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Abstract

This paper exploits the formalization of a circular product differentiation
model of Salop (1979) to propose an endogenous growth quality ladder model
in which the knowledge inherent in a given sector can spread variously across
the sectors of the economy, ranging from local to global influence. Accord-
ingly, this affects the size of the pool of knowledge in which innovations draw
themselves on in order to be produced. Therefore, the law of knowledge ac-
cumulation, and thus the growth rate of the economy, depend positively on
the expected scope of diffusion of innovations, i.e. on the intensity of knowl-
edge spillovers. This approach generalizes the endogenous growth theory as
developed in the seminal models of Grossman & Helpman (1991) and Aghion
& Howitt (1992), extending their analysis to the possibility of considering
stochastic and partial knowledge spillovers.

This framework allows us to mitigate the positive externality of knowl-
edge and thus to apprehend the issue of the funding of research with more
parsimony. We characterize the set of steady-state Schumpeterian equilibria
as a function of the public tools. We provide an explanation for the fact that
research effort can either be suboptimal or over-optimal, depending on the
expected scope of knowledge. Accordingly, we find that the optimal public
tool dedicated to foster R&D activity depends positively on it.
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1 Introduction

The innovation-based growth theory initialized by the seminal works of Romer
(1990), Grossman & Helpman (1991), and Aghion & Howitt (1992), considers tech-
nological progress to be at the source of growth process. How should economists
think about technological progress is still an ongoing question. The prevalent ap-
proach has been to view it as an incremental process that improves the efficiency
of inputs deployment. Moreover, it is generally agreed that the source of techno-
logical progress is the accumulation of knowledge which consists in a succession
of innovations which diffuse among the various R&D activities in the economy.
The diffusion of innovations enables the creation of new knowledge, establishing
a virtuous circle. All innovations, though, do not have the same scope. In any
given economic era there are major technological innovations, such as electricity,
the transistor, or Internet, that have a far-reaching impact, spreading their influ-
ence globally in the economy. One often refers to them as radical innovations. On
the contrary, other innovations can be very particular to a given sector of activity
or diffuse quite locally1. The scope of innovations hence appears to be a keystone
in the complex mechanism of knowledge accumulation and hence in the growth
process.

This work presents a Schumpeterian endogenous growth quality ladder model in
which R&D activities produce innovations that can appear to have miscellaneous
scopes of influence on the output of the other R&D activities. The diffusion of
the knowledge inherent in a given intermediate sector is uncertain in the sense
that it can spill variously across the sectors of the economy, ranging from punctual
to global influence. Accordingly, this affects the size of the pool of knowledge in
which innovations draw themselves on in order to be produced, and therefore the
law of motion of knowledge accumulation which depends on the expected scope of
diffusion of innovations.

We exploit the formalization of a circular product differentiation model of Sa-
lop (1979) in order to generalize the Schumpeterian approach as developed in the
seminal models of Grossman & Helpman (1991) and Aghion & Howitt (1992).
We extend their analysis to the possibility of stochastic and partial intersectoral
knowledge spillovers. As anticipated, the growth rate of the economy depends pos-
itively on the expected scope of innovations, that is on the intensity of knowledge
spillovers.

Allowing for knowledge to diffuse across the economy’s R&D activities with
various extents enables us to obtain variegated endogenous growth growth models.
In particular, considering a framework in which there are no intersectoral knowl-
edge spillovers at all (i.e. considering “inside sector knowledge” only), one gets
a model close in spirit to the one developed by Grossman & Helpman (1991). In
the polar case in which intersectoral knowledge spillovers are total, one obtains a
model à la Aghion & Howitt (1992). This framework highlights the complexity of
the externality entailed by knowledge spillovers. Indeed, allowing to mitigate the
scope of knowledge enables us to apprehend the issue of the funding of research
with more parsimony. It has been pointed out, in the traditional literature, that,
in endogenous growth models, R&D effort can be suboptimal or over-optimal de-

1Mokyr (1990) refers respectively to “macro” and “micro” innovations.
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pending on the values of the models parameters. As stated by Benassy (1998), this
is in particular true for Schumpeterian models2.

We show that, depending on the expected scope of diffusion of innovations
among R&D activities, the equilibrium growth rate of the economy can either be
higher or lower than the Pareto optimal one. In particular, the wider the scope
of knowledge, the more likely the R&D effort will be below its optimal level and,
therefore, the more likely the economy’s growth rate will be suboptimal. This
finding is corroborated by the fact that when implementing the first-best, the opti-
mal tool used to correct the externality triggered by knowledge spillovers depends
positively on the expected scope of diffusion of knowledge and can either be a sub-
sidy or a tax, depending on the extent to which innovations spread their influence
among R&D activities. Moreover, we determine the threshold scope of diffusion
above which the growth rate of the economy is suboptimal and below which it is
over-optimal.

The paper is organized as follows. In section 2, we present the model; we
especially describe the formalization of knowledge accumulation and the way it
diffuses among R&D activities. Furthermore, we characterize the optimum. Section
3 focuses on the decentralized economy with creative destruction. We characterize
the set of equilibria as a function of the public tools; that is, at each vector of public
tools is associated a particular equilibrium. In section 4, we study the distortions
that prevent the decentralized economy from being Pareto optimal. This underlines
the need for public intervention to sustain appropriate R&D activity as well as the
complexity of the task. Finally, we compute the public tools implementing the
first-best optimum. In Section 5, we present the two polar cases of endogenous
growth models considering respectively no intersectoral knowledge spillovers at all,
and total knowledge spillovers. Section 6 deals with the issue of scale-effects. We
conclude in Section 7.

2 Model and Welfare

In this section, we present the model. We describe R&D activity, paying particu-
lar attention to the process of knowledge creation. We specify the way knowledge
spreads among the R&D activities and how the corresponding scope of innova-
tions influences the economy’s R&D output. Then, we characterize the first-best
optimum.

2.1 R&D Activities, Innovations’ Scope of Influence and
Knowledge Spillovers

As in the standard Schumpeterian endogenous growth theory3, there is a continuum
Ω of sectors producing intermediate goods. Let N be the measure of this set.
Whereas this theory generally considers that these intermediate sectors are lo cated

2Benassy (1998) shows that it is also the case for endogenous growth models with expanding
product variety such as the one developed by Romer (1990).

3See for instance Grossman & Helpman (1991), Aghion & Howitt (1992), Aghion & Howitt
(1998), chapters 2 and 3 or Aghion & Howitt (2009), chapter 4.
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on a linear space, we differentiate ourselves considering a circular localization. Each
intermediate sector ω, ω ∈ Ω, is located on a clockwise oriented circle of perimeter
N . We assume an uniform distribution; in this case, the intermediate sectors space
is completely homogenous.

At each instant t, each intermediate sector ω, ω ∈ Ω, is characterized by an
intermediate good ω, produced in quantity xω, and by a level of knowledge χωt. It
has its own R&D activity4 dedicated to the production of innovations.

As in the seminal endogenous growth literature, every innovation created in a
given intermediate sector is embodied in the private intermediate good produced
by this sector, upgrading its quality while successively increasing the amount of
knowledge inherent in this intermediate sector. This accounts for the high cumu-
lativeness of knowledge, as argued by Green & Scotchmer (1995): “knowledge and
technical progress are cumulative in the sense that products are often the result of
several steps of invention, modification, and improvement”.

Accordingly, we define the whole disposable knowledge in the economy as:

Kt =

∫

Ω

χωt dω (1)

Let us now describe the mechanism at the source of the creation of knowledge.
It relies on three core assumptions.

Assumption 1: Poisson arrival rate of innovations.
It is commonly agreed that innovation process is uncertain; R&D activities are

subject to stochastic output stream. In this respect, we follow Aghion & Howitt
(1992). We assume that, for any intermediate good ω, ω ∈ Ω, innovations occur-
rence follows a Poisson process characterized by an arrival rate λlωt, where λ > 0
is a parameter indicating the productivity of the R&D, and lωt is the amount of
labor devoted to move on to the next generation of intermediate good ω, i.e. the
overall labor used in research within intermediate sector ω.

