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Abstract

In this note, we use the technique of option sets to sort out the implications of
coalitional strategyproofness in the spatial setting. We also discuss related issues and
open problems.

1 Introduction

The purpose of this note is to illustrate the power of an ingenious technique pionnered

independently by Barbera and Peleg (1990) and La�ond (1980) and called the technique of

option sets1 which has been used extensively and successfully to characterize the implications

of strategyproofness in many di�erent settings. To quote Zhou (1991), one, out of many

scholars, who has used it: " It is direct and simple, invoking neither the Arrow theorem, nor

any monotonicity argument. Yet, it is so powerful that under its framework many interesting

issues can be adressed". Out of many contributions2, we can cite for instance Barbera, Masso

and Neme (1997) and Barbera, Masso and Serizawa (1998) who use the technique of option

�We are grateful to Salvador Barbera for the many stimulating scienti�c conversations we had over years
and very pleased to o�er him this little contribution which has remained unpublished. The last author would
like to point out that his own interest for strategyproofness has been very much inuenced by his very nice
1990 paper with Bezalel Peleg.

yOur dear friend Georges Bordes passed away in 2005. He was a very good person, a talented scholar
and a friend of Salvador. He would have been very happy to o�er this little present to his friend.

zLaboratoire d'Econom�etrie, CNAM, Paris.
xToulouse School of Economics and Institut Universitaire de France.
{We would like to thank an anonymous referee for an extremely careful reading of an earlier version

of this manuscript. We would also like to thank J�erome Renault and John Weymark for a very useful
correspondence.

1Border and Jordan (1983) call them manipulation sets. These sets also appear in La�ont (1987).
2I cannot cite here all the contributions who use that technique as they are too many.
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sets to investigate the case in which the domain is the class of multidimensional single-peaked

preferences and the range is a compact set and Berga and Serizawa (2000) who use it in their

exploration of maximal domains for strategy-proofness.

This simple notion is de�ned as follows. Consider a society of individuals who has to

select an alternative out of a feasible set X and a social choice mechanism mapping any con-

ceivable pro�le R of preferences into an alternative. The option set OS (R�S) of a coalition S

of individuals (given the preferences R�S reported by the individuals outside the coalition)

is the set of alternatives that they can reach through an appropriate joint report RS of their

preferences. Therefore, the option set of coalition S describes the "scope of inuence" of

coalition S given the pro�le R�S of reports by individuals outside S. A social environment

is characterized by a set X and and a domain D of admissible preferences. Given a social

environment (X;D), the technique of options sets consists in sorting out gradually the prop-
erties that these di�erent option sets must possess if the mechanism is required to satisfy

some properties, on top of which some weak or strong versions of strategyproofness.

In this note, we illustrate this technique in the case where X = Rm and D is the set of

Euclidean preferences. This result is extracted from a work that was done twenty years ago3

(Bordes, La�ond and Le Breton (1990). The result states that, if m � 2, any surjective and
coalitional strategyproof mechanism is dictatorial. The main part of the proof consists in the

analysis of the case where there are two dimensions and two individuals. It uses elementary

tools from basic geometry and is self contained. Most of the proof consists in showing that

to prevent the mechanism to be manipulated by any one of the two individuals, say 2, the

option set of 2 must be a disk. This proof is twenty years old and, likely, some better self-

contained proofs can be provided. Since then, many new results have been discovered. In the

last section, we o�er a brief account of some of the main achievements and open problems

in this branch of the literature.

2 The Model

We consider a society N = f1; 2; :::; ng of individuals who has to select an alternative in the
Euclidean space X = Rm. The preference Ri of any individual i 2 N is entirely described

by a point pi 2 Rm and de�ned as follows : xRiy i� k x� pi k�k y� pi k where k : kdenotes
the usual Euclidean norm on Rm4. The point pi is called the peak of individual i as it is

3The old version was containing a brief account of some of the results contained in the doctoral thesis of
the second author. In the last part of this note, we o�er a short presentation of some of his ideas.

