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Abstract: This paper analyzes the ability of group members to cooperate in rent-seeking activities in a

context of between-group competition. For this purpose, we develop an infinitely repeated rent-seeking

game between two groups of different size. We first investigate Nash reversion strategies to support coop-

erative behavior in a given group before analyzing double-edge trigger strategies which have the property

that cheating on the cooperative agreement in a given group is followed by non-cooperation in this group

and cooperation in the rival group. The main conclusion is that the set of parameters for which coopera-

tion can be sustained within the larger group as a subgame perfect outcome is as large as that for which

cooperation can be sustained in the smaller group. Hence, in contrast with Olson’s (1965) celebrated

thesis but in accordance with many informal and formal observations, the larger group is as effective as

the smaller group in furthering its interest.

Keywords: Collective action, Rent-seeking, Within-group cooperation, Between-group competition, Re-

peated game.

JEL Classification: D72; D74; C72; C73
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1 Introduction

Olson’s (1965) celebrated theory argues that larger groups are less effective than smaller groups in further-

ing their interest. The reason is that the incentive to free-ride on the actions of the others is more pervasive

when group size is large due to a smaller perceived impact of individual defection. Olson’s thesis stimu-

lated an important literature and has been criticized on several fronts. First, while individuals contribute

less in large groups, this does not necessarily imply that there are less effective. Chamberlin (1974) and

McGuire (1974) first pointed out that Olson’s thesis of a negative relationship between effective collective

action and group size holds when the prize is private but is overturned when the prize is public and not

divisible among group members. Second, cooperation may be achieved in a repeated-game setup through

the use of an appropriate trigger strategy (e.g., Axelrod 1981). However, political scientists seem to agree

that decentralized strategies of reciprocity may fail to enforce cooperation in large groups where mutual

monitoring may be difficult (e.g., Taylor 1976, Olson 1982, Hardin 1982). Bendor and Mookherjee (1987)

formalize this intuition and represent ongoing collective action as a repeated prisoner’s dilemma game. In

their framework, trigger strategies are shown to be indeed less effective in inducing mutual cooperation

when group size is large or when there is imperfect monitoring. Olson’s main conclusions then reappear

in a repeated game setup regardless of the public or private nature of the collective good.

Empirically, contrary to Olson’s insight, size seems to be an asset in many situations. For instance,

Checchi and Lucifora (2002), analyzing a sample of 14 European countries, show that there is a positive

correlation between union size and union influence. Similarly, the ability of farmer’s unions to influence the

European Common Agricultural Policy is generally explained by their large size and capacity to organize

broadly both at the national and European level (e.g. Keeler 1996). The leading EU farm lobby, the Comité

des Organisations Professionnelles Agricoles (COPA), is one of the oldest and most powerful lobby groups

in Brussels, which is reflected by the resources made available to it. It has a secretariat staffed by forty-

five to fifty people (Davis 2003, 244). By comparison, the largest lobby group defending EU consumers’

interests (Bureau Européen des Unions de Consommateurs, BEUC) has a permanent staff of only ten to

fifteen in its Brussels office (Davis 2003, 245) while that available to the eight largest environmental groups

(internally referred to as the G-8) amount to no more than twenty to thirty persons (Long 1998, 110).

Finally, government transfers targeted at specific groups are, in general, increasing in the size of the groups

(see, for example, Congleton and Shugart 1990 for pensions and retirement benefits, Kristov, Lindert and

McClelland 1992 for social insurance benefits, and Potters and Sloof 1996 for a comprehensive survey on

empirical analysis of interest groups’ influence).

In fact, size seems to be an important resource especially when groups compete with each other for
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political influence or when they compete to secure a resource. For instance, Esteban and Ray (2001) notice

that the predictions of traditional collective action theory run counter to the Roman maxim: “divide and

conquer”; a strategy that proved to be successful in numberless historical circumstances. Regarding

the economic arena, many situations also involve a competition between different organizations but also

between subunits within the same private or public organization. For example, Hills and Mahoney (1978)

shows that budgeting and resource allocation in US State Universities is due to the resolution of conflicts

between academic departments rather than to an optimizing bureaucratic decision process. More recently,

Scharfstein (1998) find evidence that conflicts and influence activities affect the allocation of capital across

divisions in multi-divisional firms. If Olson’s thesis is to be accepted, we should observe that smaller

university departments or smaller divisions in conglomerates receive more - and larger ones receive less -

resources. We do not seem to observe such features in reality.1

Here, we set up a simple model of collective action which explains why larger groups may be at least as

effective as smaller groups. Our analysis is based on two key features. First, we depict collective action as

a repeated game so that within-group cooperation may be maintained through the use of a simple trigger

strategy. Second, while most collective goods theories deal with actions of a single group, we analyze the

problem of collective action in the presence of two opposing groups. In this context, free-riding might

be extremely costly since it makes non-cooperative groups more vulnerable to the actions of competing

groups, an intuition that is supported by a body of experimental evidence in social psychology.2

