
 10-144 

Research Group: Macroeconomics March 2010, 

Revised January 2011 

A “quantized” approach to 
rational inattention 

GILLES SAINT-PAUL 



A "quantized" approach to rational inattention

Gilles Saint-Paul�

Toulouse School of Economics

January 10, 2011

ABSTRACT
In this paper, I propose a model of rational inattention where the choice

variable is a deterministic function of the exogenous variables, and still only a
�nite amount of information is being used. This holds provided the choice vari-
able is discrete rather than continuous; that is, the mapping from the realization
of the exogenous variables to the endogenous ones is piece-wise constant.
Thus, limited information is now a source of lumpiness in behavior, rather

than a source of noise. A central result is that the mutual information between
the exogenous variable and the endogenous one is simply equal to the entropy,
in the usual discrete sense, of the endogenous variable.
The approach is illustrated with two applications: a general linear-quadratic

problem with a uniform distribution, and a simple static model of price-setting
where individual price setters face aggregate monetary shocks and idiosyncratic
productivity shocks.
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1 Introduction

In a series of seminal papers, Sims (2003,2006) has proposed a novel approach

to bounded rationality. It is based on the view that people face information

capacity constraints de�ned using Shannon�s (1948) theory of information.

More precisely, the number of bits that one can use to process the exogenous

variables (like income) into the endogenous ones (like consumption) is limited.

That informational requirement is de�ned by Shannon�s mutual information

concept, which tells us the amount of information obtained on a variable

when one observes another, correlated one.

As a consequence of that information constraint, the endogenous variable

is noisy compared to the optimal behaviour that would prevail absent an in-

formational constraint. Thus, is many applications (such as Luo (2008), who

studies a consumption problem, and the papers cited below on price-setting)

the agents rationally allocates this noise so as to maximize its utility subject

to the information capacity constraint. The more noisy is the endogenous

variable in a given zone of the distribution of exogenous variables, the less the

agent pays attention to that zone and the greater the informational capacity

left for processing other zones.

As pointed out by Sims, the reason why noise must inevitably arise is that

if the distribution of the exogenous variables is continuous, then an in�nite

amount of information would be needed to process a deterministic mapping

from the exogenous variables into the endogenous ones.

In some settings, the noise is inherent to the problem of measuring a signal

and the agents�informational capacity is used to reduce such a noise. The

rational inattention theory then tells us, in some sense, how to optimally

design the noise so as to get the highest possible welfare subject to the

information capacity constraint.

In other settings, though, the result that behaviour adds noise to the

exogenous variables is unpalatable. If the realization of the latter is perfectly

observed then the agent would have to generate the noise arti�cially, but
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then it is problematic to ignore the information needed to generate such

noise. It would then be more reasonable to assume that the behaviour of

the agent remains deterministic while the information processing constraint

prevents it from targeting the optimal behaviour. However, that is not what

is happening in the rational inattention literature.

In this paper, I propose an alternative approach to that issue. The idea

is that the choice variable may be a deterministic function of the exogenous

one and still make use of a �nite amount of information if the choice variable

is discrete rather than continuous; that is, the mapping from the realization

of the exogenous variables to the endogenous ones is piece-wise constant,

re�ecting the fact that the agent can only elect a �nite number of values for

the choice variable, because of the informational constraint.

Thus, limited information is now a source of lumpiness in behavior, rather

than a source of noise. The state space faced by the agent is partitioned into

clusters and all points in the same cluster yield the same action. Of course,

limited information is not the only source of lumpy behavior; it is well known

that there are other sources, such as �xed or linear adjustment costs. But

the approach proposed here yields many potentially testable predictions: In

general, we expect that the greater the information processing ability of an

economic entity, the less lumpy its behavior.

Another central result (Section 2) is that the mutual information be-

tween the exogenous variable and the endogenous one is simply equal to the

entropy, in the usual discrete sense, of the endogenous variable. That is,

the mutual information does not depend on the exact mapping from the ex-

ogenous variable to the endogenous one but only on the probability weights

of the (discrete) distribution of the latter. This remedies some weaknesses

of the continuous notions of entropy which is used in the literature, which

makes it impossible to separate the, probability weights of the variables from

their actual values.

Sections 3 and 4 illustrate the kind of results that my approach would

deliver by applying it to two simple examples: a general linear-quadratic
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problem with a uniform distribution, and a simple static model of price-

setting where individual price setters face aggregate monetary shocks and

idiosyncratic productivity shocks. This model delivers a lumpy price-setting

behavior where the number and size of clusters depends on the dispersion of

shocks and the �rm�s information processing capacity. It is consistent with

recent micro-level evidence on reference prices found by Eichenbaum et al

(2008).

The literature that has studied this issue (in particular, Mackowiak and

Wiederholt (2009a,b), Paciello (2007)) uses Sim�s noisy approach and has

shown that under rational inattention prices were "sticky" in the sense that

the aggregate price level was not reacting one for one to the aggregate money

stock1. However, prices are not lumpy: even a small monetary shock will

generate a small (but non neutral) response of individual prices (one notable

exception is Moscarini (2004))2. Here, in contrast, rational inattention leads

to lumpy price-setting behavior; for prices to change, the shocks faced by

a �rm must be large enough to trigger a move to a di¤erent cluster. As

discussed in Section 5, this makes a substantial di¤erence. In the noisy

approach, it is optimal to react less than one for one to monetary shocks

because one can only react to a noisy measure of those shocks, as in the

Lucas (1972) misperception model. Consequently, such underreaction also

prevails at the aggregate level. Here, though, no noise is introduced and

stickiness arises at the individual level because the same price is charge within

a cluster of realizations of the individual price setter�s relevant shock. But,

as in Caplin and Spulber (1986), such stickiness is greatly reduced in the

aggregate because of the contribution of the �rms which move across clusters

1The same result is reached by Saint-Paul (2005) in a world where �rms are irrational
and experiment alternative price-setting rules, while exerting local spillovers on each other.

