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Abstract

This paper aims to provide a simple modelling of speculative bubbles and derive some quanti-
tative properties of its dynamical evolution. Starting from a description of individual speculative
behaviours, we build and study a second order Markov process, which after simple transformations
can be viewed as a turning two-dimensional Gaussian process. Then, our main problem is to ob-
tain some bounds for the persistence rate relative to the return time to a given price. In our main
results, we prove with both spectral and probabilistic methods that this rate is almost proportional
to the turning frequency ω of the model and provide some explicit bounds. In the continuity of
this result, we build some estimators of ω and of the pseudo-period of the prices. At last, we end
the paper by a proof of the quasi-stationary distribution of the process, as well as the existence of
its persistence rate.
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1 Introduction

The evolution of prices in markets such as real estate is a popular subject of investigation. The
purpose of this paper is to propose a stochastic model which, at the same time, is simple enough
to be studied mathematically and accounts for periodicity phenomena induced by speculation.

One commonly talks of financial bubble when, due to speculation of traders or owners, an asset
price exceeds an asset fundamental value. These owners then expect to resell the asset at an even
higher price in the future. There exist a lot of famous historical examples such as the Dutch Tulip
Mania (1634-1637), the Mississippi bubble (1718-1720) or the ”Roaring ’20s that preceded the
1929” crash. We refer to [13] for a general remainder on historical bubbles. Through some more
recent events, one can observe that this phenomena is certainly actual. Think for instance to the
Internet bubble which bursted in March 2000 after having led astronomical heights and lost more
than 75% of its value, and to the housing bubble encountered in the United States (2000-2010) or
in European countries (Spain, Ireland, France . . . ) (see e.g. [16] or [12]).

A huge litterature exists on speculative bubbles and it seems nearly impossible to quote all the
related numerous previous works. We point out that our goal here is not to detail a general model
flexible enough to take into account several complex economic realities. However, our approach is to
propose a very simple tractable model from a mathematical point of view: the natural equilibrium
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price is assumed to be 0 all along our temporal evolution, we do not consider any inflation nor
credit crunch [10] and there is no regulating effect of any federal bank [3]. At last, the processes
introduced in the paper will be supposed time-homogeneous.

According to Shiller [16] (see also [14]), the mechanism of creation of speculative bubbles is the
following: ”If asset prices start to rise strongly, the success of some investors attracts public at-
tention that fuels the spread of the enthusiasm for the market: (often, less sophisticated) investors
enter the market and bid up prices. This ”irrational exuberance” heightens expectations of further
price increases, as investors extrapolate recent price action far into the future. The markets mete-
oric rise is typically justified in the popular culture by some superficially plausible ”new era” theory
that validates the abandonment of traditional valuation metrics. But the bubble carries the seeds
of its own destruction; if prices begin to sag, pessimism can take hold, causing some investors to
exit the market. Downward price motion begets expectations of further downward motion, and so
on, until the bottom is eventually reached.”

In the previous citation, two phenomenas are exhibited: on the one hand, the investors have
a tendency to follow the forecasting rule which consists in deciding that the price will increase
if it has (strongly) increased in the past. On the other hand, the actions of the investors have
certainly a self-reinforcing effect. In this paper, we assume more or less that the dynamics of the
market is dictated by these two phenomenas. However, we (necessarily) assume that there is also
a general mean-reverting force and there exists randomness in the decisions of the investors. Then,
our model is obtained as the limit of the mean dynamics of all the investors when the number of
these investors tends to infinity (see next paragraph for more details).

Let us also precise that our setting corresponds to the so-called rational bubbles under sym-
metric information paradigm described in [4, 18] for instance. In our framework, we are interested
in the periodic pattern commonly encountered in such speculative markets, which is of primarily
interest as pointed by [9]. We establish that these periodic phenomena are related to a persistence
problem which is also an important field of interest from an economic point of view [4, 5]. Note
that our model is also simple enough to imagine statistical inference procedures for the estimation
of several key parameters. Hence, even if our work comes from a probabilistic motivation, it also
opens the way of statistical procedures to test bubble formation. This last statistical point is
shortly discussed in the end of our paper and seems challenging for future works (some numerical
results show that the standard likelihood estimation does not seem well suited to approach the
unknown parameters in such a model).

At last, it is generally empirically observed that the bubbles bursts are fasten than bubbles
formations. Our model can be generalized to more complex settings where such burst’s and for-
mation’s timing could be different using a mixture of memory weights Γk,b with k ≥ 2 (see next
paragraph for more details).

1.1 Modeling of speculation

Let us designate by X B (Xt)t≥0 the temporal evolution of the relative price of a commodity with
respect to another one. For instance it can be the difference between the price of the mean square
meter of real estate in a particular town and the price of the ounce of gold or the mean salary of a
month of work. Let the units be chosen so that, in the mean over a long time period, this relative
price is zero. We assume that three mechanisms are at work for the evolution of X:
- Economic reality plays the role of a restoring force, trying to draw X back toward zero. At least
as a first approximation, it is natural to assume that this force is linear, whose rate will be denoted
a > 0.
- Speculation is reinforcing a tendency observed for some times in the past. We make the hypothesis
that the weight of past influences is decreasing exponentially fast in time, with rate b > 0. The
typical length the observation time window will be given by b−1.
- Uncertainty is modeled by a Brownian motion of volatility c > 0, which is a traditional assumption
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for randomness coming from a lot of small unpredictable and independent perturbations, due to
the functional central limit theorem.

Putting together these three leverages, we end up with a law of evolution of X described by
the stochastic differential equation

∀ t ≥ 0, dXt = −aXtdt+

(
b

∫ t

0
exp(b(s− t)) dXs

)
dt+ cdBt (1)

assuming for instance that initially, X0 = 0. Because of the presence of the Brownian motion
(Bt)t≥0 in the r.h.s., the trajectories of X are not differentiable with respect to the time parameter
t ≥ 0. But for the purpose of a heuristic interpretation, let us pretend they are, so we can consider
X ′t B

dXt
dt . Assume furthermore that the “origin” of time was chosen so that before it, X was

zero, namely, in the above economic interpretation, the two commodities had their prices tied up
at their relative equilibrium point before time 0. This enables us to define X ′t = Xt = 0 for any
t ≤ 0. The middle term of the r.h.s. of (1) can then be rewritten as

b

∫ t

0
exp(b(s− t)) dXs =

∫ +∞

0
X ′t−s b exp(−bs)ds

= E[X ′t−σ] (2)

where σ is distributed as an exponential variable of parameter b and where E stands for the expec-
tation with respect to σ (i.e. not with respect to the randomness underlying X, the corresponding
expectation will be denoted E). Thus X has a drift taking into account its past tendencies X ′,
but very old ones are almost forgotten, due to the exponential weight. Indeed, since E[σ] = b,
tendencies older than a time of order b don’t contribute much.

The equation (1) can be seen as the limit evolution of the means of (relative) prices predicted
by a large number N ∈ N of speculative agents. Assume that each agent n ∈ JNK B {1, ..., N} has
his own idea of the evolution of the prices, designated by X(n) B (Xt(n))t≥0. The mean process
X̄ B (X̄t)t≥0 is defined by

∀ t ≥ 0, X̄t B
1

N

∑
n∈JNK

Xt(n).

For simplicity, we assume as above that all these processes were also defined for negative times and
that

∀ t ≤ 0, ∀ n ∈ JNK, Xt(n) = X̄t = 0.

At any time t ≥ 0, each agent n ∈ JNK has access to the whole past history (X̄s)s≤t of the mean
prices (say, which is published a particular institute or website). But to handle this wealth of
information, agent n has chosen, once for all, a time window length Υ(n) > 0 and he computes
the ratio (X̄t− X̄t−Υ(n))/Υ(n) in order to decide what is the present tendency of the prices. Then
he interferes that this tendency contributes to the infinitesimal evolution of his estimate of prices
dXt(n) via the term (X̄t − X̄t−Υ(n))/Υ(n) dt, speculating that what has increased (respectively
decreased) will keep on increasing (resp. decreasing). Nevertheless, as everyone, he also undergoes
the strength of the economic reality with rate a > 0, which adds a term −aXt(n)dt to his previ-
sions. Furthermore, he cannot escape vagaries of life, good or bad, which disturb his evaluations
with the infinitesimal increment c

√
NdBt(n), where B(n) B (Bt(n))t≥0 is a standard Brownian

motion. The factor
√
N may seem strange at first view, but it accounts for the fact that the

consequences of random events are amplified by a large population. Alternately, it could be ar-
gued that

√
NdBt(n) decompose into

∑
m∈JNK dBt(n,m), where (Bt(n,m))t≥0, for n,m ∈ JNK, are
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independent Brownian motions standing respectively for the random perturbations induced by m
on n (including a self-influence (Bt(n, n))t≥0). It follows that

∀ t ≥ 0, dXt(n) = −aXt(n)dt+
X̄t − X̄t−Υ(n)

Υ(n)
dt+ c

√
NdBt(n)

and we deduce that

∀ t ≥ 0, dX̄t = −aX̄tdt+

 1

N

∑
n∈JNK

X̄t − X̄t−Υ(n)

Υ(n)

 dt+ c
1√
N

∑
n∈JNK

dBt(n)

Let us assume that all the Υ(n), for n ∈ JNK, and all the B(m), for m ∈ JNK are independent. A
first consequence is that the process B̄ = (B̄t)t≥0 defined by

∀ t ≥ 0, B̄t B
1√
N

∑
n∈JNK

Bt(n)

is a standard Brownian motion.
Next, under the hypothesis that all the Υ(n), n ∈ JNK have the same law as a random variable Υ,
we get by the law of large numbers, that almost surely,

lim
N→∞

1

N

∑
n∈JNK

X̄t − X̄t−Υ(n)

Υ(n)
= E

[
X̄t − X̄t−Υ

Υ

]
where E stands for the expectation with respect to Υ only. Thus letting N go to infinity, X̄ ends
up satisfying the same evolution equation as X, if the law of Υ is such that

∀ t ≥ 0, E

[
Xt −Xt−Υ

Υ

]
= b

∫ t

0
exp(b(s− t)) dXs (3)

almost surely with respect the trajectory (Xs)s∈R.
Contrary to the first guess which could be made, Υ should not be distributed according to an
exponential law of parameter b:

Lemma 1 For any continuous semi-martingale X = (Xt)t∈R with Xt = 0 for t ≤ 0, (3) is satisfied
if Υ is distributed as a gamma law Γ2,b of shape 2 and scale b, namely if

∀ t ≥ 0, P[Υ ∈ dt] = Γ2,b(dt) B b2t exp(−bt) dt

Proof

By continuity of X, it is sufficient to check the almost sure equality of (3) for any fixed t ≥ 0.
Then denote X̃s = Xt −Xt−s, for s ≥ 0, so that

E

[
Xt −Xt−Υ

Υ

]
= b2

∫ +∞

0

Xt −Xt−s
s

s exp(−bs) ds

= b2
∫ +∞

0
X̃s exp(−bs) ds

The fact that X is a semi-martingale enables to integrate by parts and we find

b2
∫ +∞

0
X̃s exp(−bs) ds = −b

[
X̃s exp(−bs)

]+∞

0
+ b

∫ +∞

0
exp(−bs) dX̃s

= b

∫ t

−∞
exp(−b(t− s)) dXs

= b

∫ t

0
exp(−b(t− s)) dXs

4



�

Remark 2 Conversely, for the process X defined by (1) and Xt = 0 for t ≤ 0, the validity of
(3) implies (under an integrability assumption) that the law of Υ is the gamma distribution Γ2,b.

Actually, denote by G the distribution of Υ and assume that
∫ +∞

0 s−1G(ds) < +∞. Then, by the
previous result, (3) reads

∀ t ≥ 0,

∫ +∞

0

Xt −Xt−s
s

G(ds) =

∫ +∞

0

Xt −Xt−s
s

Γ2,b(ds) a.s. (4)

Now, let t > 0. Since the above equality holds almost surely, it follows from Girsanov Theorem
(see e.g. [15], Chapter 8), that we can replace (Xs)s∈[0,t] by c times a Brownian motion (and next
by linearity take c = 1). Then, the main argument is the support Theorem (see e.g. [17]), which
yields in particular that for every positive t and ε, for every C1-function ϕ : (−∞, t]→ R such that
ϕ(u) = 0 on R−,

P( sup
s∈[0,t]

|Xs − ϕ(s)| ≤ ε) > 0. (5)

Let ϕ be such a function. By (4) and (5), we obtain that for every positive ε,∣∣∣∣∫ +∞

0

ϕ(t)− ϕ(t− s)
s

(G(ds)− Γ2,b(ds))

∣∣∣∣ ≤ 2ε
∫ +∞

0
1
s (G(ds) + Γ2,b)(ds)

and it follows that for every C1-function with ϕ(u) = 0 on R−,∫ +∞

0

ϕ(t)− ϕ(t− s)
s

G(ds) =

∫ +∞

0

ϕ(t)− ϕ(t− s)
s

Γ2,b(ds), (6)

the result being available for all positive t. Denoting r = ϕ(t) and h(s) = ϕ(t) − ϕ(t− s) for all
s ∈ [0, t], we get that for all r ∈ R and all C1 function h : [0, t]→ R with h(0) = 0,

r

∫ +∞

t

1

s
(G− Γ2,b)(ds) +

∫ t

0
h(s)

G− Γ2,b

s
ds = 0

namely ∫ +∞

t

1

s
(G− Γ2,b)(ds) = 0

and G and Γ2,b coincide on (0, t]. Since this is true for all t > 0, we get that G and Γ2,b coincide on
(0,+∞). Because they are both probability measures, they cannot differ only on {0}, so G = Γ2,b.
In fact this proof can be extended to any continuous semi-martingale whose martingale part is
non-degenerate.

�

The law Γ2,b has the same rate b of exponential decrease of the queues at infinity as the exponential
distribution Γ1,b of σ in (2). The most notable difference between these two distributions is their
behavior near zero: it is much less probable to sample a small values under Γ2,b than under Γ1,b.
Furthermore, Γ2,b is a little more concentrated around its mean 2/b than Γ1,b around its mean 1/b,
their respective relative standard deviations being 1/2 and 1. These features are compatible with
the previous modeling: the chance is small that an agent looks shortly in the past to get an idea
of the present tendency of X and the dispersion of the lengths of the windows used by the agents
may not be very important. These behaviors would be amplified, if instead of Γ2,b, we had chosen
a gamma distribution Γk,b of shape k and scale b, with k ∈ N \ {1, 2}, for the law of Υ. The limit
evolution in this situation is dictated by the stochastic differential equation in X [k] given by

∀ t ≥ 0, dX
[k]
t = −aX [k]

t dt+

(
b(k − 2)!

∫ t

0
gb,k(t− s) dX [k]

s

)
dt+ cdBt
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(starting again from X
[k]
0 = 0), where gb,k is the function defined by

gb,k : R+ 3 s 7→ exp(−bs)
∑

l∈J0,k−2K

(bs)l

l!

(curiously, the r.h.s. coincides with the probability that a Poisson random variable of parameter
bs belongs to J0, k − 2K).
For k = 2, we recover (1) and X [2] = X. The stochastic process X is clearly not Markovian, but
we will see in the sequel that it is a Markov process of order 2: it is sufficient to add another real
component to X to get a Markov process. It can be shown more generally that X [k] is a Markov
process of order k: k− 1 real components must be added to make it a Markov process. While this
observation provides opportunities of better modelings, the investigation of X [k] for k > 2 (as well
as the extension to non-integer values of k) is deferred to a future paper. Here we will concentrate
on the properties of X, but before presenting the results obtained, let us give some simulations of
X in Figure 1.

Figure 1: Several trajectories for various parameters (top left: a = 1, b = 5, c = 1, top right: a = 1, b = 10, c =
5, bottom: a = 1, b = 10, c = 0).

A periodic structure appears, as that observed in practice in the forming of speculative bubbles.
The process X shows some regularity in returning to its equilibrium position, trend which seems
to be only slightly perturbed by the noise. The variety of the trajectories is apparently less rich
than that experienced by traditional Ornstein-Ulhenbeck processes, suggesting a concentration of
the trajectory laws around some periodic patterns. Figure 2 shows the density of the return time
of the process (X)t≥0 to its equilibrium price 0. These results have been obtained using a large
number of Monte-Carlo simulations. One may remark in Figure 2 that the tail of the return time
to equilibrium state is much smaller for our bubble process than the one of the O-U. process with
the same invariant measure on the X coordinate and with the same amount of injected randomness
(namely through a standard Brownian motion). The purpose of this paper is to quantify these
behaviors.
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Figure 2: Density function of the return time of the Ornstein-Uhlenbeck process, as well as the one of the
bubble process. The O-U process is set to have the same invariant measure as the bubble process and the same
amount of injected randomness.