More specifically, we build a simple rent-seeking game à la Tullock (1980) and Nitzan (1991) where two

unequally-sized groups compete for a private prize divisible both at the group level and at the individual

level. The sum of individual efforts contributed in a group determines the proportion of the rent allocated

to each group and then, since individual contributions are not observable by anybody, each group’s share

is equally distributed among group members. In the one-shot game, because of the free-rider problem, the

more populous group spends less on rent-seeking activities and, consequently, receives a lower share of the

rent as predicted by Olson’s theory. In the repeated game, cooperation within one group, or both, can be

maintained through the use of a trigger strategy if players are sufficiently patient. Ease of cooperation, in

a particular group, is then measured by the lowest discount factor that supports the optimal level of group

1 However, Rajan, Servaes and Zingales (2000), analyzing a large sample of US firms, show that smaller divisions receive

more resources relative to their productivity and investment opportunities. But if Olson’s thesis is to be taken at face-value,

we should observe that larger units receive more resources in absolute terms.

2 Several empirical studies indeed show that tournament-based group incentives lead to higher outputs than all other

mechanisms investigated (see, e.g., Bornstein, Erev and Rozen 1990, Erev, Bornstein and Galili 1993, Bornstein, Gneezy and

Nagel 2002).
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effort as a subgame perfect outcome. Furthermore, the critical value of the discount factor associated

with a given group depends on the level of collective action of the rival group. This is because the single-

period payouts of cooperation, non-cooperation and defection in a given group depend on the outcome of

between-group competition, which in turn depends on the behavior of the members of the rival group.

The analysis focuses on the construction of two types of stationary subgame perfect equilibria (SSPE),

one in which there is cooperation within the two groups and the other in which there is cooperation within

only one group: the larger group or the smaller group. We first suppose that the members of each group

follow Friedman’s Trigger Strategies (FTSs) which use infinite Nash reversion within the corresponding

group as punishment to provide incentives. Because group members’ payoffs in a given group are contingent

on the behavior of the members of the rival group through the intergroup competition, we begin by

considering that the members of the rival group have a fixed behavior over time - they fully cooperate

or do not cooperate with each other. We then show that within-group cooperation is less difficult as the

number of fellow member rises no matter the behavior of the members of the rival group. Larger groups

are characterized both by a greater temptation to cheat and by a greater penalty associated with defection

because the free-rider problem becomes more severe in the non-cooperative equilibrium as membership

rises. In the presence of competing groups, the severity of the penalty for cheating increases more rapidly

because it makes the group more vulnerable to the actions of the rival group even though its members do

not cooperate. Holding constant the size of each group and making a comparison across groups, we also

find that the larger group can more easily sustain cooperation when there is cooperation within the smaller

group. But this result is overturned when there is non-cooperation within the rival group. Nash punishment

is less severe for the smaller group but the relative benefits of cooperation are disproportionately higher

for this group because its opponent is extremely vulnerable to the free-rider effects due to its large size.

We also show that cooperation can be more easily sustained with FTSs when facing a non-cooperative

rival group, which is rather intuitive. This actually explains why, in general, cooperation cannot be

sustained as a subgame perfect outcome using FTSs within the two groups except for a small range of

discount factors close to 1. Hence, continuing with FTSs, we would need to assume that the members

of one group never cooperate with each other. However, if there is permanent reversion to the non-

cooperative equilibrium in the first group, the members of the other group could, in their turn, to support

cooperative behavior. We thus construct Double-Edge Trigger Strategies (DETSs) which have the property

that cheating on the agreement in the cooperative group is followed by non-cooperation in this group and

cooperation in the rival group. Off the equilibrium path, the members of the rival group abide by the (new)

cooperative agreement until cheating is detected in which case they revert back to the non-cooperative

equilibrium for ever.
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Compared to the situation where the members of a given group use FTSs while the members of the

rival group never cooperate with each other, DETSs involve harsher punishments because the members of

a given group are always worse off in the presence of internal cooperation in the rival group. We indeed

show that DETSs increase the range of discount factors for which cooperative behavior can be supported

as a subgame perfect outcome in the larger group. However, the cooperation of the other group members

is not a credible threat for the members of the smaller group because, as discussed above, cooperation

(supported by Nash reversion) is more difficult to sustain in the larger group when facing a non-cooperative

rival group. We finally show that, for the same range of discount factors, cooperation can be sustained as

a SSPE either in the smaller group through FTSs or in the larger group through DETSs. Therefore, the

larger group is as likely to maintain cooperation as the smaller group.

Our paper is related to the large literature on rent-seeking theory3 and, in particular, to the analysis

of collective rent-seeking or group contests initiated by Nitzan (1991).4 This literature focuses on the

aggregate level of rent dissipation in a static setting while our paper focuses on the ability of competing

groups to overcome their free-riding problem in a repeated game setting. More closely related, in its focus,

is the work by Esteban and Ray (2001), which analyzes collective action with multiple groups in a contest

game where the contested prize has mixed public-private characteristics. They show that if the individual

cost of contributing to group action is quadratic, or more convex, then larger groups are more effective no

matter how private the prize is. This is because, in this case, the higher level of individual effort contributed

in the smaller group (due to a reduced free-rider problem) is not sufficient to counterbalance the lower

number of contributors. However, their analysis is also static and there is no scope for cooperation within

groups competing against each other.