4kxk = hx; xi
1
2 where h:; :i denotes the usual inner product.
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the (unique) mostly prefered alternative of individual i : any individual orders alternatives

according to their distance with respect to his peak. If an alternative is interpreted as

the location of a public facility and pi as the place of residence of individual i, Euclidean

preferences can be interpreted as preferences for smallest distances to the facility when

the transportation network is unrestricted. Hereafter, we will denote by E the domain of
Euclidean preferences over Rm.
A social choice mechanism is a mapping C from En into X. Since preferences in E

are identi�ed to their peaks, we will alternatively describe C as a mapping from Rnm

into Rm mapping a pro�le p = (p1; p2; :::; pn) of peaks into a social alternative C(p) =

(C1(p); C2(p); :::; Cm(p)). Given a pro�le p 2 Rnm and a coalition S � N , we denote

by p�S 2 (Rm)NnS the restriction of the pro�le to NnS. A social choice mechanism C is

strategy-proof if there does not exist i 2 N;p 2 Rnm and bpi 2 Rm such that k C(p�i; bpi) �
pi k<k C(p) � pi k. A mechanism is coalitional strategy-proof if if there does not exist

S � N;p 2 Rnm and bpS 2 (Rm)S such that k C(p�S; bpS)� pi k<k C(p)� pi k for all i 2 S.
The range of the mechanism C is the set R(C) � fx 2 Rm : x = C(p) for some p 2 Rnmg.
The mechanism C is unanimous if C(p; p; :::; p) = p. C is anonymous if C(p1; p2; :::; pn) =

C(p�(1); p�(2); :::; p�(n)) for all permutations � : N ! N and all p 2 Rnm. C is (component-
wise) continuous if each component Cj is continuous. Finally, a social choice mechanism C

is dictatorial if there exists i 2 N such that C(p) = pi for all p 2 Rnm.

3 The Result

Proposition If m � 2, then any coalitional strategy-proof social choice mechanism C over

the domain E such that R(C) = Rm is dictatorial .

4 The Proof

As already pointed out, the proof is based on the technique of options sets. Given a pro�le

p 2 Rnm and a coalition S � N , we de�ne the option set of coalition S at pro�le p denoted
OS (p) as the set

n
x 2 Rm : x = C(p�S; bpS) for some bpS 2 (Rm)So. It will be often denoted

OS (p�S) as it only depends upon the subpro�le p�S. When S = fig for some i 2 N , OS (p)
will be denoted Oi (p�i). The option set of a coalition S, given the preferences reported by

the individuals outside the coalition, is the set of alternatives attainable by the members of

S if they jointly control the preferences that they report. It is the range of the social choice

mechanism CS(p�S) de�ned on (Rm)S. We note that ON (p) = R(C).
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The following two properties are quite general (i.e. independent of the speci�c Euclidean

setting considered here) and have been demonstrated several times. We will not repeat these

arguments here.

Step 1 : If p 2 R(C), then C(p; p; :::; p) = p
Step 2 (Closeness) : For all p 2 Rnm and S � N , OS (p�S) is a closed subset of Rm

4.1 The Case where n=m=2

In this section we will denote simply O1 (p2) and O2 (p1) the options set of individuals 1 and

2. Step after step, we will re�ne our knowledge of the options sets.

Step 3 : p1 2 O2 (p1) and p2 2 O1 (p2)
Step 4 : k C (p1; p2) � p2 k�k p02 � p2 k for all p02 2 O2 (p1) and k C (p1; p2) � p1 k�k

p01 � p1 k for all p01 2 O1 (p2).
Step 5 (E�ciency) : C (p1; p2) 2 [p1; p2]
Step 6 (Star-shapedness) : O2 (p1) is star-shaped with respect to p1.

If O2 (p1) = fp1g the conclusion follows. Suppose that there exists t 6= p1 such that

t 2 O2 (p1). We want to show that [p1; t] � O2 (p1). Let z 2 [p1; t] and assume on the

contrary that z =2 O2 (p1). Since O2 (p1) is closed, so is E � [z; t]\O2 (p1). This implies that
the program Min

w2E
k w� z k has a solution, say v. By construction: [z; v[\O2 (p1) = ?. Let

p2 2
�
z+v
2
; v
�
. Since

�
z+v
2
; v
�
\ O2 (p1) = ?, we deduce from step 5 that C (p1; p2) 2 [p1; z[.