1.2 Results

As already mentioned, the process X whose evolution is driven by (1) is not Markovian. Nev-
ertheless, it is not so far away from being Markovian: consider the process Y B (Yt)t≥0 defined
by

∀ t ≥ 0, Yt B b

∫ t

0
exp(b(s− t)) dXs − bXt

The process Z B (Zt)t≥0 B ((Xt, Yt)
∗)t≥0 (where ∗ stands for the transpose operation) is then

Markovian and its evolution is dictated by the simple 2-dimensional stochastic differential equation

∀ t ≥ 0, dZt = AZt dt+ C dBt (7)

starting from Z0 = 0 and where

A B

(
b− a 1
−b2 −b

)
and C B

(
c
0

)
(8)

The linearity of (7) and the fact that the initial condition is deterministic imply that at any time
t ≥ 0 the distribution of Zt is Gaussian. As it will be checked in next section, this distribution
converges for large time t ≥ 0 toward µ, a normal distribution of mean 0 and whose variance matrix
Σ is positive definite. Since the Markov process Z is Feller, µ is an invariant probability measure
for Z. It is in fact the only one, because the generator L associated to the evolution equation (7)
and given by

L B ((b− a)x+ y)∂x − (b2x+ by)∂y +
c

2
∂2
x (9)

is hypoelliptic (also implying that Σ is positive definite).
The study of the convergence to equilibrium of Z begins with the spectral resolution of A. Three
situations occur:
• If a > 4b, A admits two real eigenvalues, λ± B (−a±

√
a2 − 4ab)/2.

• If a = 4b, A is similar to the 2× 2 Jordan matrix associated to the eigenvalue −a/2.
• If a < 4b, A admits two conjugate complex eigenvalues, λ± B (−a± i

√
4ab− a2)/2.

But in all cases, let l < 0 be the largest real part of the eigenvalues, namely

l B
−a+

√
(a2 − 4ab)+

2
(10)
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This quantity is the exponential rate of convergence of µt, the law of Zt, toward µ, in the L2 sense:
for t > 0, measure the discrepancy between µt and µ through

J(µt, µ) B

√∫ (
dµt
dµ
− 1

)2

dµ (11)

Since X was our primary object of interest, let us also denote by ν and νt the first marginal
distributions of µ and µt respectively.

Proposition 3 We have

lim
t→+∞

1

t
ln(J(µt, µ)) = 2l = lim

t→+∞

1

t
ln(J(νt, ν))

These convergences can be extended to other measures of discrepancy, such as the square root of
the relative entropy, or to initial distributions µ0 of Z0 more general than the Dirac measure at 0,
at least under the assumption that J(µ0, µ) < +∞. Thus if we look at Xr/|l| for large r > 0, it has
almost forgotten that it started from 0 and its law is close to the Gaussian distribution ν, up to
an error exp(−(1 + ◦(1))r).

Nevertheless, the periodicity features we are looking for appear only for a < 4b, as it can be
guessed from the existence of non-real eigenvalues, which suggests 2π/ω as period, where

ω B

√
ab− a2

4
(12)

In the regime where b� a, we have ω � 2 |l|: a lot of periods has to alternate before stationarity
is approached. This phenomenon is often encountered in the study of ergodic Markov processes
which are far from being reversible, e.g. a diffusion on a circle with a strong constant drift (for
instance turning clockwise).

In order to quantify this behavior, we are interested in the return time τ to zero for X, which
is of primary interest in the economic interpretation given at the beginning of the introduction (on
the contrary to the relaxation time to equilibrium, which seems very far away in the future):

τ B inf{t ≥ 0 : Xt = 0} (13)

Of course it is no longer relevant to assume that Z0 = 0 and instead we assume that (X0, Y0) =
(x0, y0) ∈ R∗+ × R. In practice, τ appears through a temporal shift: we are at time s > 0 which
is such that Xs > 0 and we are wondering when in the future X will return to its equilibrium
position 0. Up to the knowledge of (Xs, Ys), the time left before this return has the same law as τ
if (x0, y0) is initialized with the value (Xs, Ys).
The next result shows that up to universal factors, the exponential rate of concentration of τ is
given by 1/ω, confirming that when b � a, the return to zero happens much before the process
reaches equilibrium.

Theorem 4 For any 0 < a < 4b , c > 0, x0 > 0 and y0 ∈ R, we have

P(x0,y0)[τ > t] ≤ 2 exp

(
− ln(2)

π
ωt

)
.

Furthermore, if (1 + 1√
2
)a ≤ b, there exists a quantity ε(x0, y0) > 0 (which in addition to x0 and

y0, depends on the parameters a, b, c) such that

∀ t ≥ 0, P(x0,y0)[τ > t] ≥ ε(x0, y0) exp (−4ωt) .

More generally, to any initial distribution m0 on D B {(x, y) ∈ R2 : x > 0}, we can associate a
quantity ε(m0) such that

∀ t ≥ 0, Pm0 [τ > t] ≥ ε(m0) exp (−4ωt) .
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Surprisingly, we found the lower bound more difficult to obtain than the upper bound, while in
reversible situations it is often the opposite which is experienced.

Remark 5 In the first appendix it will be shown that a quasi-stationary probability νD and a
corresponding rate λ0(D) > 0 can be associated to D: the support of νD is the closure of D and
under PνD , τ is distributed as an exponential random variable of parameter λ0(D):

∀ t ≥ 0, PνD [τ ≥ t] = exp(−λ0(D)t) (14)

In the sequel, the quantity λ0(D) will be called the persistence rate of D. It can be seen as the
smallest eigenvalue (in modulus) of the underlying Markov generator with a Dirichlet condition
on the boundary of the domain D, when it is interpreted as acting on L2(µD), where µD is the
restriction of µ on D. The above theorem then provides lower and upper bounds on λ0(D),
essentially proportional to ω: at least for 0 < (1 + 1√

2
)a ≤ b,

ln(2)

π
ω ≤ λ0(D) ≤ 4ω (15)

According to figure 2, starting from other initial distributions on D, the law of τ will no longer be
exponential, nevertheless we believe that for any (x0, y0) ∈ D, the following limit takes place

lim
t→+∞

1

t
ln(Px0,y0 [τ > t]) = −λ0(D)

The difficulty in obtaining this convergence stems from the non-reversibility of the process under
consideration. In the literature, it is the reversible and elliptic situations which are the most
thoroughly investigated. For a general reference on quasi-stationarity, see e.g. the book [6] of
Collet, Mart́ınez and San Mart́ın, as well as the bibliography therein.

�

The previous result provides a good picture for large values of τ , but is there a precursor sign
that τ will be much shorter than expected? Indeed we cannot miss it, because in this situation of
a precocious return to zero, the system has a strong tendency to first explode! To give a rigorous
meaning of this statement, we need to introduce the bridges associated to Z. For z, z′ ∈ R2 and

T > 0, denote by P(T )
z,z′ the law of the process Z evolving according to (7), conditioned by the event

{Z0 = z, ZT = z′}. Note that there is no difficulty to condition by this negligible set, because the
process Z starting from z is Gaussian and the law of ZT is non-degenerate.

For fixed z, z′ ∈ R2 and T > 0 small, we are interested in the behavior of ξ(T ) B (ξ
(T )
t )t∈[0,1],

the process defined by

∀ t ∈ [0, 1], ξ
(T )
t B TZTt

Let us define the trajectory ϕz,z′ : [0, 1]→ R2 by

∀ t ∈ [0, 1], ϕz,z′(t) B

(
6ω
b2
t(1− t)(y − y′)

0

)
(16)

where z = (x, y) and z′ = (x′, y′).

Theorem 6 For fixed z, z′ ∈ R2, as T goes to 0+, ξ(T ) converges in probability (under P(T )
z,z′) toward

the deterministic trajectory ϕz,z′, with respect to the uniform norm on C([0, 1],R2).

9



Figure 3: Expected trajectories of the hypo-elliptic bridge from z to z′ within time 1/2 and within small time
1/10. Left: Non explosion when z′ = z. Middle: explosion when <(z) = <(z′) and =(z) 6= =(z′). Right: Non
explosion when =(z) = =(z′) and <(z) 6= <(z′).

In particular, if z, z′ ∈ R2 are such that <(z) > 0, <(z′) ≤ 0 and =(z) 6= =(z′), the bridge (Zt)t∈[0,T ]

relying z to z′ for small T > 0 explodes as 1/T . From the definition of ϕz,z′ given in (16), we
can see that the explosion is in the x-direction, toward +∞ or −∞, depending on the sign of
=(z)−=(z′), as it is illustrated by the pictures of Figure 3.

Remark 7 Note that the sharp behavior of the bridge when T → 0 leads in Section 4 to
a probabilistic proof of a lower-bound for P(τ > t) (see Proposition 35). The interest of this
alternative proof is that the approach is maybe more intuitive. However, we have not been able to
provide some explicit constants following this method.

�

The paper is constructed on the following plan. In next section we present the preliminaries
on Z, especially its Gaussian features which enable to obtain Proposition 3. We will also see how
to parametrize the process Z under a simpler form. The exit time defined in (13) is investigated
in Section 3, where Theorem 4 is obtained. Section 4 is devoted to the study of bridges and to
the proof of Theorem 6. At last, we shortly discuss in Section 5 on a numerical and statistical
estimation problems related to the estimation of ω.

2 Preliminaries and simplifications

This section contains some basic results about the Ornstein-Uhlenbeck diffusion Z described by
(7) and whose coefficients are given by (8).

2.1 Gaussian computations

Our main goal here is to prove Proposition 3.

We begin by checking that the process Z is Gaussian. Indeed, considering the process Z̃ defined
by

∀ t ≥ 0, Z̃t B exp(−At)Zt

we get that

∀ t ≥ 0, dZ̃t = exp(−At)(−AZt dt+ dZt) = exp(−At)C dBt

10



It follows that

∀ t ≥ 0, Zt = exp(At)Z0 +

∫ t

0
exp(A(t− s))C dBs (17)

=

∫ t

0
exp(A(t− s))C dBs

since we assumed that Z0 = 0. It appears on this expression that for any t ≥ 0, the law of Zt is a
Gaussian distribution of mean 0 and variance matrix Σt given by

Σt B

∫ t

0
exp(A(t− s))CC∗ exp(A∗(t− s)) ds

=

∫ t

0
exp(As)CC∗ exp(A∗s) ds (18)

For a, b > 0, the eigenvalues of A have negative real parts, so that the above rhs converges as t goes
to infinity toward a symmetric positive definite matrix Σ. As announced in the introduction, the
Gaussian distribution µ of mean 0 and variance Σ is then an invariant measure for the evolution
(7). It is a consequence of the fact that the underlying semi-group is Fellerian (i.e. it preserves the
space of bounded continuous functions), as it can be seen from (17), where Zt depends continuously
on Z0, for any fixed t ≥ 0. Note furthermore that the above computations show that for any initial
law of Z0, the law of Zt converges toward µ for large t, because exp(At)Z0 converges almost
surely toward 0. It follows that µ is the unique invariant measure associated to (7). To obtain
more explicit expressions for the above variances, we need the spectral decomposition of A. The
characteristic polynomial of A being X2 +aX+ab, we immediately obtain the results presented in
the beginning of Subsection 1.2 about the eigenvalues of A. Let us treat in detail the case a < 4b,
which is the most interesting for us: there are two conjugate eigenvalues, λ± = l ± ωi, where
l = −a/2 (see (10)) and ω is defined in (12).

Lemma 8 If a < 4b, there exist two angles α ∈ (π/2, 3π/2) and β ∈ [0, 2π) such that for any
t ≥ 0,

Σt = R0 − exp(−at)Rt

where

Rt B
c2

4ab− a2

(
b2

a

(
2 +

√
a
b cos(2β − α− 2ωt)

)
b
a (2 cos(β) + cos(β − α− 2ωt))

b
a (2 cos(β) + cos(β − α− 2ωt)) b4

a

(
2 +

√
a
b cos(−α− 2ωt)

) )
Passing to the limit as t→ +∞, we get Σ = R0 and we deduce more precisely that

Σ =
c2

2a2

(
a+ b −b2
−b2 b3

)
.

Proof

From the first line of the matrix A, we deduce that an eigenvector associated to λ± is (1, λ±+a−b)∗.
So writing

4 B

(
λ− 0
0 λ+

)
and M B

(
1 1

λ− + a− b λ+ + a− b

)
we have that A = M4M−1, where

M−1 =
1

λ+ − λ−

(
λ+ + a− b −1
−λ− + b− a 1

)
11



In view of (18), we need to compute for any s ≥ 0,

exp(As)CC∗ exp(A∗s) = M exp(s4)M−1CC∗(M∗)−1 exp(s4∗)M∗

where ∗ is now the conjugate transpose operation. A direct computation leads to

λ+ − λ−
c

M exp(s4)M−1C =

(
σ1

σ2

)
B

(
z exp(sλ−)− z̄ exp(sλ+)

|z|2 (exp(sλ−)− exp(sλ+))

)
where z B λ+ + a− b = a/2− b+ iω and z := a− b+ λ− = a/2− b− iω. So we get that

exp(As)CC∗ exp(A∗s) =
c2

|λ+ − λ−|2

(
|σ1|2 σ1σ2

σ2σ1 |σ2|2
)

=
c2

4ω2

(
2 |z|2 e2ls − 2<(z2e2λ−s) 2<(z)e2ls − 2<(ze2λ−s)

2<(z)e2ls − 2<(ze2λ−s) 2 |z|4 (e2ls −<(e2λ−s))

)
Integrating this expression with respect to s, we obtain, first for any t ≥ 0,

Σt =
c2

4ω2

(
|z|2 e2lt−1

l −<(z2 e2λ−t−1
λ−

) <(z) e
2lt−1
l −<(z e

2λ−t−1
λ−

)

<(z) e
2lt−1
l −<(z e

2λ−t−1
λ−

) |z|4 ( e
2lt−1
l −<( e

2λ−t−1
λ−

))

)

and next, recalling that <(λ−) = <(λ+) = l < 0,

Σ := lim
t→+∞

Σt =
c2

4ω2

(
− |z|2 1

l + <(z2 1
λ−

) −<(z)1
l + <(z 1

λ−
)

−<(z)1
l + <(z 1

λ−
) − |z|4 (1

l −<( 1
λ−

))

)

Thus it appears that

∀ t ≥ 0, Σt = Σ− e−atRt

where the last term is the sinusoidal matrix defined by

Rt B
c2

4ω2

(
− |z|2 1

l + <(z2 e−2ωit

λ−
) −<(z)1

l + <(z e
−2ωit

λ−
)

−<(z)1
l + <(z e

−2ωit

λ−
) − |z|4 (1

l −<( e
−2ωit

λ−
))

)

Note that Σ = R0 (this can also be deduced from Σ0 = 0). To recover the matrices given in the
statement of the lemma, we remark that |λ−|2 = ab and |z|2 = b2, so there exist angles α, β ∈ [0, 2π)
such that

λ− =
√
ab exp(iα) and z = b exp(iβ)

Since <(λ−) < 0, we have α ∈ (π/2, 3π/2) and the first announced results follow at once. Con-
cerning the more explicit computation of Σ, just take into account that

cos(α) = −
√
a

2
√
b

and sin(α) = − ω√
ab

cos(β) =
a− 2b

2b
and sin(β) =

ω

b

and expand the matrix

R0 =
c2b

(4b− a)a2

(
b
(
2 +

√
a
b cos(2β − α)

)
(2 cos(β) + cos(β − α))

(2 cos(β) + cos(β − α)) b3
(
2 +

√
a
b cos(α)

) )
�
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Remark 9 In particular, it appears that for large time t ≥ 0, Xt converges in law toward the
centered Gaussian distribution ν of variance c2(b+ a)/(2a2).

�

We will need another basic ingredient, valid in any dimension, about the functional J defined
in (11).

Lemma 10 Let µ and µ̃ be two Gaussian distributions in Rd, d ≥ 1, of mean 0 and respective
variance matrices Σ and Σ̃, assumed to be positive definite. If Σ̃−1−Σ−1/2 is positive definite, we
have

J(µ̃, µ) =

√
1√

det(Id− S2)
− 1

where S B Σ−1Σ̃− Id and J(µ̃, µ) = +∞ otherwise.