Our analysis is also related to the literature on tacit cooperation in repeated games. Leininger and

Yang (1994) analyze a rent-seeking game in which contestants move sequentially over time. They show

that the dynamic of the rent-seeking process may involve implicit collusion with less rent dissipation than

in a static game. In the context of oligopoly, Lambson (1984, 1987) analyses the effect of an increase in the

number of firms on their ability to maintain a cooperative outcome and shows that cooperation generally

breaks down when the number of firms rises to infinity. Pecorino (1998) focuses on the effect of an increase

in the number of firms on their ability to overcome free-riding in lobbying for tariffs. He concludes that

maintaining cooperation is not necessarily more difficult as the number of firms rises. Again, the distinctive

3Following the seminal contribution of Tullock (1980), rent-seeking has been studied in various contexts such as risk

aversion (e.g. Skaperdas and Gan 1995), asymmetric information (e.g. Wärneryd 2003), asymmetric valuations (e.g. Nti

1999) or multistage contests (e.g. Gradstein and Konrad 1999 or Yildirim 2005). For a survey, see Konrad (2009).

4More recent contributions on group contests include, among others, Davis and Reilly (1999) and Baik and Lee (2001).
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feature of our work is to analyze the effect of intergroup competition on within-group coordination in a

repeated game setting.

This paper is organized as follows. In Section 2, we first outline a simple model of collective rent-seeking

and characterize the single-period equilibrium when the members of each group act non-cooperatively in

rent-seeking. In this Section, we also characterize group members’ payoffs under cooperation depending

on whether or not there is cooperation within the rival group. Section 3 explores the infinitely repeated

game when group members use FTSs and when they use DETSs to support cooperative behavior. Finally,

Section 4 concludes.

2 The Model

2.1 The Stage Game

We start by specifying the details of the stage game G. There are N players divided in two groups A and

B which have nA and nB members, respectively. We assume that it is prohibitively costly for individuals

to move from one group to the other. The government implements a policy generating a divisible rent

Y and decides on the division of this pie among the two groups in response to the rent-seeking pressures

and lobbying activities of the members of the groups. Let eij ∈ <+ be the rent-seeking expenditure/effort

expended, at unit cost, by member i of group j and let E ∈ <N+ be the vector of all individual rent-seeking

efforts. Following much of the contest literature, we assume that the share allocated to group j is given

by the contest success function pj (E) : <N+ → [0, 1] which has the Logit form

pj (E) =
½
Ej/ (EA +EB) ; if (EA, EB) 6= (0, 0)
1/2, if (EA, EB) = (0, 0)

(1)

where Ej ≡
njP
i=1
eij denotes the aggregate rent-seeking expenditures of group j. Hence, a group gets a share

of the total rent that depends on the sum of expenditures of its members relative to the total expenditure.

When nobody invests anything, the rent is equally shared between the two groups.

Individual contributions cannot be observed, and so the rent appropriated by each group is equally

shared among its members. We also assume that individual preferences are represented by a twice differ-

entiable and additively separable utility function πij : <N++ → <+. Specifically, individual i in group j has

the following utility

πij (E) =
pj (E)Y

nj
− eij . (2)

We first analyze the one-period equilibrium outcome in which neither group exhibits any cooperation in

among its members. Since there is no equilibrium where nobody invests anything, the optimal expenditure
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of a member of group j must satisfy the following first-order condition5

nkP
i=1
eik∙

njP
i=1
eij +

nkP
i=1
eik

¸2 Ynj = 1, k 6= j. (3)

Due to the public-good nature of this problem, first-order conditions only determine group expenditures.

We look, however, for the symmetric equilibrium such that all members in a group provide the same effort.

Let e∗∗j (for j = A,B) be the common equilibrium level of individual effort in group j. The conditions for

an equilibrium are then

nke
∗∗
k£

nje∗∗j + nke∗∗k
¤2 Ynj = 1, j = A,B, j 6= k. (4)

The solution to this system of equations is

e∗∗j =
nk

(nj + nk)
2

Y

nj
, j = A,B, j 6= k. (5)

From (1), the share allocated to group j is then

pj
¡
E∗∗j , E

∗∗
k

¢
=

nk
nj + nk

, j 6= k. (6)

with (E∗∗A , E
∗∗
B ) denoting aggregate expenditures of groups A and B when there is non-cooperation within

the two groups.

The group with fewer members gets the larger share of the total rent. In addition, the share allocated

to a given group is decreasing in its size and increasing in the size of the rival group. Thus, when the

collective prize is private and divisible among group members, the negative size effect due to free-riding

dominates the positive size effect due to a larger number of contributors which is in accordance with the

traditional collective action theory. Finally, it is worth pointing out that the larger group not only ends

up with the lower share of the rent but must also divide this share by a larger number of claimants.