Since k v � p2 k<k z � p2 k, this contradicts step 4.
An immediate consequence of step 6 is the following. Given any ray L with endpoint p1,

if L \O2 (p1) is bounded, then there exists z = z(L) such that L \O2 (p1) = [p1; z].
Step 7 (Tangency) : Let L be a ray with endpoint p1 and L

?(z) be the line orthogonal

to L containing z. Then O2 (p1) is contained in the half plane P (z) with frontier L
?(z) and

containing p1 i.e. hx� z; p1 � zi � 0 for all x 2 O2 (p1).
Assume on the contrary that there exists x 2 O2 (p1) such that:

hx� z; p1 � zi < 0

Then, there exists y 2 L such that k y � x k<k y � z k. The existence of such y follows
from the fact that if we take y on L su�ciently far from z, then x will be in the interior of

the disk centered on y with radius k y � z k. This argument is illustrated on �gure 1.

Insert Figure 1 here

From steps 4 and 5, C (p1; y) = z but since x 2 O2 (p1), there exists p2 such that

x = C (p1; p2). Since k y � C (p1; p2) k<k y � C (p1; y) k, this contradicts strategyproofness.
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Step 8 : If O2 (p1) \ L is bounded for some L, then O2 (p1) is bounded.
The claim follows from a repeated application of step 7.

Step 9 : If O2 (p1) \ L = fp1g for some L, then O2 (p1) = fp1g.
As for step 8, it follows from a repeated application of step 7.

At this stage, for every p1 2 R2, there are three possible cases:
Case 1 : O2 (p1) = fp1g
Case 2 : O2 (p1) = R2

Case 3 : O2 (p1) is a compact subset of R2, star-shaped with respect to p1 and such that
O2 (p1) \ L 6= fp1g for all rays L with endpoint p1.
We demonstrate that case 3 cannot hold true. Suppose on the contrary that it does.

Step 10 (Convexity) : O2 (p1) is convex.

Suppose on the contrary that there exist u; t 2 O2 (p1) and w 2 ]t; u[ such that w =2
O2 (p1) : Consider the ray L with endpoint p1 and containing w. By construction, we deduce

w =2 [p1; z(L)]. In the triangle p1ut, either u or t is above the line L?(z) and therefore does
not belong to O2 (p1). This argument is illustrated on �gure 2.

Insert Figure 2 here

Let p1 = (0; 0). Let (k; 0) 2 O2 (p1) be on the frontier of O2 (p1) and let f : [0; k] ! R+,
de�ned by: f(a) = b where b is the unique value of c such that (a; c) belongs to the frontier

of O2 (p1). From the properties of O2 (p1), the function f is well de�ned. From step 10, f

is concave and therefore (Rockafellar (1970)), it is left di�erentiable and right di�erentiable

eveywhere. Let f 0+(a) and f
0
�(a) be the right and left derivatives of f at a.

Step 11 : f 0+(a) = f
0
�(a) � f 0(a)

Without loss of generality, assume on the contrary that f 0+(a) � 0 < f 0�(a)
5. Let L�

be the line with slope f 0�(a) containing (a; f(a)). Since O2 (p1) is convex, it is included

in the half plane with frontier L� and containing p1. Let L be the line orthogonal to L�

containing p1 and w = z(L). Necessarily, w = L� \ L as otherwise (a; f(a)) =2 O2 (p1)

contradicting our assumption. From step 9, we deduce that [w; (a; f(a))] � O2 (p1). Since

further [w; (a; f(a))] � L�, we deduce that any ray L0 with endpoint p1 and intersecting

[w; (a; f(a))] satis�es : z(L0) = L0\ [w; (a; f(a))]. But this contradicts step 7. The argument
is illustrated on �gure 3.

Insert Figure 3 here

5We normalize to 0 the slope of the line orthogonal to the line generated by p1 and (a; f(a)) and passing
through (a; f(a)).
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From step 11, we know that f is di�erentiable.