Proof

From the above assumptions, we have

∀ x ∈ Rd,
dµ̃

dµ
(x) =

√
det(Σ)

det(Σ̃)
exp

(
−x∗ (Σ̃−1 − Σ−1)

2
x

)

Thus the function dµ̃
dµ belongs to L2(µ) (property itself equivalent to the finiteness of J(µ̃, µ)), if

and only if the symmetric matrix Σ̃−1 − Σ−1 + Σ−1/2 is positive definite. In this case, we have

∫ (
dµ̃

dµ

)2

dµ =
det(Σ)

det(Σ̃)

√
det((2Σ̃−1 − Σ−1)−1)

det(Σ)

=

√
det(Σ)

det(Σ̃)

√
det(Σ̃) det((2Id− Σ−1Σ̃)−1)

=

√
det(Σ)

det(Σ̃)

√
det((Id− S)−1)

=
1√

det(Id + S) det(Id− S)

where we used that Σ̃ = Σ(Id + S). It remains to note that

J2(µ̃, µ) =

∫ [(
dµ̃

dµ

)2

− 2
dµ̃

dµ
+ 1

]
dµ =

∫ (
dµ̃

dµ

)2

dµ− 1

�

Still in the case 4b > a, we can now proceed to the

Proof of Proposition 3

In view of Lemma 8, we want to apply Lemma 10 with Σ = R0 and Σ̃ = R0 − exp(−at)Rt, for
t ≥ 0. This amounts to take S B − exp(−at)R−1

0 Rt, matrix converging to zero exponentially fast

as t goes to +∞. It follows that for t large enough, Σ̃−1 − Σ−1/2 is positive definite and we get

J(µt, µ) =

√
1√

det(Id− S2)
− 1

13



Taking into account that the matrices Rt are bounded uniformly over t ∈ R+, an expansion for
large t gives

1√
det(Id− S2)

=
1√

1− tr(S2) +O(‖S2‖2HS)

= 1 +
1

2
tr(R−1

0 RtR
−1
0 Rt) exp(−2at) +O(exp(−4at))

(where ‖·‖HS stands for the Hilbert-Schmidt norm, i.e. the square root of the sum of the squares
of the entries of the matrix). We will be able to conclude to

lim
t→+∞

1

t
ln(J(µt, µ)) = −a (19)

if we can show that

lim inf
t→+∞

tr(R−1
0 RtR

−1
0 Rt) > 0 (20)

(since it is clear that lim supt→+∞ tr(R−1
0 RtR

−1
0 Rt) < +∞). Taking advantage of the fact that R0

is a symmetric and positive definite matrix, we consider for t ≥ 0, R̂t B R
−1/2
0 RtR

−1/2
0 , which is

also a symmetric matrix. Since tr(R−1
0 RtR

−1
0 Rt) = tr(R̂2

t ) =
∥∥∥R̂t∥∥∥2

HS
, this quantity is nonnegative

and can only vanish if R̂t, or equivalently Rt, is the null matrix. This never happens, because the
first entry of Rt, namely (cb/a)2(2 +

√
a/b cos(2β −α− 2ωt))/(4b− a), is positive. The continuity

and the periodicity of the mapping R+ 3 t 7→ Rt enables to check the validity of (20) and next of
(19).

The corresponding result for the first marginal νt (the law of Xt) is obtained in the same
way. Indeed, from Lemma 8, for any t ≥ 0, νt is the real Gaussian law of mean 0 and variance
r0 − exp(−at)rt, where

∀ t ≥ 0, rt B
(cb)2

4a2b− a3

(
2 +

√
a

b
cos(2β − α− 2ωt)

)
with the angles α ∈ (π/2, 3π/2) and β ∈ [0, 2π) described in the proof of Lemma 8. In particular
ν B limt→+∞ νt is the real Gaussian law of mean 0 and variance r0. Lemma 10 applied with d = 1
leads at once to

lim
t→+∞

1

t
ln(J(νt, ν)) = −a

�

The remaining situations a = 4b and a > 4b can be treated in the same way. In view of the
previous arguments, it is sufficient to check that it is possible to write

∀ t ≥ 0, Σt = Σ− exp(−2lt)Rt

where l is defined in (10) and where the family (Rt)t≥0 is such that

lim
t→+∞

1

t
ln(‖Rt‖) = 0

for any chosen norm ‖·‖ on the space of 2× 2 real matrices, due to their mutual equivalence. The
obtention of the family (Rt)t≥0 also relies on the spectral decomposition of A, with Rt converging
for large times t if a > 4b and exploding like t2 if a = 4b.

14



2.2 Simplifications with the view to Theorem 4

Let us begin this subsection by emphasizing two important properties of Theorem 4:
• The result does not depend on the variance coefficient c.
• The exponent is proportional to ω =

√
ab− a2/4 which denotes the mean angular speed of the

deterministic system ż = Az.
These properties can be understood through some linear and scaling transformations of the process
(Zt)t≥0. More precisely, these transformations will be used in the sequel to reduce the problem to
the study of a process with mean constant angular speed and a normalized diffusion component.

We choose to first give the idea in a general case and then, apply it to our model.

Let A ∈ GL2(R) with complex eigenvalues given by λ± = −ρ±iω where ρ ∈ R and ω ∈ R∗+.
Let us consider the two-dimensional Gaussian differential system given by

dζt = Aζtdt+ ΣdBt (21)

where Σ ∈M2(R) and (Bt)t≥0 is a standard two dimensional Brownian motion. For such a process,
the precise transformation is given in Proposition 12. This proposition is based on the following
lemma.

Lemma 11 Let A ∈ GL2(R) with complex eigenvalues given by λ± = −ρ±iω where ρ ∈ R and
ω ∈ R∗+. There exists P ∈ GL2(R) such that

A = P (−ρI2 + ωJ2)P−1

where

I2 :=

(
1 0
0 1

)
and J2 :=

(
0 −1
1 0

)
. (22)

Furthermore, for every v ∈ R2\{0}, P := Pv given by Pv = (v, D+ρI2
ω v) is an admissible choice.

Proof

Set B = D−ρI2
ω . The eigenvalues of B are ±i so that B2 = −I2. For any v ∈ R2, set Pv = (v,Bv).

The matrix Pv is clearly invertible and using that B2v = −v, one obtains that B = PvJ2P
−1
v . The

result follows.
�

Proposition 12 Let (ζt)t≥0 be a solution to (21) where A ∈ GL2(R) with complex eigenvalues
given by λ± = −ρ±iω (with ρ ∈ R and ω ∈ R∗+). For any α ∈ R∗ and v ∈ R2\{0}, set ζ̂t =√
ωαP−1

v ζ t
ω

. The process (ζ̂t)t≥0 is a solution to

dζ̂t = − ρ
ω
ζ̂t + J2ζ̂t + αP−1

v ΣdWt (23)

where (Wt) is a standard two-dimensional Brownian motion.

Proof

First, set ζ̃vt = P−1
v ζt. Owing to the preceding lemma, (ζ̃vt )t≥0 is a solution to

dζ̃vt = −ρζ̃vt + ωJ2ζ̃
v
t + P−1

v ΣdBt.

15



For any α ∈ R∗, set ζ̂t =
√
ωαζ̃vt

ω

. Setting Wt =
√
ωB t

ω
(which is a Brownian motion), one checks

that
dζ̂t = − ρ

ω
ζ̂t + J2ζ̂t + αP−1

v ΣdWt.

�

We now apply this proposition to our problem.

Corollary 13 Let (Zt)t≥0 be a solution to (7) and assume that a < 4b. Set ω =
√
ab− a2

4 . Let

v ∈ R2 \ {0} and set Pv = (v,Bv) with B = 1
ω (A + a

2I2). Then for any α ∈ R \ {0}, the process

(Ẑt)t≥0 defined by Ẑt =
√
ωαP−1

v Z t
ω

is a solution to

dẐt = − a

2ω
Ẑt + J2Ẑt + αcP−1

v ΣdWt with Σ =

(
1 0
0 0

)
, (24)

where W is a standard two-dimensional Brownian motion. In particular, if v = ( 1
b2

(a2 − b), 1)∗ and

α =
√

2ω
cb2

, then (Ẑt) := (Ut, Vt) is a solution to{
dUt = − a

2ωUt − Vtdt
dVt = − a

2ωVt + Ut +
√

2dWt.
(25)

where W is now a standard one-dimensional Brownian motion.

Remark 14 In the second part, of the corollary, one remarks that one chooses v in order that
the transformed process has only a (normalized) diffusive component on the second coordinate.

Furthermore, if Z has (x, y) ∈ R2 for initial deterministic condition, then Ẑ starts from the
point

√
ωc−1b−2(ωy, b2x + (b − a/2)y). The images of (1, 0)∗ and (0, 1)∗ by P−1

v are particularly
important for our purposes, since they enable to see that the half-plane {(x, y) ∈ R2 : x > 0} for
Z is transformed into the half-plane {(u, v) ∈ R2 : v > 2b−a

2ω u} for Ẑ. Note that in the setting

a << b, the latter half-plane is quite similar to the former one, since ω ∼
√
ab << b.

�

Proof

We recall that (Zt) = (Xt, Yt) is a solution to

dZt = AZt + cΣdBt where A =

(
b− a 1
−b2 −b

)
and

and Σ is defined in (24). When a < 4b, the eigenvalues of A are given by

λ± = −a
2
± iω.

For any v ∈ R2, set Pv := (v,Bv) with

B =
1

ω
(A+

a

2
I2).

Applying the previous proposition, we deduce that for any α ∈ R∗, (Ẑt)t≥0 := (α
√
ωP−1

v Z t
ω

)t≥0 is

a solution to
dẐt = − a

2ω
Ẑt + J2Ẑt + αcP−1

v ΣdŴt
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where (Ŵt) is a standard two-dimensional Brownian motion. For the second part, it remains to

choose v and α so that

αcP−1
v Σ =

(
0 0√
2 0

)
. (26)

If v = (u1, u2)∗, then

Pv =

u1
1
ω

(
(b− a

2 )u1 + u2

)
u2 − 1

ω

(
b2u1 + (b− a

2 )u2

)
 (27)

One deduces that condition (26) (or more precisely the fact that (P−1
v Σ)1,1 = 0) implies b2u1 +

(b− a
2 )u2 = 0. Setting v = ( 1

b2
(a2 − b), 1)∗, we have

Pv =

(
1
b2

(
a
2 − b

)
ω
b2

1 0

)
and P−1

v =

(
0 1
b2

ω
1
ω

(
a
2 − b

)) .
Condition (26) is then satisfied when α =

√
2ω
cb2

.
�

3 Dirichlet eigenvalues estimates

This section is devoted to the proof of Theorem 4. More precisely, the aim is to obtain successively
upper and lower bounds for P(x0,y0)(τ > t) where τ := inf{t ≥ 0, Xt ≤ 0}. In fact, some of the
results will be stated for exit times of more general domains. For a given (open) domain S of R2,
we will thus denote by

τS := inf{t ≥ 0, (Xt, Yt) ∈ Sc}.

3.1 Upper-bound for the exit time of an angular sector S
3.1.1 The case S = {(x, y), x > 0}

In this part, we focus on the particular stopping time τ of Theorem 4 which corresponds to the
exit time of D = {(x, y), x > 0}. We have the following result:

Proposition 15 Let (Zt)t≥0 be a solution to (7) with a < 4b. Then, for every (x0, y0) ∈ R2 such
that x0 > 0,

P(x0,y0)(τ > t) ≤ 2 exp

(
− log 2

π
ωt

)
.

Proof

Set z(t) = (x(t), y(t)) = (E[Xt],E[Yt]). The function (z(t))t≥0 being a solution to ż = Az, we
deduce in particular that

∀ t ≥ 0,
..
x(t) + aẋ+ abx(t) = 0.

Since a < 4b, the roots of the characteristic equation associated with the previous equation are:
λ± = −a

2 ±ω where ω =
√
ab− a2/4. As a consequence, there exists C > 0 and ϕ0 ∈ (−π, π] such

that
x(t) = C cos(ωt+ ϕ0), t ≥ 0.

Reminding that x0 > 0, we deduce that ϕ0 ∈ (−π
2 ,

π
2 ). Thus, at time Tω = π

ω ,

∀x0 > 0, ωTω + φ0 ∈ (
π

2
,
3π

2
) =⇒ x(Tω) < 0.
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But x(Tω) = E[XTω ] and XTω is Gaussian and has a symmetric distribution. Thus, we deduce
from what precedes that

∀x0 > 0, y0 ∈ R, P(x0,y0)(XTω < 0) ≥ 1

2

which in turn implies that

∀x0 > 0, y0 ∈ R, P(x0,y0)(τ ≥ Tω) ≤ 1

2
. (28)

Thus, we have a upper-bound at time Tω which does not depend on the initial value (x0, y0). As a
consequence, we can use a Markov argument. More precisely, owing to the Markov property and
to (28), we have for every integer k ≥ 1:

P(τ > kTω|τ > (k−1)Tω) =
E[P(X(k−1)Tω ,Y(k−1)Tω )(τ > Tω)1τ>(k−1)Tω ]

P(τ > (k − 1)Tω)
≤ sup

x0>0,y0∈R
P(x0,y0)(τ > Tω).

An iteration of this property yields

∀n ∈ N, ∀(x0, y0) ∈ R∗+ × R, P(x0,y0)(τ > nT ) ≤
(

1

2

)n
.

It follows that

∀t ≥ 0, ∀(x0, y0) ∈ R∗+ × R, P(x0,y0)(τ > t) ≤
(

1

2

)b t
Tω
c
≤ 2 exp

(
− log 2

Tω
t

)
.

This concludes the proof.

3.1.2 Extension to general angular sectors

We now consider an angular sector Sα1,α2 defined as

Sα1,α2 = {(x, y) ∈ R2, x > 0 , α1x < y < α2x} (29)

where α1, α2 ∈ R and α1 < α2. The set Sα1,α2 can also be written Sα1,α2 = {(r cos θ, r sin θ), r >
0, θ1 < θ < θ2} with θ1, θ2 ∈ [−π/2, π/2]. Note that for the sake of simplicity, we only consider
angular sectors which are included in {(x, y), x > 0}. The results below can be extended to any
angular sectors for which the angular size is lower than π. For such domains, we first give a result
when the model has a constant (mean) angular speed even if such a result does not apply to the
solutions of (7) for sake of completeness. This is the purpose of Lemma 16 below.

Concerning now our initial motivation, we also derive an extension of Proposition 15 for any
general angular sector, and this result is stated in Proposition 17.

Lemma 16 Let (Zt)t≥0 be a solution of

dZt = −ρZt + ωJ2Zt + ΣdWt

where ρ ∈ R, ω ∈ R∗+, Σ ∈ M2(R) and W is a two-dimensional Brownian motion. Let Sα1,α2 be
defined by (29) where α1, α2 ∈ R and α1 < α2. Then, for any (x0, y0) ∈ Sα1,α2,

P(τSα1,α2 ≥ t) ≤ 2 exp

(
− ln(2)

θ2 − θ1
ωt

)
with θ1 = Arctan(α1) and θ2 = Arctan(α2).
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Proof

Let z(t) = (E[Xt],E[Yt]) and define (u(t))t≥0 := (eρtz(t))t≥0, u is a solution of

u̇ = ωJ2u.

We deduce that
eρtz(t) = (A cos(ωt+ ϕ), Aω sin(ωt+ ϕ))

where A ≥ 0 and ϕ ∈ [−π, π). This implies that the angular rate of (z(t))t≥0 is constant and is
equal to ω. Thus, it follows that for every starting point (x, y) ∈ Sα1,α2 ,

z(Tω) ∈ Scα1,α2
with Tω = ω(θ2 − θ1).

One can then find a line passing through 0 and dividing R2 into two half-planes D+ and D−

such that Sα1,α2 is included in D− and z(Tω) ∈ D+. Owing to the symmetry of a one-dimensional
centered Gaussian distribution, we have

P((XTω , YTω) ∈ D−) = P((XTω , YTω) ∈ D+) =
1

2
.

One finally deduces that for every (x, y) ∈ Sα1,α2 ,

P((XTω , YTω) ∈ Scα1,α2
) ≥ 1

2
.

and thus that

∀ (x, y) ∈ Sα1,α2 , P(x,y)(τSα1,α2 > Tω) ≤ 1

2
.

The end of the proof is then identical to that of Proposition 15.
�

We now consider our initial bubble process (Zt)t≥0 which is solution of Equation (7). We have the
following result.

Proposition 17 Let (Zt)t≥0 be a solution to (7). Let Sα1,α2 be defined by (29) where α1, α2 ∈ R
and α1 < α2. Then, for any (x0, y0) ∈ Sα1,α2,

P(τSα1,α2 ≥ t) ≤ 2 exp

(
− ln 2

θ̃1 − θ̃2

ωt

)
with θ̃i = Arctan

(
a/2−b−αi

ω

)
, i = 1, 2.

