mechanisms, the HBS Draft Mechanism and

Random Serial Dictatorship.3

In each mechanism, each student s reports a rank-order list (ROL) bPs indicating their ordinal
preferences over individual courses.4 Then, the mechanism uniform randomly selects a priority

order over the S students. Speci�cally, a priority order is a bijection � from the set of students

onto itself. �(t) indicates which student has priority t, and ��1(s) gives the priority of student s.

The set of priority orders is L.

Random Serial Dictatorship. Students are allocated their courses all-at-once in ascending

priority order. Speci�cally, the algorithm has a single round that takes place from time t = 0 to

time t = S, and at time t student �(t) is allocated a seat in her m most-preferred courses on bPs
that still have remaining capacity.5

HBS Draft Mechanism (or HBS mechanism). Students are allocated their courses one-at-a-

time over a series of m rounds. In odd rounds, which occur during time intervals [0; S]; [2S; 3S]; :::;

students are allocated courses one-at-a-time in ascending priority order. In even rounds, which occur

during time intervals [S; 2S]; [3S; 4S]; :::; students are allocated courses one-at-a-time in descending

3Several other course-allocation mechanisms are described in Budish (2008), with references provided therein.
4A rank order list is a list of individual courses in the order of stated preferences. We write bPs : c1; c2; c3; ::: to

describe that student s puts course c1 ahead of c2; and course c2 ahead of c3; and so on, in his rank order list. With

a slight abuse of notation, we also write Ps : c1; c2; c3; :::; to describe the true preferences of student s over individual

courses.
5A course has capacity remaining at time t if the measure of the set of students allocated a seat in that course

during time [0; t] is strictly less than the course�s capacity.
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priority order. When it is student s�turn in the algorithm to be allocated a course, she is allocated

her most-preferred course on bPs that (i) she has not already been allocated in a previous round;
and (ii) still has remaining capacity.

Following the m rounds of the HBS Draft Mechanism, students have one additional opportunity

to modify their schedule. Students can drop courses they obtained in the initial allocation and add

courses that have excess capacity. In practice, this is conducted using a multi-pass algorithm that

cycles over students (using a new random priority order) until no more add-drop requests can be

satis�ed. In particular, the algorithm satis�es a student�s add-drop request only if the course that

the student requests has spare capacity. It does not look for Pareto-improving trades amongst

students. For modeling purposes, we model the add-drop phase as a random serial dictatorship

where the only courses that can be requested are those with spare capacity at the end of round m

of the initial allocation. Students have the opportunity to modify their reported preferences, and a

new random priority order is drawn. Thus, each student in turn creates the best possible schedule

out of the courses they got in the initial allocation and those still with excess capacity.

Equilibrium. The Random Serial Dictatorship is dominant-strategy incentive compatible. For

the HBS Draft Mechanism, we focus attention on pure-strategy Nash Equilibria in undominated

strategies. For the aftermarket we assume that students report their preferences truthfully, since it

is an RSD. Existence of a pure-strategy Nash Equilibrium is guaranteed under Schmeidler (1973)

because of the continuum, �nite action space, and the fact that a students�payo¤ depends only on

the distribution of other students�reports.

3 Equilibrium of the HBS Draft Mechanism

If we ignore incentives and assume that students report their preferences truthfully, then the HBS

Draft Mechanism would satisfy several attractive e¢ ciency and fairness properties. In terms of

e¢ ciency, it yields allocations that are ex-post Pareto possible (Brams et al, 2003). This means

that there exist preferences over bundles of courses that are responsive to the reported preferences

over individual courses, and for which the allocation is ex-post Pareto e¢ cient. With respect to

fairness, it is procedurally fair in the ex-ante sense of equal treatment of equals, and also in an

interim sense, in that no students� set of choosing times dominates any others�. It also satis�es

attractive criteria of outcome fairness, as described in Budish (2008).

These attractive properties help explain the HBS administration�s decision to adopt the Draft

Mechanism, and may explain the widespread use of similar mechanisms in practice (Brams and

Stra�n, 1979; Brams and Taylor, 1999). However, as the following example illustrates, truthful

play is not to be expected under this procedure.
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3.1 A Motivating Example

Example 1 (Overreport Popular Courses) Let m = 2 and suppose there are 4 courses with

capacity of 23S seats each. Preferences are as follows:

S
3 students have preferences P1 : c1; c2; c3; c4

S
3 students have preferences P2 : c2; c1; c3; c4

S
3 students have preferences P3 : c1; c3; c4; c2

Truthful play is not a best response for the P2 types. If they play truthfully they obtain fc2; c3g
with probability 1, whereas the P1 types receive fc1; c2g with probability one. If instead they
play bP2 : c1; c2; c3; c4; they obtain fc1; c2g with probability 2

3 and fc2; c3g with probability
1
3 :

This outcome �rst order stochastically dominates the outcome under truthful play. In fact, it

is easy to check that the strategy pro�le where type-1 and type-3 students report truthfully

and type-2 submit bP2 is a Nash equilibrium. In this equilibrium, more students request c1 in
the �rst round than under truthful play, making c1 �ll up (stochastically) earlier in the round

than under truthful play.

The basic story of Example 1 is that students in the HBS draft mechanism will have a tendency

to overreport their preferences for popular courses, and that this causes the popular courses to

reach capacity sooner. A P2 type should not waste his �rst-round choice on c2, since he can get it

in the second round, and if he waits until round two to ask for c1 he is sure not to get it. Instead,

he should attempt to obtain the popular c1 in the �rst round.

The example suggests that we can make empirical predictions about the relationship between

students� truthful preferences and their strategic reports, and about the e¤ects of this strategic

reporting on equilibrium course run-out times. We begin (Theorem 1) by highlighting two envi-

ronments in which we will not see strategic misreporting �identical preferences, and independent

preferences. Then we show (Theorem 2) that in most other environments many students will have

a simple pro�table deviation from truthful play.

An example (Example 2) illustrates that it is not possible to reach a complete characteriza-

tion of equilibrium. The basic issues are multiple equilibria and data incompleteness - we know

students�ordinal preferences over individual courses, but equilibrium behavior depends on their

cardinal preferences over bundles. We reach a weak characterization of equilibrium (Lemma 2 and

Theorem 3) using just ROLs, and then we are able to reach a stronger characterization (Lemma

3 and Theorem 4) by imposing additional structure on the relationship between ROLs and utility

functions. All proofs are in an appendix.

9



Before proceeding, we point out two features of Example 1 that suggest that it is realistic to

expect strategic misreporting to emerge in practice. First, the information that P2 types need to

possess in order to �nd their pro�table manipulation is reasonably simple. All they need know

is that c1 is likely to reach capacity in the �rst round, whereas c2 is likely to be available in

the second round. They need not know anything more speci�c about which agents report which

preference pro�les, as is required to �nd pro�table manipulations in other contexts such as two-

sided matching markets. Second, the incentive to misreport one�s preferences is independent of

market size: the example works equally well for a �nite economy with S = 3 students as it does for

a continuum economy.

3.2 Popularity and Simple Manipulations

We begin by de�ning popularity. Given a priority order � and students�strategies bP = ( bPs)s2[0;S];
let as(bP; �) indicate student s�s �nal allocation, including what happens in the aftermarket. Simi-
larly, as(bP) refers to student s�s �nal (random) allocation under strategies bP:
De�nition 2 (Popularity): Course c is bP-popular if there exists � 2 L and a positive-measure
set of students S 0 � S such that, for each s 2 S 0 : (i) c =2 as(bP; �); and (ii) c0 2 as(bP; �) for some
c0 such that c bPsc0: Course c is bP-unpopular otherwise.

Given bP; any course with excess demand during the initial allocation is bP-popular. A course

that does not run out during the initial allocation but for which more requests than available seats

are submitted in the aftermarket is also bP-popular. Note that, by the continuum assumption,bP-popular courses are also bP�s-popular in an economy without student s:
We begin by highlighting two environments in which truthful play constitutes an equilibrium.

Theorem 1 (Truthful Play in Equilibrium): Consider the two following environments:

1. Identical preferences: Ps = Ps0 for all s; s0 or

2. "Independent" preferences: for any two P-popular courses c; c0, Dc(�) = Dc0(�) for � =

1; :::; C:

In either environment, bP� = P is a Nash equilibrium of the HBS Draft Mechanism.

When students have identical preferences, if a student prefers one course to another, then so

do all other students and thus it is not possible to overreport one�s preferences for more popular

courses. Likewise, when all courses for which demand exceeds supply are equally popular, there is

no basis for misreporting. Theorem 1 indicates that partial correlation of preferences is what drives

strategic misreporting in the HBS draft mechanism.
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Our next result pins down the e¤ect of a change in reported preferences by one student on his

allocation. It provides the workhorse for the analysis of strategic incentives in the HBS mechanism.

Lemma 1 (Downgrade Lemma): Label courses such that bPs : c1; c2; :::; ck; ck+1; ::. Let bP ck#ls :

c1; c2; :::; ck�1; ck+1; :::; cl; ck; cl+1; ::: (ck is "downgraded" to position l). Consider two strategy pro-

�les bP and ( bP ck#ls ; bP�s): Limit attention to the initial allocation. For all priority orders �:
(i) if s does not obtain ck under bP then he obtains the same bundle under bP as under

( bP ck#ls ; bP�s).
(ii) if s obtains ck under bP but not under ( bP ck#ls ; bP�s) then he obtains exactly one course under

( bP ck#ls ; bP�s) that he does not obtain under bP. This course is from the set fck+1; ck+2; :::; cl; cl+1; :::g:
Otherwise, the two allocations are identical.

(iii) if s obtains ck under both bP and ( bP ck#ls ; bP�s), then either (a) he obtains the same bun-
dle under both pro�les, or, (b) he obtains exactly one course under ( bP ck#ls ; bP�s) from the set

fck+1; ck+2; :::; clg that he does not obtain under bP, and exactly one course under bP from the

set fcl+1; cl+2; :::g that he does not obtain under ( bP ck#ls ; bP�s). Otherwise, the two allocations are
identical.