Step 12 (Geometry) : O2 (p1) is a disk centered on p1.

From step 7 we know that (1; f 0(a)) is orthogonal to (a; f(a)) for all a 2 ]0; k[ i.e. f is
solution of the di�erential equation:

a+ f(a)f 0(a) = 0

Let F (a) = f(a)2. F is solution of the di�erential equation:

2a+ F 0(a) = 0

whose solutions are:

F (a) = C � a2 for some constant C

and therefore:

f(a) =
p
C � a2 for some constant C

Since f(k) = 0, we deduce that C = k2:

Step 13 : Case 3 does not hold true

From step 11 O2 (p1) is a disk centered on p1. Let p2 =2 O2 (p1), z = [p1; p2]\O2 (p1) and
p01 2 O2 (p1) such that p1 2 [p01; p2]. From step 5, we know that C(p01; p2) 2 [p01; p2]. Let us
show that C(p01; p2) = z. Suppose not. Then either C(p

0
1; p2) 2 [p01; z[ or C(p01; p2) 2 ]z; p2].

In the �rst case, k C (p01; p2) � p1 k<k z � p1 k=k C (p1; p2) � p1 k contradicting step 4. In
the second case, k z � p01 k=k C (p1; p2)� p01 k<k C (p01; p2)� p01 k contradicting also step 4.
Since C(p01; p2) =2 fp01; p2g, we deduce from step 11 that O2 (p

0
1) is a disk centered on p

0
1.

Further, since C(p01; p2) = z, the radius of the disk is k z � p01 k. Let p02 =2 O2 (p01) [ [p1; p2],
v = C(p1; p

0
2) and w = C(p

0
1; p

0
2) as illustrated on �gure 4.

Insert Figure 4 here

Since v =k C (p1; p02)� p01 k<k C (p01; p02)� p01 k= w, we contradict step 4.
At this stage, we know that for all p1 2 R2, either O2 (p1) = fp1g or O2 (p1) = R2. The

following claim shows that we can invert the quanti�ers.

Step 14 (Dichotomy) : Either O2 (p1) = fp1g for all p1 2 R2 or O2 (p1) = R2 for all
p1 2 R2.
Assume on the contrary that there exist p1; p

0
1 2 R2 such that: O2 (p1) = fp1g and

O2 (p
0
1) = R2. Let p2 be outside the disk centered on p01 with radius k p1 � p01 k. We have

C (p01; p2) = p2 and C (p1; p2) = p1. Since k p1 � p01 k<k p2 � p01 k, we contradict step 4.
The proof of the result when n = m = 2 is complete. When O2 (p1) = fp1g for all

p1 2 R2, 1 is a dictator and when O2 (p1) = R2 for all p1 2 R2, 2 is a dictator.
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4.2 The Case where m = 2 and n � 2

The proof is by induction on n. From the preceding section, we know that the result holds

true when n = 2. We assume that it holds true when the number of individuals is less than

n� 1. Let us consider the option set O�1 (p1) of the coalition S = Nn f1g when individual
1 reports the preference p1.

Step 15 : Either O�1 (p1) = fp1g or O�1 (p1) = R2.
The proof follows with no changes the arguments from step 6 to step 13 once steps 4 and

5 have been replaced respectively by the following two properties:

k C (p1; p; p; :::; p)� p k�k x� p k for all x 2 O�1 (p1)

C (p1; p; p; :::; p) 2 [p1; p]

The �rst property follows in fact from an argument similar to one implicit in step 1 applied

to the mechanism C�1 (p1) while the second follows from e�ciency. If O�1 (p1) = fp1g, then
O�1 (p

0
1) = fp01g for all p01 2 R2 i.e. 1 is a dictator. Indeed, assume on the contrary

that O�1 (p
0
1) = R2 for some p01 2 R2. Let p2 be outside the disk centered on p01 with

radius k p1 � p01 k. We have C (p01; p2; p2; :::; p2) = p2 and C (p1; p2; p2; :::; p2) = p1. Since

k p1 � p01 k<k p2 � p01 k, we contradict our assumption that C is strategyproof.
If O�1 (p1) 6= fp1g, then O�1 (p01) = R2 for all p01 2 R2. Since C is coalitional strate-

gyproof, C�1 (p1) is also coalitional strategyproof. Since R(C�1 (p1)) = O�1 (p1) = R2 , we
deduce from the induction hypothesis that C�1 (p1) is dictatorial. Let i (p1) be this dictator.