Remark 18 Taking α1 = −∞ and α2 = +∞, we retrieve Proposition 15 since S−∞,+∞ then
corresponds to the half-plane {x > 0}. Note that contrary to Lemma 16, the exponential rate is
not directly proportional to ω. More precisely, due to the non constant angular speed, θ̃1 and θ̃2

depend on ω. For the particular domain of Proposition 15 this dependence does not appear since,
even if the the angular rate is not constant, the time to do a U-turn is still proportional to ω.

�

Proof

By Corollary 13, for any v of R2 \ {0}, (Z̃t)t≥0 = (P−1
v Z t

ω
)t≥0 (where Pv = (v,Bv)) is a solution

of
dZ̃t = (−ρI + J2)Z̃t + Σ̃dWt
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where Σ̃ is a constant real matrix (whose exact expression is not so important) and where ρ =
a/(2ω). In the new basis B̃ = (v,Bv),

Sα1,α2 = {z̃ = (x̃, ỹ)B̃ ∈ R2, α1(Pv z̃)1 < (Pv z̃)2 < α2(Pv z̃)1}.

Setting v = (1, a2 − b), we deduce from Equation (27) that

Pv =

(
1 0

(a2 − b) −ω

)
In such a case

Pv z̃ =

 x̃

(a2 − b)x̃− ωỹ


so that

Sα1,α2 = {z̃ = (x̃, ỹ)B̃ ∈ R2,
(a

2
− b− α2

)
x̃ < ωỹ <

(a
2
− b− α1

)
x̃}.

Thus, we deduce from Lemma 16 that

Px̃,ỹ(τ̃Sα1,α2 ≥ t) ≤ 2 exp

(
− ln 2

θ̃1 − θ̃2

t

)
where for a given domain A, τ̃A := inf{t ≥ 0, Z̃t ∈ Ac} and θ̃i = Arctan

(
a/2−b−αi

ω

)
, i = 1, 2. The

result follows.
�

3.2 Lower-bound

3.2.1 General tool

In this second part, our aim is to obtain the lower-bound part of Theorem 4, in particular we want
to derive a upper-bound on:

λ̄ B lim sup
t→+∞

− 1

t
log(P(τ ≥ t)).

The results of this section are based on the following (classical) proposition.

Proposition 19 Let (Xt)t≥0 be a Rd-valued Markov process with infinitesimal generator L and
initial distribution m0. Let S be an (open) domain of Rd and assume that m0(S) = 1. Let
τ := inf{t > 0, Xt ∈ Sc}. Then, if there exists a bounded function f : Rd → R and λ ∈ R such that{

f/∂S = 0 and f/S > 0

∀x ∈ S, Lf(x) ≥ −λf(x)
(30)

then, Em0 [eλτ ] = +∞. As a consequence,

lim sup
t→+∞

− 1

t
log(Pm0(τ ≥ t)) ≤ λ.
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Proof

Owing to the Dynkin formula, we have for every t ≥ 0

eλ(t∧τ)f(Xt∧τ ) = f(X0) +

∫ t∧τ

0
(λf(Xs∧τ ) + Lf(Xs∧τ ))eλ(s∧τ)ds+Mt∧τ

where (Mt) is a local martingale. Owing to a localization argument and to Fatou’s Lemma, we
deduce that

Em0 [eλ(t∧τ)f(Xt∧τ )] =

∫
f(x)m0(dx) + Em0

[∫ t∧τ

0
(λf(Xs∧τ ) + Lf(Xs∧τ ))eλ(s∧τ)ds

]
.

Suppose that Em0 [eλτ ] < +∞. Then, using the dominated convergence theorem and the fact that
f/∂S = 0, we have

lim
t→+∞

Em0 [eλ(t∧τ)f(Xt∧τ )] = 0

whereas the fact that Lf ≥ −λf implies that the right-hand term is uniformly lower-bounded by∫
f(x)m0(dx) which is (strictly) positive. This yields a contradiction. Thus, Em0 [eλτ ] = +∞. The

second assertion then classically follows from the equality

Em0 [eλτ ] =

∫
R
λeλtPm0(τ > t)dt.

�

The end of Section 3.2 is devoted to the construction of a function f satisfying (30). In fact, for
this part, the degeneracy of the process described by Equation (7) implies a significant amount of
difficulties. That is why we propose in the next subsection to first focus on the elliptic case which
can be handled more easily. Some of the ideas developed in this framework will then be extended
to the initial hypoelliptic setting.

3.2.2 The elliptic case

By Corollary 13, we know that we can reduce the problem to the study of a process (Ut, Vt) solution
to (25). In this part we focus on its elliptic counterpart: we consider a two dimensional process
(ξt)t≥0 solution of the following stochastic differential equation

dξt = (−ρξt + J2ξt)dt+
√

2dWt (31)

where ρ is a real number and W is a standard two-dimensional Brownian motion.
We define S0 = {(x, y), x > 0}. In order to build a suitable function f satisfying (30) with
D = S0 and relatively to the infinitesimal generator Lρ associated to (31), we first switch to polar
coordinates: Proposition 41 (stated in the second appendix) shows that Lρ is given on C2(R∗+×R)
by

Lρ = −ρr∂r + ∂θ + ∂2
r +

1

r
∂r +

1

r2
∂2
θ . (32)

To justify the approach developed below, let us forget formally the derivatives with respect to r by
fixing r > 0 and by considering unknown angular functions Gr : [−π/2, π/2]→ R. The problem of
finding Gr and λr such that (30) holds (with D = (−π/2, π/2)) reduces to solve the second order
ordinary differential equation

r−2G′′r(θ) +G′r(θ) = −λrGr(θ), −π
2
≤ θ ≤ π

2
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with Gr(π/2) = Gr(−π/2) = 0. The solutions are given by exponential functions Gr(θ) = α1e
ρ1θ+

α2e
ρ2θ where (ρ1, ρ2) are the complex roots of the quadratic characteristic equation X2/r2 +X +

λr = 0 associated to the linear ODE given above. One can easily check that <(ρ1) = <(ρ2) = −r2/2
and the boundary conditions imply in particular to choose λr such that =(ρ1) = −=(ρ2) = 1
otherwise the function Gr cannot remain positive on ] − π/2;π/2[. This is possible if and only if

λr = 1
r2

+ r2

4 and the solutions of this simplified spectral problem are then proportional to the
function defined by

∀ θ ∈ [−π/2, π/2], Gr(θ) B e−
r2

2
θ cos θ.

The previous construction cannot really be extended to the exact initial problem Lρg = −λg.
Nevertheless, this suggests to search potential solutions g to the problem Lρg ≥ −λg under the
following form

g(r, θ) = reβ(θ)r2 cos(θ), θ ∈
[
−π

2
,
π

2

]
, r ≥ 0 (33)

where β : [−π/2, π/2] → R is a C2-function which must be non-positive (due to the boundedness
condition in Proposition 19). The action of the generator Lρ described in (32) is given as follows
(the proof is postponed to the second appendix).

Proposition 20 For any g ∈ C2
(
R+ ×

[
−π

2 ,
π
2

]
,R
)

given by (33), one has

∀(r, θ) ∈ R∗+ ×
[
−π

2
,
π

2

]
Lρg(r, θ) =

[
ψ1(θ)r2 + ψ2(θ)

]
g(r, θ)

where

ψ1(θ) = −2ρβ(θ) + β′(θ) +
(
4β2(θ) + (β′(θ))2

)
ψ2(θ) = −ρ+ 8β(θ)− (1 + 2β′(θ)) tan θ + β′′(θ).

In order to apply Proposition 19, the problem is now reduced to find a non-positive angular
function β such that

Lρg
g is lower-bounded on R∗+×]− π

2 ,
π
2 [. The previous computation shows that

we mainly need to satisfy the following constraint

∀θ ∈
]
−π

2
,
π

2

[
, ψ1(θ) ≥ 0.

An admissible value of λρ for the spectral inequality Lρg ≥ −λρg will then be obtained by

λρ := inf
θ∈]−π

2
,π
2

[
ψ2(θ) > −∞.

Note that this implies in particular that

lim sup
θ→π

2

1 + 2β′(θ) ≤ 0 and lim inf
θ→−π

2

1 + 2β′(θ) ≥ 0.

A solution of the problem is given in the next proposition.

Proposition 21 (i) Let ρ ≥ 0 and let g be given by (33) with

β(θ) =

{
1
4(1−

√
3) if θ ∈ [−π

2 ,
π
4 )

1
4(sin(2θ)−

√
3) if θ ∈ [π4 ,

π
2 ].

(34)

Then, for every r > 0 and θ ∈ [−π/2, π/2] such that θ 6= π/4,

Lρg(r, θ) ≥ −λρg(r, θ) with λρ = 2
√

3 + ρ.

(ii) Let ρ ≥ 0 and consider (ξt)t≥0 solution to (31). Then, for every (x0, y0) ∈ R2 such that x0 > 0,

lim sup
t→+∞

−1

t
log(P(x0,y0)(τ ≥ t)) ≤ λρ

where τ := inf{t ≥ 0, (ξt)1 < 0}.
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Remark 22 Note that by the scaling and linear transformations previously described, this result
can be transferred to general elliptic two-dimensional Ornstein-Uhlenbeck evolutions whose linear
drift is given via a matrix admitting complex conjugate eigenvalues (and whose trajectories have
thus a tendency to turn around (0, 0)).

The function g is a C1-function but only a piecewise C2-function. However, since these functions
still belong to the domain of Lρ, the conclusions of Proposition 19 still hold. Also note that if we
now switch to cartesian coordinates, the counterpart of g has the following (nice) form:

f(x, y) = xe−
√
3−1
4

(x2+y2)e−
(x−y)2

4
1{y≥x} .

�

Proof

(i) First, assume that ρ = 0 and consider the function β stated in the former statement. One
checks that β is a piecewise C2-function on [−π/2, π/2]. Note that we can use this function since
Itô’s formula is still available in this case. Furthermore, we check that

ψ1(θ) =

{
1−

√
3

2 if θ ∈ [−π
2 ,

π
4 )

1 + cos(π3 + 2θ) if θ ∈ [π4 ,
π
2 ]

(35)

so that ψ1 is non-negative on [−π
2 ,

π
2 ]. As well, easy computations yield:

ψ2(θ) =

{
2− 2

√
3− tan θ if θ ∈ [−π

2 ,
π
4 )

−2
√

3 if θ ∈ [π4 ,
π
2 ]

(36)

It follows that ψ2 is lower-bounded by −2
√

3 and the result follows when ρ = 0. The extension to
the case ρ > 0 is obvious using that −ρβ is a non-negative function.

(ii) This statement follows from Proposition 19, since g is C1 and piecewise C2.
�

Remark 23 Figure 4 represents the partition of the state space R2 (seen as R+ × [0, 2π) in the
second picture) for the construction of the function β (and g) as well as the function g(r, θ) for
several values of r. We should understand the function g as follows: g(r, θ) must be large when the
dynamical system is suspected to take long time to exit the set S0 = R∗+× (−π/2, π/2) from (r, θ).
Conversely, it should be small in the region where the vector field of the underlying determinist
dynamical system push the trajectories out of S0. As pointed out by Figure 4, we do not need to
consider sub-domain of S0: the action of the Brownian motion is elliptic and we can always build
some trajectories starting from any point of S0 and staying an arbitrarily long time in S0. Note
that when r is small, the starting point is near the origin, whatever the value of θ is and hence,
the function g(r, θ) is small (see the right side of Figure 4).

�

3.2.3 The hypoelliptic case

We now come back to the study of the lower-bound of Theorem 4. This result is proved in
Proposition 29 stated below. We know from Corollary 13 that up to linear changes of variables in
time and space, the initial dynamic may be reduced to the simplified stochastic evolution described
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Figure 4: Left: the domain to avoid is θ ∈ [π/2, 3π/2]. The elliptic situation is illustrated by the full rank
black double arrow: the Brownian motion always move in all directions. In blue: rotation + homothety vector
field. Right: function θ 7→ g(r, θ) for several values of r.

by Equation (25). Again let us write down the corresponding infinitesimal generator Lρ in polar
coordinates (see Proposition 41 given in the second appendix):

Lρ = −ρr∂r + ∂θ +
sin2 θ

2
∂2
rr −

sin θ cos θ

r2
∂θ +

sin θ cos θ

r
∂2
rθ +

cos2 θ

2r
∂r +

cos2 θ

2r2
∂2
θ (37)

with ρ = − a
2ω . As mentioned before, we would like to use a strategy similar to the one considered

in the elliptic case. However, the hypoelliptic problem is more involved. Roughly speaking, the
degeneracy of the diffusive component implies that in the neighbourhood of π/2, the paths of
the solutions to (25) can not be strongly slowed down by the action of the Brownian motion (see
Remark 23 and the study on Brownian bridges below). In other words, we are not able (and it
seems indeed impossible) to build a function β such that the function ψ2 defined in the previous
subsection is lower-bounded. Thus, the idea is to reduce the domain to a smaller angular sector
S included in {(x, y), x > 0} where the diffusive action of the Brownian motion is more likely to
keep the process in S.

Consequently, we consider a more general class of functions g (which must be calibrated in the
sequel) and define

g(r, θ) = rnγ(θ)eβ(θ)r2 (38)

where n is a positive integer and γ and β are some sufficiently smooth functions. Now β should be
bounded above by a negative constant for g to have a chance to be bounded. The new function
γ will be chosen in order that g is positive in the interior of the angular sector and vanishes on
the boundary of S. We first describe the effect of Lρ on such a function g (the computations are
deferred to the second appendix).

Proposition 24 For any g ∈ C2
(
R+ ×

[
−π

2 ,
π
2

]
,R
)

given by (38), one has

∀(r, θ) ∈ R∗+ ×
[
−π

2
,
π

2

]
Lρg(r, θ) =

[
ϕ1(θ)r2 + ϕ2(θ) +

ϕ3(θ)

r2

]
g(r, θ)
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where

ϕ1(θ) = −2ρβ(θ) + β′(θ) +
(
2 sin θβ(θ) + cos θβ′(θ)

)2
,

ϕ2(θ) = −nρ+ β(θ)
(
(4n+ 2) sin2 θ + 2 cos2 θ

)
+ (1 + 2β′(θ) cos2 θ + 4β(θ) sin θ cos θ)

γ′

γ
(θ) + β′′(θ) cos2(θ) + 2(n+ 1) cos θ sin θβ′(θ),

ϕ3(θ) = (n2 − n) sin2 θ + cos2 θ(n+
γ′′(θ)

γ(θ)
) + 2(n− 1) sin θ cos θ

γ′(θ)

γ(θ)
.

We now need to find an (open) angular sector S = {(r cos θ, r sin θ), θ1 < θ < θ2}, a positive integer
n, some functions γ and β such that

1. γ(θ) > 0 on (θ1, θ2), γ(θ1) = γ(θ2) = 0, β(θ) ≤ 0 on [θ1, θ2],

2. ϕ1 and ϕ3 are non-negative on S,

3. ϕ2 is lower-bounded.

4. β is bounded above by a negative constant.

This is the purpose of the next proposition.

Proposition 25 Let ρ ≥ 0.
(i) Let g be defined by (38) with n = 2,

γ(θ) =

{
− sin(2θ) if θ ∈ [−π

2 ,−
π
4 ]

cos2(π/4 + θ) if θ ∈ [−π
4 ,

π
4 ]

(39)

and β(θ) = −1
2 . Then, for every r > 0 and θ ∈]− π

2 ,
π
4 [ with θ 6= −π

4 ,

Lρg(r, θ) ≥ −(3 + 2ρ)g(r, θ).

(ii) As a consequence, for any open half-plane H such that S := {(r cos θ, r sin θ), r > 0, θ ∈
]− π

2 ,
π
4 [} ⊂ H, for any probability measure m0 on R2 such that m0(H) = 1, we have

lim sup
t→+∞

−1

t
log(Pm0(τH ≥ t)) ≤ 3 + 2ρ.

Remark 26 The vector field corresponding to the drift part of the stochastic evolution under
study, as well as the most favorable positions (which are expected to be the points where g is
large) for the starting point in order to keep the process in S for large times are illustrated in
Figure 5. As pointed out above, the angular sector [π/4, π/2] is now avoided to keep the process
in the half-plane x > 0. Moreover, the right side of Figure 5 shows that excessive values of r (too
large or too small ones) are also prohibited: small values are unfavourable since it corresponds to
starting positions very close to the origin (and naturally close to the axis x = 0). Large values
of r are also disadvantageous owing to the large norm of the drift vector field against which the
Brownian motion has to fight to keep the process in S.