The proof works as follows. Fix an ordering �. Assume ck is available at the time bPs asks for
it, because otherwise the two strategies will obtain exactly the same courses at exactly the same

times. By downgrading ck, bP ck#ls (the downgrade strategy) asks for ck+1 one round earlier than

does bPs (the original strategy), and if either both strategies get ck+1 or both do not, then bP ck#ls

asks for ck+2 one round earlier than does bPs, etc. If, before he asks for ck; bP ck#ls gets a course thatbPs does not, then the two strategies get back "in synch", requesting the same courses at the same
times. They can get back out of synch if bP ck#ls turns out also to get ck, only now bPs is making
requests for cl+1 one round earlier than does bP ck#ls , etc. This is the path that leads to case (iii)(b)

of the Lemma. The other cases are similar.

The Downgrade Lemma implies that many students will have a natural and simple deviation

from truthful play: downgrade unpopular courses.

Theorem 2: (Simple Manipulations) Fix bP�s. Form the strategy bP simples by taking the �rst

m courses in Ps and rearranging them so that c bP simples c0 whenever:

1. cPsc0 and both are bP�s�popular or both are bP�s�unpopular
2. c is bP�s�popular and c0 is bP�s-unpopular
The strategy bP simples generates weakly greater utility than truthful play Ps for all �:

Theorem 2 formalizes our assertion that students are likely to strategically misreport their
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preferences in realistic environments. The simple deviations of Theorem 2 lead directly to overre-

porting preferences for popular courses, and increased congestion. However, Theorem 2 is not yet

an equilibrium characterization.

3.3 Equilibrium

We begin with the following partial characterization of best responses and equilibrium.

Lemma 2 (Best-response Characterization): Consider any candidate equilibrium bP: Suppose
c is bP�popular, and that c is amongst student s�s top-m favorite courses (i.e., rs(c) � m:). Then it
is not a best response for student s to submit a ROL bPs where (i) c appears after a bP�unpopular
course; and (ii) Pr(c 2 asjbP) 2 (0; 1).
Theorem 3 (Equilibrium Characterization): Suppose that bP is a Nash equilibrium, and that
Dc(m) > 1. Then:

(i) c runs out with probability one during either the initial allocation or the aftermarket.

(ii) the supremum of run-out times for course c over the di¤erent realizations of �, tc, is weakly

less than the number of bP�popular courses.
Lemma 2 formalizes that students underreport their preferences for unpopular courses in equi-

librium. Theorem 3 indicates that all courses for which demand, based on students�true top m

choices, exceeds supply run out in any equilibrium. Moreover, such courses will reach capacity in

the �rst k rounds, where k is the number of bP-popular courses.
Lemma 2 and Theorem 3 do not yet fully capture the intuition of Example 1. The following

example illustrates the di¢ culties.

Example 2 (Multiple Equilibria) S students require m = 2 courses. Courses have :4S seats

each. Courses c1; c2; c3 have excess demand, all other courses do not. Students�preferences

are as follows (where "other" stands for courses other than c1; c2; c3) :

Proportion of Population Type Preferences

:25S P1 c1; c2; other

:25S P2 c2; c1; other

:30S P3 c3; other

:1S P4 c3; c1; other

:1S P5 c3; c2; other

Truthful play is always an equilibrium. If the P4 and P5 types�intensity of preference for c3

versus c1 and c2, respectively, is not too large, there exists another equilibrium in which types
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P1; P2 and P3 play truthfully, the P4 types submit bP4 : c1; c3; other, and the P5 types submitbP5 : c2; c3; other. In this equilibrium, the P4 types receive c1 for sure and receive c3 with
probability 0.5. If they deviate from this equilibrium to play truthfully (the only deviation

to consider given their preferences), they receive c3 for sure, and receive c1 with probability
:4S�:1S�:25S

:25S = 0:2, which may be less preferable if the intensity of preference for c3 is not too

large.

While the truthful play equilibrium seems natural, the equilibrium in which c3 does not reach

capacity until round two is surprising.6 This latter equilibrium suggests that the order in which

courses reach capacity might reverse between truthful play and strategic play, and suggests that

some students�best responses may involve downgrading a popular course, even at the risk of not

getting it.

It is possible to enhance Example 2 to create a third equilibrium in which c3 reaches capacity

earlier than under truthful play. Let fraction " > 0 be type P 01 : c1; c3; c2; other instead of P1,

and similarly let fraction " be type P 02 : c2; c3; c1; other instead of P2. The two equilibria identi�ed

above exist so long as the P 01 types�intensity of preference for c1 versus c3 is su¢ ciently large (and

similarly for the P 02 types), and " is su¢ ciently small. In addition there can be a third equilibrium

in which the P 01 and P
0
2 types report bP 01 : c3; c1; c2; other and bP 02 : c3; c2; c1; other, and all other

types report truthfully. This is an equilibrium so long as the P 01 and P
0
2 types have a high enough

value for c3 relative to c1 and c2; respectively. So, in the enhanced example, c3 can reach capacity

earlier, later, or at the same time as under truthful play.

The fundamental di¢ culty is that the HBS Draft Mechanism induces a coordination problem:

students want to ask early for courses that other students ask for early. This coordination problem

is especially di¢ cult for two reasons that stem from the fact that students report ROLs. First,

whereas truthful play depends only on one�s ordinal preferences over singletons, strategic best

responses depend on one�s cardinal (vNM) preferences over bundles. So the relationship between

truthful play and strategic best responses depends on information not contained in the truthful

play. Second, the round at which a request for a course is actually made is stochastically related

to its position on the student�s reported ROL. A course at position �ve could be considered an any

of the �rst �ve rounds, depending on which earlier requests are successful.

To go further than Theorem 3, we make additional assumptions on the relationship between a

students�ordinal preferences over courses and their utility function. In Example 2, c3 sells out at

equilibrium in the �rst round (as it would under truthful play) if the P4 and P5 students have a

6Observe that both equilibria are consistent with Theorem 3. While course c3 might run out later under strategic

play than we would expect given the truthful preferences, it still is sure to reach capacity.
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su¢ ciently higher value for c3 than they do for their second choice. This motivates the following

restriction:

De�nition 3 (Lexicographic preferences): Consider two lotteries over �nal allocations, L1

and L2 2 L(A). Fix an arbitrary s, and label courses so that Ps : c1; c2; :::; ck; :::. Let p1(c); p2(c)
denote the probability of getting c under lottery L1 and L2 respectively. We say that student s

has lexicographic preferences if he prefers L1 to L2 whenever there exists any k 2 N such that

p1(ci) � p2(ci) for all i = 1; 2; :::; k with at least one strict inequality.

In Example 2, if the P4 and P5 types have lexicographic preferences, they prefer any lottery in

which they obtain c3 for sure to any lottery in which they don�t, and so truthful play is the unique

equilibrium. This yields sharp predictions about the structure of students�best responses in the

HBS mechanism.

Lemma 3 (Best-response Characterization with Lexicographic Preferences): Suppose

students have lexicographic preferences and consider any candidate equilibrium bP. Suppose c isbP�popular. Then it is not a best response for student s to submit a ROL bPs where (i) c appears
after any course c0 such that cPsc0; and (ii) Pr(c 2 asjbP) 2 (0; 1).

In words, Lemma 3 says that students only downgrade a course when they are sure to get it.

Theorem 4 provides a tighter characterization of when courses run out at equilibrium:

Theorem 4 (Equilibrium Characterization with Lexicographic Preferences): Suppose

students have lexicographic preferences. Suppose that bP is a Nash equilibrium bP, and thatDc(m) >
1. Then

(i) c runs out with probability one during the initial allocation

(ii) tc � �c = inff� : Dc(�) > 1g
(iii) Pr(c 2 asjbP) 2 (0; 1) ) brs(c) � rs(c) (where brs(c) denotes the rank of course c in student

s�s submitted preferences)

Theorem 4 provides an upper bound on the times by which courses run out, based on the true

demand for these courses. Because run-out times under truthful play must also satisfy part (ii) of

Theorem 4, and the relationship between inff�0 : Dc(�0) > 1g and the round at which c reaches
capacity under truthful play depends in a complicated way on what else students requesting c ask

for in earlier rounds, it does not provide a direct comparison of run-out times under truthful and

strategic play. However, part (iii) of the theorem is suggestive that popular courses are likely to

run out earlier at equilibrium: students never underreport their preference for popular courses, but

they might overreport.
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4 Description of Data

Our dataset covers the allocation of second year courses at Harvard Business School during the

2005-2006 academic year.

4.1 Timing of Data

Figure 1 summarizes the timing of actions and the timing of the information received by students.

Students are asked three times for their preferences as part of the initial allocation process: in

early May, in mid-May and at the end of July. Prior to this, students have information on course

overenrollment in the previous year, and they have the o¢ cial evaluations for the Winter and Fall

2004 courses, as well as uno¢ cial course evaluations.

In early May, they are asked to participate in a poll where they must rank their top 5 courses.

Participation is voluntary. The results are used to aggregate information about demand and adjust

some course capacities.7 The students have access to the full results, except for the student identities

which are removed.

The following week, students participate in a trial run of the allocation mechanism. Participa-

tion is compulsory and students must rank their top 30 courses (rankings can be section-speci�c for

courses o¤ered in di¤erent sections). The administration reports the resulting course enrollments

based on one single run of the algorithm. For courses at capacity, students are told how many times

a course was overenrolled based on the submitted preferences. In addition, the administration re-

ports the 10 courses most often ranked at number one in the submitted rank order lists (ROLs)

with the number of times each was ranked �rst. Students do not receive any feedback on their

7The exact text is the following: "This poll has been set up to gauge current interest in 2005-06 courses. Be sure

you enter your top 5 course selections for the coming year, with #1 the course you want most. Your selections will

be anonymous to others. As a participant, you�ll be able to view anonymous results on Friday, May 6."
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Figure 1: Timing of information and actions

Finally, end of July is the deadline for submitting ROLs for the real run of the mechanism. The

ROLs submitted for the May trial run serve as the default ROLs in case a student does not submit

new preferences. Students receive their allocation in early August. Some changes are possible at

the beginning of each semester during the "add-drop phase".