We now show that i (p1) is constant. Suppose that it is not constant and without loss of

generality, assume that there exist p1; p
0
1 2 R2 such that: i (p1) = 2 and i (p01) = 3. Then for

all p2; p3 2 R2

C (p1; p2; p3; :::) = p2 and C (p
0
1; p2; p3; :::) = p3

If p2; p3 are such that k p1 � p3 k<k p1 � p2 k, then the two equalities above contradict
the assumption that C is strategyproof.

4.3 The Case where m � 2 and n � 2

The proof is by induction on m. From the preceding section, we know that the result is true

when m = 2. We assume that it is true when the number of dimensions is less than m� 1.
Let p 2 Rnm. If there exists an hyperplane H such that pi 2 H for all i = 1; :::; n, then we

7



deduce from the e�ciency of C that C(p) 2 H as the convex hull of the set fp1; :::; png is
contained in H. We deduce from the induction hypothesis that the restriction CH of the

social choice choice mechanism C to Hn is dictatorial. Let i(H) be the dictator attached

to CH . We claim that i (H) is constant. Take another hyperplane H 0. If H 0 \ H 6= ?,
then obviously i (H 0) = i (H). If H 0 \ H = ?, there exist a third hyperplan H 00 such that

H 00 \ H 6= ? and H 00 \ H 0 6= ?. Then, i (H) = i (H 00) = i (H 0). Let i(H) = 1 for all

hyperplanes H. It remains to show that 1 is a dictator.

If n � m, it follows from the argument above. If n > m, consider p 2 Rnm and let

z = C(p). Let zn � C(p1; p2; :::; pn�1; z). We claim that zn = z. Indeed, if zn 6= z, then

since k C (p1; p2; :::; pn�1; pn) � z k<k C (p1; p2; :::; pn�1; z) � z k, we would contradict our
assumption that C is strategyproof. By repeating n�m+1 times this argument, we obtain:

C(p1; p2; :::; pm�1; z; z; ::; z) = z

Since the set fp1; p2; :::; pm�1; zg is contained in an hyperplane, we conclude that z = p1.

5 Related Literature

In this last section, we o�er a brief and selective review of the related literature and formulate

some open problems.

5.1 The Case where m=1

The result has ben established under the assumption that there are at least two dimensions.

When m = 1, the result does not hold. There exist coalitional strategy proofness social

choice mechanisms which are not dictatorial. The exploration of the class of strategyproof

mechanisms in the one dimensional setting started with the seminal paper of Moulin (1980).

A complete account of is large literature can be found in Barbera (2010).

5.2 Changing the Domain and/or the Range

In this paper, a social choice mechanism has been de�ned as a function from Rmn into Rm.
We could consider the general case of a function C from An into B where A and B are

both subsets of Rm: A and B would represent respectively the set of admissible individual

ideal points and the set of feasible social alternatives. Note that if A = Rm and C is not

surjective, in contrast to what has been assumed in our result, then B denotes simply the

range of the mechanism i.e. R(C). In Bordes, Le Breton and La�ond (1990), we prove that
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any coalitional strategy proof onto social choice mechanism C : R2 ! B where B is an

equilateral triangle is dictatorial.

To the best of our knowledge, few authors have considered the general case. The unique

exception is van der Stel's thesis (1993) who o�ers a very general and stimulating analysis

of the case where A = B i.e. C is a social choice mechanism from An onto A. He proves

the following generalization of our result : if A is an open subset of Rm, then any coalitional
strategy proof onto social choice mechanism is dictatorial. His proof is di�erent from ours

and uses as auxilliary steps several other results.