�

Proof

With the proposed choices of n and γ, one checks that

ϕ3(θ) =

{
0 if θ ∈ [−π

2 ,−
π
4 )

2
1−sin(2θ) if θ ∈ (−π

4 ,
π
4 )
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Figure 5: Left: the domain to avoid is θ ∈ [π/4, 3π/2]. The hypo-elliptic situation is illustrated by the rank 1
double arrow: the Brownian motion can only move in vertical directions. In blue: rotation + homothety vector
field. Right: function θ 7→ g(r, θ) for several values of r.

so that ϕ3 is non-negative. Since β is constant and ρ is non-negative, the fact that ϕ1 is non-
negative is obvious. Thus, it remains to focus on ϕ2. In fact, easy computations show that
ϕ2(θ) = −(3 + 2ρ) on [−π

4 ,
π
4 ) whereas

∀θ ∈ (−π
2
,−π

4
], ϕ2(θ) = −(3 + 2ρ) +

2

tan(2θ)
.

The conclusion of the first assertion follows.

(ii) By Proposition 19 and what precedes, for any probability measure mS on R2 such that mS(S) =
1,

lim sup
t→+∞

−1

t
log (PmS (τS ≥ t)) ≤ 3 + 2ρ. (40)

Now, consider the general case. Let m0 be a probability such that m0(H) = 1. Then, for every
t > 0, for every a.s. finite stopping time T ,

Pm0(τH ≥ t) ≥ Pm0(τH ≥ T + t) ≥ Pm0(τH > T,Zs ∈ S ∀s ∈ [T, T + t]).

Thus,
Pm0(τH ≥ t) ≥ Em0

[
1{τH>T,ZT∈S}P(Zs+T ∈ S,∀s ∈ [0, t]|FT )

]
.

and it follows from the Markov property that

Pm0(τH ≥ t) ≥ Em0 [1{τH>T,ZT∈SPZT (τS ≥ t)].

If we assume for a moment that T is such that

Pm0(τH > T,ZT ∈ S) > 0, (41)

then,

−1

t
log(Pm0(τH ≥ t)) ≤ −

1

t
log(Pm0(τH > T,ZT ∈ S))− 1

t
log (PmS (τS ≥ t)) ,

where mS is the probability measure defined for every bounded measurable function h : R2 → R
by

mS(h) =
1

Pm0(τH > T,ZT ∈ S)
Em0 [h(ZT )1{τH>T,ZT∈S}].
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By (40) and the (strict) positivity of Pm0(τH > T,ZT ∈ S), we obtain that

lim sup
t→+∞

−1

t
log(Pm0(τH ≥ t)) ≤ 3 + 2ρ.

Thus, it remains to prove (41). It is certainly enough to show that for every (x0, y0) ∈ H, there
exists a deterministic positive T (x, y) such that

P(x0,y0)(τH > T (x0, y0), ZT (x0,y0) ∈ S) > 0.

The idea is to build some “good” controlled trajectories: let ϕ ∈ L2,loc(R+,R) and denote by
(zϕ(t))t≥0 the solution of the controlled system{

ẋ(t) = −ρx(t)− y(t)

ẏ(t) = −ρy(t) + x(t) + ϕ(t)

starting from z0 = (x0, y0) ∈ H. The classical Support Theorem (see [17]) can be applied since the
coefficients of the diffusion are Lipschitz continuous. This implies that (41) is true as soon as there
exists such a ϕ for which the solution (zϕ(t))t∈[0,T (x0,y0)] belongs to H and such that zϕ(T (x0, y0))
belongs to S. Such a controlled trajectory can be built through the following lemma.

�

Lemma 27 Let κ ∈ (0,+∞] and set Hκ = {(x, y), y < κx} and H∞ = D (= {(x, y), x > 0}).

(i) Let (x0, y0) ∈ Hκ with y0 ≥ 0. Then, for every v ∈ (−∞, y0], there exists a controlled
trajectory (xϕ(t), yϕ(t))t≥0 starting from (x0, y0) and a positive Tv such that {zϕ(t) : t ≥ 0} ⊂
Hκ ∩H∞, xϕ(Tv) > 0 and yϕ(Tv) = v.

(ii) Let (x0, y0) ∈ Hκ with y0 ≤ 0 and consider (x(t), y(t))t≥0 the solution to the free dynamical
system (i.e. the controlled trajectory with ϕ ≡ 0) starting from (x0, y0). Then, there exists T > 0
such that (x(t), y(t))t∈[0,T ] ⊂ Hκ and such that (x(T ), y(T )) = (aT , 0) with aT > 0. Furthermore,
writing (x0, y0) = (r0 cos(−θ0), r0 sin(−θ0)) (with r0 > 0 and θ0 ∈ (π−Arctan(κ), 0]), this property
holds with T = θ0 and aT = r0e

−ρθ0.

Remark 28 Note that this lemma will be also used in the proof of Proposition 35 (see Step 3).
This is the reason why its statements are a little sharper than what we need for the proof of the
previous proposition.

�

Proof

(i) Without loss of generality, we only prove the result when κ < +∞. The idea is to build ϕ such
that the derivative of the second component is large enough. More precisely, for every M > 0,{

ẋM (t) = −ρxM (t)− yM (t)

ẏM (t) = −M

is certainly an equation of a controlled trajectory (by setting ϕ(t) = −M + ρyM (t) + xM (t)).
Furthermore, denoting by z0 = (x0, y0) its starting point, we have

yM (t) = −Mt+ y0 and xM (t) =

(
x0 +

M

ρ2
+
y0

ρ

)
e−ρt +

M

ρ
t− M

ρ2
− y0

ρ
.
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First, let us choose M large enough in order that for all t ≥ 0, xM (t) > 0 and (xM (t), yM (t)) ∈ Hκ,
i.e. such that xM (t) > 0 and κxM (t)− yM (t) ≥ 0 for all t ≥ 0. A simple study of the derivative of
t→ xM (t) yields

∀t ≥ 0, xM (t) ≥ xM (t∗M ) with t∗M =
1

ρ
log
(

1 +
ρ

M
(y0 + ρx0)

)
and

xM (t∗M ) =
M

ρ2
log
(

1 +
ρ

M
(y0 + ρx0)

)
− y0

ρ

M→+∞−−−−−→ x0.

Thus, for every ε > 0, there exists Mε large enough such that x(t∗Mε
) ≥ κx0 − ε. Using that for

any M > 0 and t ≥ 0, yM (t) ≤ y0 and setting ε = κx0−y0
2 , we obtain that

∀t ≥ 0, xMε(t) > 0 and κxMε(t)− yMε(t) > 0.

Since yMε is a continuous function such that yMε(t) → −∞ as t → +∞, it follows that for every
v ∈ (−∞, y0], there exists Tv > 0 such that yMε(Tv) = v.
(ii) The result is obvious since the solution to the free dynamical system satisfies

(x(t), y(t)) = r0e
−ρt(cos(t− θ0), sin(t− θ0)), t ≥ 0.

�

We are now able to prove the lower-bound of Theorem 4.

Proposition 29 Let (Zt)t≥0 be a solution of (7) with (1+ 1√
2
)a ≤ b and let τ = inf{t > 0, Xt = 0}.

Then, for every probability measure m0 on R2 such that m0({(x, y), x > 0}) = 1,

lim sup
t→+∞

−1

t
log(Pm0(τ ≥ t)) ≤

(
3 +

a

ω

)
ω.

Remark 30 Since a
ω = ( ba −

1
4)−

1
2 ,

sup
(a,b),0<(1+ 1√

2
)a≤b

(
3 +

a

ω

)
= 3 + (

3

4
+

1√
2

)−
1
2 ≤ 4.

This corresponds to the bound given in Theorem 4. However, the reader can remark that the
above result yields some sharper bounds. In particular, when a tends to 0, 3 + a/ω tends to 3.

�

Proof

Let z0 = (x0, y0) ∈ R2 such that x0 > 0. Owing to the symmetry of the Brownian motion, one
can check that

Pz0(τ ≥ t) = P−z0(τD− ≥ t)

where z0 = (x0, y0)∗, D− = {(x, y), x < 0} and τD− = inf{t ≥ 0, Zt ∈ Dc
−}.

Second, set v = ( 1
b2

(a2 − b), 1)∗ and Pv = (v,Bv) with B = 1
ω (A + a

2I2). By Corollary 13, there

exists α > 0 such that (Z̃t)t≥0 := (
√
ωαP−1

v Z t
ω

)t≥0 is a solution of (25). Denote respectively by

(x, y) and by (x̃, ỹ), the coordinates in the canonical basis and in the basis B̃ = (v,Bv). Computing
Pv(x̃, ỹ)∗, one checks that in the new basis, the set D− corresponds to the half-plane Hκ defined
by

Hκ = {(x̃, ỹ), ỹ < κx̃} with κ =
1

ω

(
b− a

2

)
.
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Furthermore, from the very definition of (Z̃t)t≥0, we have

τ−z0D−
= τ̃−z̃0Hκ

with τ̃Hκ = inf{t ≥ 0, Z̃t ∈ Hc
κ} and z̃0 =

√
ωαP−1

v z0.

In particular, P−z0(τD− ≥ t) = P−z̃0(τ̃Hκ ≥ ωt) so that for any probability m0 on R2 such that
m0({(x, y), x > 0}) = 1,

Pm0(τD− ≥ t) = Pm̃0(τ̃Hκ ≥ ωt)

where m̃0 := m0 ◦ (z 7→ −
√
ωαP−1

v z) satisfies m̃0(Hκ) = 1. Now, when (1 + 1√
2
)a ≤ b, one checks

that κ ≥ 1 so that Hκ contains the set S = {((x̃, ỹ), x̃ > 0, ỹ < x̃} of Proposition 25 (written
in polar coordinates). Applying the second item of this proposition with ρ = a/(2ω), we finally
obtain

lim sup
t→+∞

−1

t
log(Pm0(τ ≥ t)) = ω lim sup

t→+∞
− 1

ωt
log(Pm̃0(τ̃Hκ ≥ ωt)) ≤ ω

(
3 +

a

ω

)
.

�

4 Bridges at small times and persistence rate

In this section, we study the diffusion bridge associated to our dynamical system. We then use it
to establish some lower-bounds for P(x0,y0)(τ ≥ t) (where τ := inf{t ≥ 0, Zt ∈ {(x, y), x < 0}}).

4.1 Explosion of bridges at small times

Our objective here is to prove Theorem 6 and to discuss some related results.

Since we are mainly to take advantage of the Gaussian features of the problem, we could have
worked directly with the process Z whose evolution is given by (7). Nevertheless the computations
presented in Subsection 2.1 suggest that it is more advisable to first consider the simplifications
made in Subsection 2.2. So we begin by considering the two-dimensional Ornstein-Uhlenbeck
process (Zt)t≥0 B (Xt, Yt)t≥0 whose evolution is dictated by{

dXt = (−ρXt − Yt) dt
dYt = (−ρYt +Xt) dt+

√
2dWt

(42)

where ρ ∈ R and (Wt)t≥0 is a standard real Brownian motion. Let us assume furthermore that the
initial condition of Z is a deterministic point z0 = (x0, y0)∗ ∈ R2. The arguments of Subsection
2.1 show that Z is Gaussian and more precisely we have:

Lemma 31 For any t ≥ 0, Zt is distributed as a Gaussian law of mean mt(z0) and variance Σt,
with

mt(z0) B exp(−ρt)
(
x0 cos(t)− y0 sin(t)
x0 sin(t) + y0 cos(t)

)
Σt(1, 1) B

1− e−2ρt

2ρ
− e−2ρt

2(1 + ρ2)
(sin(2t)− ρ cos(2t))− ρ

2(1 + ρ2)

Σt(1, 2) = Σt(2, 1) B
e−2ρt

2(1 + ρ2)
(cos(2t) + ρ sin(2t))− 1

2(1 + ρ2)

Σt(2, 2) B
1− e−2ρt

2ρ
+

e−2ρt

2(1 + ρ2)
(sin(2t)− ρ cos(2t)) +

ρ

2(1 + ρ2)
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Proof

Let us denote

A B

(
−ρ −1
1 −ρ

)
and C B

(
0√
2

)
From the beginning of Subsection 2.1, we get that for any t ≥ 0, on one hand

mt(z0) = exp(At)z0

= exp(−ρt)
(

cos(t) − sin(t)
sin(t) cos(t)

)(
x0

y0

)
and on the other hand, the validity of (18). We compute that for any s ≥ 0,

exp(As)CC∗ exp(A∗s) = 2 exp(−2ρs)

(
cos(s) − sin(s)
sin(s) cos(s)

)(
0 0
0 1

)(
cos(s) sin(s)
− sin(s) cos(s)

)
= 2 exp(−2ρs)

(
sin2(s) − cos(s) sin(s)

− cos(s) sin(s) cos2(s)

)
= exp(−2ρs)

(
1− cos(2s) − sin(2s)
− sin(2s) 1 + cos(2s)

)
The announced expressions for the entries of Σt follow from immediate integrations. For instance
for Σt(1, 1), we have

Σt(1, 1) =

∫ t

0
exp(−2ρs)(1− cos(2s)) ds

=
1− exp(−2ρt)

2ρ
−<

(∫ t

0
exp(2(i− ρ)s) ds

)
=

1− exp(−2ρt)

2ρ
−<

(
exp(2(i− ρ)t)− 1

2(i− ρ)

)
=

1− exp(−2ρt)

2ρ
+

1

2(1 + ρ2)
< ((ρ+ i)(exp(2(i− ρ)t)− 1))

=
1− exp(−2ρt)

2ρ
+

1

2(1 + ρ2)
(exp(−2ρt)(ρ cos(2t)− sin(2t))− ρ)

�

For t > 0, let us denote by pt(z0, z) dz the law of Zt knowing that Z0 = z0. With the notations of
the above lemma we have

∀ t > 0, ∀ z0, z ∈ R2, pt(z0, z) =
1

2π det(Σt)
exp(−(z −mt(z0))∗(2Σt)

−1(z −mt(z0)))

Using Bayes’ formula, we get that for 0 < t < T and z0, zT ∈ R2, the law of Zt conditioned by
ZT = zT (and still by Z0 = z0) admits a density proportional to z 7→ pt(z0, z)pT−t(z, zT ) where

z ∈ R2. It is a non-degenerate Gaussian law, let η
(T )
t (z0, zT ) (resp. σ

(T )
t ) be its mean vector (resp.

its covariance matrix), formula (44) below will show that the covariance matrix does not depend
on z0 and zT . We furthermore define

∀ u ∈ [0, 1], ϕz0,zT (u) B

(
0

6u(1− u)(x0 − xT )

)
where z0 B (x0, y0)∗ and zT B (xT , yT )∗. The next result contains all the required technicalities
we will need.
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Proposition 32 For all z0, zT ∈ R2 and u ∈ (0, 1), we have

lim
T→0+

Tη
(T )
uT (z0, zT ) = ϕz0,zT (u)

lim
T→0+

σ
(T )
uT (z0, zT ) = 0

Proof

To simplify notations, for u ∈ (0, 1), we denote v B 1− u, ηu B η
(T )
uT (z0, zT ) and σu B σ

(T )
uT (z0, zT ).