Therefore, the overall amount of labor dedicated to research in the economy is:

LR
t =

∫

Ω

lωt dω (2)

Assumption 2: Miscellaneous scope of innovations.
What follows tackles the issue of knowledge spillovers in research activities, cor-

nerstone of the innovation-based endogenous growth theory developed by Romer
(1990) or Aghion & Howitt (1992). This theory relies on the fact that R&D ac-
tivities influence one another. In this tradition, we take into account the fact that
new knowledge spreads across the economy “through a process in which one sector
gets ideas from the experience of others”5. In the standard theory, whether one
considers product-variety models or quality ladder models à la Aghion & Howitt,
intersectoral knowledge spillovers are basically assumed to be certain and com-
plete. Indeed, the commonly shared assumption consists in that all innovations

4From now on, we will refer to the R&D activity dedicated to improve intermediate good ω
as “R&D activity ω”.

5See Aghion & Howitt (1998), chapter 3, page 85.
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diffuse across the whole economy and are used by all R&D activities in order to
produce new innovations. Accordingly, R&D activities draw on the same pool
of shared technological knowledge; this pool is represented by all the knowledge
accumulated so far6, i.e. all the innovations created hitherto.

Our aim, in this model, is to allow for possible stochastic and partial knowledge
spillovers among R&D activities. In this respect, one has to consider two matters.
Firstly, one has to deal with the way knowledge diffuses among the economy’s R&D
activities; that is, with the scope of influence of innovations. Secondly, and conse-
quently, one has to give consideration to what is the resulting pool of knowledge
which is used by each R&D activity. In the following, the index h, h ∈ Ω, is used
to point out any location from which knowledge χh diffuses; the index ω, ω ∈ Ω, is
used to point out the location of the previously evoked pool of knowledge.

As regards to the scope of influence of the knowledge characteristic to a given
intermediate good, in the attempt to consider stochastic and partial knowledge
spillovers, we assess that knowledge can spread its influence miscellaneously across
the economy’s R&D activities. An innovation can either be specific to the interme-
diate good in which it is embodied, or it can diffuse locally to R&D activities closely
located, or propagate more broadly, on a larger set of R&D activities. We will re-
spectively refer to these three types of innovations as to “sector specific innovations”
(or “inside sector innovations”), “narrow innovations” and “wide innovations” 7.

We assume that, for any intermediate good h, h ∈ Ω, an innovation can consist
of “inside sector knowledge” with probability p0, or in knowledge which diffuses on
its right and on its left symmetrically over Ω with more or less extent. Formally,
denoting respectively by θ and θ the scope of narrow innovations and of wide inno-
vations, knowledge spills on a narrow neighborhood of measure θ with probability
pn (index n for “narrow”), and on a wider neighborhood of measure θ with proba-
bility pW (index W for “wide”), where p0 + pn + pW = 1 and 1 < θ 6 θ 6 N . The
two corresponding neighborhoods of diffusion of knowledge inherent in intermedi-
ate sector h, h ∈ Ω, are Ωh ≡ [h − θ/2 ; h + θ/2] and Ωh ≡

[
h − θ/2 ; h + θ/2

]
,

where Ωh ⊆ Ωh ⊆ Ω. Basically, in this model, the scope of any innovation is a
random variable θ which can take three values: 1, with probability p0 (in the case
of a sector specific innovation), θ, with probability pn (in the case of a narrow
innovation), or θ, with probability pW (in the case of a wide innovation). Then,
the expected scope of diffusion of any innovation is:

E [θ] = p0 + pnθ + pW θ (3)

Depending on the nature of knowledge spillovers considered, i.e. on the set of
parameters

(
p0, pn, pW , θ, θ

)
chosen8, this formalization enables us to deal with an

infinity of cases, stochastic or not, with more or less (or even without) diffusion
of innovations among sectors. In particular, in its version with non-stochastic

6See for instance Aghion & Howitt (2009), chapters 3 and 4, or Acemoglu (2009) Chapter 13.
7In the limit case in which wide innovations spread their influence to the overall economy,

one generally talks about general purpose technologies, we will refer to this particular case as to
“general knowledge”.

8Note that this set of parameters comprise in fact only four independent elements; indeed,
since p0 + pn + pW = 1, once two probabilities are chosen, the third one is given. However, for a
purpose of clarity, we decided to include all five elements in the set.
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spillovers, one can get a variety of models ranging between two polar cases, each of
which echoes back to a seminal endogenous growth model. On one end, for p0 = 1
and pn = pW = 0, one gets an “inside sector knowledge” endogenous growth model
in which there are no intersectoral knowledge spillovers. This model is close, in the
spirit, to the quality ladders growth model of Grossman & Helpman (1991). The
other polar case, is obtained for p0 = pn = 0, pW = 1 and θ = N . In this model,
there are only innovations spreading across the whole economy, being used by all
R&D activities. This “general knowledge” endogenous growth model corresponds
closely to the seminal model developed by Aghion & Howitt (1992), in the sense
that it assumes certain and complete intersectoral knowledge spillovers.

Now that we have introduced some uncertainty and incompleteness in the way
knowledge diffuses among the different R&D activities, let us move on to the char-
acterization of the resulting pool of knowledge in which innovations are drawn. In
this respect, we consider that each R&D activity ω, ω ∈ Ω, in order to produce
knowledge χωt, draws from a pool of knowledge, Pω

t , which is composed of all the
knowledge reaching the location of intermediate good ω. In other words, any given
R&D activity ω, ω ∈ Ω, can only make use of innovations created by R&D ac-
tivities h, h ∈ Ω, whose scopes of influence include its location. Accordingly, and
under assumption 2, one gets the expression of Pω

t , given in Lemma 1 below.

Lemma 1: At each instant t, in any intermediate sector ω, ω ∈ Ω, the expected
pool of knowledge in which the corresponding R&D activities draw from in order to
produce innovations is:

Pω
t = (1 − pn − pW )χωt + pn

∫

Ωω

χht dh + pW

∫

Ωω

χht dh , ∀ω ∈ Ω (4)

The proof is the following. As stated above, any given innovation h, h ∈ Ω,
consists either in a sector specific innovation with probability p0 = 1− pn − pW , in
a narrow innovation with probability pn, or in a wide innovation with probability
pW .

In the first case, the only sector specific innovation h, ∀h ∈ Ω, reaching the
location of R&D activity ω is innovation ω itself. The corresponding amount of
knowledge captured by R&D activity ω is then χωt.

In the second case, solely narrow innovations h which are located in the nearby
neighborhood Ωω can get to R&D activity ω. The consequent amount of knowl-
edge related to narrow innovations which can be used by R&D activity ω is then∫

Ωω χht dh.

Finally, all wide innovations h which are located in the neighborhood Ωω attain
R&D activity ω. Thus, the amount of knowledge emitted by wide innovations and
received by R&D activity ω is

∫
Ωω χht dh.

Consequently, the expected total amount of knowledge used by any R&D ac-
tivity ω ∈ Ω is given by the expression (4) above.�

Allowing for uncertainty and partialness in the diffusion of knowledge, we depart
from what is generally done in the standard literature on several respects. As
exhibited in Lemma 1, introducing miscellaneous scopes of influence of innovations
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has a critical aftermath on the composition of the pool of knowledge in which a given
R&D activity draws new innovations from. Moreover, given that the knowledge
inherent in each intermediate sector varies from one sector to the other, these
pools are possibly heterogenous. Finally, this formalization constitutes a general
framework of endogenous growth, enabling us to consider a large collection of
models, according to the set of parameters

(
p0, pn, pW , θ, θ

)
chosen.

Assumption 3: The third assumption concerns the magnitude of the knowledge
increase when a new quality of good is achieved. For any intermediate good ω,
ω ∈ Ω, if an innovation occurs at instant t, the induced increase in knowledge,
Δχωt, is a linear function of Pω

t :

Δχωt = σPω
t , ∀ω ∈ Ω, σ > 0

This specification implies that there is a quality ladder for each intermediate good;
each innovation takes the intermediate good quality up by one rung on this ladder.
At instant t, the quality improvement of a given intermediate good is proportional
to the current size of the expected pool of knowledge in which this sector’s R&D
activities draw from in order to produce innovations. The parameter σ is a measure
of the productivity of R&D activities in the economy in the sense that, the larger
its value, the higher the increase in quality for a given size of the pool.

From the previous assumptions, one derives the law of motion of knowledge
inherent in each intermediate good as expressed in Proposition 1 below.