2In that paper, lumpiness arises for di¤erent reasons than here. Time is continuous
and there is a constraint on the �ow of information processed by the agent. the exogenous
variable follows a di¤usion process. A noisy signal of that variable can be obtained at a
cost. The cost structure of information is such that the signal will be drawn infrequently,
at discrete dates. Thus there is lumpiness "in time" rather than in the state space.
Consequently, the model is similar to that of Mankiw and Reis�s (2002) sticky information
paper.
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as a result of a monetary shock.

It is important to note that while lumpiness is the only way to reconcile

limited mutual information with deterministic behavior, the converse is not

true. Depending on the objective function and the distribution of noise, the

support of the endogenous variable may either be discrete or continuous, as

recently found by Matejka (2008) and Matejka and Sims (2010), who provide

some partial but powerful su¢ cient conditions for discreteness to arise. Yet,

even in this case, it is always optimal to have a noisy behaviour, so that the

implications for aggregate price stickiness will resemble those of Mackowiak

and Wiederholt (2009a).

Section 6 provides a more general discussion and concludes.

2 Continous and discrete entropy and mutual
information

It is somewhat important to realize that there are two di¤erent concepts of

entropy. For a discrete distribution with n outcomes and probabilities pi;

i = 1; :::; n; we may de�ne entropy as

S = �
nX
i=1

pi log pi:

On the other hand, for a continuous distribution with density f(x); we

may de�ne entropy as

H(f) = �
Z
f(x) log f(x):dx:

The reason why the two concepts do not coincide is as follows. A discrete

distribution is always the limit of a sequence of continuous distributions,

as they become more concentrated around the discrete outcomes. However,

the continuous entropy H of those approximations does not converge to the

corresponding S: Instead, it converges to �1.
Take for example the extreme case where x = 0 with probability 1.

Clearly, S(x) = 0: This discrete distribution is the limit of the continuous one
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de�ned by density f"(x) = f(x=")="; for any density f() over (�1;+1);
which is regular and has f(0) > 0; as " goes to zero (in terms of distribution

theory, these distributions converge to a Dirac function �(x)). Furthermore,

H(f") = H(f) + log ";

so that

lim
"!0

H(f") = �1:

Entropy is lower, the more concentrated the distribution. For both dis-

crete and continuous distributions, the most concentrated one is when all the

mass is at a single point. But the lower bound of S is zero, while that of H

is -1:

Let us now turn to mutual information, which plays a key role in the

theory of rational inattention. We consider two random variables x and y:

Their densities are g() and f(); respectively. For any realization of x; we

denote by f(y j x) the conditional distribution of y and its entropy is

H(y j x) = �
Z
y

f(y j x) log f(y j x):dy:

This can be averaged over x; which allows to de�ne the conditional en-

tropy of y :

Hx(y) =

Z
x

H(y j x)g(x)dx:

Now it can be easily shown that the entropy of the joint distribution of

x and y; H(x; y); is such that3

H(x; y) = H(x) +Hx(y) = H(y) +Hy(x):

Consequently, we have that

H(y)�Hx(y) = H(x)�Hy(x) =M(x; y);

3In fact, that property is one of the axioms imposed by Shannon to derive his functional
form for entropy.
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which is the mutual information between x and y: This quantity tells us

how much knowledge of one variable reduces the entropy of the other, on

average. If the two variables are independent, then M(x; y) = 0: On the

other hand, if one had y = x; then the joint distribution is degenerate and

f(y j x) becomes equal to the Dirac function �(y�x): Hence all the H(y j x)
are equal to �1 and so is Hx(y): We then have that M(x; y) = +1: This

means that knowledge of x gives us an in�nite amount of information about

y: The same conclusion would be reached if instead of y = x; there was any

other mapping which allowed to retreive one variable from the other.

The theory of rational inattention, as proposed by Sims, assumes that

an agent receives a signal y (say, income), which must be processed into a

decision variable x (say, consumption): The agent�s ability to process infor-

mation is limited and that limit takes the form of a constraint on the mutual

information between the two variables:

M(x; y) � K:

Since M(x; y) = +1 if x is a deterministic function of y; this constraint

cannot be matched. The endogenous variable must be related to the ex-

ogenous one in a noisy fashion for the information capacity constraint to be

matched. In other words, processing a continuum of real values with perfect

precision requires an in�nite amount of information.

I now show that there is an important exception to that principle, and

this is the case when x; while being a deterministic function of y; only takes

a �nite number values. There is then no longer a mapping from y to x:

While x can be retreived from y; the converse is not true. In such a case, the

mutual information between x and y remains �nite, and is in fact equal to

the discrete entropy S of the random variable x:

Let us consider a collection of values of x; X = fx1; :::; xng; and assume
that any y is assigned to one of those values, called x(y): For any x 2 X; we
de�ne Tx = fy; x(y) = xg: To avoid manipulating in�nite quantities, I will
consider my deterministic assignment as the limit, for "! 0; of the random
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variable x de�ned by its conditional distribution:

f"(x j y) =
1

"
f̂

�
x� x(y)

"

�
: (1)

Here again, f̂() is any regular density such that f̂(0) > 0: We are again

in a situation where the conditional of x is a Dirac, now around x(y); and

we approximmate it by a density which becomes increasingly concentrated

around x(y): To �x ideas, one can just take the standard normal density for

f̂():

Then the following can be proved:

Theorem 1 � Let M(") be the mutual information between x and y if

x is distributed according to (1): Let S(X) = �
X
i

Pi logPi be the discrete

entropy of the random variable whose realization is xi; with corresponding

probability Pi = F (Ti): Then

lim
"!0

M(") = S(X):

Proof �See Appendix.