Between any of these three rounds of preference elicitation, students receive new information

about courses and aggregate demand, and some changes are made to courses. Speci�cally, students

learned about the poll results and two courses were added before they submitted their ROLs for the

trial run. One course was added, four courses were cancelled, one full semester course was changed

into a half course between the trial run and the July run and, several courses had their capacity

increased or decreased slightly. In addition, students received the o¢ cial course evaluations for

the Winter 2005 courses. Finally, students usually work as interns during the summer and this

experience may impact their preferences over courses.

4.2 Course Characteristics

Our data contain all course characteristics, including section, capacities, term and scheduling infor-

mation as they were available at the time of the May trial run and the July run of the algorithm.

Seats in 71 courses and 21 half-courses (147 sections) were o¤ered in May for a total capacity of
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11,871 seats. Course capacities ranged from 12 to 404 students. The numbers for July were 67

courses and 22 half-courses (141 sections) for a total of 10,898 seats. The capacities range was the

same. A total of 9,269 seats were allocated in the July 2005 run of the algorithm.8

4.3 Submitted Preferences

Our data contain the submitted preferences in the May poll, May trial run and the July run of

the algorithm with student identi�ers. In addition, we asked students in January 2006 to report

their top 30 choices. The poll was conducted after the add-drop phase for the second semester but

before courses started. In the poll, we explicitly asked students to rank the courses according to

their true preferences, independently of whether they got the course or not. The stated objective

of the poll was to collect data on preferences to investigate potential improvements to the HBS

allocation mechanism.9

Table 1: Descriptive statistics � submitted preferences

May poll May trial run July run Jan poll

# students 460 922 916 163

avg # courses per ROL 5 22.33 21.96 17.46

std dev # courses per ROL 0 5.13 4.86 7.31

# courses listed at least once 85 92 88 92

Table 1 summarizes the number of students and courses covered by the data on each occasion.

Because participation was compulsory, the May trial run data and the July run data cover the

entire population. The small discrepancy in numbers is due to students leaving for or returning

from military duty, maternity leave or any other leave of absence. 163 students �lled in our poll

in January 2006 in a consistent manner.10 The table also reports the number of courses ranked

by the students. For the May trial run and the July run, the submitted rank order lists can be

section-speci�c. When constructing rank order list over courses, we kept the �rst time a course

8The reason this sums to a bit more than 10 courses per student is the half courses.
9The exact text was the following: "Please use the following pull down menus to rank your top 30 most preferred

EC courses for 2005-2006, irrespective of whether you were assigned the course or not. Courses are not section-

speci�c. If you have fewer than 30 courses that you would like to rank, please select "Finished Ranking Courses"

from the pull-down menu and move on to Question #2. It is critical that the ranking you submit completely re�ects

your preferences. In particular, do not feel the need to rank courses that �ll up quickly �rst. Alternatively, do not

ignore courses just because you perceived that they would be di¢ cult to get. You should rank the courses according

to how you actually feel about them." The interface was identical to the interface used for the May poll.
10We dropped two students who ranked the same course more than once for a course appearing in their top 5

courses.
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appeared in the original rank order list.11

5 Evidence of Strategic Behavior

In this section, we provide evidence that students understand the strategic incentives of the HBS

mechanism and we quantify the impact of their strategic behavior. We focus on the May poll

preferences and the July run submitted preferences because incentives are clearest on these two

occasions. Students in the May poll were explicitly asked by the administration to state their true

preferences, and we do not see a particular incentive for them to disobey this request. Submitted

preferences in the July run are those used for the initial allocation of courses.

5.1 Evidence that Students Overreport Popular Courses

Our analysis rests on the assumption that the course rankings elicited in the May poll represent

students�truthful preferences and that the di¤erence between the May poll preferences and the sub-

mitted preferences in the July run of the algorithm are mainly driven by strategic considerations.

In this section, we provide suppport for the assumption that strategic behavior rather than some-

thing else drives behavior in July and, at the same time, we document the kind of overreporting

predicted by the theory.

Conceptually, the identi�cation issue is the following. In principle, submitted preferences may

change over time because of three distinct reasons: genuine preference change, new information,

or strategic consideration. Genuine preference changes not driven by new information are likely to

be idiosyncratic and should therefore not a¤ect aggregate demand for individual courses. For this

reason, our comparisons will focus on the distributions of course ranks in the student population.12

Consider course j and a sample of students. De�ne course j�s distribution of ranks in that

sample, Fj(r); as the proportion of students in the sample that rank course j on or before r:

Absent any new information or strategic considerations, rank distributions should be equal in two

di¤erent samples. Theorems 2 and 4 suggest that - absent any new information - demand for

popular courses should be higher in July than in the May poll, at the expense of courses that are

not capacity constrained. New information could also shift demand but those shifts should not

11This convention a¤ects very few observations. Out of the 20,279 student-course observations in the July run,

14,296 observations are for courses that have multiple sections but for most of them the student listed the di¤erent

sections of the course in consecutive order. Requests for di¤erent sections of the same course were non consecutive

for only 282 student-course observations (2%). In our robustness checks we considered alternative conventions for

treating those non-consecutive requests.
12Comparing aggregate preferences also eliminates any small randomness in the May poll preferences due to stu-

dents�"carelessness" in �lling in the poll.
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be systematically related to how popular a course is.13 This - the way demand changes with the

popularity of courses - is at the heart of our identi�cation strategy.

To compare demands across time, we use Gehan (1965)�s extension of the Wilcoxon rank-based

test for discrete and censored data (censoring in our data arises from the fact that students only

rank 5 courses in the May poll and that some students rank less than 30 courses in the July run).

The idea behind the test is the following. Fix a course, say course j; and consider two independent

samples of students of size n1 and n2: An observation is a student�s rank for course j or, if the

student did not rank that course, the rank of the last course s/he ranked, which will be taken as

the censoring point for that observation (in words, we don�t know how that student ranks course j

but we know that it must be below this censoring point). Pair every observation in the �rst sample

with each observation in the second sample. This creates n1n2 pairs. To each pair, we assign a

value of -1 if the observation in the �rst sample is de�nitely before the observation in sample 2 (this

will be the case if the rank in sample 1 is smaller than the rank in sample 2 or if the observation in

sample 2 is censored and the censoring point is higher than the observation in sample 1). Similarly,

we assign a value of +1 if the observation in sample 2 is de�nitely before the observation in sample

1. We assign a value of zero to the pair otherwise. Gehan (1965) shows that the resulting sum

over each pair is distributed according to a normal distribution which can be used to test the null

hypothesis that Fj1(r) = Fj2(r) for r � R where F1j and F2j are the distributions of ranks in

sample 1 and sample 2 respectively and R = minfhighest censoring point in sample 1, highest
censoring point in sample 2}.

Table 2 reports the results of the Gehan test for the 82 courses that appear in both the May poll

and the July run at the 5% signi�cance level. Courses are categorized into low demand courses,

medium demand courses and high demand courses, depending on the results from the trial run.

Speci�cally, we categorize a course as high demand if demand in the May trial run was reported to

be at least twice the available capacity.14 A course is said to be low demand, if demand in the May

trial run was less than 70% the available capacity. All other courses are medium demand courses.

13Moreover, very little new information about the courses was generated between the May poll and the July run.

Students had plenty of information - both o¢ cial and uno¢ cial - about course qualities by the time of the May poll.

The only new piece of information was the o¢ cial evaluations for the Winter 05 courses released in July, but according

to the HBS administration, students had already collected and posted uno¢ cial evaluations for these courses before

the May poll.
14We also considered alternative de�nitions of popularity based on the May poll demand rather than the May trial

run. The results are similar. The advantage of using the feedback from the May trial as measures of a course�s

popularity is that these popularity measures are directly available to students (to get a sense of a course�s popularity

based on the May poll data, a student would have to aggregate the submitted rank order lists and extrapolate for

courses at positions 6 or lower).
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Table 2: Comparison between May poll demand and July run demand

N July demand lower No di¤erence July demand higher

Low demand courses 25 17 8 0

Medium demand courses 37 17 20 0

High demand courses 20 1 12 7

Table 2 shows that the null hypothesis that reported demand is unchanged between the May poll

and the July run is rejected for 42 out of the 82 courses (51%). For low demand courses and medium

demand courses, rejection occurs because reported demand in July is lower than reported demand

in May, whereas the reason for rejection for high demand courses is mostly because demand is higher

in July.15 This is consistent with Theorems 2 and 4 according to which students will overreport

popular courses and consequently underreport less popular courses.

As a comparison, we applied the same test on the 44 Winter courses that appear in both the

May poll and the January poll. We focus on Winter courses because the experience of Fall courses

may have a¤ected students�preferences over them. We can reject the null hypothesis that reported

demand is unchanged between the May poll and the January poll for 13 courses out of 44 (29.5%).