Proposition 1: The law of motion of the average knowledge characterizing any
intermediate good ω is:

χ̇ωt = λσlωtP
ω
t , ∀ω ∈ Ω (5)

Proof, see Appendix 8.1.9

In order to illustrate expressions (4) and (5), let us get back to the two polar
cases mentioned above10:

• In the “inside sector knowledge” endogenous growth model (p0 = 1 and
pn = pW = 0), the pool of knowledge used by R&D activity in any sector ω,
ω ∈ Ω, is Pω

t = χωt, that is, only the knowledge produced within the sector.
The corresponding law of motion of the average knowledge characterizing any
intermediate good ω, ω ∈ Ω, is:

χ̇ωt = λσlωtχωt

• In the “general knowledge” endogenous growth model (p0 = pn = 0, pW = 1
and θ = N), the pool of knowledge used by R&D activity in any sector ω,

9This methodology is similar to the one used in Grimaud & Rouge (2004).
10We will go back to those particular cases in section 5.
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ω ∈ Ω, is Pω
t =

∫ ω+N/2

ω−N/2
χht dh =

∫
Ω

χht dh = Kt, that is, the whole disposable

knowledge in the economy. Replacing in (5), one gets:

χ̇ωt = λσlωtKt , ∀ω ∈ Ω (6)

It is noteworthy that this law of motion, which is endogenously derived from
assumptions made in a stochastic quality ladders model, leads to a law of mo-
tion of the whole disposable knowledge which is formally identical to the one
initially assumed by Romer (1990). Indeed, differentiating (1) with respect
to time and using (6) yields:

K̇t =

∫

Ω

χ̇ωt dω = λσ

(∫

Ω

lωtdω

)

Kt ⇔ K̇t = λσLR
t Kt ,

where LR
t is defined in (2) above.

2.2 Labor, Final Good, Intermediate Goods, and
Preferences

Each household is endowed with one unit of labor that is supplied inelastically.
Total labor, L, is assumed to be constant and has two competing uses at each
instant t: it can be used to produce the final good, Yt, and in R&D activities. This
yields the following labor constraint:

L = LY
t + LR

t , (7)

where, LY
t is the amount of labor used in the final good sector, and LR

t , the overall
amount of labor dedicated to research in the economy, as defined in (2).

The production of the final good makes use of the particular knowledge of every
intermediate goods, according to:

Yt = (LY
t )1−α

∫

Ω

χωt(xωt)
αdω , 0 < α < 1, (8)

where, as mentioned above, xωt is the quantity of intermediate good ω used at
instant t and χωt the corresponding quality.

The final good is used for the households consumption and for the production
of intermediate goods. Denoting by yωt the quantity of final good used to produce
xωt units of intermediate good ω, and by ct the consumption of the representative
household, one gets the following output resource constraint:

Yt = Lct +

∫

Ω

yωtdω (9)

Each intermediate good is produced using final good as an input along with:

xωt =
yωt

χωt

, ω ∈ Ω (10)

This formulation illustrates the increasing complexity in the production of inter-
mediate goods. That is, it takes into account the fact that, as the quality of a given
intermediate good increases, more resources need to be devoted to its production.
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Finally, intertemporal preferences of the representative household are given by:

U =

∫ ∞

0

ln(ct)e
−ρtdt , (11)

where ρ > 0 denotes the rate of time preferences11.

2.3 Optimum

Let us now compute the optimum of the model, that is, the solution of the social
planner’s program. He maximizes (11) subject to (1), (4), (5), (7), (8), (9) and
(10). As in the standard literature, we consider the symmetric case in which
intermediate sectors firms are identical. We denote by gzt the rate of growth, żt/zt,
of any variable zt. The steady-state optimum is characterized in Proposition 2
below.

Proposition 2: At the steady-state optimum, the repartition of labor is :

LRopt = L −
ρN

λσE [θ]
and LY opt = L − LRopt =

ρN

λσE [θ]
.

The quantity of each intermediate good ω ∈ Ω is:

xopt
ω = xopt = α

1
1−α LY opt =

α
1

1−α ρN

λσE [θ]
, ∀ω ∈ Ω ,

and the growth rates are:

gopt
c = gopt

Y = gopt
χ = gopt

K = gopt =
λσE [θ] L

N
− ρ ,

where, E [θ] is given by (3), and gopt denotes the optimal steady-state rate of growth
of the economy.

Proof, see Appendix 8.2.

Let us give some comments on the results obtained in Proposition 2:

• For consistency, one has to assume that the parameters of the model are such
that E [θ] > ρN

λσL
. This is to ensure that there is positive growth at the

first-best optimum (i.e. that gopt > 0).

• As anticipated, the optimal growth rate of the economy depends positively on
the expected scope of innovations E [θ], that is on the intensity of knowledge
spillovers which plays the same role as the parameters λ and σ. All three of
them account for the level of productivity of R&D activities in the economy,
each of which referring to a particular dimension. Indeed, λ gives the effi-
ciency of the labor devoted to R&D activity in developing new innovations,

11The results are robust if one considers a C.E.S. instantaneous utility function of parameter

ε ∈]0; 1[, u(ct) = c1−ε
t

1−ε .
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σ indicates to which extent the pool of knowledge is used in the quality im-
provements, whereas E [θ] stands for the average influence of innovations on
the various R&D activities.

Moreover, LRopt is increasing in the overall level of productivity of research
activities, while and LY opt and xopt are decreasing in it: the more efficient the
R&D activities are, the more resources are allocated to research.

It appears clearly here that the engine of economic growth is technological
progress in which the diffusion of knowledge within the R&D activities plays
a key part.

• An important feature of seminal endogenous growth models is the presence
of the property of scale-effects12: the larger the size of the population, the
greater the growth rate. It has been argued by Jones (1995) and others, that
this property is undesirable since this prediction is strongly at odds with
twentieth century observed stylized facts13. The model we develop here also
exhibits this non-desirable property. However, we will see in section 6 that
it is possible to have a simple variant of this model in which scale-effects do
not appear.

3 Decentralized Economy and Characterization

of the Set of Equilibria

In this section, we study a decentralized economy which is in direct line with the
analysis conducted by Aghion & Howitt (1992). We consider a Schumpeterian
equilibrium with incomplete markets: there is no market for knowledge. Instead,
R&D activities are privately and indirectly funded by monopoly profits on the sale
of intermediate goods embodying the knowledge. We normalize the price of final
good to one, and denote respectively by wt, rt and qωt (ω ∈ Ω) the wage, the
interest rate and the price of intermediate good ω at instant t.

The final good market, the labor market and the financial market are perfectly
competitive. Once invented, an intermediate good can be modified, improved as
the result of several steps of innovations. Regarding their markets, we consider
Schumpeter’s well known “creative destruction” mechanism. It involves that, in a
given intermediate sector, the firm that succeeds in innovating is granted a patent
and can monopolize the intermediate good production and sale until replaced by
the next innovator14.

Because of the considered decentralized economy, there is potentially a diver-
gence between the equilibrium allocation and the first-best optimal one. Indeed, in
the presented framework, there are two sources of inefficiency. The first one results
from the presence of monopolies on the production and sale of intermediate goods.

12In Gray & Grimaud (2010), we propose a double differentiation growth model which allows
to shed a new light on the issue of scale-effects in endogenous growth theory.

13For an excellent overview and very accurate exposition of the growth theory related body of
literature, see Jones (1999) or Dinopoulos & Sener (2007).

14This is the standard framework considered in the seminal endogenous growth developed by
Aghion & Howitt (See for instance Aghion & Howitt (1992) or (1998, chapter 2)).
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The second is related to the incompleteness of markets. There is thus a possibility
of Pareto improving public policy interventions:

• The distortion entailed by monopolist behaviors can be mitigated by an add
valorem subsidy ψ, ψ ∈ [0; 1], on each intermediate good demand. For con-
venience and to simplify expressions, let s = 1−ψ. By abuse of notation, we
will refer to the subsidy as to s. Accordingly, note that, s = 1 corresponds
to no subsidy (i.e. to a “laisser faire” policy regarding the monopoly distor-
tion, as seen in expression of the final sector profit (12)) and that the subsidy
increases as s decreases.