The conditional entropy of x, if x is distributed as f"; is

Hy(x; ") = �
Z
y

f(y)

Z
x

1

"
f̂

�
x� x(y)

"

�
log

�
1

"
f̂

�
x� x(y)

"

��
dxdy

= �
Z
y

f(y)

Z
z

f̂ (z) log

�
1

"
f̂ (z)

�
dzdy

= H(f̂) + log ":

So, clearly, lim"!0Hy(x; ") = �1:

Consider now the entropy of x; given "; denoted by H(x; "): The uncon-

ditional density of x is

g"(x) =

nX
i=1

1

"
f̂(
x� xi
"

)F (Ti):

7



Thus,

H(x; ") = �
Z
x

g"(x) log g"(x):dx

= �
nX
i=1

Z
x

1

"
f̂(
x� xi
"

)F (Ti) log

�
1

"
f̂(
x� xi
"

)F (Ti)

�
dx

= �
nX
i=1

Z
z

f̂(z)F (Ti) log

�
1

"
f̂(z)F (Ti)

�
dz

= H(f̂) + log(") + S(X);

where S(X) is the discrete entropy of the random variable whose real-

ization is xi; with corresponding probability pi = F (Ti): Thus H(x; ") also

converges to �1 when " becomes nil, however, the mutual information re-

mains �nite and

M(x; y; ") = S(X):

This is independent of " and equal to the discrete entropy of the random

variable xi: Obviously, it remains equal to that as "! 0: Hence the mutual

information of our assignment process is �nite.

3 The linear-quadratic case

I now apply these ideas to the linear-quadratic case. In its simplest case, the

agent receives a continuous signal y with density f(y) and associated measure

F (M) =
R
M
f(y)dy; and wants to approximate it (in the least squares sense)

by a deterministic function x(y) which is constant over each subset of a �nite

partition of the domain of y. Thus, using the preceding derivation for mutual

information in the discrete case, we can formulate the problem as follows (in

the sequel I will use natural logarithms in the de�nition of entropy. Thus K

is expressed in bits / ln 2):

(P) : min
n;S=(x1;:::;xn);x():R!S

E(x(y)� y)2

s:t:�
nX
i=1

F (x�1(xn)) lnF (x
�1(xn)) � K
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A �rst property, which is unsurprising given the convexity of the loss

function, is that the optimum must be such that the sets x�1(xn); denoted

by Sn, have a convex interior.

Lemma 1 �Consider a solution to (P). Then C(�Sn) = �Sn[@�Sn is convex.
Proof �see Appendix.

Lemma 1 tells us that the Sn must be intervals, except for closed subsets

of measure zero. In practice those subsets are irrelevant so we will focus on

solution that are piece-wise constant.

Lemma 2 �xn = E(y j y 2 Sn): Therefore x(y) is non decreasing.
Proof: the �rst part is straightforward from the optimal choice of xn: The

second derives from the fact that the Sns are intervals except for subsets of

measure zero.

I now focus on the case where f() is uniform over [0; 1]: It is then possible

to fully characterize the equilibrium:

Theorem 2 �Assume f() is uniform. Then an optimal policy is such that

(i) The interval [0; 1] is partitioned into N adjacent intervals [yn; yn+1]; y0 =

0; yN = 1:

(ii) N = INT+(eK); where INT+(z) is the smallest integer m such that

z � m:

(iii) N � 1 intervals have the same length �; where � is the smallest

solution to

�(N � 1)� ln�� (1� (N � 1)�) ln(1� (N � 1)�) = K;

while the remaining interval has length 1� (N � 1)�:
(iv)

� < 1=N < 1� (N � 1)�

(v) For y 2 [yn; yn+1]; x(y) = xn =
yn+yn+1

2

(v) The resulting value function is V = (N � 1)�3 + (1� (N � 1)�)3
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(vi) The arrangement of those intervals is irrelevant.

Proof � See Appendix.

Note that if capacity K is such that there is an integer number of bits,

then K = k ln 2 with k integer, and eK = 2k: In this important special case,

the optimal solution, quite naturally, consists in splitting the interval into 2k

intervals, since one needs exactly k bits to encode the actual interval to which

y is assigned. Furthermore, in this limit case where the capacity constraint is

marginally binding for N = 2k, all intervals will have the same length 1=2k:

If K= ln 2 is not integer, then partitioning into equal intervals is not opti-

mal. Instead, we have one more interval than the largest number of intervals

that would allow us to have an equal partition while meeting the informa-

tional constraint. We pick N � 1 equally sized intervals of length �; and
the remaining one has length �0 = 1 � (N � 1)� > �: � is such that the

informational constraint binds with equality.

4 An application to price-setting

We now discuss the implications of the approach derived above for the prob-

lem of price setting and the e¤ects of monetary policy.

Let us consider the following static version of the standard new Keynesian

model4. There is a continuum of consumers-yeoman farmers of total mass 1.

They are indexed by i and they monopolistically supply an atomistic good

with the same index i: Thus there is also a continuum of goods of mass 1.

The utility function for individual j is

Vj = E ln

"�Z 1

0

c�ijdi

� 1
2�
�
mj

p

�1=2
X� � zjx

1+�
j

#
;

where E is the expectations operator, cij consumption of good i; mj money

holdings, p the aggregate price level, zj an idiosyncratic supply shock and xj

the supply of good j: The term in X� is a negative congestion externality,

where X is aggregate real output (de�ned below) and  � 0: This will

4See Weitzman (1985), Blanchard and Kiyotaki (1987).
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allow me to pick the value of  so as to focus on a special case which is

computationally much simpler, while what is lost by doing so is independent

of the point being illustrated here.

For simplicity, the aggregate price level that de�ates money holdings in

the utility function is assumed to be equal to the price index that is dual to

the aggregate consumption index

cj =

�Z 1

0

c�ijdi

� 1
�

:

p =

�Z 1

0

p
� �
1��

i di

�� 1��
�

:

The usual derivations concerning demand functions and aggregation are

made in the Appendix. We can show that each yeoman farmer maximizes

the indirect utility function given by:

E ln

�
p
� �
1��

j � �jp
� 1+�
1��

j

�
; (2)

where �j is a composite shock de�ned by

�j = zjM
�+ p1� +

��
1�� (3)

is a composite shock and the second term is treated as constant by the agent

since it is independent of his pricing policy.