This is a lower rejection rate than in Table 2 despite the fact that more than 8 months separate

these two polls whereas only 3 months separate the May poll and the July run.16 Moreover, unlike

in Table 2, there is no systematic pattern in the rejections: the direction of rejections is unrelated

to whether a course is high or low demand. This suggests that most of the observed changes in

submitted preferences in July are due to strategic considerations, whereas most observed changes

in submitted preferences in January are due to new information.17

15As a robustness check, we also implemented Gehan�s test on the July run demand using the convention that

whenever di¤erent sections of the same course appeared in a student�s rank order list, the last time the course

appeared was representative of his preference over that course. The results are similar, except that more courses are

moved to the "no di¤erence" category. The demand in July is lower for 14 low demand courses (instead of 17) and

for 16 (instead of 17) medium demand. The demand in July is higher for 6 high demand courses (instead of 7).
16Because the demand for one course is not independent of the demand for another course, it is hard to interpret

the levels of rejection beyond the fact that one is lower than the other.
17Course-level results con�rm this. The null hypothesis of unchanged demand between the May poll and July was

rejected for 19 Winter courses. For only 7 of those is the null hypothesis of unchanged demand between the May poll

and January poll rejected. In other words, for the 12 other Winter courses, the data rules out the hypothesis that

di¤erences in demand is driven by new information. This leaves the hypothesis that demand changes were driven by

strategic considerations.
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Table 3: Comparison between May poll demand and January poll demand

N January demand lower No di¤erence January demand higher

Low demand courses 13 1 11 1

Medium demand courses 23 5 16 2

High demand courses 8 1 4 3

5.2 E¤ect of Strategic Behavior on Run-out Times and Congestion

Overreporting of popular courses moves up the times by which courses run out and increases demand

for popular courses, creating a sense of congestion for those courses. Theorem 3 predicts that in any

equilibrium, those courses for which (true) demand exceeds supply will run out during the initial

allocation. We use the May poll preferences to construct the set of such courses. Because only 456

students �lled in the poll we scale course capacities accordingly. A conservative estimate is that

any course whose demand restricted to the top 5 rank exceeds adjusted capacity should belong to

the set of courses that run out at equilibrium. Six courses satisfy this de�nition, and they all run

out during the initial allocation. As an alternative we considered that any course whose demand in

the poll exceeded 70% of adjusted capacity satis�es the condition of theorem 3. Again, we found

that these 13 courses all run out during the initial allocation.

Theorems 3 and 4 also provide predictions on equilibrium run-out times. Because m = 10 and

43 courses run out at equilibrium, Theorem 3 is automatically satis�ed in our data. Theorem 4(ii)

has more bite. For each course for which Dc(5) > 1 based on the poll data and adjusted capacities,

we checked whether tc � �c: All 6 such courses satis�ed this stronger test.
In the remainder of this subsection, we go one step further than the theory results and assess

by how much strategic behavior increases congestion relative to truthful behavior. Theorem 2 and

Theorem 4 suggest that run out times should move up because students overreport their preferences

for popular courses. To investigate this question, we use the students who answered the May poll

as representatives of the overall student population and construct a scaled down version of the HBS

market on the basis of those students and adjusted course capacities. Our working assumption is

that the submitted ROLs in July by those students correspond to an equilibrium of this scaled

down market.18

Our May poll data contain the top 5 courses of 456 of the 916 students who participated in

18To test this working hypothesis we applied Gehan�s test described above to the distributions of course ranks in

July for the students who did answer the poll and for those who did not. We found no signi�cant di¤erence between

the distributions across these two samples of students, suggesting similar submitted ROL patterns across the two

groups. This is consistent with the two groups being replicas of one another, and the equilibrium in the May-poll-only

economy being the same as in the original economy.
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the July run of the algorithm. We construct truthful preferences for each of these students as

follows. We consider that their truthful top 5 courses correspond to their top 5 courses in the May

poll.19 Other courses are moved down to position 6 and below in a way that preserves their relative

ranking in the July ROLs. To illustrate, suppose a student submitted the ROL c1; c2; c3; c4; c5 in the

May poll but submitted c4; c3; c6; c1; c2; c7; c8 in the July run. His constructed truthful preference is

given by c1; c2; c3; c4; c5; c6; c7; c8:We call the result "constructed truthful preferences." Constructed

truthful preferences provide a lower bound on the extent of strategic behavior because they assume

that the relative ranking of courses not in the top 5 is truthful.

We ran the HBS algorithm for 10,000 random orderings over students using both the constructed

truthful preferences and the July run preferences. Table 4 summarizes the results. We say that a

course reaches capacity earlier under strategic play if the time it reaches capacity is earlier than

the time it reaches capacity under truthful play in at least 99% of the simulations.

Table 4: E¤ect of Strategic Behavior on Congestion

Course Reaches Capacity

N Earlier Later Indet. Never

Low demand courses 32 0 0 2 30

Medium demand courses 37 3 4 12 18

High demand courses 22 18 1 3 0

All high-demand courses but one reached capacity earlier on average under strategic play and

18 of them reached capacity earlier in more than 99% of the simulations (the one exception is

the course that was also the exception in Table 2). More courses reach capacity under strategic

behavior: 43 courses compared to 41 courses under truthful play. For the 37 courses that reach

capacity under both truthful play and strategic behavior, the round by which they do so goes from

6.73 to 6.35 on average. If we focus on the 13 courses that reach capacity in the �rst 5 rounds

under truthful play, the average time at which this happens moves from 3.48 to 2.56.

6 Welfare Consequences of Strategic Play

The purpose of this section is to assess the welfare consequences of students�strategic play in the

HBS mechanism.

We begin by examining the extent to which strategic behavior leads to ex-post Pareto ine¢ cient

allocations. Our approach is to formulate an integer program that seeks to execute the maximum

number of Pareto-improving trades. We �nd substantial ex-post ine¢ ciencies: around 15% of course

19Courses that were o¤ered in the May poll but were no longer available in the July run are dropped.
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seats can be pro�tably reallocated in a typical run of the HBS mechanism, involving over three-

quarters of students.

We then turn to an ex-ante evaluation (i.e., before priority orders are drawn). In a �rst step,

we take the perspective of individual students. We compare the distribution of outcomes a student

receives under the actual play of the HBS mechanism to his distribution under a non-equilibrium

counterfactual in which all students report their preferences truthfully. The challenge we face is

that our data consist of students�ordinal preferences over individual courses. Yet, their expected

utility depends on lotteries over bundles of courses. We develop a series of comparison results that

indicate conditions under which we can say that a particular student prefers her distribution over

outcomes from truthful play to that from strategic play. These conditions place restrictions on the

mapping from preferences over courses to preferences over bundles, and on the mapping between

preferences over sure outcomes and preferences over lotteries. For all the cases we consider, more

students are worse o¤ under strategic play.

In a second step, we assess welfare from the perspective of a utilitarian social planner. We

develop analogous comparison results that indicate conditions under which we can say with certainty

that the social planner prefers one distribution of outcomes to another. For most of the cases we

consider, the social planner strictly prefers truthful play, and the magnitudes appear meaningful.

For all results in this and the next section, our economy consists of the 456 students who �lled in

the May poll, with course capacities scaled accordingly (see section 5.2). We include an aftermarket

phase for the HBS mechanism as described in Section 2.2, in which all students play truthfully.

6.1 Ex-Post E¢ ciency Consequences of Strategic Play

We assess the magnitude of ex-post ine¢ ciency in the HBS mechanism as follows. First, we ran-

domly draw a priority order � and run the HBS mechanism using students�strategically submitted

preferences. Then we seek to execute as many Pareto-improving trades amongst the students as

possible.

Because our data consist only of ordinal preferences over individual courses, there are some

pro�table trades that we will not be able to �nd. For instance, if a student�s ROL is Ps : c1; c2; c3; c4

and his allocation is fc1; c4g then we know, from responsiveness, that he is willing to trade c4 for c2
or c3, but we do not know whether he is willing to trade the bundle fc1; c4g for the bundle fc2; c3g.

Subject to this caveat of data incompleteness, it is without loss of generality to restrict attention

to trades in which each participant gives and receives a single course seat. Whatever many-to-many

trades we are able to �nd can be found using multiple one-for-one trades. For instance, student s

above would be willing to trade fc2; c4g for fc1; c3g, but this can be executed using two one-for-one
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trades of fc2g for fc1g and fc4g for fc3g. We therefore formulate the following binary integer
program:

max
X

xscc0 s.t.X
s

X
c0

xscc0 � xsc0c = 0, 8c (1)

X
c0

xscc0 + xsc0c � 1, 8s; c (2)

xscc0 2 f0; 1g, 8s; c; c0 (3)

xscc0 = 1) c 2 as(bP; �); c0 2 as(bP; �); c0Psc
Variable xscc0 indicates whether we execute the one-for-one trade in which student s gives c and

gets c0. For this trade to be feasible and desirable it must be that student s�s original allocation

includes c, does not include c0, and that he prefers c0 to c; see (3). The constraints (1) capture

the adding-up condition that each course must be given as often as it is received. The constraints

(2) prevent a student from trading the same course twice, both to ensure feasibility and to avoid

double-counting.

We repeat this exercise for 20 priority orders. The results are as follows:

Table 5. Ex-Post Pareto Improving Trades

Mean Std. Dev.

# of Executed Trades per Student 1.54 (0.04)

% of Allocated Course Seats Traded 15.5% (0.37%)

% of Students Executing

0 Trades 16.3% (1.1%)

1 Trade 35.5 (2.2)

2 Trades 29.7 (2.0)

3+ Trades 18.5 (1.4)

Table 5 suggests that the HBS mechanism is meaningfully ine¢ cient ex-post, and that these

ine¢ ciencies harm the large majority of students.20 By contrast if students played truthfully there

would be zero one-for-one Pareto improving trades available.
20 In Spring 2005 two Harvard Business School MBA students surveyed 160 of their classmates for a class project

related to the HBS course-allocation procedure. One of the survey questions was �Did you know of a trade with

another student that could have made you both better o¤?�58.1% responded yes, suggesting that students are aware

of ex-post Pareto ine¢ ciencies. Of course, our integer program will �nd more trades than students realistically can

be aware of: for many random priority orders we are able to �nd 43-way trades involving one seat in each of the 43

popular courses.
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6.2 Ex-Ante Comparisons at the Individual Level

We now turn to the ex-ante comparison between truthful and strategic play of the HBS mechanism.

The assumption that preferences are responsive immediately yields the following simple comparison

criterion:

Comparison Result 1 (Responsive Preferences) A student strictly prefers play bP to play bP0
if, for every realization of �; that student gets more of her top course, more of her top two courses,

more of her top three courses, ... etc under bP than under bP0: If the reverse relationship holds, we
say that she prefers bP0: If, for all �; she gets the same outcome under both strategy pro�les, she is
indi¤erent. The comparison is indeterminate otherwise.21

We implement this criterion for the comparison between truthful play and strategic play of the

HBS mechanism by running the HBS algorithm for both truthful play and strategic play, for each

of 10,000 randomly drawn priority orders.