With the notations of Lemma 31, the vector ηu and the matrix σu are such that for any z ∈ R2,

(z − ηu)∗σ−1
u (z − ηu) =(z −muT (z0))∗Σ−1

uT (z −muT (z0)) + (zT −mvT (z))∗Σ−1
vT (zT −mvT (z))

+ C(z0, zT ),

where C(z0, zT ) is a normalizing term which is independent of z. It follows that

ηu = σu(e−ρuTSuBuz0 + e−ρvTB∗vSvzT ) (43)

σu =
(
Su + e−2ρvTB∗vSvBv

)−1
(44)

where for any w ≥ 0,

Bw B

(
cos(wT ) − sin(wT )
sin(wT ) cos(wT )

)
Sw B Σ−1

wT

=
1

Dw

(
ΣwT (2, 2) −ΣwT (1, 2)
−ΣwT (1, 2) ΣwT (1, 1)

)
Dw B det(ΣwT )

= ΣwT (1, 1)ΣwT (2, 2)− (ΣwT (1, 2))2

All these expressions depend on T > 0 and the announced convergences will be obtained by
expanding them for small T > 0. Indeed, simple computations show that for w ∈ (0, 1), as
T → 0+,(

ΣwT (1, 1) ΣwT (1, 2)
ΣwT (1, 2) ΣwT (2, 2)

)
=

(
2(wT )3

3 +O((wT )4) −(wT )2 +O((wT )3)
−(wT )2 +O((wT )3) 2wT +O((wT )2)

)

where O((wT )p), for p ∈ R, stands for a quantity bounded by A(wT )p, uniformly over ρ ∈ [−1, 1]
and for wT small enough. It follows that

Dw =
(wT )4

3
+O((wT )4)

Sw =

(
6

(wT )3
+O((wT )−2) 3

(wT )2
+O((wT )−1)

3
(wT )2

+O((wT )−1) 2
wT +O(1)

)

Using furthermore that for v ∈ (0, 1), we have e−2ρvT = 1 +O(vT ) and that

Bv =

(
1 +O((vT )2) −vT +O((vT )3)
vT +O((vT )3) 1 +O((vT )2)

)
we deduce that

e−2ρvTB∗vSvBv =

(
6

(vT )3
+O((vT )−2) − 3

(vT )2
+O((vT )−1)

− 3
(vT )2

+O((vT )−1) 2
vT +O(1)

)
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Thus from (44), we get that for u ∈ (0, 1),

σu =
1

d(u, v)

(
2(u+ v)(uv)3T 3 +O(T 4) 3(u2 − v2)(uv)2T 2 +O(T 3)

3(u2 − v2)(uv)2T 2 +O(T 3) 6(u3 + v3)uvT +O(T 2)

)
with

d(u, v) = 12(u3 + v3)(u+ v)− 9(u2 − v2)2 +O(T−1)

Recalling that v = 1− u, it appears that d(u, v) = 12 +O(T−1), so we obtain

σu =

(
2
3(uv)3T 3 +O(T 4) (u− v)(uv)2T 2 +O(T 3)

(u− v)(uv)2T 2 +O(T 3) 2(u3 + v3)uvT +O(T 2)

)
(45)

The second convergence announced in the proposition follows at once. To deduce the first one, we
begin by checking that for u ∈ (0, 1),

e−ρuTSuBu =

(
6

(uT )3
+O((uT )−2) − 3

(uT )2
+O((uT )−1)

3
(uT )2

+O((uT )−1) − 1
uT +O(1)

)

e−ρvTB∗vSv =

(
6

(vT )3
+O((vT )−2) 3

(vT )2
+O((vT )−1)

− 3
(vT )2

+O((vT )−1) − 1
vT +O(1)

)

In conjunction with (45), we get

σue
−ρuTSuBu =

(
1− 3u2 + 2u3 +O(T ) −u(1− u)2T +O(T 2)

6u(1−u)
T +O(1) 1− 4u+ 3u2 +O(T )

)
σue
−ρvTB∗vSv =

(
3u2 − 2u3 +O(T ) u2(1− u)T +O(T 2)

−6u(1−u)
T +O(1) −2u+ 3u2 +O(T )

)
In these expression, the (2, 1)-entries explode as T → 0+, it explains the renormalisation by T

considered in the above proposition for η
(T )
uT (z0, zT ) and resulting convergence.

�

Remark 33 Note that when x0 = xT (namely if z0 and zT are on the same vertical line), it is
simpler for the underlying vertical Brownian motion to put them in relation. Hence, the second

component of ϕz0,zT is equal to 0. In this case, we thus expect the second component of (η
(T )
uT ) to

be convergent when T → 0. Pushing further the previous developments yields

(σue
−ρuTSuBu)2,1 =

6u(1− u)

T
− 2ρu(1− u)(2− u) +O(T ) (46)

and

(σue
−ρvTB∗vSv)2,1 = −6u(1− u)

T
− 2ρu(1− u2) +O(T ). (47)

Combined with the computations of the end of the previous proof, we deduce that if x0 = xT , then
no renormalisation is needed for the mean vector and we get

lim
T→0+

η
(T )
uT (z0, zT ) =

(
x0

(1− 4u+ 3u2)y0 − (2u− 3u2)yT − 6ρu(1− u)x0

)
In particular even in the case when z0 = zT , the asymptotical bridge doesn’t stay still (except if
y0 = 0), since

lim
T→0+

η
(T )
uT (z0, z0) =

(
x0

(1− 6u+ 6u2)y0 − 6ρu(1− u)x0)

)
.
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Similarly to the notational conventions endorsed in the introduction, for T > 0 and z, z′ ∈ R2,

let P(T )
z,z′ be the law of the process Z evolving according to (42), conditioned by the event {Z0 =

z, ZT = z′} and consider the process ξ(T ) B (ξ
(T )
u )u∈[0,1] defined by

∀ u ∈ [0, 1], ξ(T )
u B TZTu

Under P(T )
z,z′ this process is Gaussian and Proposition 32 enables to see that for fixed z, z′ ∈ R2, as

T goes to 0+, ξ(T ) converges in probability (under P(T )
z,z′) toward the deterministic trajectory ϕz,z′ ,

with respect to the uniform norm on C([0, 1],R2)). Indeed, limT→0+ T
2σ

(T )
uT (z0, zT ) = 0 would even

have been sufficient for this behavior. Using the linear space-time transformation described in
Subsection 2.2, this result can be retranscripted under the form of Theorem 6.

Remark 34 Following Remark 33, if z = (x, y) and z′ = (x′, y′) are such that x = x′, then the

process ξ̃(T ) B (ξ̃
(T )
u )u∈[0,1], defined by

∀ u ∈ [0, 1], ξ̃(T )
u B ZTu

converges in probability (under P(T )
z,z′) toward the deterministic trajectory ϕ̃z,z′ , with respect to the

uniform norm on C([0, 1],R2)), where

∀ u ∈ [0, 1], ϕ̃z,z′(u) B

(
x

(1− 4u+ 3u2)y − (2u− 3u2)y′ − 6ρu(1− u)x

)
Using the linear space-time transformation described in Subsection 2.2, this result can also rewrit-
ten in the original setting of the Introduction.

�

4.2 A probabilistic proof of a persistence rate upper-bound

The previous developments on the diffusion bridge associated to (42) enable us to retrieve a lower-
bound of P(τ ≥ t), for τ defined in (13).

Proposition 35 (i) Let (Zt)t≥0 be a solution of (42) with ρ ≥ 0. For κ ≥ 1, let Hκ = {(x, y), y <
κx}. Then, for any positive ρ0, there exists a constant λ̃ > 0 such that for any ρ ∈ [0, ρ0] satisfying
κ ≥ 3ρ and any z0 ∈ Hκ, one can find a constant C (which depends on z0 as well as on the
parameters ρ0 and κ) such that

Pz0(τHκ ≥ t) ≥ C exp(−λ̃t), t > 0.

(ii) Let (Zt) be a solution of (7). There exists λ̃ > 0 such that if 0 < 2a ≤ b, we have for every
z0 ∈ D = {(x, y), x > 0}

Pz0(τ ≥ t) ≥ C exp(−λ̃ωt), t > 0,

where ω =
√
ab− a2/4 and C is a constant which depends on z0, a, b and c.

Remark 36 It is possible to be more precise, the same proof showing that for all ε, ε′ > 0, one
can find a corresponding λ̃(ε, ε′) > 0 such that (i) is satisfied if κ ≥ 3(1 + ε)ρ/2, κ ≥ ε′ and if λ̃ is
replaced by λ̃(ε, ε′) (the constant C has then also to depend on ε and ε′). It follows that in (ii) the
condition b ≥ 2a can be replaced by b ≥ (5/4 + ε)a with the price that λ̃ (and C) must depend on
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ε > 0. But we believe that even these results are not optimal (e.g. one could hope for the condition
b > (1/4 + ε)a in (ii)), so we won’t detail them. Proposition 35 is just an illustration of how the
bridges could be used further.

�

Proof

(i) The proof is divided into three steps. In the first one, we show that we can build a subset S
of Hκ for which any bridge associated to (42), starting and ending in S (at a time T which will be
chosen small) stays in Hκ with a high probability. Then, in the second one, we use a Markov-type
argument close to the one used in the proof of Proposition 15 to obtain the announced result when
the starting point of (Zt)t≥0 is in S. Finally, we extend the result to any initial point in Hκ.

Step 1. Lower-bound for infz,z′∈S P
(T )
z,z′(τHκ > T ) for a particular T > 0. Let z0 = (x0, y0) and

zT = (xT , yT ) belong to R2. Denote respectively by η1
uT (z0, zT ) and η2

uT (z0, zT ) the first and second

coordinate of η
(T )
uT (z0, zT ). First, owing to Proposition 32 (and to the more precise developments

stated in its proof) and to (46) and (47), one checks that

η1
uT (z0, zT ) =

(
x0 + (xT − x0)(3u2 − 2u3)

)
+ γ1(z0, zT , T ) (48)

and

η2
uT (z0, zT ) =

6u(1− u)(x0 − xT )

T
+ 2ρu(1− u) ((2− u)x0 + (1 + u)xT ) + γ2(z0, zT , T ) (49)

where γ1 and γ2 satisfy: there exists T0 > 0 and a positive constant C such that for every T ∈ (0, T0],
for any z0 and zT and for any ρ ∈ [0, ρ0] (due to the uniformity of O(T ) in (46) and (47) with
respect to ρ in a compact set of R+).

|γ1(z0, zT , T )| ≤ C(|z0|+ |zT |)T and |γ2(z0, zT , T )| ≤ C(|y0|+ |yT |+ (|z0|+ |zT |)T ).

Second, by Theorem V.5.3 of [1] (applied with α = 1 and K = T0), there exists a universal constant
C such that

∀T ≥ 0, ∀h ≥ 1, P(T )
z0,zT

(
sup

u∈[0,T ]
|ZuT − η(T )

uT (z0, zT )| > h

)
≤ Ch exp

(
− h2

2σ̄T

)
where σ̄T = supu∈[0,1] |(σ

(T )
uT )1,1| + supu∈[0,1] |(σ

(T )
uT )2,2|. By Proposition 32, for every u ∈ [0, 1],

σ
(T )
uT (z0, zT )→ 0 as T → 0. Note that this convergence is uniform in z0 and zT since the covariance

matrix does not depend of them. By (45), it appears that the convergence is also uniform in u and

a little sharper study of the dependence of σ
(T )
(uT ) in ρ yields in fact that for every ρ0 > 0,

sup
ρ∈[0,ρ0],z0,zT∈R2

σ̄T
T→0−−−→ 0.

Applying the previous inequality with h =
√
σT , we deduce that there exists T1 ∈ (0, T0] such that

for every T ∈ (0, T1], for every z0, zT ∈ R2 and every ρ ∈ [0, ρ0],

P(T )
z0,zT

(
sup

u∈[0,T ]
|ZuT − η(T )

uT (z0, zT )| ≤
√
σT

)
≥ 1

2
.

We shall now build a box S = [1, 1 + h1] × [−h2, h2] (where h1 and h2 are positive numbers) for

which there exists a positive T such that when (z0, zT ) ∈ S2, the mean η
(T )
uT (z0, zT ) stays at a
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distance greater than 1 of the boundary of Hκ. Checking that for a point (x, y) of R2, the distance
from (x, y) to the boundary ∂Hκ is equal to |κx− y|/

√
κ2 + 1, we thus need to find h1, h2 and T

in order that

inf
z0,zT∈S

inf
u∈[0,1]

κη1
uT − η2

uT >
√
κ2 + 1

√
σT

≥
√

2κ
√
σT . (50)

Note that T , h1 and h2 will depend on ρ0 but not on ρ ∈ [0, ρ0] and κ ≥ 1 satisfying κ ≥ 3ρ.
Using (48) and (49), we obtain that there exists C > 0 such that for every ρ ∈ [0, ρ0], for every
T ∈ (0, T1] and every (z0, zT ) ∈ S

η1
uT ≥ 1− C(1 + h1 + h2)T and η2

uT ≤
3

2T
h1 +

3ρ

2
+ Ch2 + C(1 + h1 + h2)T. (51)

Equation (51) shows that (50) is fulfilled as soon as

κ− 3ρ

2
− C(h1 + h2)(1 + κ)T − 3

2T
h1 − Ch2 >

√
2κ
√
σT .

Taking into account that κ ≥ 1 and κ ≥ 3ρ, the above inequality is satisfied if

1

2
> 2C(h1 + h2)T +

3

2T
h1 + Ch2 +

√
2
√
σT . (52)

relation which no longer depends on κ. We can now set for instance h1 B T 2 and h2 B T
and choose T ∈ (0, T1] small enough so that (52) is satisfied. As a consequence, the subset
S = [1, 1 + h1] × [−h2, h2] of Hκ is such that for every ρ ∈ [0, ρ0] and κ ≥ 1 verifying κ ≥ 3ρ, we
have

inf
z,z′∈S

P(T )
z,z′(τHκ > T ) ≥ 1

2
. (53)

Step 2. Lower-bound for Pz0(τHκ > t) when z0 ∈ S. We consider a time T > 0 and a subset
S = [1, 1 + h1]× [−h2, h2] of Hκ (depending only on ρ0) for which (53) holds. For every ` ≥ 1, we
have

Pz0(τHκ > `T,Z`T ∈ S) ≥
Pz0(τHκ > `T,Z`T ∈ S|τHκ > (`− 1)T,Z(`−1)T ∈ S)Pz0(τHκ > (`− 1)T,Z(`−1)T ∈ S).

By the Markov property,

Pz0(τHκ > `T,Z`T ∈ S|τHκ > (`− 1)T,Z(`−1)T ∈ S) =

∫
H(z)µz0,(`−1)T (dz)

where

∀ z ∈ S, H(z) B Pz(ZT ∈ S)

∫
S
P(T )
z,z′(τHκ > T )µz,T (dz′).

and µz0,(`−1)T is the conditional law (under Pz0) of Z(`−1)T on {τHκ > (` − 1)T,Z(`−1)T ∈ S}.
Owing to (53) and to the fact that the support of µz0,`−1)T is included in S, we get

P(τHκ > `T,Z`T ∈ S) ≥ ςP(τHκ > (`− 1)T,Z(`−1)T ∈ S) with ς :=
1

2
inf
z∈S

Pz(ZT ∈ S).

Note that for T > 0, the transition density R2 3 z′ 7→ fz,T (z′) B dPz(ZT∈dz′)
dz′ is positive and

continuous with respect to (z, z′) ∈ (R2)2. It follows that the coefficient ς is positive by compactness
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of S. Furthermore it is uniform over κ, ρ satisfying the conditions of Proposition 35 (but a priori
ς depends on ρ0, as T and S do). Then, since for all t > 0,

Pz(τHκ > t) ≥ Pz(τHκ > kTT,ZkTT ∈ S),

where kT = bt/T c+ 1, we deduce from an induction that for every z ∈ S,

Pz(τHκ > t) ≥ ςkT ≥ C exp(−λ̃t),

where λ̃ = − log(ς)/T (depending only on ρ0).

Step 3. Lower-bound for Pz(τHκ > t) when z ∈ Hκ. The idea of this step is identical to that of
the proof of Proposition 25(ii). More precisely, to extend the lower-bound obtained above to any
z0 = (x0, y0) ∈ Hκ (up to a constant C which depends to z0), it is enough to build a controlled
trajectory (zϕ(t))t≥0 such that zϕ(0) = z0, zϕ(t0) belongs to S and such that zϕ(t) ∈ Hκ for every
t ∈ [0, t0].

Owing to Lemma 27(ii), it is enough to consider the case y0 = 0. We treat successively the
cases x0 ≤ 1 and x0 ≥ 1 + h1. If x0 ≤ 1, the idea is to join a point of a path of the free dynamical
system which passes through zS = (1 + h1/2, 0). More precisely, by Lemma 27(ii), we know
that the solution (x(t), y(t))t≥0 to the free dynamical system starting from (0,−(1 + h1/2)e

ρπ
2 )

passes through zS at time π/2 and that C = {(x(t), y(t)), 0 < t < π/2} is a curve included in
(0,+∞)× (−(1 + h1/2)e

ρπ
2 , 0). It remains to join a point of C (without leaving out Hκ). This can

be done applying Lemma 27(i) with v = −(1 + h1/2)e
ρπ
2 .