From now on, I will assume that  is such that the composite shock does

not depend on the aggregate price level:  = 1 + ��=(1 � �): Thus, �j =

zjM
�+1��
1�� ; spillovers in price formation across �rms are shut down, which

greatly simpli�es the analysis. It is then useful do de�ne  as  = �+1��
1�� :

As a benchmark, we can derive the �exible price equilibrium with no

informational constraint where a di¤erent price is set for each realization of
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�j: The FOC for price-setting is equivalent to

pj =

�
(1 + �)�j

�

�1=
(4)

=

�
1 + �

�

�1=
z
1=
j M:

Integrating we get the aggregate price level:

p =M ~z1=
�
1 + �

�

�1=
;

where ~z is an aggregate of z de�ned as

~z =

�Z 1

0

z
� �
1��+�

j dj

�� 1��+�
�

:

Thus money is neutral, the aggregate price level is proportional to M;

and real aggregate output is constant and equal to

X =
Y

p
=
M

p
=

�
~z
1 + �

�

��1=
:

Output is lower, the larger the aggregate cost index ~z; the larger the

elasticity of the disutility of e¤ort �; and the lower the elasticity of demand

for the individual goods, i.e. the larger the markup over marginal cost 1=�:

The New Keynesian literature takes this framework and imposes some

nominal price rigidity. I now introduce capacity constraints in processing in-

formation along the lines discussed above and derive the associated behaviour

of output and the price level.

Under rational inattention, people do not have the information processing

ability to pursue a rule like (4) for any value of �j: Instead they are going to

pursue a rule such that the mutual information between pj and �j satis�es

a capacity constraint. Let us assume that, as in the above analysis, they

pursue a discrete deterministic rule and partition the support of �j into

intervals Ik = [��k; ��k+1] such that a constant value of pj; denoted by �pk, is

pursued within each interval. We assume k varies between 0 and N +1; with
��0 = 0 and ��N+1 = +1:
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The distribution of the composite shock � has density

g(�) =

Z +1

0

f(M)M�h(�M�)dM: (5)

Individuals select the number of intervals, their bounds and their associ-

ated price levels so as to maximize:

max
N;f��k;k=1;:::;Ng;f�pk;k=0;:::;Ng

U =

NX
k=0

Z ��k+1

��k

g(�) ln

�
�p
� �
1��

k � ��p
� 1+�
1��

k

�
d�; (6)

subject to the information capacity constraint

�
NX
k=0

 Z ��k+1

��k

g(�)d�

!
ln

 Z ��k+1

��k

g(�)d�

!
� K: (7)

An equilibrium is therefore a set fN; f��k; k = 1; :::; Ng; f�pk; k = 0; :::; Ngg
which maximizes (6) subject to (7). The solution to this problem then

delivers the aggregate price level as a function p(M) of the realization of

the aggregate money stock. Given M; a price-setter j is in interval Ik i¤
��k � zjM

 < ��k+1; which occurs with probabilityH(��k+1M
�)�H(��kM�):

Therefore, the aggregate price level p(M) is given by

p(M) =

 
NX
k=0

�
H(��k+1M

�)�H(��kM
�)
�
�p
� �
1��

k

!� 1��
�

; (8)

where by convention H(+1) = 1: This in turn allows to compute output

X = M=p(M): Note that the assumption made on  guarantees that the

environment faced by each price-setter only depends on the exogenous vari-

ables and not on the prices set by other agents5. This greatly simpli�es the

computations.

I solve for such an equilibrium numerically, performing global optimiza-

tion on all the possible partitions of the domain of � into a �nite number of

5Otherwise, the shock � and its distribution g() would themselves depend on the aggre-
gate price level, and there would be no closed-form formula such as (8) for the latter�one
would then need to search for a �xed point equilibrium rather than just an optimum.
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intervals which match the informational capacity constraint. To keep things

tractable the possible values for the jump points have been discretized6.

Table 1 reports some summary statistics for the simulations. I start from

a benchmark numerical exercise where both f() and h() are log-normal, with

E lnM = E ln z = 0 and Var(lnM) = Var(ln z) = 1: The other parameters

were � = 1 and � = 0:5:

I �rst start by simulating this economy for K = 1:2 and I gradually

loosen the information capacity constraint by increasing K: Table 1 reports

the corresponding number of clusters along with the variance of log output.

Figure 1 reports the behavior of output as a function of the monetary shock

M:We see that for a wide range of values of the money stock the curve is quite

�at: despite the small number of clusters, heterogeneity due to idiosyncratic

shocks is enough to yield near neutrality at the aggregate level, a not unusual

result (Caplin and Spulber (1987), Caballero and Engel (1993), Burstein and

Hellwig (2007)). The curve is tilda-shaped: at small (resp. large) values of

M;most �rms charge their minimum (resp. maximum) price, and an increase

in M boosts output. For intermediate values, a composition e¤ect creates

a force in the opposite direction, as some �rms move to a cluster with a

higher price. This composition e¤ect creates a zone where money growth is

contractionary, which also happens in other models of price rigidity.

Figure 2 compares the �atter portion of the output curve between a low

information (K = 1:2) and a high information (K = 1:5) regime. We see

that output is substantially �atter in the latter case. Nevertheless, as Table

1 shows, for local increases in capacity, the variance of output may well go

up.

It is also interesting to look at the distribution of individual prices. They

are reported in Figures 3 (for K = 1:2) and 4 (for K = 1:6): The dimension

6More precisely, there are �N possible values of ��k separated by a probability weight
of 1=( �N + 1); i.e. if those eligible critical values are denoted by ~�j ; j = 1; ::::; �N; thenR ~�j+1
~�j

g(�)d� = 1=( �N + 1):

In the simulations, one has picked �N = 20:

14



of each rectangle along the y-axis is the price and along the x-axis it is the

probability weight associated with the corresponding interval of values of �:

We see that the probability weights on each price are decreasing with the

price, meaning that price-setters are devoting more attention to situations

where the required price is higher. This is presumably due to the marginal

disutility of labor schedule: the utility cost of not paying attention to these

states is high because if one charges too low a price the labor input must be

very high7.