• The externality triggered by the fact that there is no market for knowledge
can be corrected by a public tool ϕ devoted to R&D activity, which can be
positive or negative, depending on whether the R&D effort is suboptimal or
over-optimal. For convenience, let T = 1+ϕ. T can thus consist in a subsidy
on the monopoly profit (if T > 1), as well as in a tax imposed on it (if T < 1).

This section is organized as follows. Firstly, we describe the behavior of the
different agents of the economy. Then, we characterize the set of steady-state
symmetric equilibria as a function of the public tools vector (s,T).

The purpose of this section is that it will enable us, in the next section, to
study the distortions and public policies mentioned above as well as to compute the
vector of the tools which implement the first-best optimum within this decentralized
economy.

3.1 Agents Behavior

We are now to analyse the individual behavior in order to characterize the set of
equilibria in the decentralized economy. At each vector of public policies (s,T) is
associated a particular equilibrium.

Formally, given that the price of final good is normalized to one, an equilibrium
is represented as time paths of set of prices

{(
{qωt}ω∈Ω , wt, rt

)}∞
t=0

and of quantities{(
ct, Yt, {xωt}ω∈Ω , LY

t , {lωt}ω∈Ω , {χωt}ω∈Ω ,Kt

)}∞
t=0

, such that: the final good mar-
ket, the labor market and the financial market are perfectly competitive and clear;
on each intermediate good market, the incumbent monopolizes the production and
sale until replaced by the next innovator; there is free entry on each R&D activity
(i.e. the zero profit condition holds for each R&D activity); firms maximize their
profits and the representative household maximizes her utility.

In the final sector, the competitive firm maximizes its profit given by:

πY
t = (LY

t )1−α

∫

Ω

χωt(xωt)
αdω − wtL

Y
t −

∫

Ω

sqωtxωtdω (12)

The first-order conditions yield:

wt = (1 − α)
Yt

LY
t

and qωt =
α(LY

t )(1−α)χωt(xωt)
α−1

s
, ∀ω ∈ Ω (13)

In each intermediate good sector ω, ω ∈ Ω, the incumbent monopoly maximizes
its profit πxω

t = qωtxωt − yωt = (qωt − χωt)xωt, where the demand for intermediate
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good ω, is given by (13). After maximization, one obtains the standard symmetric
use of intermediate goods in the final good production and the mark-up on the
price of intermediate goods, as seen below in (14):

xωt = xt =

(
α2

s

) 1
1−α

LY
t and qωt =

χωt

α
, ∀ω ∈ Ω (14)

All intermediate good producers thus produce the same amount and charge the
same price.

Together with the definition of the whole disposable knowledge in the economy
(1), (14) allows us to rewrite the final good production function (8), the wage
expression given in (13), and the instantaneous monopoly profit on the sale of each
intermediate good ω, respectively as:

Yt =

(
α2

s

) α
1−α

LY
t Kt , wt = (1 − α)

(
α2

s

) α
1−α

Kt and

πxω
t =

1 − α

α

(
α2

s

) 1
1−α

χωtL
Y
t , ∀ω ∈ Ω (15)

The final good resource constraint (9) becomes Yt = Lct+(α2/s)
1

1−α LY
t Kt. Dividing

both sides by Yt and using the previous expressions of xt and Yt gives: Lct/Yt =
1 − α2/s. Therefore, the growth rates of per capita consumption and of the final
good equalize:

gYt = gct (16)

Moreover, log-differentiating with respect to time the expression of the final good
production function given in (15), one obtains:

gYt = gLY
t

+ gKt (17)

Let us now consider any R&D activity ω, ω ∈ Ω, and derive the innovators’
arbitrage condition. Given the governmental intervention on behalf of research
activities, the incumbent innovator, having successfully innovated at instant t, re-
ceives, at any instant τ > t, the net profit15 π̃xω

τ = Tπxω
τ with probability e−

∫ τ
t λlωudu

(i.e. provided that there is no innovation upgrading intermediate good ω between
t and τ , since lωu is the amount of labor devoted to research in sector ω at instant
u). The sum of the present values of the incumbent’s expected net profits on the
sale of intermediate good ω, at instant t, is therefore:

Π̃ω
t =

∫ ∞

t

π̃xω
τ e−

∫ τ
t (ru+λlωu )dudτ, (18)

Differentiating (18) with respect to time gives the standard arbitrage condition in
each R&D activity ω:

rt + λlωt =
˙̃Πω

t

Π̃ω
t

+
π̃xω

t

Π̃ω
t

, ∀ω ∈ Ω (19)

15As mentioned above, if T > 1 (resp. T < 1) then the monopoly’s net profit is larger (resp.
lower) than the “laisser faire” profit; this corresponds to subsidizing (resp. taxing) the monopoly
to foster appropriate research effort.
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The latter arbitrage conditions state that, in equilibrium, the rate of return is the
same on the financial market as well as on all R&D activities.

Since we have assumed that innovations of each intermediate good ω occur along
with a Poisson arrival rate of λlωt, if one unit of labor is invested in R&D activity
ω, the probability to obtain one innovation is λ. Once created, its value, taking
into account the R&D public policy, is Π̃ω

t . Hence, λΠ̃ω
t is the expected revenue

when investing one unit of labor in R&D. Therefore, the free-entry condition in
each R&D activity ω is16 wt = λΠ̃ω

t , where wt, the cost of one unit of labor, is
given in (15). Consequently,

Π̃ω
t = Π̃t =

1 − α

λ

(
α2

s

) α
1−α

Kt , ∀ω ∈ Ω

which implies that ˙̃Πω
t /Π̃ω

t = gKt and π̃xω
t /Π̃ω

t =
λαTχωtLY

t

sKt
, ∀ω ∈ Ω. The arbitrage

condition (19) can thus be rewritten as:

rt + λlωt = gKt +
λαTχωtL

Y
t

sKt

, ∀ω ∈ Ω (20)

As in the standard literature, we focus on a symmetric equilibrium17, in which
χωt = χt and lωt = lt, ∀ω ∈ Ω. Hence LR

t = Nlt and Kt = Nχt. Accordingly,
one obtains that the growth rate of the knowledge inherent in any intermediate
sector and the growth rate of the whole disposable knowledge in the economy are
the same:

gχωt = gKt , ∀ω ∈ Ω (21)

Moreover, the pool of knowledge used by each R&D activity ω, ω ∈ Ω, at each
instant t is:

Pω
t = Pt =

(
p0 + pnθ + pW θ

)
χt =

E [θ]Kt

N
, ∀ω ∈ Ω (22)

Plugging this expression in (5) and using the symmetric labor assumption, one
gets, for any intermediate good sector ω, the following law of motion of knowledge:

χ̇ωt = χ̇t =
λσE [θ] LR

t

N
χt , ∀ω ∈ Ω ⇔ gχωt =

λσE [θ] LR
t

N
, ∀ω ∈ Ω

16Note that, an alternative methodology could be used here. It is used, for instance, in Barro
& Sala-i-Martin (1995) and consists in subsidizing (or possibly taxing) the R&D labor demand.
Denoting by γ the public tool targeted to the R&D labor, the net cost of one unit of labor is
(1 − γ)wt. Subsidizing (resp. taxing) labor demand of R&D activity corresponds to γ > 0 (resp.
to γ < 0). The free-entry condition, according to that method, is (1 − γ)wt = λΠω

t , where
Πω

t =
∫∞

t
πxω

τ e−
∫ τ

t
(ru+λlωu )dudτ .

The two methods are equivalent here since the public tool does not depend on time. Indeed,
according to our method, the free-entry condition in each R&D activity ω is wt = λΠ̃ω

t and
wt = λΠ̃ω

t ⇔ wt = λTΠω
t ⇔ 1

T
wt = λΠω

t ⇔ (1 − γ)wt = λΠω
t , where 1 − γ = 1/T (note that

γ > 0 ⇔ T > 1 and γ < 0 ⇔ T < 1). It is hence equivalent here to target the public policy to
the monopoly profit or to the R&D labor demand.