We �nd that 25% of students are unambiguously harmed by strategic play: for all 10,000

trials they prefer their outcomes under truthful play to that under strategic play. 4% of the

students strictly prefer strategic play and 1% get the same allocation for all trials. For the majority

of students however, the comparison is indeterminate. This is not surprising because a ranking

requires that a student likes her allocation weakly better under one play for all 10,000 trials. Two

elements drive the indeterminacy. First, in some cases, we do not have the information to determine

whether the student prefers one or the other allocation. Second, a student can prefer her allocation

under one play for some realizations of �; and under another play for some other realizations of

�, and we do not have the information to aggregate her preferences over all �: In the rest of this

section, we impose additional assumptions on preferences that �ll in this information gap and pin

down the indeterminate cases.

We say that student s has additive preferences if there exist numbers vs(c) for all courses in C;

such that us(as) > us(a0s)()
P
c2as vs(c) >

P
c2a0s vs(c) where us is student s�s vNM utility func-

tion and as and a0s are allocations. Additive preferences are a special case of responsive preferences.

By itself, the additivity assumption does not yield new results, but it provides a structure onto

which we can layer additional assumptions. Speci�cally, if, in addition, student s is risk neutral,

then his expected utility under strategy pro�le bP can be expressed as
P
�

P
c2as(bP;�) vs(c): This

yields our second comparison result:

21 In principle, we could get a stronger result without further assumptions by requiring �rst order stochastic dom-

inance for the distributions over bundles; instead of requiring dominance for every realization of �. However, there

are over 1013 bundles of courses, and responsiveness provides only a very partial ordering over these bundles. Thus,

this approach is both computationally di¢ cult to implement and unlikely to yield much stronger results.
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Comparison Result 2 (Additive Preferences). Suppose that student s is risk neutral and has

additive preferences. Student s prefers play bP to play bP0 if, for any j, the expected number of top-j
courses he gets under bP exceeds that under bP0: He prefers bP0 if the reverse relationship holds. He
is indi¤erent if he gets each course with equal probability under both strategy pro�les.

Note the di¤erence versus Comparison Result 1. The comparison here is across all � and not

for every �: However, Comparison Result 2 will still leave some cases indeterminate because the

restrictions on preferences do not entirely pin down the preferences of the student over bundles. A

special case of additive preferences that pins down preferences over bundles is when the di¤erence

in utilities derived from the 1st and 2nd favorite courses is the same as the di¤erence in utilities

derived from the nth top course and the n� 1th top course, for any n. Equivalently, a student that
has those preferences cares about the average rank of the courses in her allocation. Average rank

is a measure of mechanism performance emphasized by the HBS administration. Combined with

di¤erent assumptions on risk attitudes, this yields the following comparison result:

Comparison Result 3 (Average-rank Preferences). Assume student s has average-rank

preferences and let rs(bP; �) denote the average rank of the courses that student s get under strategy
pro�le bP for the priority order � :
(i) Independently of his attitude towards risk, student s prefers strategy pro�le bP to strategy pro�lebP0 if �rs(bP; �) �rst-order stochastically dominates �rs(bP0; �):
(ii) If student s is risk averse, he prefers strategy pro�le bP to strategy pro�le bP0 if �rs(bP; �)
second-order stochastically dominates �rs(bP0; �):22
(iii) If student s is risk neutral, he prefers strategy pro�le bP to strategy pro�le bP0 if P

�

rs(bP; �) <P
�

rs(bP; �):
Another special case of additive preferences is lexicographic preferences (de�ned in Section

3) which puts a high premium on getting top courses. Lexicographic preferences can be seen

as the other extreme from average-rank preferences. The HBS administration implicitly assumes

lexicographic preferences when they evaluate the performance of the mechanism by the number of

students who get their top course. Lexicographic preferences also generate a complete order over

bundles over courses and we have the following comparison result.

Comparison Result 4 (Lexicographic Preferences). Assume student s has lexicographic

preferences. He prefers strategy pro�le bP to strategy pro�le bP0 if he gets his �rst choice course
22For two cumulative distributions of average ranks, say F and G, with ranks distributed on [�; �]; F second-order

stochastically dominates G i¤
R �
x
1 � F (x)dx �

R �
x
1 � G(x)dx for all x 2 [�; �]. The di¤erence versus the usual

formula is due to the fact that lower is better. (Gollier 2001, 3.2)
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more often under bP than under bP0 or if he gets each of his n top choice courses as often under both
pro�les but gets his n+ 1th top course more often under bP0; for some n:

Table 6 uses Comparison Results 2-4 to compare truthful and strategic play of the HBS mech-

anism.

Table 6. Individual preferences over play of the HBS Mechanism using CR2�4

Assumption on Preferences

Additive Average-Rank

Risk Any Risk Risk Risk

Neutral Attitude Averse Neutral Lexicographic

(1) (2) (3) (4) (5)

Outcome

Strictly Prefers HBS Truthful 46% 56% 68% 73% 90%

Strictly Prefers HBS Strategic 5% 13% 17% 26% 9%

Indi¤erent 1% 1% 1% 1% 1%

Indeterminate 47% 30% 14% 0% 0%

By each comparison criterion, strategic play harms more students than it bene�ts.

To understand the role of preference intensity in students�ex-ante evaluations, compare columns

(4) and (5). If students have lexicographic preferences, 90% of students are harmed by strategic play,

ten times as many as bene�t. By contrast, if students have risk-neutral average-rank preferences,

only three times as many are harmed as bene�t. This contrast is due to a basic asymmetry between

the bene�ts and costs of strategic play. The cost of strategic play is congestion; it is harder to obtain

popular courses, holding the rank of a request �xed. The bene�t of strategic play is opportunism;

students can overreport their preference for popular courses. However, it is impossible to overreport

one�s favorite course. So the bene�ts of strategic play will be especially small for students with

lexicographic preferences.

To understand the role risk preferences play in students�ex-ante evaluations, compare columns

(2), (3), and (4). As we put structure on students�risk preferences, we resolve indeterminacies, and

these resolutions if anything disproportionately tend to favor strategic play. Certainly there does

not seem to be a stark di¤erence in how these two plays expose students to risk.

6.3 Comparisons at the Social Level

We now evaluate social welfare. Clearly, just based on the assumption of responsive preferences,

we cannot pareto rank truthful play and strategic play because some students prefer strategic play
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and others prefer truthful play. So in this section, we impose additive preferences and assume

a utilitarian social planner. An alternative interpretation is that we take the perspective of an

individual student who does not know his preferences but knows the distribution of preferences in

the population; that is, a student behind a veil of ignorance in the sense of Harsanyi (1953). The

"social" analogues of Comparison Results 2-4 are as follows:

Comparison Result 5 (Additive Preferences). Assume that students are risk neutral and

have additive preferences. Society prefers play bP to play bP0; if, for any j, the expected number of
top-j courses allocation to students under bP exceeds that under bP0: Society prefers bP0 if the reverse
relationship holds.

Comparison Result 6 (Average-rank Preferences). Assume students have average-rank

preferences:

(i) Independently of students�attitude towards risk, society prefers play bP to play bP0 if �r�(bP; �)
�rst-order stochastically dominates �r�(bP0; �): (the notation r�(bP; �) indicates that the distribution
is taken over priority orders and students)

(ii) If students are risk averse, society prefers play bP to play bP0 if �r�(bP; �) second-order stochasti-
cally dominates �r�(bP0; �):
(iii) If students are risk neutral, society prefers play bP to play bP0 if P

�

P
s
rs(bP; �) <P

�

P
s
rs(bP; �):

Comparison Result 7 (Lexicographic Preferences). Assume students have lexicographic

preferences. Society prefers strategy pro�le bP to strategy pro�le bP0 if the expected number of
students who get their �rst choice course is higher under bP than under bP0 or if the expected
number of students who get their �rst, ..., nth top choice courses is the same under both strategy

pro�les, for some n; but the expected number of students who get their n+1th top course is higher

under bP0:
Figure 1 shows the average number of courses that students get among their top n choices.

There is a �rst order stochastic dominance relationship between the distribution of outcomes under

truthful and strategic play: students get more of their top choices, more of their top two choices

and so on under truthful play than under strategic play.23 Thus CR5 obtains and by consequence

CR6(iii) and CR7 obtain as well since both are special cases of risk-neutral additive preferences. In

other words, if students are risk neutral, a utilitarian social planner unambiguously prefers truthful

23The kink in the HBS Truthful line at rank 6 is a mechanical e¤ect due to the way we construct truthful preferences.

Students report their top-5 truthful preferences in the May Poll. Their 6th favorite course is the �rst course they

rank in the strategic rank order list that they didn�t rank in the May Poll. If this course is rated highly by many

other students in the May Poll, then the student will never obtain it under Truthful play, but might obtain it under

Strategic play if he ranks it highly enough.
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Figure 1: Aggregate outcomes by preference ranks: truthful versus strategic play of the HBS mechanism

(CR5, CR7)

play of the HBS mechanism. The di¤erence appears to be economically meaningful. 83% of

students receive their favorite course under truthful play, and they receive 2.46 of their top three

courses, versus 60% and 1.82 under strategic play. What is driving the result is that some of the

most popular courses go to students for whom they are not the most preferred courses. For example,

the two most popular courses in our data account for 50% of all truthful �rst choices, and 68% of

all strategic �rst choices. These two courses reach capacity in the �rst round of strategic play, so,

on average, around 26% of the seats in these courses go to students for whom it is not their true

�rst choice.24

Next, we compare social welfare when students are not necessarily risk neutral. Figure 2 plots

the distribution of the average rank of course allocations in the population over all 10,000 trials.

There is a bit more mass at the very best outcomes under strategic play than under truthful play.

This is due to the targeted opportunism of some fortunate students who mainly like unpopular

courses. Truthful play, on the other hand, delivers more mass in the middle of the distribution.

There is no �rst-order stochastic dominance relationship, but second-order stochastic dominance

(CR6(ii)) does obtain. The mean average rank under truthful play is 7.76. The distribution under

24That is, (68%-50%)/68%. These two courses alone account for around 100 fewer students (11% of the student

body) obtaining their �rst-choice course under strategic play.
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Figure 2: Distribution of the average rank received: truthful versus strategic play of the HBS mechanism

(CR6)

strategic play has a higher (worse) mean of 8.35 and has thicker tails.