The general study of the implications of coalitional strategy proofness for an arbitrary

A seems rather intricate. Consider the case where A =
�
(0; 0) ; (0; 1) ; (1; 0) ; (1; 1) ;

�
1
2
; 1
2

�	
i.e. the set of admissible ideal points as well as the set feasible alternatives is assumed to

be the set of vertices of the unit square together with its center. Consider the mechanism

C : An ! A de�ned as follows:

C(p) =

�
p if p = (p; p; :::; p)�
1
2
; 1
2

�
otherwise

Since
�
1
2
; 1
2

�
is at least second best alternative for all Euclidean preferences with an

ideal point in A, it is easy to check that, this mechanism is coalitional strategyproof. We

could object that in this example A is not a product set. Having a product set does not

help either. In the case where A = f(0; 0) ; (0; 1) ; (1; 0) ; (1; 1)g, the mechanism C de�ned

by C(p) = (p11; p
2
2) ( individual 1 is a dictator on the �rst coordinate while individual 2

is a dictator on the second coordinate) is coalitional strategyproof. This mechanism is

decomposable6 in the sense that the choice of the jth coordinate only depends upon the

vector pj =
�
pj1; p

j
2; :::; p

j
n

�
.

The �nite sets A considered in the above examples are non convex but convexity of A

is not necessary for the equivalence of coalitional strategyproofness and dictatorship either,

as illustrated by the the case where A is the unit circle. To the best of our knowledge,

the characterization of the sets A for which coalitional strategy proofness is equivalent to

dictatorship is still open.

5.3 Strategyproofness and E�ciency

Can we replace, in the statement of the result, coalitional strategyproofness by (Pareto)

e�ciency and strategyproofness ? By de�nition, the answer is a�rmative when n = 2. But

6A proof that decomposability folllows from strategyproofness whenever the domain consists of a rich set
of separable preferences appears in Le Breton and Sen (1999).
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it is not when n � 3. For instance when X = R2 and n = 3, the social choice mechanism
selecting the median of the coordinates of the ideal points for each of the two coordinates is

surjective, strategyproof and Pareto e�cient. Looking at our proof is quite instructive. While

the coalitional strategyproofness property is preserved when we move from the mechanism

C to the (sub)mechanism C�i (pi), the Pareto e�ciency property is not. The induction

argument which is used in our proof breaks down.

These observations raise a new question : what are the implications of the conjunction of

strategyproofness and e�ciency in the Euclidean setting ? This question has been explored

by Peters, van der Stel and Storcken (1992,1993a,1993b) in a series of important papers.

They consider the subclass of anonymous social choice mechanisms. One striking result that

Peters, van der Stel and Storcken (1992) establishes asserts that if C is a strategyproof and

e�cient social choice mechanim, then C is continuous. Following Moulin (1980) (for the

case where m = 1) and Border and Jordan (1983), they de�ne the notion of coordinatewise

median scheme as follows. A collection fx1; x2; :::; xmg � Rm is a coordinate system if

xj; xk

�
= 0 for all j; k = 1; :::;m with j 6= k i.e. fx1; x2; :::; xmg is an orthogonal basis of

Rm. Let k 2 N so that k+n is odd. A social choice mechanism C is a coordinatewise median
social choice mechanism with k constant points (phantom points) if there exists a coordinate

system and points c1; c2; :::; ck 2 fR [ f�1;1ggm such that:

Cj (p) =Med
�
pj1; p

j
2; :::; p

j
n; c

j
1; c

j
2; :::; c

j
k

�
where Med denotes the median of the subsequent real numbers and all coordinates are

expressed with respect to the given coordinate system. They show that ifm � 2 and n is even,
or if n � 3, then there does not exist surjective social choice mechanism which are anonymous,
e�cient and strategyproof. However when m = 2 and n is odd, the class of anonymous,

e�cient and strategyproof social choice mechanisms is non empty. More precisely, the class

of anonymous, e�cient and strategyproof social choice mechanisms coincides exactly with

the class of coordinatewise median social choice mechanism without constant points. This

result was established also by Kim and Roush (1984) with the additional assumption that

C is continuous. But, as already pointed out by Peters, van der Stel and Storcken, this

property is implied by the others and is therefore redundant.