17see Aghion & Howitt (1992) for instance. This point is discussed in details in Cozzi, Giordani
& Zamparelli (2007).
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Consequently, from (21), the growth rate of the whole disposable knowledge in the
economy is:

gKt =
λσE [θ] LR

t

N
(23)

Finally, we can rewrite (20), the arbitrage condition in any R&D activity ω,
ω ∈ Ω, as:

rt + λ
LR

t

N
=

λσE [θ] LR
t

N
+

λαTLY
t

sN
(24)

The representative household maximizes her intertemporal utility given by (11)
subject to her budget constraint: ḃt = wt + rtbt − ct − Tt

L
, where bt is the stock

of bonds and Tt is a lump-sum tax charged by the government in order to finance
public policies. This yields the usual Keynes-Ramsey condition:

rt = gct + ρ (25)

3.2 Steady-State Symmetric Equilibrium

The equilibrium quantities, growth rates and prices are characterized by equations
(7), (14), (15), (16), (17), (21), (23), (24) and (25).

At steady-state, all variables grow at constant rate. In particular gKt must be
constant. Therefore, at steady-state, LR

t is constant (cf. (23)) and so is LY
t (cf.

(7)). Let us denote by Ze the steady-state equilibrium of any variable Zt. Given
that ge

LY = 0, using (16), (17), (21) and (23), one gets:

ge
c = ge

Y = ge
K = ge

χω
=

λσE [θ] LRe

N
, ∀ω ∈ Ω

The steady-state symmetric equilibrium is thus characterized by the following
system of equations:






ge
c = ge

Y = ge
K = ge

χω
= λσE[θ]LRe

N
, ∀ω ∈ Ω (l1)

L = LY e + LRe (l2)

re = ge
c + ρ (l3)

re + λLRe

N
= λσE[θ]LRe

N
+ λαTLY e

sN
(l4)

we
t = (1 − α)

(
α2

s

) α
1−α

Ke
t (l5)

qe
ωt = qe

t =
χe

t

α
=

Ke
t

αN
(l6)

xe
ω = xe =

(
α2

s

) 1
1−α

LY e (l7)

Solving this system18, one obtains Proposition 3, below.

18From (l1), (l3) and (l4), one gets ρ + λLRe/N = λαTLY e/sN .
Using (l2) yields LRe = λαLT−ρNs

λ(αT+s) and LY e = (λL+ρN)s
λ(αT+s) . Replacing in (l1) gives the steady-

state growth rates. 2
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Proposition 3: Given a vector of public policies (s,T), the steady-state sym-
metric equilibrium in the decentralized economy is characterized by the following
repartition of labor, quantity of intermediate goods, growth rates and prices:

LRe(s,T) =
λαLT− ρNs

λ (αT+ s)
, LY e(s,T) =

(λL + ρN) s

λ (αT+ s)

xe
ω(s,T) = xe(s,T) =

(
α2

s

) 1
1−α

LY e(s,T) =

(
α2

s

) 1
1−α (λL + ρN) s

λ (αT+ s)
, ∀ω ∈ Ω ,

ge
c = ge

Y = ge
K = ge

χω
= ge(s,T) =

E [θ] σ (λαLT− ρNs)

N (αT+ s)
,

re = ge(s,T) + ρ ,

we
t = (1 − α)

(
α2

s

) α
1−α

Ke
t , qe

ωt = qe
t =

Ke
t

αN
, ∀ω ∈ Ω ,

where ge(s,T) denotes the rate of growth of the economy at the steady-state sym-
metric equilibrium as a function of the vector of public policies.

4 Pareto Optimality and Public Policies

As mentioned above, there are two distortions in this decentralized economy. One
is induced by the presence of a monopoly on the production of intermediate goods
and can be removed by a subsidy on each intermediate good demand. The other is
related to the incompleteness of markets which implies knowledge spillovers effects.
In this section, we study those distortions. We shed a new light on Pareto sub-
optimality. We underline the role of public policies to foster appropriate research
activity. We characterize the public tools implementing the first-best optimum
within the steady-state symmetric equilibrium.

4.1 “Laisser Faire” Equilibrium

Let us start by comparing the growth rate of the “laisser faire” economy with
the optimal one. From Proposition 3, one can easily characterize the equilibrium
in which there is no public intervention i.e. when the vector of public policies is
(s,T) = (1, 1).19

19The “laisser faire” steady-state equilibrium is characterized by the following repartition of
labor, quantity of intermediate goods, growth rates and prices:

LRlf

=
λαL − ρN

λ (α + 1)
, LY lf

=
λL + ρN

λ (α + 1)
, xlf

ω = xlf = α
2

1−α
λL + ρN

λ (α + 1)
, ∀ω ∈ Ω

glf
c = glf

Y = glf
K = glf

χω
= glf =

E [θ] σ (λαL − ρN)
N (α + 1)

rlf = glf + ρ , wlf
t = (1 − α)α

2α
1−α Klf

t , qlf
ωt = qlf

t =
Klf

t

αN
, ∀ω ∈ Ω
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Corollary 1: The steady-state growth rate of the “laisser faire” economy is:

glf = ge(1, 1) =
E [θ] σ (λαL − ρN)

N (α + 1)
(26)

This result revives the one obtained in Aghion & Howitt (1992), stating that
the provision of R&D effort can either be suboptimal or over-optimal20. Indeed,
it appears clearly here that the “laisser faire” growth rate can be either above or
below the optimal growth rate, depending on the value of the parameters of the
model. Accordingly, there exists particular cases in which, for certain values of the
parameters of the model, the “laisser faire” growth rate is optimal, suboptimal or
over-optimal:

glf S gopt ⇔
E [θ] σ (λαL − ρN)

N (α + 1)
S

λσE [θ] L

N
− ρ

⇔ E [θ] σ (λαL − ρN) S (α + 1) (λσE [θ] L − ρN)

⇔ (α + 1)ρN S E [θ] σ (λL + ρN) ⇔
(α + 1)ρN

σ (λL + ρN)
S E [θ]

The following proposition summarizes these results.

Proposition 4:

• glf = gopt if and only if the set of parameters (L,N, α, λ, ρ, σ,E [θ]) verifies

E [θ] = (α+1)ρN
σ(λL+ρN)

≡ Ẽ [θ]
lf
.

• For expected scopes of diffusion of knowledge above (resp. below) the threshold

Ẽ [θ]
lf
, the “laisser faire” growth rate is suboptimal (resp. over-optimal).

The more innovations diffuse within the R&D activities of the economy, the
more likely the “laisser faire” policy will entail sub-optimality; that is the more
likely the R&D effort will be below its optimal level. This underlines the need for
public intervention to sustain appropriate R&D activity.

4.2 Distortions and Implementation of the First-Best

Let us now implement the optimum within the steady-state symmetric equilibrium.
We compute the public tools which correct the two distortions inherent to the
considered decentralized economy: the optimal subsidy on each intermediate good
demand (s∗) and the optimal tool dedicated to R&D activities (T∗). Meanwhile,
we investigate the issue of appropriate R&D effort. This will allow us to shed a new
light on the fact that, in Schumpeterian growth theory, the equilibrium growth rate
of the economy is Pareto non optimal: it can be suboptimal as well as over-optimal.
The explanation we propose here deals with the scope of diffusion of knowledge.

20This is a standard result in endogenous growth theory see for instance, Aghion & Howitt
(1998), Benassy (1998), Acemoglu (2009) or Aghion & Howitt (2009).
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4.2.1 Monopoly Distortion

Proposition 5: The instantaneous optimal subsidy on each intermediate good
demand removing the distortion entailed by presence of a monopoly on the produc-
tion and sale on each of them is s∗ = α.

This result is standard and analog to the one found in Aghion & Howitt (1992).
The proof is straightforward. Identification of the equilibrium quantity of each in-
termediate good ω (given in Proposition 3) with the optimal one (given in Propo-
sition 2) implies that the instantaneous optimal subsidy on each intermediate good
demand enabling to remove the distortion induced by the presence of a monopoly,

s∗, must satisfy the following equation:
(

α2

s∗

) 1
1−α

LY opt = α
1

1−α LY opt(= xopt
ω ) , ∀ω ∈

Ω. Therefore, one has s∗ = α. 2

4.2.2 Distortion Entailed by Knowledge Spillovers

Before computing the optimal tool dedicated to research, let us first investigate with
more parsimony the distortion entailed by knowledge spillovers. In this respect, let
us get rid of the monopoly distortion, assuming that the level of the subsidy on
each intermediate good demand is s∗ = α.

From Proposition 3, one can easily characterize the equilibrium in which the
monopoly distortion has been removed. As expressed in Corollary 2 below, the
corresponding growth rates are function of T, the public tool dedicated to foster
appropriate R&D effort.