7 Comparison of the HBS Mechanism to a Strategyproof Alter-

native

In the previous section we showed that strategic play of the HBS mechanism harms e¢ ciency,

assessed either ex-ante or ex-post. This section asks the logical next question: should HBS switch

to a strategyproof mechanism? To answer this, we perform a welfare comparison between actual

play of the HBS mechanism and truthful play of its strategyproof alternative, Random Serial

Dictatorship (RSD). We use the same methodology as in Section 6, though here the comparison is

to an equilibrium counterfactual.

The �rst thing to note is that RSD is ex-post e¢ cient, whereas we found that the the HBS

mechanism is highly ine¢ cient ex-post.

In order to assess ex-ante e¢ ciency, we will need to impose additional structure on preferences

beyond responsiveness. Under RSD, students will often obtain their ideal bundle of courses, but

will also often obtain a very poor bundle. The responsiveness assumption does not rule out the

possibility that a student only places value on obtaining his ideal bundle, nor does it rule out that

30



the student only cares about maximizing the minimum bundle he obtains. So comparisons versus

the less-extreme HBS mechanism will be entirely indeterminate.

As soon as we put additional structure on preferences we �nd that the HBS mechanism appears

to be more attractive ex-ante than RSD. RSD�s ex-ante unattractiveness may be surprising since

ex-post it is e¢ cient. We provide a theoretical explanation of RSD�s poor performance at the end

of this section.

7.1 Comparisons at the Individual Level

We repeat the methodology of Section 6.2. The following table compares HBS to RSD under

additive, average rank, and lexicographic preferences using Comparison Results 2-4:

Table 7. Individual Preferences between HBS and RSD: CR2�4

Assumption on Preferences

Additive Average-Rank

Risk Any Risk Risk Risk

Neutral Attitude Averse Neutral Lexicographic

(1) (2) (3) (4) (5)

Outcome

Strictly Prefers RSD 0% 0% 0% 19% 25%

Strictly Prefers HBS Strategic 26% 2% 81% 81% 75%

Indi¤erent 0% 0% 0% 0% 0%

Indeterminate 74% 98% 19% � �

Begin by examining columns (4) and (5). For either risk-neutral average-rank or lexicographic

preferences, the large majority of students prefer the HBS mechanism to RSD. Unlike in the com-

parison in Table 6, the ratio does not vary severely between the two columns. This suggests that

preference intensity is not what drives students�ex-ante preference for HBS over RSD.

By contrast, consider columns (2), (3), and (4). Without any structure on students�risk prefer-

ences, the comparison is almost entirely indeterminate. This is because RSD induces such extreme

outcomes. As soon we put structure on risk preferences, we see that the large majority of indeter-

minacies are resolved in favor of the HBS mechanism. There is a fundamental di¤erence in riskiness

between the two mechanisms, unlike in Table 6.
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7.2 Comparisons at the Social Level

Figure 3 implements CR5 and CR7 by comparing the aggregate rank distributions of HBS and RSD.

The distribution under strategic play of the HBS mechanism �rst-order stochastically dominates

that under truthful play of RSD. So a utilitarian social planner prefers HBS to RSD when students

are risk neutral and have any additive preferences. This is surprising because it suggests that RSD�s

ex-post Pareto e¢ ciency is not a good proxy for social welfare.
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Figure 3: Aggregate outcomes by preference ranks: RSD versus

strategic play of the HBS mechanism (CR5, CR7)

The magnitudes are of the most economic importance in the tails. Students receive their favorite

course with 60% probability under HBS, but with only 47% probability under RSD.25 Students

actually receive slightly more of their 2nd-10th favorite courses under RSD (6.02) than under HBS

(5.95). This is because students with lucky draws in RSD get all 10 of their favorite courses. The

cost is that students receive twice as many courses they like less than 15th (1.30) under RSD than

under HBS (0.65). As a result the average average rank under RSD is 9.84, versus 8.35 under

HBS. This is an economically meaningful di¤erence, and around twice the average rank di¤erence

between truthful and strategic play of the HBS mechanism.

25To give a sense of the magnitude of this di¤erence, we note Pathak�s (2006) �ndings in the context of single�unit

assignment. He �nds that students receive their �rst-choice object 60.6% of the time under RSD, versus 60.8% in

the counterfactual of interest (Bogomolnaia and Moulin�s Probabilistic Serial mechanism; 2001).
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We can get a better understanding of the risk to which RSD exposes students by examining

the distribution of average ranks. Figure 4 implements CR6. RSD puts much more weight on the

tails of the distribution, and indeed is second-order stochastically dominated by HBS, i.e., CR6 (ii)

obtains. So a utilitarian social planner prefers HBS to RSD if students are weakly risk averse and

have average-rank preferences.

Under RSD, around 29% of students obtain their "bliss bundle" consisting of their 10 favorite

courses, versus around 1% under HBS. But over 17% of students obtain a bundle with average rank

worse than 12, versus just 1% under HBS.
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Figure 4: Distribution of the average rank received: RSD vs.

strategic play of the HBS mechanism (CR6)

7.3 Explanation: Callousness

Our intuition for RSD�s poor ex-ante performance is simple. Under RSD, fortunate students with

good random draws make their last choices independently of whether these courses would be some

unfortunate students��rst choices. For both average-rank and lexicographic preferences, the ex-

post utility bene�t to these fortunate students is exceeded by the ex-post harm they cause to the

unfortunate students. The fortunate students "callously" disregard the preferences of others. In

the absence of monetary transfers, the allocation reached by RSD is ex-post Pareto e¢ cient. Ex-

ante, though, students do not know if they will be fortunate or unfortunate, and the large majority
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regard this distribution over callous outcomes as unattractive.

We formalize this intuition with a simple example and a simple theorem.

Example 3 (Callousness of RSD). There are two students, A and B, and four courses each

in unit supply. Students�ordinal preferences over singletons are drawn uniformly i.i.d., and they

report their preferences truthfully. Consider the RSD choosing order AABB and the HBS choosing

order ABBA.

RSD. A gets his 1st and 2nd favorite objects, while B gets either his 1st/2nd, 1st/3rd, 1st/4th,

2nd/3rd, 2nd/4th, or 3rd/4th favorite objects, each with equal probability.

HBS. A gets his 1st favorite object, and either his 2nd, 3rd, or 4th, each with equal probability.

B gets his 1st and 2nd favorites with probability one-half, and otherwise gets either his 1st/3rd or

2nd/3rd, each with probability one-quarter.

Table 8. Results of Example 3

Average-Rank Received P(Get Favorite Course)

A B Societal Mean A B Societal Mean

RSD 1:5 2:5 2:0 1 :5 :75

HBS 2:0 1:875 1:9375 1 :75 :875

In this simple example, ex-ante welfare is higher under HBS than RSD for students with either

average-rank or lexicographic preferences. The driving force behind both results is that it is harmful,

in terms of these measures of welfare, to give A his second choice before B has made his �rst choice.

Simulations suggest that the average-rank �nding in Example 3 generalizes to larger economies.

For instance, in an HBS-sized version of Example 3 with 1000 students, 100 courses, 100 seats per

course, and m = 10, the average rank under HBS is 5.72 versus 6.45 under RSD.26

The following simple theorem shows that the �rst-choice-course �nding in Example 3 generalizes.

Theorem 5 (Callousness of RSD): Suppose there are S students, each of whom requires m

courses, and mS courses each in unit supply. Students�ordinal preferences over courses are drawn

uniformly i.i.d., and they report their preferences truthfully. Then the expected proportion of

students who obtain their �rst-choice object is 1� (S�1)
2Sm under HBS which is strictly greater than

the proportion 1 � (S�1)
2S under RSD whenever m > 1. As S ! 1 the proportion converges to

1� 1
2m under HBS versus 12 under RSD.

First, note that Callousness is speci�c to multi-unit assignment. If m = 1 then the two mech-

anisms are equivalent. Second, note that Theorem 5 illustrates that the Callousness of RSD in
26We also are able to show theoretically that Example 3 generalizes to any number of students S, with m = 2 and

Sm courses each in unit supply. The proof is available upon request, as are simulation results and code.
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multi-unit assignment persists in large markets. This helps to illustrate that Callousness is distinct

from Bogomolnaia and Moulin�s (2001) critique of RSD in the single-unit assignment setting, since

the magnitude of the ine¢ ciency BM address goes to zero as the market grows large (Che and

Kojima, 2009).

8 Conclusion

Our analysis of a speci�c imperfect solution to a speci�c open problem yields two generalizable

lessons that contribute to the broader market design literature. The �rst lesson concerns the

relationship between ex-post and ex-ante e¢ ciency in random allocation mechanisms. Researchers

have long acknowledged that ex-ante e¢ ciency is the more compelling criterion for evaluating

random allocation mechanisms, and it is strictly stronger than ex-post e¢ ciency in the sense that

a necessary but not su¢ cient condition for a lottery over allocations to be ex-ante Pareto e¢ cient

is that all realizations of the lottery are ex-post Pareto e¢ cient. But, the impossibility theorems

for ex-ante e¢ ciency are even more severe than they are for ex-post (Zhou, 1990), and lotteries

over allocations tend to be less tractable to work with than sure allocations, especially in the case

of multi-unit demand. As a result, the literature on random allocation mechanisms has largely

focused on ex-post e¢ ciency.27

Our paper sounds a cautionary note against advocating for a mechanism on the basis of its

ex-post e¢ ciency properties if ex-ante e¢ ciency is what we care about.28 In our environment, RSD

is ex-post e¢ cient, whereas the HBS mechanism is severely ine¢ cient ex-post. Yet, ex-ante, the

HBS is actually more attractive. This wedge between ex-ante e¢ ciency and ex-post e¢ ciency in

multi-unit assignment is driven by what we call callousness.