Entropy #of clusters Variance of output
1.2 4 0.17
1.3 5 0.18
1.4 5 0.187
1.5 5 0.1
1.6 6 0.1
Table 1.

Table 2 analyses the e¤ect of an increase in the variance of monetary

shocks on the distribution of individual prices for K = 1:4: We compare the

benchmark situation to one such that Var(lnM) = 2 and E(lnM) = �0:5
(Implying that E(M) is the same as in the benchmark). We see that the

increase in the variance of money shocks compells price-setters to devote

more attention to high realization of those shocks8: the upper-tail of the

distribution of the composite shocks is split into more, and �ner, clusters,

while the �rst interval is coarser. Also, the variance of log output increases

from 0.19 to 0.49.

Table 3c performs the reverse exercise of dividing the variance of monetary

shocks by 2, while again adjusting the mean log ofM to hold E(M) constant.

7This clearly rests on my assumption that demand must be met; this might not remain
realistic for very high realizations of the demand shock.

8That is because of the skewness of the log-normal distribution along with the increasing
marginal disutility of labor property. But for even larger increases in the variance of
money shocks, the price setters will also spend information capacity on the lower tail of
the distribution. Thus, for Var(lnM) = 4; cluster 1 has a minimal weight of 0.048.
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We see that the number of clusters is the same, and so is their size, but the

order is changed: the second cluster gets the biggest weight, while more

attention is paid to low realizations of the shock than before. The intuition

for this result is unclear.

Cluster Price Weight
1 0.95 0.43
2 1.96 0.24
3 3.74 0.19
4 7.0 0.095
5 23.63 0.048

Table 2a �K = 1:4; benchmark.

Cluster Price Weight
1 0:76 0:52
2 1:67 0:19
3 2:84 0:095
4 4:99 0:095
5 8:66 0:048
6 47:4 0:048

Table 2b �K = 1:4; Var(lnM) = 2 and E(lnM) = �0:5.

Cluster Price Weight
1 0:81 0:19
2 1:93 0:43
3 3:65 0:24
4 6:02 0:095
5 13:45 0:048

Table 2c �K = 1:4; Var(lnM) = 0:5 and E(lnM) = 0:25

5 Implications for rigidity

As the preceding section makes clear, the quantized model only implies a

moderate degree of price rigidity at the aggregate level. By contrast, in a

16



model where noisy behavior is allowed for, as that of Mackoviak and Wieder-

holt (2009a,b), the aggregate price level reacts less than one for one to mon-

etary shocks throughout the whole distribution of those shocks. The reason

is that this class of models is similar to the Lucas (1972, 1973) misperception

model. Information capacity constraints preclude price-setters from reacting

to the monetary shock. Instead, they can only react to a noisy signal of the

monetary shock. Given that, their optimal inference about the true realiza-

tion of the money stock will react less than one-for-one to that money stock,

as implied by Bayes�s Law. The only di¤erence between the Lucas misper-

ception model is that the noise is now designed optimally by the price-setters
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so as to meet the information capacity constraint.9 In the aggregate, all in-

dividual prices react less than one-for-one to the money shock, and so does

the aggregate price level. These considerations apply to any model where

9As an aside, it is interesting to note that the reaction of prices to monetary shocks
is optimal conditional on the existence of noise. In other words, it is not the informa-
tion capacity constraint which is constraining that reaction to be suboptimally low, but
rather the noise itself (of course the noise is also a by-product of the information capacity
constraint). To see this, let us get back to the standard Gaussian linear-quadratic problem:

V = minE(x� y)2:

Assume y � N(0; �2y) and x = ay + "; where a is a reaction coe¢ cient and " the
endogenous noise, assumed normal with zero mean and variance �2" and orthogonal to y:
An optimality condition for x is

E(y j x) = x: (9)

This optimality condition pins down the correlation between x and y and it would hold if

one observed an exdogenous noisy signal of y: In our context, we have E(y j x) = a�2y
�2"+a

2�2y
:

Therefore the optimality condition (9) is equivalent to

a(1� a) = �2"
�2y
: (10)

The value of the objective function is V = (a � 1)2�2y + �2"; The mutual information
between x and y is

M(x; y) =
1

2
(log(a2�2y + �

2
")� log(�2")): (11)

Thus our problem is equivalent to maximizing V subject to

a2�2y
�2"

� K: (12)

Given this constraint, which involves a; it is not a priori obvious that the optimality
condition (9) should hold. In contrast, if x and y have a discrete distribution, M(x; y)
only depend on the probability weights of their joint distribution, and it is always possible
to pick the values of x while leaving M(x; y) unchanged so as to match (9). That M(x; y)
is not independent of the values of x because of the presence of a in (11) is a weakness of
the entropy concept applied to continuous distributions.
Nevertheless, since one picks both �" and a optimally given the constraint (12), one has

one degree of freedom left to match the optimality condition (9)-(10), which turns out to
hold at the optimum. Indeed, at the optimum a = K

K+1 and �
2
" =

K
(K+1)2�

2
"; implying

that (10) holds.
This proves that the underreaction of x to y does not come from a failure of (9) that

would be the price to pay for matching the information capacity constraint. If this were the
case, it would be an artifact of the use of continuous entropy. Instead, this underreaction
is optimal given the presence of (endogenous) noise.
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agents are allowed to introduce noise in their policy functions in order to

save on information capacity. In particular, underreaction would also arise if

the distribution of the exogenous variable (y) were purely discrete or if that

of the endogenous variable (x) turned out to be discrete yet noisy conditional

on y as in Matejka and Sims (2010).

On the other hand, in the quantized model developed here, noisy policies

are precluded. The information capacity constraint is matched by lumping

the realizations of y in clusters within which the same policy is pursued. The

actual value of x within each cluster does not a¤ect the mutual information

between x and y; since, as we have seen, it only depends on the probability

weights of the discrete random variable x: Therefore, within each cluster

one will pick the optimal value of x conditional on being in that cluster,

ignoring the information capacity constraint. Consequently, if, in the absence

of information constraints, it is optimal for x to react one-for-one to y; this

will remain so in the quantized solution when one moves across clusters.