Corollary 2: Once the monopoly distortion has been corrected, the steady-state
growth rate of the economy is:

ge(α,T) = gm(T) =
E [θ] σ (λLT− ρN)

N (T+ 1)
(27)

Let us first consider that there is no public policy dedicated to research activity
i.e. that the vector of public policies is (s,T) = (α, 1). The corresponding growth
rate of the economy is:

ge(α, 1) = gm(1) = gm =
E [θ] σ (λL − ρN)

2N
(28)

As in the case of the “laisser faire” economy studied above in subsection 4.1,
the growth rate of the economy when the public intervention aims solely at dealing
with the monopoly distortion can still be either equal, above or below the optimal
growth rate, depending on the value of the parameters of the model:

gm S gopt ⇔
E [θ] σ (λL − ρN)

2N
S

λσE [θ] L

N
− ρ

⇔ E [θ] σ (λL − ρN) S 2λσE [θ] L − 2ρN

⇔ 2ρN S E [θ] σ (λL + ρN) ⇔
2ρN

σ (λL + ρN)
S E [θ]

The following proposition summarizes these results.
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Proposition 6:

• gm = gopt if and only if the set of parameters (L,N, α, λ, ρ, σ,E [θ]) verifies

E [θ] = 2ρN
σ(λL+ρN)

≡ Ẽ [θ]
m
.

• For expected scopes of diffusion of knowledge above (resp. below) the threshold

Ẽ [θ]
m
, the growth rate of the economy when the public policy aims solely at

correcting the monopoly distortion is suboptimal (resp. over-optimal).

Note that, since Ẽ [θ]
m

> Ẽ [θ]
lf

(because 0 < α < 1), removing the monopoly
distortion rises the threshold of expected scope of diffusion of knowledge above
which the growth rate of the economy is suboptimal. Accordingly, once the monopoly
distortion has been removed, it is more likely that R&D effort is over optimal for
large expected scope of influence of innovations.

This result is supported by the comparison of gm and glf ; indeed, one finds
that the growth rate of the economy is higher once the monopoly distortion is
removed21.

Those findings show that the possibility for the growth rate of the economy to
be over-optimal is resulting from the externality triggered by knowledge spillovers.

4.3 Optimal R&D Policy

The results obtained above underline the need for public intervention on behalf of
research to sustain appropriate R&D activity. The optimal tool dealing with the
distortion resulting from knowledge spillovers is given in Proposition 7 below.

Proposition 7: The optimal tool used to deal with the externality inherent in
R&D activity is constant over time and can consist either in a subsidy or in a tax.
Furthermore, it depends positively on the expected scope of influence of innovations:

T∗ =
E [θ] σ (λL + ρN)

ρN
− 1 (29)

The proof is as follows. Given that s = s∗ = α, identifying the equilibrium
growth rate of the economy (given in Proposition 3) with the optimal one (given
in Proposition 2), one gets that T∗ has to verify:

ge(α,T∗) = gopt ⇔ E [θ]
σ (λαLT∗ − ρNα)

N (αT∗ + α)
= E [θ]

λσL

N
− ρ

⇔ E [θ] σ (λLT∗ − ρN) = (E [θ] λσL − ρN) (T∗ + 1)

⇔ ρNT∗ + ρN = E [θ] σ (λL + ρN) �

In this section, we see that, as traditionally in Schumpeterian growth theory,
the decentralized equilibrium is not Pareto optimal: the Schumpeterian equilibrium

21Indeed, gm − glf = E[θ]σ(λL−ρN)
2N − E[θ]σ(λαL−ρN)

N(α+1) = E[θ]σ
N

[
(α+1)(λL−ρN)−2(λαL−ρN)

2(α+1)

]

= E[θ]σ
N

[
(1−α)λL+(1−α)ρN

2(α+1)

]
= (1 − α) E[θ]σ(λL+ρN)

2(α+1)N > 0 since α < 1.
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growth rate can be too high or too low relative to the optimal one. We provide
a new explanation for this caveat: we argue that, depending on the level of the
expected scope of influence of innovations, the equilibrium may have a higher or a
lower rate of growth than the Pareto optimal allocation.

This result is obviously corroborated when looking at the expression of the
optimal tool dealing with the externality inherent in R&D activity. Indeed, as seen
in (29), T∗ is increasing in the expected scope of diffusion of knowledge and can
consist either in a subsidy or in a tax: as stated in Proposition 8 below, the wider
the expected scope of influence of innovations, the more likely it will be necessary
to subsidize R&D.

Corollary 3: T∗ is a subsidy (resp. a tax) if and only if T∗ is larger (resp. lower)
than one, i.e. if and only if 22 the expected scope of diffusion of knowledge, E[θ], is

above (resp. below) the threshold Ẽ [θ]
m
≡ 2ρN

σ(λL+ρN)
, characterized above23.

5 Polar Cases

As mentioned in subsection 2.1, the model is a general framework permitting to con-
sider a variety of Schumpeterian endogenous growth models. We have introduced
some uncertainty and partiality in the diffusion of knowledge across the economy’s
R&D activities in the sense that the scope of innovations can be randomly more
or less extensive.

In this section, we get back over two particular cases. Removing the uncer-
tainty, one obtains a general endogenous growth model in which innovations’ scope
of influence is certain but possibly partial. This framework allows to consider var-
ious extents to which knowledge diffuses across the economy’s R&D activities24,
ranging from no intersectoral knowledge spillovers at all ( i.e. considering “inside
sector knowledge” only) to total intersectoral knowledge spillovers ( i.e. considering
“general knowledge” only). In the former case, one obtains an endogenous growth
model close in spirit to the one developed by Grossman & Helpman (1991), and in
the latter, an endogenous growth model à la Aghion & Howitt (1992).

5.1 “Inside Sector Knowledge” Schumpeterian Growth Model

The first polar case is a model in which there are no intersectoral knowledge
spillovers. Formally, setting p0 = 1 (and thus, pn = pW = 0) allows to con-
sider only innovations that do not diffuse across the economy R&D activities. In
this case, knowledge produced in a given sector is specific to this one.

Accordingly, at each instant t, the pool of knowledge used by each R&D activ-
ities in sector ω, ω ∈ Ω, is just composed of the amount of knowledge inherent in

22T∗ S 1 ⇔ E[θ]σ(λL+ρN)
ρN − 1 S 1 ⇔ E [θ] S 2ρN

σ(λL+ρN) ≡ Ẽ [θ]
m

23Note that, in the particular case in which the values of the parameter are such that E [θ] =

Ẽ [θ]
m

, then T∗ = 1. Accordingly, the growth rate of the decentralized economy is then optimal
even though there is no public policy dedicated to R&D activity.

24See Appendix 8.3 for the presentation of the non-stochastic general case model. It corresponds
to a version of the model in which θ is a constant random variable (i.e. in which E [θ] = θ).
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the corresponding intermediate good, i.e. Pω
t = χωt , ∀ω ∈ Ω. Hence, for a given

vector of public policies (s,T), the steady-state symmetric equilibrium growth rate
of the economy comprising only “inside sector knowledge” is:

ge(s,T) =
σ (λαLT− ρNs)

N (αT+ s)
.

The optimal public policies vector is:

(s∗,T∗) = (α,
λσL

ρN
+ σ − 1) ,

and the steady-state optimal growth rate of the economy is:

gopt =
λσL

N
− ρ .

5.2 “General Knowledge” Schumpeterian Growth Model

Consider now the other polar case in which any innovation spreads its influence
across all R&D activities within the economy (i.e. in which there are only gen-
eral purpose innovations). Setting θ = N , one obtains a model with complete
intersectoral knowledge spillovers. The corresponding expression of the neighbor-
hood of diffusion of an innovation related to any intermediate good h is Ωh =
Ωh ≡ [h − N/2 ; h + N/2] = Ω, ∀h ∈ Ω. Replacing in (4), one gets that, for any
R&D activity ω, ω ∈ Ω, the resulting pool of knowledge is the whole disposable
knowledge in the economy:

Pω
t = Pt =

∫

Ω

χht dh = Kt , ∀ω ∈ Ω

This endogenous growth model with certain and complete diffusion of knowledge
is very close to the one proposed by Aghion & Howitt (1992).