Our second lesson concerns the role of strategyproofness in market design. Strategyproofness

has traditionally been seen as a desideratum in market design for at least three reasons. First,

strategyproof mechanisms are the ultimate robust mechanisms in the sense of Wilson (1987): equi-

librium behavior is not informationally demanding on the part of participants so we can reasonably

27Two important exceptions are Hylland and Zeckhauser (1979), who propose a single-unit assignment mechanism

that is ex-ante e¢ cient, and Bogomolnaia and Moulin (2001), who propose a single-unit assignment mechanism that

satis�es an intermediate notion of e¢ ciency, ordinal e¢ ciency, that is stronger than ex-post yet weaker than ex-ante.

More recently, an exciting series of papers has taken an ex-ante perspective to the single-unit assignment problem of

school choice, using either simulation evidence (Abdulkadiroglu, Che and Yasuda, 2009; Miralles, 2009) or laboratory

evidence (Featherstone and Niederle, 2008).
28For example, consider Ehlers and Klaus�s (2003) argument that dictatorships are an attractive solution to the

multi-unit assignment problem: �[Dictatorships] are e¢ cient, strategyproof, and satisfy other appealing properties

discussed below. They can be considered to be �fair� if the ordering of the agents is fairly determined; for instance

by queuing, seniority, or randomization.�
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trust that they will play equilibrium strategies. A second and related reason is that strategyproof

mechanisms make it easy to advise market participants and they help level the playing �eld between

sophisticated and naïve players (Abdulkadiroglu et al (2009), Pathak and Sonmez (2008)). A third

reason to favor strategyproof mechanisms is that they generate preference information that can

be used for ex-post policy evaluation and public decisions. These arguments have been especially

prevalent in the context of assignment and matching problems (Roth 2008), and each is compelling

in the context of course allocation.29

Our paper sounds a cautionary note against imposing strategyproofness as a strict design re-

quirement. In our environment, strategic behavior by market participants indeed harms welfare.

The magnitudes are large. However, we also �nd that the highly manipulable HBS mechanism is

preferable to the strategyproof RSD on natural measures of welfare, including all of the measures

emphasized by the actual market administrators. That is, the costs of manipulability are large, but

the costs of requiring strategyproofness are larger.

One �nal point to note, as we think about ex-post versus ex-ante e¢ ciency, and the costs and

bene�ts of requiring strategyproofness, is the revealed preference of school administrators. Despite

its being the only known anonymous mechanism that is ex-post e¢ cient and strategyproof, we are

not aware of any university that has adopted RSD as its course-allocation mechanism.

29Budish (2008) suggests that a mechanism that is not strategyproof but that is di¢ cult to manipulate in large

markets may yield many of the same bene�ts, and proposes a course-allocation mechanism that satis�es such a

criterion of approximate incentive compatibility.
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9 Appendices

9.1 Proof of Theorem 1

Proof : (i) Identical preferences: Let Ps = Ps0 : c1; c2; c3; ::: Under truthful play, course c1 runs out

earlier than c2; which itself runs out earlier than c3 and so on. Also note that c1 runs out with

probability 1 in round 1 for all strategy pro�les ( bPs;P�s) for any bPs:
Towards a contradiction, suppose bPs 6= Ps constitutes a pro�table deviation for student s when

the other students play P�s: Let bP c"s equal bPs except that c is moved to the �rst position. Similarly,
let bP cc0"s equal bPs; except that c is moved to the �rst position and c0 is moved to the second position,
and so on for bP cc0c00"s ; bP cc0c00c000"s ; :::

We show that the sequence bP c1"s ; bP c1c2"s ; :::; bP c1::::cC�1"s = Ps constitutes a chain of pro�table

deviations. This contradicts the hypothesis that bPs was a pro�table deviation from Ps:

Consider �rst bP c1"s and bPs and suppose c1 is not �rst in bPs (otherwise bP c1"s = bPs and we are done):
Claim 1: Student s gets either exactly the same courses under ( bP c1"s ;P�s) and ( bPs;P�s) or his two
allocations di¤er by exactly one course: he gets c1 under ( bP c1"s ;P�s) which he does not get under

( bPs;P�s), in exchange for getting a course under ( bPs;P�s) that he does not get under ( bP c1"s ;P�s):

Proof of claim 1: We compare how the game plays out under the two strategies. Partition the

set of priority orders L into L1 and L0 according to whether student s gets c1 in the �rst round
when playing bP c1"s . Under all priority orders in L0 the two games play out exactly in the same
fashion (since student s never gets c1 under bPs), so we focus on priority orders in L1:

Fix � 2 L1: Under ( bP c1"s ;P�s); student s gets c1 which he does not get under the original

strategy. From round 1 onwards until we reach a course that student s gets under one strategy but

not under the other, student s requests each speci�c course exactly one round later under bP c1"s .

Because of the continuum assumption, other students� requests and outcomes are otherwise not

a¤ected and courses run out at the same time under both strategy pro�les. Thus if there is a

course that student s gets under one strategy but not under the other it is a course that he does

not get under ( bP c1"s ;P�s): Call this course cl and let r be the round at which this happens. From

round r, student s�requests are "in synch" again and so are other students�requests. This implies

there are no additional discrepancies between the two outcomes.�

Responsiveness (c1Pscl), vNM preferences over uncertain outcomes, together with claim 1 implies

that student s is strictly better o¤ playing bP c1"s than bPs: We next show that bP c1:::ck"s is preferred

to bP c1:::ck�1"s :

Claim 2: Student s gets either exactly the same courses under ( bP c1:::ck"s ;P�s) and ( bP c1:::ck�1"s ;P�s)

or his two allocations di¤er by exactly one course: he gets ck under ( bP c1:::ck"s ;P�s) which he does
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not get under ( bP c1:::ck�1"s ;P�s), in exchange for getting cl; l > k under ( bP c1:::ck�1"s ;P�s) that he

does not get under ( bP c1:::ck"s ;P�s) for k � 2

Proof of claim 2: The proof proceeds along similar lines as the proof of claim 1. Without loss

of generality, assume that bP c1:::ck"s 6= bP c1:::ck�1"s : Until student s requests ck under bP c1:::ck"s ; the

two games proceed identically. Partition the set of priority orders into L11 (s gets ck under both
strategies), L10 (s gets ck only under ( bP c1:::ck"s ;P�s)) and L00 (s does not get ck under either
strategies). Clearly, for priority orders in L00; the two games proceed identically and s gets the
same �nal allocation.

We claim that s gets also the same �nal allocation for priority orders L11: To show this, �x �

and let r be the round at which student s requests ck under bP c1:::ck�1"s and r0 < r the round at

which he requests ck under bP c1:::ck"s : Because ck �lls up earlier than cl for l > k; it means that all

courses requested by student s between ck�1 and ck under bP c1:::ck�1"s are still available at the time

of student s�s turn in round r under the alternative strategy bP c1:::ck"s : Thus, by round r student s

has the same allocation under both strategies. Because requests are identical across the two games

from then on, so are allocations.

Finally, we argue that, under priority orders in L10; student s gets ck under bP c1:::ck"s at the cost of

cl for some l > k: The argument here is identical to the argument in the proof of claim 1. There

exists a course cl that student s does not get under bP c1:::ck"s : From the time of this unsuccessful

request, student s�s requests are identical across the two strategies. Thus so are his outcomes.�

Claim 2, responsiveness and the assumption of vNM preferences over uncertain outcomes implies

that student s prefers bP c1:::ck"s to bP c1:::ck�1"s : Theorem 1(i) then follows from transivity.

(ii) Independent preferences: Let r be such that Dc(r� 1) < 1 and Dc(r) � 1: Under truthful play,
all P-popular courses run out exactly in round r: This also holds for all strategy pro�les ( bPs;P�s)
for any bPs: Truthful play guarantees that each student gets his top r � 1 courses. Moreover, it
maximizes the chance that he gets r P-popular courses; and conditional on getting r P-popular

courses, the probability distribution it generates on those r-course bundles �rst order stochastically

dominates the outcome from any alternative (here we use the assumption of responsiveness and the

fact that all r-course bundles di¤er by a single course, the one requested in round r; to generate

an order over them). Finally, the fact that P-unpopular courses are listed in order of preferences

ensures that he gets his m� r (or m+ 1� r) most preferred courses among them: The claim then

follows from responsiveness and the assumption of vNM preferences over uncertain outcomes. QED
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9.2 Proof of the Downgrade Lemma

Fix � and bP�s. For an arbitrary student s; we compare the outcome of the following alternative
strategies:bPs : c1; c2; :::; ck; ck+1; :::; cl; cl+1; :::bP ck#ls : c1; c2; :::; ck+1; :::cl; ck; cl+1; :::

Because bPs and bP ck#ls only di¤er from position k onwards, the game proceeds identically until the

time at which bPs requests ck: Let rk be the round at which this happens. Without loss of generality
we can focus on the case where student s gets ck in round rk if he plays bPs (otherwise, the two
strategies are equivalent for this particular � and part (i) of the lemma follows trivially). Because

student s has zero mass, her change of strategy does not a¤ect course seats availabilities and thus,

a fortiori, the allocation and requests in any given round of other students.

Under bP ck#ls ; student s requests course ck+1 in round rk and all other courses one round earlier

than under strategy bPs until we either reach a course, say ck0 ; in fck+1; :::; clg that student s gets
under bP ck#ls but not under bPs, or reach position l in student s�s ROL. We consider each case in
turn:

1. There exists ck0 in fck+1; :::; clg that student s gets under bP ck#ls but not under bPs:
Let rk0 be the round at which student s requests but does not get this course. From round

rk0 onwards, student s�requests are in synch under both strategies and thus he gets the same

outcome until the algorithm reaches position l in his ROL. In particular, there is no other

course in fck+1; :::; clg that one strategy gets and not the other.

When the algorithm reaches the requests in position l; student s requests course ck under bP ck#ls .