5.4 Strategyproofness

Coalitional strategyproofness is often strictly more demanding than strategyproofness. It

is therefore natural to wonder what is the class of strategyproof social choice mechanisms

10



when X = Rm. The coordinatewise median social choice mechanisms are strategyproof.
More generally, we can construct componentwise social choice mechanisms by constructing

separately a social choice mechanism for each of the m components where the choice of the

jth social coordinate only depends upon the vector pj =
�
pj1; p

j
2; :::; p

j
n

�
. Such mechanisms

have been called decomposable as the initial problem has been decomposed into m one di-

mensional problems. Strategyproofness follows from the fact that Euclidean preferences are

separable i.e. preferences over one coordinate do not depend upon what has been decided

upon the other coordinates. Therefore, existence of non dictatorial social mechanisms is not

an issue here. It is legitimate to wonder what is the exact class of strategyproof social choice

mechanisms.

This a di�cult question which has been adressed by La�ond (1980) in his thesis and also

by Kim and Roush (1984). Kim and Roush focus on the case where X = R2. They prove
that a social choice mechanism is continuous and anonymous (but not necessarily surjective)

i� it is a coordinatewise median social choice mechanism with n+1 constant points. Peters,

van der Stel and Storcken (1993b) proves that if C is strategyproof then C is continuous i�

R(C) is convex. They further point out that if C is surjective then C is strategy proof and

anonymous i� it is a coordinatewise median social choice mechanism with n � 1 constant
points

La�ond's work (1980) considers the case where n = 2 but m is arbitrary. He focuses on

the class of anonymous, continuous, surjective and strategyproof social choice mechanisms.

As already pointed out, to conduct his analysis, he also invented the technique of option

sets. His analysis consists in a gradual exploration of the properties of the sets O2 (p1)

and O1 (p2). First, he demonstrates that if C is surjective, continuous and strategyproof,

the option sets are closed and convex subsets of Rm. This implies that C (p1; p2) is the
projection of p1 on O1 (p2) and the projection of p2 on O2 (p1). Of course some consistency

condition is needed since the two options sets cannot be constructed independently of each

other. The main part of his work consists in sorting out the implications of this consistency.

We have no space here to go through all his lengthy analysis. We just sketch some of his

main ideas. To show what kind of mechanisms will appear out of La�ond's exploration,

consider, for the sake of illustration7, the case where C (p1; p2) is the projection of p2 on

p1+K2 whereK2 is the convex cone fx 2 R2 : x1 � 0; x2 � 0 and x2 � x1g. By construction,
O2 (p1) = p1+K2 and C is not manipulable by 2. It is easy to show that C is not manipulable

either. Further, it can be veri�ed that O1 (p2) = p2 + K1 where K1 = �K?
2 where K

?
2 �

fx 2 R2 : hx; yi � 0 for all y 2 K2g. K?
2 is called the polar of the cone K2. The construction

7This example appears in Border and Jordan (1983).
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is illustrated on �gure 5.

Insert Figure 5 here

Another illustration is the case where individual 1 is a dictator on the �rst coordinate

and individual 2 is a dictator on the second coordinate. In such case, K2 is the vertical axis

and K1 is the horizontal axis. In the �rst example, K1 has a non empty interior while its

is empty in the second one. These two examples violates anonymity. Anonymity prevails

i� K?
2 = �K1. Such cones are called self-polar (or self dual cones). Let K be an arbitrary

closed and convex self-polar cone with an non empty interior. As shown by La�ond, the social

choice mechanism where equivalently the social outcome is the projection of p1 on p2 + K

or the projection of p2 of 2 on p1 + K is strategyproof, anonymous and continuous. This

construction leads to a large family of anonymous, surjective, continuous and strategyproof

social choice mechanism. What mechanisms do we �nd in that family ?