For a given vector of public policies (s,T), the steady-state symmetric equilib-
rium growth rate of the economy is:

ge(s,T) =
σ (λαLT− ρNs)

αT+ s
,

the optimal public policies vector is:

(s∗,T∗) = (α,
λσL

ρ
+ σN − 1) ,

and, the steady-state first-best growth rate of the economy is:

gopt = λσL − ρ .
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6 Intersectoral Knowledge Spillovers and Scale-

Effects

A non desirable feature of the first generation of models of endogenous growth
is the presence of scale-effects25. This, whether one considers the Romer (1990)
model or Schumpeterian growth models considering only vertical knowledge accu-
mulation. This property predicts that the larger the population level L, the greater
the growth rate of the economy. As in this seminal innovation-based theory, our
model displays this non-desirable property. As observed in Propositions 2 and 3,
it exhibits scale-effects at any steady-state equilibrium. Moreover, if one allows for
constant population growth, steady-states do not exist.“This prediction is implied
because increased population raises the size of the market that can be captured
by a successful entrepreneur and also because it raises the supply of potential re-
searchers”26. The specialists all agree on the fact that this property is undesirable
since this prediction is strongly at odds with twentieth century observed stylized
facts27. It has been shown, in the literature entitled “Endogenous Growth without
Scale-Effects theory”, that this counterfactual property can be eliminated from the
theory by allowing for both horizontal and vertical knowledge accumulation 28.

In this section, inspired by the formalization used by Jones (1999), Dinopou-
los & Sener (2007) or Aghion & Howitt (2009, chapter 4, section 4.4.), we show
how scale-effects can be removed from our model by incorporating Young’s (1998)
insight that, as population grows, the diversification of the intermediate sectors re-
duces the efficiency of R&D activities in improving the quality of the intermediate
goods. As stated by Aghion & Howitt, R&D efforts are “spread more thinly over
a larger number of different sectors, thus dissipating the effect on the overall rate
of productivity growth”.

Two modifications of the standard framework are necessary. First, one needs
to modify the final good production function, assuming that it does not depend
on the absolute labor input LY

t but on the labor per sector LY
t /N . Secondly, one

needs to introduce in the model a process by which the number of intermediate
goods sectors increases.

We depart from this methodology, in that we do not have to modify the final
good production function. We only have to consider intermediate goods variety
increases; in this respect, we adapt the methodology proposed by Aghion & Howitt
(2009). We introduce a very simple scheme in which it is assumed that the proba-
bility of inventing a new intermediate good is a linear function of the population,
κL In particular, no R&D expenditure is introduced. Moreover, we also suppose
that an exogenous fraction ξ of intermediate goods becomes obsolete and vanishes
at each instant t. As in the standard methodology, if population is constant, then
the variation of the number of sectors is given by:

Ṅt = κL − ξNt , ∀t

25For an excellent overview and very accurate exposition of the growth theory related body of
literature, see Jones (1999) and Dinopoulos & Sener (2007).

26Aghion & Howitt (2009), chapter 4, page 96.
27Jones (1995) has been the first to point out this matter.
28Gray & Grimaud (2010) deals extensively with this matter.
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The solution of this autonomous non-homogenous first-order linear differential
equation is:

Nt =
κL

ξ
+

(

N0 −
κL

ξ

)

e−ξt , ∀t

At steady-state, the number of intermediate goods will stabilize at:

N =
κL

ξ
(30)

Plugging (30) in the expression of the steady-state equilibrium growth rate of
the economy (given in Proposition 3), one gets:

ge
c = ge

Y = ge
K = ge

χω
= ge(s,T) =

E [θ] σ
(

ξ
κ
λαT− ρs

)

αT+ s

Under this specification, the economy’s rate of growth at any steady-state equi-
librium is independent of the scale of the economy, as measured by the level of
the population L. In particular, this result is true for the first-best of the model
(indeed, under this specification, gopt = E[θ]λσξ

κ
−ρ is independent of L). One should

however remark that since E [θ] ∈ [1; N ], E [θ] is defined on a set whose size de-
pends on N . Since N and L are proportional, as seen in (30), the growth rate of
the economy implicitly depends on the level of the population via the definition set
of the expected scope of knowledge.

7 Conclusion

Exploiting the formalization of a circular product differentiation model of Salop
(1979) in an attempt to generalize the standard Schumpeterian approach, we pro-
posed an endogenous growth quality ladder model in which the knowledge inherent
in any intermediate sector spills variously across the R&D activities of the econ-
omy. The assumption that innovations’ influence ranges from punctual to global
shapes the pool of knowledge in which innovations draw themselves on in order to
be produced. Consequently, the law of motion of knowledge accumulation depends
on the expected scope of diffusion of innovations and so does the growth rate of
the economy.

Extending Aghion & Howitt (1992) analysis to the possibility of stochastic and
partial intersectoral knowledge spillovers, allowed us to apprehend the issue of the
funding of research with more parsimony. We emphasized that the fact that the
Schumpeterian equilibrium may have a higher or a lower rate of growth than the
Pareto optimal allocation depends on the level of the expected scope of influence
of innovations. Accordingly, we underlined that the public tool dealing with the
externality inherent in R&D activity could consist in a subsidy as well as in a tax.
In particular, the wider the expected scope of knowledge, the more likely it will be
necessary to subsidize R&D activity.

This framework constitutes an attempt in the design of public policies aiming
at mitigating the externality triggered by R&D activity. A possible step forward
would be to introduce a public tool which distinguish between innovations with
narrow influence and those with a wide impact on the economy. This tool should
ideally depend on the actual scope of influence of innovations.
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8 Appendix

8.1 Law of Motion of Intermediate Good ω Inherent Knowl-
edge

When an innovation of intermediate good ω occurs, the induced increase in knowl-
edge is a linear function of Pω

t : Δχωt = σPω
t . Furthermore we assume that the

Poisson arrival rate of innovations for every intermediate good ω is λlωt, λ > 0.
Consider a time interval (t, t + Δt) and that, at instant t, the knowledge associated
to intermediate good ω is χωt. Thus χω t+Δt, the knowledge at instant t + Δt, is
a random variable which can take two values: χω t+Δt = χωt + σPω

t , with prob-
ability λlωtΔt (in this case, one innovation occurs during the time interval) or
χω t+Δt = χωt, with probability 1 − λlωtΔt (in this case, no innovation occurs dur-
ing the time interval). Hence we have that E [χω t+Δt] = λlωtΔt (χωt + σPω

t ) +
(1 − λlωtΔt) χωt = λσlωtP

ω
t Δt + χωt. We can rewrite this equality exhibiting the

Newton quotient of E [χωt]:

E [χω t+Δt] − χωt

Δt
= λσlωtP

ω
t

Letting Δt tend to zero we have E [χ̇ωt] = λσlωtP
ω
t , which gives the law of motion

of the average knowledge for any intermediate good ω ∈ Ω, as given by (5).2

8.2 Optimum

The social planner maximizes (11) subject to (1), (4), (5), (7), (8), (9) and (10).
The maximisation program can be written as follows:

Max U=
∫∞

0
ln(ct)e

−ρtdt subject to
{ct}t∈[0,∞[

{LY
t }t∈[0,∞[

{lωt}t∈[0,∞[, ω∈Ω

{xωt}t∈[0,∞[,ω∈Ω






Yt = (LY
t )1−α

∫
Ω

χωt(xωt)
αdω

xωt = yωt

χωt
, ω ∈ Ω

Yt = Lct +
∫

Ω
yωtdω

L = LY
t +

∫
Ω

lωt dω

χ̇ωt = λσlωtP
ω
t , ω ∈ Ω

Pω
t = p0χωt + pn

∫
Ωω χhtdh

+pW

∫
Ωω χhtdh, ∀ω ∈ Ω

where ct, LY
t , lωt and xωt , ω ∈ Ω, are the control variables, and χωt, ω ∈ Ω, the

continuum of state variables of the dynamic optimization problem29.
Before writing the corresponding hamiltonian, let us first combine the con-

straints. We reduce the problem to maximizing (11) subject to the three following
constraints:

1. Final output resource constraint (plugging (8) and (10) in (9)):

(LY
t )1−α

∫

Ω

χωt(xωt)
αdω = Lct +

∫

Ω

χωtxωtdω (31)

29Accordingly, note that the constraint relative to the law of motion of knowledge is in fact a
continuum of constraints.