The payoff for each member of group j is then

πj
¡
E∗∗j , E

∗∗
k

¢
=
nk (nj + nk − 1)
(nj + nk)

2

Y

nj
, j = A,B, j 6= k. (7)

In the absence of within-group cooperation, the members of the smaller group have a higher payoff than the

members of the bigger group. Furthermore, individual payoff, within each group, is falling in the number

of fellow members and increasing in the size of the rival group. This is because the free-rider problem

within a particular group becomes more severe as membership rises.
5Note that the marginal return to an additional unit of individual rent-seeking effort (as well as to an additional unit of

group rent-seeking effort) is decreasing in effort. Hence, each player’s problem is strictly concave and the first-order conditions

are both necessary and sufficient for characterizing the best-response functions of the players.
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2.2 The Efficient Level of Group Effort

We now consider a situation where there can be full within-group cooperation. In other words, the members

of at least one group jointly choose their contributions so as to maximize their aggregate welfare.

Assume first that there is cooperation within each of the two groups. In the cooperative equilibrium,

the members of group j (for j = A,B) jointly maximize Πj =
njP
i=1

πij = [pj (E)Y ]−Ej with respect to Ej .

The optimal level of aggregate expenditure of group j must then satisfy the following first-order condition

Ek

[Ej +Ek]
2Y = 1, k 6= j. (8)

Let eeej (for j = A,B) be the common level of individual effort in group j when there is cooperation within
the two groups. It is easily checked that the solution of this system is

eeej = Y/4nj , j = A,B. (9)

The equilibrium share allocated to each group is then pj

µeeEA, eeEB¶ = 1
2 for j = A,B and with

µeeEA, eeEB¶
denoting aggregate expenditures of groups A and B when there is cooperation within the two groups.

Neither the sum total of individuals in both groups nor the distribution of individuals among these

groups affect aggregate rent-seeking by each group. Hence, each group obtains half of the total rent in

equilibrium. Indeed, because individual preferences are represented by a utility function that is additively

separable and linear in Y and in rent-seeking activities, within-group cooperation makes each group acting

as it was a single agent. The equilibrium utility of each group member is then

πj

µeeEj , eeEk¶ = Y

4nj
, j = A,B. (10)

Next, consider a situation in which there is cooperation in group j only. In other words: (i) the members

of group j jointly maximize
njP
i=1

πij = [pj (E)Y ]−Ej with respect to Ej , where pj (E) = Ej/
∙
Ej +

nkP
i=1
eik

¸
and, (ii) each member of group k 6= j maximizes πik = [pk (E)Y ] /nk − eik with respect to eik, where

pk (E) =
nkP
i=1
eik/

∙
Ej +

nkP
i=1
eik

¸
.

The optimal level of aggregate expenditure of group j must satisfy the following first-order condition
nkP
i=1

eik∙
Ej +

nkP
i=1
eik

¸2Y = 1 k 6= j. (11)

The optimal expenditure of a non-cooperative member of group k 6= j must satisfy the following first-order

condition

Ej∙
Ej +

nkP
i=1
eik

¸2 Ynk = 1 j 6= k. (12)
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We focus on symmetric equilibria, where all members of the non-cooperative group make the same level

of effort. Let eej and e∗k be the cooperative and non-cooperative level of individual effort within group j
and k 6= j, respectively. Then, the solution of the above system is

eej =
nk

(nk + 1)
2

Y

nj
, j 6= k, (13)

e∗k =
1

(nk + 1)
2

Y

nk
. (14)

Observe that eej = £n2k/nj¤ e∗k for j 6= k. In equilibrium, the share allocated to group j is then
pj

³ eEj , E∗k´ = nk
nk + 1

j 6= k (15)

with
³ eEj , E∗k´ denoting aggregate expenditures when there is cooperation within group j and non-

cooperation within group k 6= j. Note that the share of the rent allocated to group j tends to 1 for

nk large.

The equilibrium utility of each individual in group j is then

πj

³ eEj , E∗k´ = µ nk
nk + 1

¶2
Y

nj
, j 6= k (16)

and the equilibrium utility of each individual in group k 6= j is

πk

³
E∗k , eEj´ = nk

(nk + 1)
2

Y

nk
. (17)

By comparing the utility of each individual in each group under different scenarios, we can establish the

following Lemma, which will prove useful later.

Lemma 1 : For any nj ≥ 2 and nk ≥ 2, we have πj

³ eEj , E∗k´ > πj

µeeEA, eeEB¶ and πk

³
E∗k ,

eEj´ <
πk (E

∗∗
A , E

∗∗
B ) for j = A,B and j 6= k.6

The members of a given group, no matter whether they cooperate or not, have a higher (respectively lower)

payoff when facing a non-cooperative (respectively cooperative) rival group. In other words, cooperation

of the others is always detrimental to the members of a given group. First, the gains from cooperation

are larger when facing a non-cooperative rival group. Second, non-cooperation is less costly when facing a

rival group which is also vulnerable to the free-rider problem.