In the aggregate, money neutrality tends to arise in a similar fashion as in

Caplin and Spulber (1987): the large price adjustment of �rms that are near

the frontier between two clusters tends to o¤set the price inertia of those

�rms that remain in the same cluster. Thus the model, resembles a menu

cost model rather than the Lucas misperception model, and has much less

aggregate price stickiness.

6 Discussion

The general message of this paper is that information processing constraints

yield lumpy behavior. Thus, when the exogenous variables change, inat-

tention results in inaction, while in the standard approach it is associated

with inadequacy, i.e. embodies excess noise. In both cases, the endogenous

variable does not react enough to the exogenous one, although here there

will be a jump if one crosses the frontier between clusters.

The existence of lumpiness in the adjustment of economic variables has

19



been documented in a number of areas. For example, Doms and Dunne

(1998), studying investment at the plant level, �nd that "Many plants oc-

casionally alter their capital stocks in lumpy fashions. Of the plants in a

balanced panel, over half experience a capital adjustment of at least 37 % in

one year, and by 50% in two consecutive years". In the area of price setting,

Klenow and Kryvstov (2008) �nd (table III) that individual price changes are

usually large, with a mean size of 14 %. Dhyne et al. (2006) report similar

�ndings, along with substantial heterogeneity in the degree of lumpiness of

price adjustment across sectors. More recently, Eichenbaum et al. (2008),

using scanner data from the retail trade sector, �nd that �rms pick their

prices among a number of �nite "reference" prices, and that the evidence is

consistent with the view that it is not costly to change prices as long as the

new price remains a reference price. This is exactly what happens in the

model described above. On the other hand, reference prices change infre-

quently, which may be interpreted as the outcome of a costly reoptimization

process in light of perceived changes in the underlying distribution of shocks

or in the technology for processing information.

Finally, evidence of lumpiness in employment can be found in Davis et al

(1996) or Caballero et al. (1997). The latter, in particular, found that the

distribution of employment changes is typically bimodal.

Of course, rational inattention is not the only reason why there could

be lumpiness. The above literature has mostly focused on �xed and linear

adjustment costs and rational inattention and adjustment costs are not mu-

tually exclusive mechanisms. The rational inattention mechanism may be

of particular interest when large adjustment costs are implausible, as in the

area of price setting. Furthermore, a range of novel predictions may be gen-

erated regarding the determinants of lumpiness: The greater an economic

agent�s ability to process information, the less lumpy its behaviour. Thus

one may speculate that advanced in information technologies have reduced

lumpiness10, or that �rms with a greater fraction of highly skilled workers

10This is the message of the empirical study by Bartel et al. (2005) inthe space of
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have less lumpy behavior �this may help explain, for example, the �nding by

Doms and Dunne (1998) that smaller plants have a more lumpy adjustement,

if one is willing to believe that smaller plants employ fewer skilled workers,

or by Dhyne et al (2006, �g. 1) that some sectors (like gasoline) have much

less lumpy price adjustment than others (like haircuts).

product diversity.
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APPENDIX

Proof of Theorem 1.

We have that

M(") = H(Y ; ")�HX(Y ; "):

Let us compute Hx(y; "): We denote by p(y) the distribution of y and by

g(x) =
R
y
f"(x j y)p(y)dy the unconditional distribution of x: By Bayes�s law

the conditional distribution of y is f"(y j x) = f"(xjy)p(y)
g(x)

: Therefore we have

that

Hx(Y ; ") =

Z
x

�
�
Z
y

f"(x j y)p(y)
g(x)

log
f"(x j y)p(y)

g(x)

�
g(x)dx

=

Z
x

�
�
Z
y

f"(x j y)p(y) log
f"(x j y)p(y)

g(x)

�
dx

=

Z
x

�
�
Z
y

1

"
f̂

�
x� x(y)

"

�
p(y)

�
log

�
1

"
f̂

�
x� x(y)

"

�
p(y)

�
� log

�Z
u

1

"
f̂

�
x� x(u)

"

�
p(u)du

��
dy

�
dx

= I1 + I2;

where

I1 = �
Z
x

�Z
y

1

"
f̂

�
x� x(y)

"

�
p(y) log

�
1

"
f̂

�
x� x(y)

"

�
p(y)

�
dy

�
dx

and

I2 =

Z
x

�Z
y

1

"
f̂

�
x� x(y)

"

�
p(y)dy

�
log

�Z
u

1

"
f̂

�
x� x(u)

"

�
p(u)du

�
dx:

Let Hn(Y ) = �
R
Tn
p(y) log p(y)dy: Clearly,

P
nHn(Y ) = H(Y ): Further-

more,Z
y

1

"
f̂

�
x� x(y)

"

�
p(y) log

�
1

"
f̂

�
x� x(y)

"

�
p(y)

�
dy =

X
n

Z
Sn

1

"
f̂

�
x� xn
"

�
p(y) log

�
1

"
f̂

�
x� xn
"

�
p(y)

�
dy

=
X
n

1

"
f̂

�
x� xn
"

�
(log

�
1

"
f̂

�
x� xn
"

��
Pn +Hn(Y )):
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Therefore,

I1 = �
Z
x

"X
n

1

"
f̂

�
x� xn
"

��
log

�
1

"
f̂

�
x� xn
"

��
Pn +Hn(Y )

�#
dx

= �
X
n

Pn

Z
x

1

"
f̂

�
x� xn
"

�
log

�
1

"
f̂

�
x� xn
"

��
dx�

X
n

Hn(Y )

Z
x

1

"
f̂

�
x� xn
"

�
dx

= log "+Hf̂ +H(Y );

where Hf̂ = �
R
z
f̂(z) log f̂(z)dz is the entropy of distribution f̂() and the

last equality can be obtained straightforwardly by considering the variable

change z = x�xn
"
:

Next, we have thatZ
y

1

"
f̂

�
x� x(y)

"

�
p(y)dy =

X
n

1

"
f̂

�
x� xn
"

�
Pn:

Therefore,

I2 =

Z
x

X
n

1

"
f̂

�
x� xn
"

�
Pn log

 X
k

1

"
f̂

�
x� xk
"

�
Pk

!
dx

= � log "+
X
n

Pn

Z
x

1

"
f̂

�
x� xn
"

�
log

 X
k

f̂

�
x� xk
"

�
Pk

!
dx

= � log "+
X
n

Pn

Z
z

f̂(z) log

 X
k

f̂

�
z +

xn � xk
"

�
Pk

!
dz:

It is then easy to see that since f̂() is regular and since limjzj!+1 f̂(z) = 0,

over any bounded interval [a; b] the family of functions v"() de�ned by v"(z) =

f̂(") log
�P

k f̂
�
z + xn�xk

"

�
Pk

�
converges uniformly to f̂(z) log

�
f̂ (z)Pn

�
:

Furthermore since for any z; log
�
f̂ (z)Pn

�
� log

�P
k f̂
�
z + xn�xk

"

�
Pk

�
�

logmaxz f̂(z) = �; for any set S we haveZ
S

f̂(z) log f̂(z)+(logPn)

Z
S

f̂(z)dz �
Z
S

f̂(z) log

 X
k

f̂

�
z +

xn � xk
"

�
Pk

!
dz � �

Z
S

f̂(z)dz:

Clearly we can always pick a and b such that for S = R � [a; b] the two
expressions in the right and left are arbitrarily small. This must also be true
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of the expression in the middle, for any ": By uniform convergence, we then

know that for " small enough
R b
a
f̂(z) log

�P
k f̂
�
z + xn�xk

"

�
Pk

�
dz is arbi-

trarily close to
R b
a
f̂(z) log

�
f̂ (z)Pn

�
: Since both

R
R�[a;b] f̂(z) log

�
f̂ (z)Pn

�
(the left term in the inequality) and

R
R�[a;b] f̂(z) log

�P
k f̂
�
z + xn�xk

"

�
Pk

�
dz

are arbitrarily small, we have shown that
R +1
�1 f̂(z) log

�P
k f̂
�
z + xn�xk

"

�
Pk

�
dz

is arbitrarily close to
R +1
�1 f̂(z) log

�
f̂ (z)Pn

�
:

From this we get that

lim
"!0
(I2 + log ") = lim

"!0

X
n

Pn

Z
z

f̂(z) log

 X
k

f̂

�
z +

xn � xk
"

�
Pk

!
dz

=
X
n

Pn

Z +1

�1
f̂(z) log

�
f̂ (z)Pn

�
:

= �Hf̂ � S(X):

Therefore:

lim
"!0

HX(Y ; ") = lim
"!0

log "+Hf̂ +H(Y ) + I2

= Hf̂ +H(Y )�Hf̂ � S(X)

= H(Y )� S(X):

Consequently, M(") = H(Y ) � HX(Y ; ") converges to S(X) as " ! 0:

QED.

Proof of Lemma 1.

Consider y 2 �Sn and y0 2 �Sp for p 6= n: A swap between y and y0 would

be marginally improving i¤

(xn � y0)2 + (xp � y)2 < (xn � y)2 + (xp � y0)2;

or equivalently

(xn � xp)(y � y0) > 0:

Let us now assume that for some n; @�Sn is not convex. Then we can �nd

y; y00 2 C(�Sn); and � 2 (0; 1) such that y0 = �y + (1� �)y00 =2 C(�Sn): Since y
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and y00 are limits of sequences of elements of �Sn; we can simply assume they

are themselves interior. Since y0 =2 C(�Sn) and C(�Sn) is closed, there exists

an interval I 0 = (� � "; � + ") such that y0(�0) = �0y + (1 � �0)y00 =2 C(�Sn)

for all �0 2 (� � "; � + "): Since y; y00 2 �Sn; we can construct two intervals
J = (y � �; y + �) � �Sn and J 00 = (y00 � �; y00 + �) � �Sn and furthermore

choose them such that they do not intersect J 0 = y0(I 0): Finally there exists

a mapping y() from I 0 to J and y00() from I 0 to J 00 which allows us to index

those two sets by �0:

For �0 2 I 0 (y0(�0) � y(�0))(y0(�0) � y00(�0)) < 0: Thus, either (xn �
x(y0(�0)))(y(�0) � y0(�0)) > 0 or (xn � x(y0(�0)))(y00(�0) � y0(�0)) > 0: Let

y�(�0) be the element of fy(�0); y00(�0)g such that the inequality is satis�ed.
Consider now the new assignment which, for all the �0s, replaces x(y0(�0))

with xn and sets x(y�(�
0)) = x(y0(�0)) instead of xn: Each of those swaps is

marginally improving the objective function by an amount which is bounded

from below by a strictly positive number, since there is a �nite number of

values of xn and j y0(�0)�y�(�0) j is also bounded away from zero. Integrating
those gains over I 0 and noting that y() has full support, we see that the objec-

tive function must improve by a strictly positive amount, which contradicts

the initial optimality condition. Thus C(�Sn) must be convex. QED.

Proof of Theorem 2.

Lemma 1 implies that any optimummust be a partition by intervals, up to

a set of measure zero. It follows that one cannot improve on such a partition.