Suppose now that x0 ≥ 1 + h1. The construction is slightly different in the cases ρ > 0 and ρ = 0
(by the assumptions of Proposition 35, the situation ρ < 0 is excluded). If ρ > 0, we join zS by
crossing the segment [z0, zS ] with a controlled trajectory. Set (x(t), y(t))t≥0 = (x0e

−ρt, 0)t≥0. This
trajectory can be viewed as the solution starting from z0 of{

ẋ(t) = −ρx(t)− y(t)

ẏ(t) = −ρy(t) + x(t) + ϕ(t)

with ϕ(t) = −x(t). Hence, this is a controlled trajectory which clearly crosses [z0, zS ] in a finite
time. Finally, if ρ = 0, we join a point z1 = (x1,−h2/2) using Lemma 27(i). If x1 ≤ 1, we are
reduced to the first considered case. So we can assume that x1 ≥ 1 + h1 and we join the point
z̃S = (1+h1/2,−h2/2) by crossing the segment [z1, z̃S ] with a controlled trajectory (more precisely,
(x1 − h2t/2,−h2/2)t≥0 is a controlled trajectory). This ends the proof of (i).

(ii) By Corollary 13, there exists α such that (Ẑt)t≥0 B
(√

ωαP−1
v Z t

ω

)
t≥0

is a solution of (25).

Remind that τ = inf{t > 0,<(Zt) < 0} and for a subset C of R2, set τ ẐC = inf{t > 0, Ẑt ∈ Cc}.
Similarly to the proof of Proposition 29, one checks that for every z ∈ {(u, v), u > 0},

Pz(τ > t) = Pẑ(τ ẐHκ > ωt)

where ω =
√
ab− a2/4, κ = 1

ω (b − a
2 ), Hκ = {(u, v), v < κu} and ẑ belongs to Hκ. The result

follows by applying the first part of this proposition with ρ = a/(2ω). Indeed, the assumption
κ ≥ 3ρ amounts to b ≥ 2a. For the other condition, κ ≥ 1, taking into account that ω <

√
ab, it is

sufficient that b− a/2 ≥
√
ab, namely b

a ≥
(

1+
√

3
2

)2
and note that

(
1+
√

3
2

)2
≤ 2.

�
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5 Simulations and statistical considerations

In this section, we shortly focus on some statistical problems related to the estimation of the real
parameters which govern the trajectories solutions of (1). We denote the unknown underlying
parameters (a∗, b∗, c∗) and aim at developing some statistical estimation methods of these parame-
ters. We are also interested in the average time for the process (Xt)t≥0 to return to the equilibrium
price. When c∗ is small, it can be shown that such an average time is close to T ∗/2 (see the results
of [11] and [2] for small noise asymptotics of random dynamical system) where T ∗ is the period of
the deterministic process associated to the model:

T ∗ :=
2π

ω∗
where ω∗ :=

√
a∗(b∗ − a∗

4
). (54)

With a slight abuse of language, T ∗ will be then called pseudo-period of the process.
It is natural to wonder if it is efficient to first estimate (a∗, b∗) and then, to plug these estimates

(â, b̂) in the analytical formula given above. We describe in the next paragraph how one can
use the maximum likelihood estimator to approximate (a∗, b∗). Then, a short simulation study
exhibit rather different behaviours of the estimator of the pseudo-period T̂ derived from the values
(âML, b̂ML) plugged into (54). When c is small, we compare such an estimation with a more
natural estimator derived from hitting times of the level X = 0 and show that in some cases, this
last estimation can perform better for the recovery of T ∗. In our short study, we will assume that
the process starts from its equilibrium, that is X0 = 0. This assumption slightly simplifies the
MLE derived below.

5.1 Maximum likelihood estimator for parameters a∗ and b∗

Statistical settings In this paragraph, we first detail the computation of the MLE of the real
parameters denoted (a∗, b∗) when one observes the whole trajectory of the price X between 0 and
t. This is of course an idealization and a dramatical simplification of the true statistical problem
since in practical situations, we can only handle some values of X in a discreted observation grid
(k∆)0≤k≤t/∆.

Even if the relative size of ∆ compared to the time length of observation t is of first interest
for some real statistical applications, we simplify this short study and consider only continuous
observation times. We leave this important question of the statistical balance between ∆ and t
to a future work. In such a situation, it is easy to recover the parameter c∗ by considering the
normalized quadratic variation of the trajectory (Xs)0≤s≤t.

c∗ =
〈X〉t
t

Hence, in the sequel, we only consider the problem of the estimation of a∗ and b∗ and we assume
the knowledge of c∗ (we fix it to 1 for sake of convenience).

Change of measure formula In order to estimate (a∗, b∗), we can only handle the process
X since Y depends on the unobserved parameter b∗ through the relation

∀ t ≥ 0, Yt = b∗
∫ t

0
exp(b∗(s− t))dXs − b∗Xt.

For any choice of (a, b) ∈ R2
+, we consider the two processes defined by

∀ t ≥ 0, Y b
t = b

∫ t

0
exp(b(s− t))dXs − bXt, (55)
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and
Ha,b
t = (b− a)Xt + Y b

t .

In Equation (55), Y b depends on the increments dXs. A simple integration by part yields the
equivalent expression:

∀ s ≥ 0, Y b
s = e−bt

(
−b2

∫ t

0
ebsXsds

)
.

The fact that Y = Y b∗ follows from the definition of the process Y . Thus, (Xt)t≥0 satisfies

dXt = Ha∗,b∗

t dt+ dBt.

Now, we can apply the Girsanov formula: if we denote by Pa∗,b∗ the law of the process, we then
obtain the change of measure formula:

dPa∗,b∗
dQ0

(X) = exp

(∫ t

0
Ha∗,b∗
s (Xs)dXs −

1

2

∫ t

0
Ha∗,b∗
s (Xs)

2ds

)
.

Maximum likelihood Given any trajectory X, we can then define Lt, the log-likelihood of
the parameters (a, b) as follows:

Lt(a, b) =

∫ t

0
Ha,b
s (Xs)dXs −

1

2

∫ t

0
Ha,b
s (Xs)

2ds.

The expression above can be modified using an integration by part. We then obtain the ”robust”
formulation:

Lt(a, b) =
b− a

2

[
X2
t − t

]
+XtY

b
t

+

∫ t

0
b2X2

s + bXsY
b
s −

1

2

[
(b− a)Xs + Y b

s

]2
ds. (56)

The maximum likelihood estimator is then formally defined by

(âML
t , b̂ML

t ) := arg max
(a,b)∈R2

+

Lt(a, b).

For any b ≥ 0, a 7−→ Lt(a, b) is a concave function and thus the optimal value of a given any b is

ab = b+

∫ t
0 XsY

b
s ds+

t−X2
t

2∫ t
0 X

2
sds

.

Hence, b̂ML
t is obtained by maximizing b 7−→ Lt(ab, b). Unfortunately, we did not find any explicit

formula regarding the relation b 7−→ Y b. Hence, to estimate b∗, we use an exhaustive numerical
search of the optimal value of b and we obtain b̂ML

t .

5.2 Estimation of the mean pseudo-period T ∗ with hitting times
strategy

It may be possible to estimate T ∗ using the maximum likelihood estimators (âML
t , b̂ML

t ) defined
above with and plug them in the relation (54) (which is supposed to be true only for T ∗ with a
vanishing noise level)

T̂ML
t :=

2π√
âML
t

(
b̂ML
t − âML

t /4
) .
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Of course, the ability of this estimator to well approximate T ∗ highly depends on the asymptotic
behaviour of (âML

t , b̂ML
t ). We will discuss on several statistical questions related to this study in

the next section.
We can also compare T̂ML

t with a more nature way to estimate the mean return time all along
the trajectories by considering the sequence of crossing times of level 0 of (Xs)0≤s≤t. In this view,
let us consider ε > 0, and define a skeleton chain associated to the trajectory (Xs)0≤s≤t. The
sequences (τk)k≥0 and (rk)k≥0 are initialized with:

τ0 := 0 and r0 := inf {s ≥ τ0||Xs| ≥ ε}

and recursively built as follows:

∀k ≥ 0 τk+1 := inf {s ≥ rk|Xs = 0} and rk+1 := inf {s ≥ τk||Xs| ≥ ε} .

When c∗ is small, we can now define a quite natural estimator of the mean pseudo-period using
this construction. If we set Nt := sup {k ≥ 0|τk ≤ t}, we set

T̂ εt := 2

∑Nt
k=1(τk+1 − τk)

Nt
= 2

τNt − τ0

Nt
.

5.3 Statistical performances and open problems

To establish the numerical performances of T̂ εt and T̂ML
t , we use the following statistical setting:

several trajectories defined on [0, T ] are observed on some discrete times (tk)0≤k≤K . The obser-
vation time are equally sampled with a constant step size ∆ such that tk − tk−1 = ∆. We are
interested in the behaviour of our two estimators in the two distinct asymptotic settings:

• High resolution sampling scheme ∆ −→ 0

• Long time observation T −→ +∞.

For our purpose, the threshold is defined empirically after several runs of the estimator. It
should be carefully chosen since ε is the parameter which enables to distinguish real crossings of
X = 0 from the natural volatility of the model carried out by the brownian noise. Thus, the
calibration of ε should be related to the noise level contained in c∗. In our simulation, we have
chosen ε = c∗

√
∆. We use for each estimator N = 103 Monte-Carlo simulations to obtain the

repartition of T̂ εt and T̂ML
t around T ∗.

Moreover, we use a discretized version of the stochastic differential equation with several step
size. We show in Figure 6 the performances of T̂ML

t for several size of discretization step ∆ as well
as the performances of T̂ εt in Figure 7.

One may instantaneously remark that the step size ∆ has an important influence on the ability
of T̂ML

t to recover T ∗ although this parameter does not seem so important for the estimator T̂ εt .
Simulations show that the smaller ∆, the smaller the bias of T̂ML

t . Moreover, the variance of the
estimator is mainly determined by the length of simulation (time t). Hence, for a fixed step size
of simulation, Figures 6 and 7 demonstrate that it seems better to use T̂ εt to infer T ∗. When one
may let ∆ 7−→ 0, the maximum likelihood estimator T̂ML

t seems more convenient.
We shortly describe several problems of interest which concern the estimation of T ∗. First, the

influence of ∆ as well as the influence of t needs to be understood for the estimation of T ∗ using
the MLE. This question may be faced with a careful understanding of the natural score function
defined by the log-likelihood Lt. Our simulations tend to show that a special asymptotic behaviour
of (∆, t) −→ (0,+∞) should be considered to obtain optimal estimations.

Second, the size of the threshold ε in the definition of T̂ εt has not been theoretically investigated,
although it has a great influence on the ability of T̂ εt to nicely recover T ∗. Hence, there should
also exist a precise asymptotic regime of (ε, t) −→ (0,+∞) which may permit to obtain statistical
reconstruction properties. Such a last result should be derived from a careful inspection of the
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Figure 6: Estimation of T ∗ using T̂ML
t with respect to the observation time t for a = 1, b = 6, c = 1. (top left:

∆ = 10−2, c = 1, top right: ∆ = 5.10−3, bottom left: ∆ = 10−3, bottom right: ∆ = 5.10−4).

local times spent by (Xt)t≥0 around the level 0 (to fix ε) as well as the concentration rate of the
hitting times which may be obtained using Theorem 4.

At last, the link between T ∗ and the expected time needed for (Xt)t≥0 to return to its equilib-
rium price is still mysterious. We only identify this link in the small noise asymptotics and even
though such a relation seems to be true in more general situations for T ∗, a theoretical proof is
missing.

These three questions are far beyond the scope of this study, and we let them open for future
works.

6 Conclusion

In this paper a model of speculative bubble evolution was proposed. The dynamics has to be at
least of second order, to have a chance to display a weak periodic behavior typical of this kind of
phenomena. This second order is induced by the way the process under consideration weights its
past evolution to infer its future behavior (increase/decrease in the close past favoring an immediate
tendency to follow the same trend). Dynamics of all orders (including non-integer ones) could be
obtained in the same fashion, by modifying the weights. At the “microscopic level”, the latter are
related to the distribution of the backward time windows used by a multitude of agents in order
to speculate on the future evolution.

But we restricted ourselves to second order dynamics: it is the simplest one and in some sense
it mimics Newtonian mecanics, which are also of second order, the forces impacting directly on the
acceleration. A main difference is the noise entering our modeling, which is required to maintain
some stability of the system under study. Nevertheless and informally, this analogy with the physics
law of motion enables to unmask some misleading arguments used by the real estate agencies and
the mass media: they mainly explain the evolution of prices by making an inventory of the forces
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Figure 7: Estimation of T ∗ using T̂ εt with respect to the observation time t for a = 1, b = 6, c = 1. (top left:
∆ = 10−2, c = 1, top right: ∆ = 5.10−3, bottom left: ∆ = 10−3, bottom right: ∆ = 5.10−4).

in the housing market, such as loan interest rates, the growth of population, etc. (all these factors,
as well as opposite leverages, are summed up in our parameter a), forgetting the order of the
evolution equation (induced by the parameter b). Transposed in the astronomy field, it would
amount to make the observation that the main interaction between the Sun and the Earth goes
through gravitation, so that we should conclude that our planet would soon end up in the Sun.
Luckily, we are essentially saved by the second order of the kinetics law which enables the Earth
to turn around the Sun!

We have also assumed that the repelling force to the equilibrium level X = 0 is linear and
traduced in (1) by the dritf term −aXt at any time t. This drift term mimics an economic
repelling force which may be non-linear. Nevertheless, our linearization may be considered as a
first order valid approximation at least near the equilibrium state X = 0.

From the mathematical point of view, our main interest was in the return time to the equilibrium
“price” and we have shown that it is more concentrated than the relaxation to the equilibrium
distribution of the prices. This feature explains the bubble/almost periodic aspect of the typical
trajectories. We have obtained some lower and upper bounds of this concentration rate in Theorem
4. Even if there is still a gap of order around ten between our lower and upper bounds, numerous
simulations (not shown in this paper) using the Fleming-Viot’s type algorithm described in [7] lead

to the conjecture that λ0(D) = log(2)
π ω.

One failing of our framework is that the parameters a, b and c were assumed to be time-
independent, hypothesis which is certainly wrong in practice. Our model should apply only to a
few periods and a finer modeling would take into account the time-inhomogeneity of a, b and c.
Such an extension remains Gaussian, but its investigation is out of the scope of this paper.

Nevertheless and heuristically, let us just consider the example of the home price index relative
to disposable income per household in France from 1995 to 2013 shown in Figure 8. Consider for
X the logarithm of the quantity displayed in this picture, since it is a ratio and not a difference as
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Figure 8: Friggit’s curve [12] of the index of asset price relatively to the disposable income in France.

wanted in the introduction. If we assume that the modeling of speculation presented in Section 1.1
can be applied to this case, it seems that the coefficients a, b and c valid for the epoch 1965-1998
are not the same as those for 1998-2013. For simplicity, let us make the hypothesis that c did not
change (the resolution is too coarse to check that) and call a1, b1 and a2, b2 the respective values
of a and b. That a2 < a1 can be explained by the fact that the conditions were more favorable for
buying in the second epoch, especially due to low interest rates. Furthermore one can argue that
the advent of Internet has probably modified the extend to which the agents have access to the past
evolution of the prices, both in short and long terms. So its effect on b is not a priori clear (recall
that 1/b should be proportional to the mean length of the backward time window). To get a rough
idea, we can proceed as follows. Let t0 B 1965, t1 B 1999 and t2 B 2008. Figure 8 suggests that
between t0 and t1 there were 3 periods under the coefficients a1, b1 and c and that between t1 and
t2 there was one quarter of a period under the coefficients a2, b2 and c (except if the equilibrium
price has itself changed and that the evolution between 2006 and 2012 is interpreted as one period
and half of a new epoch). It follows that 1/ω1 and 1/ω2 should respectively be proportional to
(t1 − t0)/3 and 4(t2 − t1). Since we do not plan to be very precise, let us make the assumption
that a1 � b1 and that a2 � b2, so that ω1 ≈

√
a1b1, ω2 ≈

√
a2b2 and

a1b1 ≈ χa2b2

where

χ B

(
12(t2 − t1)

t1 − t0

)2

To deduce another equation, let us believe that an ergodic theorem takes place very rapidly (per-
mitted by the non reversibility of the process). Thus according to Remark 9, we would get

1

t1 − t0

∫ t1

t0

X2
s ds ≈ c2 b1 + a1

2a2
1

≈ c2 b1
2a2

1

1

t2 − t1

∫ t2

t1

X2
s ds ≈ c2 b2 + a2

2a2
2

≈ c2 b2
2a2

2

(more carefully, an empirical variance should be computed), and it follows that

b1
a2

1

≈ χ̃
b2
a2

2
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where

χ̃ B
(t2 − t1)

∫ t1
t0
X2
s ds

(t1 − t0)
∫ t2
t1
X2
s ds

can be computed numerically on Figure 8. We deduce that

a1 ≈ χ5/3χ̃1/3a2

b1 ≈ χ2/3χ̃1/3b2

Numerically, we obtain that χ2/3χ̃1/3 ≈ 3.73 > 1, so it would seem that the advent of Internet has
led people to rather use more recent trend of the housing market to make their speculation.