3 Within-Group Cooperation and Between-Group Competition

3.1 Preliminaries

We now define the discounted infinitely repeated game denoted G∞ (δ) where δ ∈ (0, 1) is the common

discount factor per period. While individual contributions cannot be observed, the aggregate level of
6All the proofs are in the Appendix.
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contributions made by each group is however perfectly observed by any member of the two groups. If

Etj , for j = A,B, is the aggregate level of contributions of the members of group j in period t, then¡¡
E0A, E

0
B

¢
,
¡
E1A, E

1
B

¢
, ...,

¡
Et−1A , Et−1B

¢¢
is a history of length t. A (pure) strategy σij for player i of group

j, for all i = 1, 2, ..., nj and for j = A,B, in G∞ (δ), is a sequence of mappings
©
σtij
ª∞
t=0
, where σtij maps

the collection of possible period-t histories into an individual contribution etij ∈ <+ for player i of group j

in period t. σ0ij is thus the initial action of player i of group j.

Let σj =
¡
σ1j , ...,σnjj

¢
for j = A,B, be the strategy profile of group j members. Any strategy pro-

file σ = (σA,σB) generates the path of aggregate contributions {EtA (σ) , EtB (σ)}
∞
t=0 in the usual fashion:¡

E0A (σ) , E
0
B (σ)

¢
= σ0 and for all t > 1, (EtA (σ) , E

t
B (σ)) = σt

¡¡
E0A (σ) , E

0
B (σ)

¢
, ...,

¡
Et−1A (σ) , Et−1B (σ)

¢¢
.

In period t, the induced action profiles (EtA (σ) , E
t
B (σ)) yield a payoff of π

t
ij to player i of group j. An out-

come path {EtA (σ) , EtB (σ)}
∞
t=0 thus implies an infinite stream of stage-game payoffs {πij (EtA (σ) , EtB (σ))}

∞
t=0

for player i of group j. The discounted payoff to player i of group j from the infinite sequence of stage-game

payoffs
©
πtij
ª∞
t=0

is
∞P
t=0

δtπtij , so that her payoff in G
∞ (δ) obtained with the strategy profile σ is given by

πδij (σ) =
∞X
t=0

δtπij
¡
EtA (σ) , E

t
B (σ)

¢
(18)

A strategy profile σ is a Nash equilibrium in G∞ (δ) if (i) for i = 1, ..., nA, σiA is a best response to

σA\i =
¡
σ1A, ...,σi−1A,σi+1A, ...,σnjA

¢
and to σB ; (ii) for i = 1, ..., nB, σiB is a best response to σB\i =¡

σiB, ...,σi−1B,σi+1B, ...,σnjB
¢
and to σA. A strategy profile σ is a subgame perfect equilibrium in G∞ (δ)

if σ induces a Nash equilibrium in the subgame following any history. We restrict attention to stationary

subgame perfect equilibria (SSPE), i.e., equilibria in which, after any history, a stationary profile of actions

is played thereafter.

3.2 Friedman’s Trigger Strategies

In this section, we consider that the members of group j, (j = A,B), use Friedman’s Trigger Strategies

(FTSs) in order to support cooperative behavior within their respective groups. FTSs prescribe that any

deviation from the cooperative path in group j is met with permanent reversion to the one-period symmetric

non-cooperative equilibrium within group j (Friedman 1971). Hence, with FTSs, group j players’ strategies

only depend on the history of play of the group they belong to. However, group members’ payoffs in a

given group are contingent on the behavior of the members of the rival group. Therefore, we first consider

that the members of the rival group k 6= j have a fixed behavior over time - either full cooperation or non-

cooperation - before characterizing the conditions under which within-group cooperation can be supported

as a SSPE within the two groups. It is worth pointing out that, even though the members of group k have

a fixed behavior, the collective action of group k is a best response to that of the first group (i.e. group
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j 6= k) in every period.

FTSs can be expressed as, for all i = 1, 2, ..., nj ,

σ0ij = eeej (eej) if group k members play C (NC);
σtij = eeej (eej) if Eτ

j =
eeEj , τ = 0, ..., t− 1 t = 1, 2, ...., and if group k members play C (NC)

σtij = e∗j
¡
e∗∗j
¢
if Et−1j 6= eEj and if group k members play C (NC) (19)

where 0group k members play C (NC)’ means that the members of the rival group Cooperate (do Not

Cooperate) with each other.

We first establish the following Lemma.

Lemma 2 : In any period in which all group j members contribute the joint-maximizing level of efforteeej (eej), each member’s best possible deviation from FTSs is to cut her contribution to 0 when there is

perpetual cooperation (non-cooperation) within group k 6= j for any nj ≥ 2 (nj ≥ 3).