From then on, we need to distinguish two subcases. If ck is no longer available, the student�s

requests remain in synch under both strategies and so there is no additional di¤erences. The

�nal outcomes di¤er in one course: bP ck#ls gets ck0 at the cost of ck: If ck is available, student s

now requests courses one round earlier under bPs: This has two possible consequences: either
there exists a course that he gets under bPs but that is no longer available when bP ck#ls requests

it (after which his requests are in synch and thus there is no more discrepancy between the two

outcomes), or the algorithm reaches round m (and thus the course that the student requests

in round m under bPs is never requested by bP ck#ls ). In both cases, there is a single course in

fcl+1; ::::; cCg that student s gets under bPs instead of ck0 that he does not get under bP ck#ls .

2. The algorithm reaches position l in student s�s ROL without any di¤erence in allocations

between the two strategies

Two outcomes are possible at that round. If ck is available, student s�s requests become in
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synch again and there is thus no di¤erence in outcomes. If, on the other hand, ck is no longer

available in that round, student s continues to request courses one round earlier under strategybP ck#ls ; and in particular the courses in fcl+1; :::::cCg: This has two possible consequences:
either there exists a course that he gets under bP ck#ls but that is no longer available when the

original strategy requests it (after which his requests are in synch and thus there is no more

discrepancy between the two outcomes), or the algorithm reaches round m (and thus the

course that the student requests in round m under bP ck#ls is never requested by the original

strategy). In both cases, the two �nal allocations di¤er in a single course: there exists a

course in fcl+1; ::::; cCg that student s gets under bP ck#ls instead of ck that he gets under bPs.
9.3 Proof of Theorem 2

Let � denote the position in the ROL of the lowest ranked course that student s ever receives in

the HBS mechanism (over all possible ��s). If � = m; then student s always receives his top m

courses and bP simples gets exactly the same courses as Ps so that the claim follows trivially. Thus

assume for the remainder that � > m: The strategy of the proof is to show that a sequence of

deviations from Ps; that consist in downgrading the bP-unpopular courses to the bottom half of

the top m courses in student s�s ROL while preserving the relative ordering of the bP-popular andbP-unpopular courses, leaves student s weakly better o¤. For ease of reference, relabel courses such
that Ps : c1; c2; c3; :::cC :

Claim 1: Let ck be the lowest-ranked bP-unpopular course among the top m courses in Ps: LetbP 1s = P ck#ms : Student s is weakly better o¤ using bP 1s than Ps
Proof of claim 1: By the downgrade lemma (iii), bP 1s gets exactly the same courses among
fc1; :::; cmg (because ck is unpopular, student s gets it for sure), or exactly one additional course in
fck+1; ::::; cmg than Ps; at the cost of a course fcm+1; :::; cCg. Because all courses in fck+1; :::; cmg
are strictly preferred to courses in fcm+1; :::; cCg, student s is either indi¤erent or strictly better o¤
using bP 1s (here we are using the fact that preferences are responsive and that students have vNM
preferences over lotteries).

Claim 2: Let cj be the nth lowest bP-unpopular courses among the top m courses in Ps: LetbPns = bPn�1 cj#m�n+1
s : (student s downgrades course cj just above all the other less preferred bP-

unpopular courses that he has already downgraded). Student s is weakly better o¤ using bPns thanbPn�1s :

Proof of claim 2: By the downgrade lemma (iii), bPns gets either exactly the same courses among
fc1; :::; cmg or exactly one additional course among the bP-popular that were between cj and position
m� n+1 in bPn�1s : This comes at the expense of a course in fcm+1; :::; cCg: Given that preferences
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are responsive and take the vNM form, student s is weakly better o¤ using bPns over bPn�1s :

We continue until there is no further bP-unpopular course to downgrade. At each deviation, student
s is weakly better o¤. The claim then follows by transitivity. QED

9.4 Proof of Lemma 2 (Downgrade Lemma)

Suppose for a contradiction that student s�s best response bPs involves ranking bP-popular course c
lower than a bP-unpopular course despite the fact that rs(c) � m and Pr(c 2 asjbP) 2 (0; 1). Let u
denote the last such bP-unpopular course to appear before c on bPs.

We construct an alternative rank-order-list, ePs, by making two changes versus bPs. First, switch
the positions of c and u. Second, if there is any bP-popular course ranked lower than c on bPs, �nd
the lowest-ranked such course, say p, and downgrade u until the position right after p. The two

strategies can be written as:

bPs : :::u:::c:::p:::ePs : :::c::: :::pu:::
where the ellipses denote courses that do not change in their relative position between bPs andePs. Partition the set of priority orders into four sets:

L1 : c 2 asj( bPs; bP�s) and c 2 asj( ePs; bP�s)
L2 : c =2 asj( bPs; bP�s) and c =2 asj( ePs; bP�s)
L3 : c =2 asj( bPs; bP�s) and c 2 asj( ePs; bP�s)
L4 : c 2 asj( bPs; bP�s) and c =2 asj( ePs; bP�s)

If � 2 L1 then in the initial allocation ePs gets every popular course that bPs receives, plus
possibly one additional popular course ranked lower than c on bPs. If there is such a di¤erence,
than there is some unpopular course that bPs receives that ePs does not. This follows from a slight

modi�cation of the proof of the downgrade lemma: from the time that bPs obtains u and ePs obtains
c, the two strategies are in synch, requesting the same courses at the same time, until the round

at which bPs receives c. Now, ePs requests the popular courses between c and p on bPs one round
earlier than does bPs, so there is the possibility that ePs receives a course that bPs does not. Because
unpopular courses are available with probability one in the aftermarket, the �nal schedule that s

is able to form having used ePs is at least weakly preferred to that from using bPs.
If � 2 L2, then, again, ePs gets every popular course that bPs receives, plus possibly one additional.

Now, though, the additional course might be any popular course ranked lower than u on bPs. Because
of the aftermarket, ePs yields a weakly better outcome than does bPs.
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If � 2 L3, then ePs gets c while bPs does not, and otherwise they get exactly the same popular
courses. Since unpopular courses are available with probability one in the aftermarket, and since c

is one of s�s favorite m courses, the �nal schedule that s is able to form having used ePs is strictly
preferred to that from using bPs.

Last, note that Pr(� 2 L4) = 0: For all priority orders, ePs requests c strictly earlier than doesbPs, and so it is impossible that bPs�s request for c is successful while ePs�s is rejected.
To complete the argument, we note that Pr(� 2 L3) > 0. This follows from the assumption

that Pr(c 2 asjbP) 2 (0; 1) and the fact that ePs requests c strictly earlier than does bPs:
9.5 Proof of Theorem 3

(i) Fix an equilibrium bP. For any priority order �; every student for whom c is in their top�m
favorite courses either requests c in the original allocation or requests it in the aftermarket. Since

Dc(m) > 1 there exists a positive-measure set of such students whose requests are rejected.

(ii) Let k denote the number of bP-popular courses. If k > m the claim follows trivially. Suppose

k � m and tc > k. Then there exists a positive mass of students who (1) have bP-popular course
c among their top-m most preferred courses, but who place it in position k + 1 or below in their

submitted ROL and (2) get course c with probability strictly less than 1. Consider one such student,

say s: bPs must contain at least one bP-unpopular course, c�; in the top k positions. This contradicts
lemma 2 if Pr(c 2 asjbP) 2 (0; 1): If Pr(c 2 asjbP) = 0; then there exists a pro�table deviation

similar to that described in the proof of Lemma 2. Form ePs by switching the positions of c and c�,
and then downgrading c� until immediately after the lowest-ranked bP-popular course on bPs. By
the same argument as in Lemma 2, the new strategy ePs gets every bP-popular course that bPs gets,
and possibly one additional. With strictly positive probability the additional course is c, because it

is ranked earlier on ePs than its maximum sell-out time tc, and so Pr(c 2 asj( ePs; bP�s) > 0. Hence,
the deviation constitutes a strict improvement.

9.6 Proof of Lemma 3 (Safe Strategies)

Suppose that for some s; c there exists a course c0 such that cPsc0 and yet c0 bPsc, and that Pr(c 2
asjbP) 2 (0; 1). If there exist multiple such courses, consider the �rst one before c: Thus, bPs =
:::; c0;ec1;ec2; :::;ecn; c; :::; where eciPsc for all i:
We need to show that there exists an alternative strategy for student s; bP 0s; that yields strictly
greater expected utility. Consider bP 0s = bP c0#Cs ; i.e. bP 0s corresponds to bPs except that c0 is moved to
the end of the ROL.

By Lemma 2, for every �; this alternative strategy yields exactly the same outcome for student s
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or it yields exactly one extra course among those from ec1 until the end of bPs (at the cost of c0):
Consider in particular the subset of courses fec1;ec2; :::;ecn; cg which, by construction, are all strictly
preferred to c0:We claim that there exists at least one course among them that student s gets with

increased probability. Indeed, suppose that for all �; the alternative strategy gets exactly the same

set of courses in fec1;ec2; :::;ecng as bPs (otherwise we are done). Then it requests course c exactly
one round earlier than bPs, which strictly increases the probability that he receives it since, by
assumption, Pr(c 2 asjbP) 2 (0; 1): Because student s has lexicographic preferences, this is enough
to guarantee that he has strictly higher expected utility with bP 0s: QED.
9.7 Proof of Theorem 4

(ii) Towards a contradiction assume that tc > �c. Then there exists a student for whom rs(c) � �c
but who requests the course later than round �c with strictly positive probability and gets rejected

with positive probability: This student ranked c in position �c + 1 or lower in his rank order list.

This contradicts Lemma 3.

(i) follows immediately from (ii) given Dc(m) > 1.

(iii) If brs(c) > rs(c); there exists course c0 with c0 bPsc yet cPsc0, a contradiction with Lemma 3.
QED.

9.8 Proof of Theorem 5

The probability that the jth student in the random priority order gets his �rst favorite course

is Sm�(j�1)
Sm under HBS, as j � 1 of the Sm objects have been selected by other students, and

which objects were selected is random due to the uniform i.i.d. assumption. For RSD the �gure is
Sm�m(j�1)

Sm , as m(j � 1) objects have been randomly selected by the time of j�s turn. Taking the
arithmetic average over all j yields the desired expressions. QED.
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