By Lemma 2, for any partition the optimal xn must be
yn+yn+1

2
; which proves

(v). Next, computing the value function for such a con�guration, we get that

E(x(y)� y)2 =
1

12

N�1X
n=0

(yn+1 � yn)
3: (13)
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For a given N; we minimize (13) subject to

y0 = 0;

yN = 1;

�
N�1X
n=0

(yn+1 � yn) ln(yn+1 � yn) � K:

The FOCs are:

(yn�yn�1)2�(yn+1�yn)2 = �(ln(yn�yn�1)�ln(yn+1�yn)); 0 < n < N: (14)

Note that absent the capacity constraint, optimality would imply that

yn � yn�1 = yn+1 � yn: All intervals would then be of constant length 1=N

and the resulting entropy would be lnN: Thus, if lnN < K; then � = 0

and the optimal solution is the unconstrained one. However, one can always

improve on this by picking a larger N; since the initial con�guration can

always be replicated by collapsing the additional interval to a set of measure

zero by equating their bounds. Therefore the optimal N will be such that

lnN � K; i.e. the capacity constraint will be binding. Let us then consider

such an N: Call �n the length of interval n: The FOC (14) implies that

�2
n � � ln�n is invariant across intervals. Since the function X2 � � lnX

is U-shaped, �n can at most have two values, let us call them � and �0:

Clearly, the invariance property is then satis�ed for � = �02��2
ln�0�ln� : Without

loss of generality, assume � � �0: Let q the number of intervals of length �:

Since the whole [0,1] interval must be partitioned, it must be that

q�+ (N � q)�0 = 1

and

�q� ln�� (N � q)�0 ln�0 = K:

Eliminating �0; we get

�0 =
1� q�

N � q
;
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and we see that � must solve

�(�) = �q� ln�� (1� q�) ln

�
1� q�

N � q

�
= K: (15)

The function �(�) is increasing and then decreasing and reaches its max-

imum at � = 1=N; at which point we also have �0 = 1=N: Therefore, there

is at most one solution � such that � � �0: Furthermore, �(0) = ln(N � q)

and �(1=N) = lnN: Therefore, there exists a solution for � provided

ln(N � q) < K � lnN:

In particular, for any N the set of values of q for which this holds is non

empty.

Despite that q is integer, equation (15) also de�nes a value of � for any

real number q: Furthermore,

@�

@q
= �(ln�0 � ln�) + ���0 < 0:11

Since �0(�) > 0; it follows that d�
dq
> 0:

Next, note that the resulting loss function, up to a positive multiplicative

constant, is equal to V = q�3 + (N � q)�03: Di¤erentiating, we get

dV = (�3 ��03)dq � 3q�02dq + 3�03dq + 3q�2d�� 3q�02d�

= (�3 ��03)dq + 3�02(�0 � q)dq + 3q(�2 ��02)d�:

Since d�
dq
> 0, � < �0; and �0 < 1 � q; all terms are negative if dq > 0:

Therefore, V is a decreasing function of q; given N; the optimal value of q is

the largest possible one, i.e. q = N � 1: The resulting loss function is then

V = (N � 1)�3 + (1� (N � 1)�)3; (16)

and � now solves

~�(�) = �(N � 1)� ln�� (1� (N � 1)�) ln (1� (N � 1)�) = K: (17)

11It can be checked that this expression is always negative by noting that it would be
equal to zero at � = �0 and that its derivative with respect to �0 is �=�0 � 1 < 0:
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What is the optimal value of N? First of all, di¤erentiating ~� with respect

to N and � we get

d�

dN
= � �

N � 1(1 +
1

ln�0 � ln�) < 0: (18)

Next, di¤erentiating (16) and using (18) we get that

dV

dN
= �3 � 3��02 + 3�(�02 ��2)(1 +

1

ln�0 � ln�):

This expression is positive if and only if

2�2 <
3(� +�0)(�0 ��)

ln�0 � ln� :

Calling � = �0=� > 1; this is equivalent to ln � < 3(�2 � 1)=2; which is
always true.

Thus dV=dN > 0: Consequently, the optimal value of N is the smallest

one such that lnN � K; i.e. N = INT (eK):

QED

Derivation of (2)-(3).

The budget constraint of the individual isZ 1

0

picij +mj � yj + sj;

where yj = pjxj is his income and sj is rebated seignioriage. In equilibrium

the total money stock is M =
R 1
0
mjdj and we assume for simplicity that

seignoriage is rebated proportionally to the value of output produced by the

individual:

sj =M
yj
Y
;8j;

where

Y =

Z 1

0

yjdj

is GDP. Aggregate real output is de�ned as X =
�R 1

0
x�j dj

�1=�
.
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We assume that the money stock is drawn from a distribution with density

f(M) and c.d.f F (M):We also assume that the idiosyncratic shock is drawn

from a distribution with density h(z) and cumulative H(z):

Solving for the consumer�s optimal consumption and money holdings

yields, after a few steps, the following relationship:

cij =
mj

p
1

1��
i p�

�
1��

: (19)

Aggregating across individuals, this gives the demand curve for good i :

Ci =
M

p
1

1��
i p�

�
1��

: (20)

We assume that all producers meet demand. Therefore, xj = Cj:Next,

Y =

Z
pjxjdj

=

Z
pjCjdj

= M:

We can also wheck that X =
�R

C�
i di
�1=�

=M=p:

Furthermore, aggregating (19) across goods we see that the aggregate

consumption index for individual j is equal to

cj =
mj

p
:

We also have that
R 1
0
picij = mj = pcj: Substituting into the budget

constraint, we get that

mj =
yj + sj
2

;

cj =
yj + sj
2p

:
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Noting that sj =M
yj
Y
and yj = pjxj we get an indirect utility function

Vj = E ln

"
c
1=2
j

�
mj

p

�1=2�
M

p

�� 
� zjx

1+�
j

#

= E ln

"
pjxj(1 +M=Y )

2p

�
M

p

�� 
� zjx

1+�
j

#
(21)

= :E ln

"
pjxj
p

�
M

p

�� 
� zjx

1+�
j

#

It is this quantity that the individual maximizes when setting his price

pj subject to the demand curve (20). Substituting this demand curve into

(21) we can rewrite the objective function of the producer as

Vj = E ln

24�pj
p

�� �
1�� M

p

�
M

p

�� 
� zj

M1+�

p
1+�
1��
j p�

�(1+�)
1��

35
= E ln

�
p
� �
1��

j � �jp
� 1+�
1��

j

�
+ E ln

h
p
2��1
1�� + M1� 

i
;

where �j is de�ned by (3). This clearly amounts to maximizing (2).
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