Suppose first that there is perpetual cooperation within group k. In this case, the optimal deviation

payoff for a member of group j 6= k is πdj

µeeEjÂi, eeEk¶ = pj

µeeEjÂi, eeEk¶ (Y/nj) where pj µeeEjÂi, eeEk¶ =h
(nj − 1)eeeji / h(nj − 1)eeej + nkeeeki for j 6= k. Using (9), we then have

πdj

µeeEjÂi, eeEk¶ = pj µeeEjÂi, eeEk¶ Y

nj
=
nj − 1
2nj − 1

Y

nj
. (20)

Observe that pj

µeeEjÂi, eeEk¶ increases and approaches pj µeeEj , eeEk¶ = 1/2 as nj rises.
Suppose now that there is perpetual non-cooperation within group k. In this case, the optimal deviation

payoff for a member of group j 6= k is πdj
³ eEjÂi, E∗k´ = pj

³ eEjÂi, E∗k´ (Y/nj) where pj ³ eEjÂi, E∗k´ =
[(nj − 1) eej ] / [(nj − 1) eej + nke∗k] for j 6= k. Using (13) and (14), we then have

πdj

³ eEjÂi, E∗k´ = pj ³ eEjÂi, E∗k´ Ynj = nk (nj − 1)
nk (nj − 1) + nj

Y

nj
, j 6= k. (21)

Observe that pj
³ eEjÂi, E∗k´ increases and approaches pj ³ eEj , E∗k´ (given by (15)) as nj rises. Furthermore,

pj

³ eEjÂi, E∗k´ is increasing in the size of the non-cooperative rival group.
FTSs are subgame perfect equilibrium strategies of the infinitely repeated game if and only if a single-

period deviation from the strategy (and sticking to it subsequently) after any history, is not profitable for

any member of group j. Suppose first that no single deviation has taken place in the previous periods.

FTSs then prescribe that all members of group j cooperate. As long as all players follow this prescription,

a member of group j collects, in each period, a payoff of πj

µeeEj , eeEk¶ given by (10) (πj ³ eEj, E∗k´ given by
(16)) when there is cooperation (non-cooperation) within the rival group. In contrast, suppose a member

12



of group j (optimally) deviates from FTSs in period t. She then obtains, in that period, a payoff of

πdj

µeeEjÂi, eeEk¶ given by (20) (πdj ³ eEjÂi, E∗k´ given by (21)) when there is cooperation (non-cooperation)
within group k. FTSs prescribes that in the subsequent periods, the members of group j do not cooperate

and so, from period t + 1 onwards, each member of group j collects a payoff of πj
³
E∗j ,

eEk´ given by
(17) (πj

¡
E∗∗j , E

∗∗
k

¢
given by (7)) when there is cooperation (non-cooperation) within group k. Hence, no

member of group j has an incentive to deviate from cooperation if and only if

1

1− δ
πj

µeeEj , eeEk¶ ≥ πdj

µeeEjÂi, eeEk¶+ δ

1− δ
πj

³
E∗j , eEk´ (22)

when there is cooperation within group k.

The corresponding condition when there non-cooperation within group k is

1

1− δ
πj

³ eEj , E∗k´ ≥ πdj

³ eEjÂi, E∗k´+ δ

1− δ
πj
¡
E∗∗j , E

∗∗
k

¢
(23)

Focusing on situations where self-enforcement is a binding constraint on the abilities of the members of

group j to cooperate, the critical value of the discount parameter above which cooperation can be sustained

within group j, for j = A,B, is

δCj =

πdj

µeeEjÂ i, eeEk¶− πj

µeeEj , eeEk¶
πdj

µeeEjÂi, eeEk¶− πj

³
E∗j ,

eEk´ , j 6= k. (24)

when there is Cooperation within the rival group, and

δNj =
πdj

³ eEjÂi, E∗k´− πj

³ eEj , E∗k´
πdj

³ eEjÂi, E∗k´− πj
¡
E∗∗j , E

∗∗
k

¢ , j 6= k. (25)

when there is Non-cooperation within the rival group.

Substitute (10), (17) and (20) into (24) to get

δCj (nj) =
(2nj − 3) (nj + 1)2

4
£
n2j (nj − 1)− 1

¤ . (26)

Observe that δCj (nj) is independent of nk as the other group acts as a single entity.

Substitute (7), (16) and (21) into (25) to get

δNj (nj , nk) =
(nj + nk)

2
[nk (nj − 2) + (nj − 1)]

(nk + 1)
2 [nj (nj + nk) (nj − 2) + nk (nj − 1) + nj ]

, j 6= k. (27)

We now study how the ability of group j to maintain a cooperative outcome is affected by an increase in its

size. Ease of cooperation in group j, as measured by δCj (nj) or δ
N
j (nj , nk), depends on how payoffs under

defection, cooperation and non-cooperation evolve as the group grows larger. This in turn commands the

incentive to cheat, the benefit from cooperation and the penalty for cheating. Observe first that an increase

13



in size diminishes the per-capita value of the prize and that this affects equally the different payoffs. Indeed,

one can see that the individual payoffs, under cooperation (given by (10) and (16)), non-cooperation (given

by (17) and (7)) and defection (given by (20) and (21)), when there is respectively cooperation or non-

cooperation within the rival group, are the product of two terms, one being the per-capita value of the

total rent, i.e., Y/nj . We can then evaluate the impact of an increase in nj on δCj (nj) and δNj (nj , nk) in

terms of group j’s payoff (given by multiplying individual payoff by group size).