At last, using the lower bound obtained in Theorem 4, we may postulate that the probability
that the index price X hits the equilibrium level 1 (see Figure 8) before year 2017 (which corre-
sponds to an average annual loss of around 13%) is at least 50%. We can thus wonder if the famous
kiss landing generally announced by estate agents may not more probably end in a crash . . .

A On the persistence rate

Our goal here is to prove the existence of the quasi-stationary distribution and its persistence rate,
as alluded to in Remark 5. It is based on general considerations relegated in this appendix because
they do not lead to explicit estimates such as (15), which are more important from a practical
point of view than the mere existence of λ0(D). Furthermore, these a priori bounds will be useful
in the development to follow.

Recall that D B {(x, y) ∈ R2 : x > 0} and let ∂D be its boundary. We are interested in LD,
the realization on D of the differential operator L given by (9) with Dirichlet boundary condition
on ∂D. From a probabilist point of view, it is constructed in the following way. For any z ∈ R2,
let (Zzt )t≥0 be a diffusion process whose evolution is dictated by L and whose initial condition is
Zz0 = z. Starting from z, (Zzt )t≥0 can be obtained by solving the stochastic differential equation
(7) with coefficients given by (8). Let τ be the stopping time defined by (13), namely

τ B inf{t ≥ 0 : Zzt ∈ ∂D}

For any t ≥ 0, any z ∈ D and any measurable and bounded function f defined on D, consider

PDt [f ](z) B E[f(Zzt )1t<τ ] (57)

Recall that µ is the invariant Gaussian probability measure of L and denote by µD its restriction
to D. Then PDt can be extended into a contraction operator on L2(µD). Indeed, let Pt be the full
operator associated to L: any z ∈ D and any measurable and bounded function f defined on R2,
we have

Pt[f ](z) B E[f(Zzt )] (58)

Since µ is invariant for Pt, for any measurable and bounded function f defined on D (which can
also be seen as a function on R2 by assuming that it vanishes outside D), we get by Cauchy-Schwarz
inequality,

µD[(PDt [f ])2] ≤ µD[PDt [f2]]

≤ µD[Pt[f
2]]

≤ µ[Pt[f
2]]

= µ[f2]

= µD[f2]
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This bound enables to extend PDt as a contraction on L2(µD). The Markov property implies that
(PDt )t≥0 is a semi-group, which is easily seen to be continuous in L2(µD). The operator LD is then
defined as the generator of this semi-group (in the Hille-Yoshida sense): its domain D(LDT ) is the
dense subspace of L2(µD) consisting of functions f such that (PDt [f) − f)/t converges in L2(µD)
as t goes to 0+ and the limit is LD[f ] by definition.

The spectrum of −LD admits a smallest element (in modulus) λ0(D). It is a positive real
number and the main objective of this appendix is to justify the assertions made in Remark 5. We
begin by being more precise about the existence of λ0(D):

Proposition 37 There exists a number λ0(D) > 0 and two functions ϕ,ϕ∗ ∈ D(LD)∩
⋂
r≥1 Lr(µD)\

{0}, which are positive on D, such that

LD[ϕ] = −λ0(D)ϕ

LD∗[ϕ∗] = −λ0(D)ϕ∗

where LD∗ is operator adjoint of LD in L2(µD).

Essentially, this result is a consequence of the Krein-Rutman theorem (which is an infinite version
of the Perron-Frobenius theorem, see for instance the paper [8] of Du) and the fact that the eigen-
functions belong to Lp(µD) instead of L2(µD) comes from the hyperboundedness of the underlying
Dirichlet semi-group.

The rigorous proof relies on a simple technical lemma about the kernels of the operators PDt for
t > 0. To check their existence, we first come back to Pt for a given t > 0: from the computations
of Section 2, this operator is indeed given by a kernel

∀ z ∈ R2, ∀ f ∈ L2(µ), Pt[f ](z) =

∫
pt(z, z

′)f(z′)µ(dz′)

where

∀ z, z′ ∈ R2, pt(z, z
′) B

√
det(Σ)

det(Σt)
exp

(
−(z′ − zt)∗Σt(z

′ − zt) + (z′)∗Σz′
)

(59)

with

zt B exp(At)z

It follows easily from (57) and (58) that the same is true for PDt : there exists a function D2 3
(z, z′) 7→ pDt (z, z′) ≥ 0 such that

∀ z ∈ D, ∀ f ∈ L2(µD), PDt [f ](z) =

∫
pDt (z, z′)f(z′)µ(dz′)

and satisfying

∀ z, z′ ∈ D, pDt (z, z′) ≤ pt(z, z
′) (60)

More refined arguments based on the hypoellipticity of LD enable to see that the mapping pDt is
continuous and positive on D2. We can now state a simple but crucial observation:

Lemma 38 For any r > 1, there exists a time Tr > 0 such that

∀ t ≥ Tr,
∫

(pDt (z, z′))r µD(dz)µD(dz′) < +∞
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Proof

From (60), it is sufficient to prove that∫
(pt(z, z

′))r µ(dz)µ(dz′) < +∞

and this can be obtained without difficulty from (59) and from the explicit computations of exp(tA)
of Σt and of Σ presented in Section 2.

�

We can now come to the

Proof of Proposition 37

We begin by applying Lemma 38 with r = 2 to find some T2 > 0 such that for t ≥ T2 we have∫
(pDt (z, z′))2 µD(dz)µD(dz′) < +∞

which implies that PDt is of Hilbert-Schmidt class and thus a compact operator. Note furthermore
that the spectral radius of PDt is positive for all t ≥ 0. Indeed, this feature can be deduced from the
second bound of Theorem 4, which implies that for all z ∈ D, PDt [1D](z) = Pz[τ > t] > 0. Thus
we are in position to apply Krein-Rutman theorem (see Theorems 1.1 and 1.2 of Du [8], where
the abstract Banach X space should be L2(µD) and the cone K should consist of the nonnegative
elements of L2(µD)): if θt > 0 is the spectrum radius of PDt , then there exists a positive function
ϕt ∈ L2(µD) \ {0} such that Pt[ϕt] = θtϕt. This property characterizes θt and ϕt (up to a constant
factor): if θ is a positive real and if ϕ ∈ L2(µD) is a positive function such that Pt[ϕ] = θϕ then is
θ = θt and ϕ is proportional to ϕt. This suggests to consider the renormalization µD[ϕ2

t ] = 1, so
that ϕt is uniquely determined (being positive). From the previous property, we deduce that for
all t ≥ T2 and all n ∈ N, ϕnt = ϕt and θnt = θnt . Indeed, it is sufficient to note that

PDnt [ϕt] = (PDt )n[ϕt]

= θnt ϕt

We deduce that for any r ∈ Q ∩ [1,+∞), ϕT2r = ϕT2 and θT2r = θrT2 : write r = p/q with
p, q ∈ N and note that ϕT2 = ϕpT2 = ϕqrT2 = ϕrT2 and similarly θpT2 = θqrT2 = θpT2 . Let us define

ϕ B PDT2ϕT2 = θT2ϕT2 . Since T2 > 0 and PDT2(L2(µD)) is included in the domain of LD, we have

ϕ ∈ D(LD). Furthermore from the general Hille-Yoshida theory we have in L2(µD),

lim
t→0+

PDT2+t[ϕT2 ]− PDT2 [ϕT2 ]

t
= LD[PT2 [ϕT2 ]]

Thus considering t of the form qT2 with q ∈ Q+ going to zero, we deduce that

LD[ϕ] = lim
q∈Q, q→0+

θq+1
T2
− θT2
T2q

ϕT2

= θT2
ln(θT2)

T2
ϕT2

=
ln(θT2)

T2
ϕ

It remains to set λ0(D) = − ln(θT2)/T2. Since θT2 is the spectral norm of the contraction operator
PT2 , it appears that λ0(D) ≥ 0. The first bound of Theorem 4 enables to check that λ0(D) > 0:
from Cauchy-Schwarz inequality, we get that for all f ∈ L2(µD) and all z ∈ D,

(PDT2 [f ])2(z) ≤ PDT2 [f2](z)PDT2 [1D](z)

≤ PDT2 [f2](z) sup
z′∈D

PDT2 [1D](z′)
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it follows that

µD[(PDT2 [f ])2] ≤ sup
z∈D

PDT2 [1D](z)µD[PDT2 [f2]]

≤ sup
z∈D

PDT2 [1D](z)µD[f2]

So the norm operator of PDT2 satisfies

θT2 =
∥∥PDT2∥∥L2(µD)→L2(µD)

≤ sup
z∈D

PDT2 [1D](z) = sup
z∈D

Pz[τ > T2] (61)

which itself is strictly less than 1 for T2 large enough. Up to the choice of such a T2 in the above
arguments, we conclude that λ0(D) > 0.

Let us now check that ϕ ∈
⋂
r≥1 Lr(µD), since a priori we only know that ϕ ∈ L2(µD) =⋂

r∈[1,2] Lr(µD). This is due to the hyperboundedness of (PDt )t≥0. Let r > 2 be given and a

corresponding Tr > 0 such that the conclusion of Lemma 38 is satisfied. Let f ∈ L2(µD) be given.
Cauchy-Schwarz and Hölder inequalities imply that for all z ∈ D and all t ≥ Tr,

(PDt [f ](z))r =

(∫
f(z′)pDt (z, z′)µD(dz′)

)r
≤

(∫
f2(z′)µD(dz′)

) r
2
(∫

(pDt (z, z′))2 µD(dz′)

) r
2

≤
(∫

f2(z′)µD(dz′)

) r
2
(∫

(pDt (z, z′))r µD(dz′)

)
Integrating this bound with respect to µD(dz), it follows that(∫

(PDt [f ])r dµD
) 1
r

≤
(∫

(pDt (z, z′))r µD(dz)µD(dz′)

) 1
r
(∫

f2(z′)µDdz′)

) 1
2

namely PDt send continuously L2(µD) into Lr(µD). If furthermore t is of the form T2q with
q ∈ Q ∩ [1,+∞), we get from ϕT2q = PDT2q[ϕT2q]/θT2q that ϕ = ϕT2q belongs to Lr(µD).

The same arguments are also valid for the adjoint semigroup (PD∗t )t≥0. Its elements for t > 0
admit the kernels pD∗t where

∀ t > 0, ∀ z, z′ ∈ D, pD∗t (z, z′) B
µD(z′)pDt (z′, z)

µD(z)
=

µ(z′)pDt (z′, z)

µ(z)

We end up with the same quantity λ0(D), since for any t > 0 the operators PDt and PD
∗

t have the
same spectral radius.

�

Let νD be the probability measure on D which admits ϕ∗/µD[ϕ∗] as density with respect to
µD. Next result shows the validity of (14):

Proposition 39 The probability measure νD is a quasi-stationary distribution for LD and under
PνD , τ is distributed as an exponential law of parameter λ0(D).

Proof

Let a test function f ∈ D(LD) be given. We compute that for all t ≥ 0,

∂tν
D[PDt [f ]] = νD[LDPDt [f ]]

= µD[ϕ∗LDPDt [f ]]/µD[ϕ∗]

= µD[LD∗[ϕ∗]PDt [f ]]/µD[ϕ∗]

= −λ0(D)µD[[ϕ∗]PDt [f ]]/µD[ϕ∗]

= −λ0(D)νD[PDt [f ]]
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By integration it follows that

νD[PDt [f ]] = exp(−λ0(D)t)νD[f ]

at least for f ∈ D(LD), but by usual approximation procedures, this can be extended to any f
which is measurable and bounded (or nonnegative). This means that νD is a quasi-stationary
distribution for LD with rate λ0(D). In particular with f = 1D, we get

PνD [τ > t] = νD[PDt [1D]]

= exp(−λ0(D)t)νD[1D]

= exp(−λ0(D)t)

which amounts to τ being distributed as an exponential law of parameter λ0(D) under PνD .
�

The bounds (15) are now easy to deduce. Indeed recalling the definition of λ0(D) in terms of
θT2 given in the proof of Proposition 37 (and the fact that T2 can be chosen arbitrary large), we
get from the first bound of Theorem 4 that λ0(D) ≥ ln(2)ω/π.

The second bound of Theorem 4 applied with m0 = νD gives that λ0(D) ≤ 4.

Remark 40 Is νD the unique quasi-stationary probability measure associated to LD? A priori
one has to be careful since this is wrong for the usual one-dimensional Ornstein-Uhlenbeck process
with respect to a half-line. Nevertheless we believe there is uniqueness in our situation, because
it is easy for the underlying process to get out of D uniformly over the starting point (as shown
by the first bound of Theorem 4) and this should be a sufficient condition (in the spirit of Section
7.7 of the book [6] of Collet, Mart́ınez and San Mart́ın, which unfortunately only treat the case
of one-dimensional diffusions). At least from the uniqueness statement included in Krein-Rutman
theorem (cf. again Theorem 1.2 of Du [8]), we deduce that νD is the unique quasi-stationary measure
admitting a density with respect to µD which is in L2(µD). By hyperboundedness of (PDt )t≥0, the
latter condition can be relaxed by only requiring that the density belongs to

⋂
p>1 Lp(µD).

�

B Computations in polar coordinates

For the sake of completeness, we give below a series of elementary but tedious computations which
are omitted in Section 3. We start with the proof of (32) and (37)

Proposition 41 In the usual polar coordinates (r, θ), the infinitesimal generator Lρ of the elliptic
diffusion whose evolution is described by (31) is given by

∀g ∈ C2(R∗+ × R), Lρg(r, θ) = −ρr∂rg(r, θ) + ∂θg(r, θ) + ∂2
rg(r, θ) +

1

r
∂rg(r, θ) +

∂2
θ

r2
g(r, θ).

In a similar way, the action infinitesimal generator Lρ of the hypo-elliptic diffusion described by
(25) is given by

Lρ = −ρr∂r + ∂θ +
sin2 θ

2
∂2
rr −

sin θ cos θ

r2
∂θ +

sin θ cos θ

r
∂2
rθ +

cos2 θ

2r
∂r +

cos2 θ

2r2
∂2
θ .

Proof
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First, write g(r, θ) = f(r cos θ, r sin θ). Using that

∂xf = cos θ∂rg −
sin θ

r
∂θg, ∂yf = sin θ∂rg +

cos θ

r
∂θg,

one checks that,
−(ρx+ y)∂xf + (x− ρy)∂yf = −ρr∂rg + ∂θg.

Second,

∂2
xf = cos2 θ∂2

rg + 2
sin θ cos θ

r2
∂θg − 2

sin θ cos θ

r
∂2
rθg +

sin2 θ

r
∂rg +

sin2 θ

r2
∂2
θg,

∂2
yf = sin2 θ∂2

rg − 2
sin θ cos θ

r2
∂θg + 2

sin θ cos θ

r
∂2
rθg +

cos2 θ

r
∂rg +

cos2 θ

r2
∂2
θg.

The expressions (32) and (37) follow.
�

Proofs of Proposition 20 and Proposition 24 In Subsections 3.2.2 and 3.2.3, we need to
compute

Lρg
g and

Lρg
g where g has the following form

g(r, θ) = rnγ(θ)eβ(θ)r2 .

Note that in Subsection 3.2.2, n = 1 and γ(θ) = cos θ. Then,
Lρg
g and

Lρg
g are expressed in terms

of some functions denoted by ψ1, ψ2, ϕi, i = 1, 2, 3. The computation of these functions follows
from those of the derivatives of g given below:

∂rg

g
(r, θ) =

(n
r

+ 2β(θ)r
)
,

∂2
rg

g
(r, θ) =

n2 − n
r2

+ 4r2β2(θ) + (4n+ 2)β(θ),

∂θg

g
(r, θ) = β′(θ)r2 +

γ′(θ)

γ(θ)
,

∂2
rθg

rg
(r, θ) = 2β(θ)β′(θ)r2 +

(
(2 + n)β′(θ) + 2

γ′(θ)

γ(θ)
β(θ)

)
+ n

γ′(θ)

r2γ(θ)

1

r2

∂2
θg

g
(r, θ) = β′(θ)2r2 +

(
β′′(θ) + 2β′(θ)

γ′(θ)

γ(θ)

)
+

1

r2

γ′′(θ)

γ(θ)
.

We can now use carefully the expressions of the elliptic (resp. hypo-elliptic) generator Lρ (resp.
Lρ) given by (32) (resp. (37)).

�
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