23



2. Labor constraint:

L = LY
t +

∫

Ω

lωt dω (32)

3. A continuum of dynamic constraints relative to state variable:

χ̇ωt = λσlωtP
ω
t , ω ∈ Ω (33)

where Pω
t = p0χωt + pn

∫
Ωω χhtdh + pW

∫
Ωω χhtdh, ∀ω ∈ Ω

and p0 = 1 − pn − pW .

Denoting respectively by μt, νt and ζωt (ω ∈ Ω), the co-state variables associated
to constraints (31), (32) and (33), the Hamiltonian can be written as:

H = ln(ct)e
−ρt + μt

[

(LY
t )1−α

∫

Ω

χωt(xωt)
αdω − Lct −

∫

Ω

χωtxωtdω

]

+ νt

[

L − LY
t −

∫

Ω

lωtdω

]

+

∫

Ω

ζωt

[

λσlωt

(

p0χωt + pn

∫

Ωω

χhtdh + pW

∫

Ωω

χhtdh

)]

dω

The first-order conditions ∂H
∂ct

= 0 , ∂H
∂LY

t
= 0, ∂H

∂lit
= 0 (i ∈ Ω), ∂H

∂xit
= 0 (i ∈ Ω) and

∂H
∂χit

= −ζ̇it (i ∈ Ω) respectively yield30:

c−1
t e−ρt = μtL (34)

μt(1 − α)
Yt

LY
t

= νt (35)

ζitλσP i
t = νt, ∀i ∈ Ω (36)

μt

[
α(LY

t )1−αχit(xit)
α−1 − χit

]
= 0 , ∀i ∈ Ω (37)

μt

[
(LY

t )1−α(xit)
α − xit

]

+ λσ

(

p0ζitlit + pn

∫

Ωi

ζhtlhtdh + pW

∫

Ωi

ζhtlhtdh

)

= −ζ̇it, ∀i ∈ Ω (38)

From (37), one gets:

xit = xt = α
1

1−α LY
t , ∀i ∈ Ω (39)

Plugging (39) in (8), and using the definition of the whole disposable knowledge in
the economy (given by (1)), the final good production function can be rewritten
as:

Yt = α
α

1−α LY
t Kt, (40)

30Plus the usual transversality conditions.
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which gives:
gYt = gLY

t
+ gKt (41)

Moreover, plugging (39) in the final good resource constraint, (9) becomes Yt =

Lct +α
1

1−α LY
t Kt. Dividing both sides by Yt and using the previous expressions of xt

and Yt (respectively given by (39) and (40)), one obtains Lct/Yt = 1− α, yielding:

gYt = gct (42)

Finally, the first-order conditions (35) and (38) become respectively:

μt(1 − α)α
α

1−αKt = νt (43)

and
μt

ζit

(1 − α)α
α

1−α LY
t

+ λσ

(

p0lit + pn

∫

Ωi

ζht

ζit

lhtdh + pW

∫

Ωi

ζht

ζit

lhtdh

)

= −gζit
, ∀i ∈ Ω (44)

As in the standard literature, we consider the symmetric case in which the
quality of the intermediate goods and the quantities of labor used in each R&D
activity are the same, i.e. χωt = χt and lωt = lt, ∀ω ∈ Ω. Accordingly, one has Kt =
Nχt and LR

t = Nlt. Hence, under the symmetry assumption, gχωt = gKt , ∀ω ∈ Ω
and the pool of knowledge used by each R&D activity w ∈ Ω at each instant t is:

Pω
t = Pt =

(
p0 + pnθ + pW θ

)
χt =

E [θ]Kt

N
, ∀ω ∈ Ω (45)

Replacing in (5), one derives the following law of motion of particular knowledge
inherent in any intermediate good ω:

χ̇ωt = χ̇t = λσ
LR

t

N

E [θ]Kt

N
, ∀ω ∈ Ω

Consequently, one has gχωt = gχt =
λσE[θ]LR

t

N
, ∀ω ∈ Ω. Moreover, since gχωt =

gKt , ∀ω ∈ Ω, the growth rate of the whole disposable knowledge in the economy is:

gKt =
λσE [θ] LR

t

N
(46)

Furthermore, (36) can be rewritten as:

ζit
λσE [θ]Kt

N
= νt, ∀i ∈ Ω (47)

Therefore, ζit = ζt, ∀i ∈ Ω. From (43) and (47) one gets μt

ζt
= λσE[θ]

(1−α)α
α

1−α N
. Log-

differentiating this expression yield:

gζt = gμt (48)

Finally, using the previous results and the labor constraint (7), one can rewrite
(44) as:

−gζt = λσE [θ]
LY

t

N
+ λσE [θ]

LR
t

N
⇔ −gζt = λσE [θ]

L

N
(49)
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Log-differentiating (34) yield gct + ρ = −gμt ; combining with (48) and (49), we
derive the optimal growth rate of per-capita consumption:

gopt
c =

λσE [θ] L

N
− ρ (50)

The optimum is given by equations (7), (39), (41), (42), (46) and (50). At
steady-state, all variables grow at constant rate.

In particular gKt is constant at the steady-state, therefore LR
t is constant (cf.

(46)) and, so is LY
t (since LY

t + LR
t = L). The steady-state optimum is thus

characterized by the following system of equations:






gopt
c = λσE[θ]L

N
− ρ

gopt
c = gopt

Y = gopt
χ = gopt

K

gopt
K = λσE [θ] LRopt

N

LY opt + LRopt = L

xopt = α
1

1−α LY opt

After some trivial computations, one gets:






gopt
c = gopt

Y = gopt
χ = gopt

K = λσE[θ]L
N

− ρ

LRopt = L − ρN
λσE[θ]

LY opt = ρN
λσE[θ]

xopt = α
1

1−α ρN
λσE[θ]

2

8.3 A General Framework with Non-Stochastic and (Pos-
sible) Partial Intersectoral Knowledge Spillovers

Removing the uncertainty in the scope of diffusion of innovations and allowing for
(possibly partial) intersectoral knowledge spillovers one gets a general framework
of Schumpeterian growth in which it is possible to consider various extent to which
knowledge diffuses across the economy R&D activities. Formally, it corresponds to
a version of the model in which θ is a constant random variable (thus, in which
E [θ] = θ). Accordingly, if one set p0 = 0 and θ = θ = θ ∈ ]1; N ]31, there is
only one type of neighborhood of diffusion of innovations: Ωh = Ωh = Ωh ≡
[h − θ/2 ; h + θ/2] , ∀h ∈ Ω. Consequently, rewriting (4), one obtains that, for any
R&D activity ω ∈ Ω, the pool of knowledge in which innovations draw themselves
on at each instant t reduces to:

Pω
t =

∫ ω+θ/2

ω−θ/2

χht dh , ∀ω ∈ Ω , θ ∈ ]1; N ] (51)

31Instead of
(
p0 = 0, θ = θ = θ

)
one can equivalently choose the sets of parameters(

pn = 0, pW = 1, θ = θ
)

or (pn = 1, pW = 0, θ = θ).
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In the symmetric case, one has:

Pω
t = Pt =

∫ ω+θ/2

ω−θ/2

Kt

N
dω =

θKt

N
, ∀ω ∈ Ω , θ ∈ ]1; N ]

In the model with (possible) partial intersectoral spillovers, the steady-state
symmetric equilibrium growth rate of the economy is increasing in the innovations’
scope of diffusion, that is in the intensity of knowledge spillovers:

ge
c = ge

Y = ge
K = ge

χ = ge(s,T) =
σθ (λαLT− ρNs)

N (αT+ s)
, θ ∈ ]1; N ] .

If s = α and T = T∗ = θ
(

λσL
ρN

+ σ
)
− 1, then the steady-state symmetric equilib-

rium is optimal. The repartition of labor is:

LRopt = L −
ρN

λσθ
and LY opt = L − LRopt =

ρN

λσθ
,

the quantity of each intermediate good ω used is:

xopt
ω = xopt = α

1
1−α LY opt =

α
1

1−α ρN

λσθ
, ∀ω ∈ Ω ,

and the growth rates are:

gopt
c = gopt

Y = gopt
K = gopt

χ = gopt =
λσθL

N
− ρ .
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