There are several effects. First, an increase in nj does not affect group j’s payoff under cooperation, as

one can see from (10) and (16). This is because the share of the rent received by group j, under cooperation,

is either equal to 1/2 or only depends on the size of the other group (when its members do not cooperate

as shown by (15)). Second, the severity of the penalty for cheating is increasing in nj because the larger

the size of group j is, the more pervasive the free-rider problem and the lower the relative effectiveness of

that group both when there is cooperation and non-cooperation within group k 6= j.7 This effect causes

δCj (nj) and δNj (nj , nk) to be decreasing in nj . The remaining effect is that the temptation to cheat rises

with an increase in group size because group j’s share of the rent under defection is growing closer to

group j’s share of the rent under cooperation with an increase in nj , both when there is cooperation

and non-cooperation within group k 6= j, as one can observe from (20) and (21).8 This last effect causes

δCj (nj) and δ
N
j (nj , nk) to be increasing in nj . Hence, an increase in membership has conflicting effects on

the ability of a given group to support cooperative behavior in Nash reversion strategies, a point already

stressed by Pecorino (1998) in a different context.

The impact of an increase in nk on δNj (nj , nk) (for j 6= k) also involves several effects. First, the

penalty for cheating becomes less severe because of the increased free-rider problem within the rival group

as a result of its larger size.9 Second, the temptation to cheat rises with nk because group j’s share of the

rent under defection is increasing in nk, as one can see from (21). These two effects cause δNj (nj , nk) to

be increasing in nk. However, the benefits from cooperation for group j are increasing in the size of group

k 6= j because, again, the larger the size of the rival group is, the greater its collective action problem and

the higher the relative effectiveness of group j. This last effect causes δNj (nj, nk) to be decreasing in nk.

Hence, an increase in size of the non-cooperative rival group has also conflicting effects on the ability of a

7Let Πj (.) = njπj (.) denote the aggregate payoff of group j. From (7) and (17), one can easily verify that Πj
³
E∗∗j , E

∗∗
k

´
and Πj

³
E∗j ,

eEk´ - i.e., the payoff of group j under non-cooperation when there is respectively non-cooperation and cooper-
ation within group k 6= j - are indeed both decreasing in nj .

8 It follows that the deviator’s payoff multiplied by group size - which actually does not correspond, in this case, to group

j’s payoff because the deviator has not the same payoff than non-deviators - is increasing in nj .

9Under non-cooperation within the two groups, Πj
³
E∗∗j , E

∗∗
k

´
is indeed increasing in nk for k 6= j.
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given group to sustain within-group cooperation.

However, Lemma 3 shows that there are monotonicity results for the overall effect of nj on δ
C
j (nj) and

on δNj (nj , nk) as well as for the overall effect of nk on δNj (nj , nk) (for j 6= k):

Lemma 3: If nj ≥ 4 (for j = A,B), then : (i)
dδCj (nj)

dnj
< 0 and

∂δNj (nj ,nk)

∂nj
< 0 for j = A,B; (ii)

∂δNj (nj ,nk)

∂nk
< 0 for j = A,B and j 6= k.

The explanation of these results is the following. The contribution of our analysis is the study of collective

action in the presence of competing groups. In that context, the penalty for cheating is much larger than

without competition between groups. Indeed, when there is reversion to the non-cooperative outcome

within a group, the free-rider problem within that group is exploited by the competing group which

responds by increasing its rent-seeking effort so as to extract a larger share of the rent to the detriment

of the first group. Hence, the severity of the penalty for cheating associated with defection increases more

rapidly than the temptation to cheat as group size rises. In turn, cooperation is less difficult to maintain

as the number of fellow members rises both when there is cooperation and non-cooperation within the

rival group. Cooperation in group j is also less difficult to maintain as the size of the non-cooperative rival

group rises. As discussed above, when the rival group grows larger, defection is more tempting and the

penalty for cheating also becomes less severe. But, there is much to be gained from cooperation because

the group’s share of the rent approaches 1 as the rival group grows larger (as shown by (15)) as a result of

its increased collective action problem.

We now hold constant the size of each group and we determine whether home group cooperation is

more likely when facing a cooperative or non-cooperative rival group. We have:

Lemma 4: If nj ≥ 4 (for j = A,B), then δCj (nj) > δNj (nj , nk) for j = A,B.

In other words, cooperation can be more easily sustained when facing a non-cooperative rival group which

confirms the presumption that a weaker rival group reinforces the cohesion and strength of the competing

group. In fact, cooperation and non-cooperation within the rival group have opposite effects on the ability

to maintain cooperation within a given group. First, the Nash-punishment is less severe when facing a non-

cooperative rival group because, in that situation, both groups suffer from the collective action problem.