First, and not surprisingly (from what precedes), we �nd the class of coordinatewise

median social choice mechanism with one constant point at in�nity. The self-polar cone

attached to any such mechanism is (up to a rotation) the positive orthant Rm+ . Whenm = 2,

R2+ is the unique (up to a rotation) self-polar cone of R2. When m = 2, any social choice

mechanism constructed along these lines is decomposable. However, when m � 3, this is not
true anymore. This follows from the fact that when m � 3, the family of self-polar cones

is much richer. The analysis of these objects is a well de�ned area in mathematics (see e.g.

Barker and Foran (1976), Lochum (1984)) and one merit of La�ond's construction is to point

out this connection.

The above construction raises the following question : What is the speci�city of the class

of anonymous, surjective, continuous and strategyproof social choice mechanisms constructed

by La�ond through self-polar cones ? La�ond shows that, to answer the above question, we

have to examine the asymptotic cone8 of the option set O(p). In particular, he �rst shows

that if C is an anonymous, surjective, continuous and strategyproof social choice mechanism,

then O1 = O2 � O where O is a correspondence with closed and convex values such that

K(O(p)) is independent of p i.e. K(O(p)) = K(O(p0)) � K for all p; p0 2 Rm. He further
shows that if K has a non empty interior, then C belongs to the class which has just been

constructed i.e. O(p) = p+K and K is self-polar.

8The asymptotic cone K(A) of an arbitrary closed and convex subset A of Rm is de�ned as follows:
K(A) = fx 2 Rm : 8� � 0;8y 2 A; x+ �y 2 Ag
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5.5 Superdomains

The set of Euclidean preferences on Rm is in one to one correspondence with Rm. Many
authors have explored the questions examined in this note for sets of preferences who are

supersets of the set of Euclidean preferences. One important such a superdomain is the set

of diagonal (separable) quadratic preferences. They are described by utility functions u such

that:

u(x) = �
mX
j=1

�j
�
xj � pj

�2
where � =

�
�j
�
1�j�m 2 R

m
++

Another (larger) superdomain is the all set of quadratic preferences described by utility

functions u such that:

u(x) = �
mX
k=1

mX
j=1

�kj
�
xj � pj

�2
where � =

�
�kj
�
1�k;j�m is a symmetric positive de�nite matrix

Border and Jordan (1983) 's seminal contribution contains many important results on

these two domains. They demonstrate that a surjective social choice mechanism C over the

domain of diagonal quadratic preference is strategyproof i� it is decomposable i.e. if there

exist m surjective and strategyproof social choice mechanisms Cj such that:

C(p; �) = (C(p1); C(p2); :::; C(pm))

Among other things, decomposability obliges to abandon the idea of using the informa-

tion on preferences which is contained in the vectors �i 2 Rm++ and therefore to limit the
information on preferences to the peaks of the individual preferences9. This decomposability

result implies here a property which has been called in the literature a tops only property10.

In many other social environments settings, it is also an implication of strategyproofness.

They prove that any surjective and strategyproof social choice mechanism over the set of

quadratic preferences is dictatorial. Their result has been generalized by Zhou (1991) who

weakens the surjectivity assumption to a very weak range condition.

The superdomains discussed above are parametric. We could consider classes of prefer-

ences which are not described by a �nite set of parameters. For example we could consider

the class of preferences on Rm represented bu utility functions u such that:

u(x) =
mX
j=1

vj(xj)

9Decomposability implies more restrictions.
10On this, see Weymark (1999).
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where each vj : R! R has a unique maximizer from which it decreases monotonically in
either direction. This domain has been explored by many authors including among others

Barbera, Gul and Stachetti (1993). It is important to note that if it can been shown that

strategyproofness implies the top only property, then we are back to the parametric domains

considered earlier. Barbera (2010) o�ers a detailed exposition of this area of research.

Finally, we could also consider the questions explored in this note for a class of preferences

generated by a distance di�erent from the Euclidean distance. This question is explored

extensively in van der Stel who considers some other norms. In location problems, the set

A is a assumed to be a closed and connected subset of Rm and for all p; q 2 A, the distance
between d(p; q) is the shortest distance from p to q (and q to p). Schummer and Vohra (2002)

have examined the implications of surjectivity and strategyproofness in the case where A is

the union of a �nite number of closed curves of �nite length.
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