This would require a higher discount factor to sustain within-group cooperation. Another effect, however,

is that the gains from cooperation are much larger when facing a non-cooperative rival group and, hence, a

lower discount factor may be sufficient to sustain within-group cooperation. Finally, the cooperative level

of individual effort is lower with a non-cooperative rival group. This causes a lower incentive to cheat and,

hence, a lower critical discount factor to sustain cooperation in this case. According to Lemma 4, it turns
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out that a lower incentive to cheat and higher relative benefits of cooperation dominate the lower penalty

of cheating when there is non-cooperation compared to cooperation within the rival group. Intuitively, as

discussed above, the benefits from cooperation are much higher with a non-cooperative rival group.

Finally, Lemma 5 ranks the different values of the critical discount factor.

Lemma 5: If nj ≥ 4 (for j = A,B) and nA ≥ nB , then

0 < δNB (nA, nB) ≤ δNA (nA, nB) < δCA (nA) ≤ δCB (nB) < 1 (28)

The inequality δCA (nA) ≤ δCB (nB) directly follows from (i) of Lemma 3. If there is cooperation within the

two groups, each group gets half of the total rent in equilibrium. But, when there is perpetual cooperation

within the rival group, the larger group has a lower share of the rent than the smaller group if fellow

members behave non-cooperatively. Hence, the punishment being harsher, cooperation is less difficult to

sustain in group A even though defection is more tempting in this group. When there is however perpetual

non-cooperation within the rival group, cooperation is more difficult to sustain in the larger group than

in the smaller group. Indeed, while the Nash punishment is less severe for the smaller group, the gains

from cooperation are also much higher. This is because the share allocated to the cooperative group is

increasing in the size of the non-cooperative rival group. Furthermore, defection is less attractive for the

smaller group and then δNB (nA, nB) ≤ δNA (nA, nB).

Throughout the rest of the paper, we shall assume that nj ≥ 4 for j = A,B and that nA ≥ nB so that

all the Lemmata formulated above remain valid. We are now ready to state the following result:

Proposition 1: Assume that all group members adopt FTSs given by (19). Then perpetual cooperation

can be sustained within the two groups as a SSPE if and only if δ ≥ δCB (nB).

From (28), δ ≥ δCB (nB) implies that δ > δCA (nA). Hence, for any δ ≥ δCB (nB), no individual in both

groups has an incentive to deviate from the cooperative path in her group. If a deviation has taken place

within group k in the previous periods, the members of group j 6= k still have an incentive to continue

cooperating because, by Lemma 5, δ ≥ δCB (nB) implies that δ > δNj (nA, nB) for j = A,B. It follows

that for any δ ∈
³
δCB (nB) , 1

´
, perpetual cooperation within each of the two groups can be sustained as a

SSPE provided any deviations within a given group are followed by this group reverting to the one-shot

symmetric non-cooperative outcome. In that situation, the two groups neutralize each other in the contest

and each group obtains half of the total rent in every period.

If however δ < δCB (nB), then perpetual cooperation cannot be sustained as a SSPE using FTSs within

each of the two groups independently of whether the members of the rival group act cooperatively or non-

cooperatively. In particular, it is interesting to note that, for any δ ∈
³
δCA (nA) , δ

C
B (nB)

´
, each member
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of the smaller group (i.e., group B) but no member of the larger group (i.e., group A) has a profitable

deviation from FTSs in every subgame in which all members of each group cooperated with their fellow

members in all previous periods. Again, when facing a cooperative group, cooperation can be more easily

sustained in the larger group because reversion to non-cooperation is more costly for this group due to the

greater free-riding incentives.

More generally, for any δ < δCB (nB) and still restricting attention to FTSs, we would need to assume

that the members of group j only use FTSs to sustain within-group cooperation while the members of

group k 6= j never cooperate with each other. Clearly, in that situation, cooperation can be sustained as

a SSPE using FTSs within group j if and only if δ ≥ δNj (nA, nB).

3.3 Double-Edge Trigger Strategies

We now focus on situations where cooperative behavior can be supported as a SSPE within only one group.

With FTSs, cheating on the agreement in the cooperative group is deterred by the threat of reverting to the

non-cooperative equilibrium for the rest of time, once cheating has been detected. In any case, the members

of the rival group behave non-cooperatively and play their best response to the actions of their fellow group

members as well as to the collective action of the first group. However, from Lemma 1, reversion to the

non-cooperative equilibrium in the first group makes cooperation more profitable for any member of the

rival group. For this reason, it is only natural to investigate whether the members of the rival group can

support, in their turn, cooperative behavior through the threat of reverting back to the non-cooperative

equilibrium. If it is the case, then defection in the first group triggers both permanent reversion to the

within-group non-cooperative outcome and permanent cooperation within the rival group. This would in

turn enhance the incentives to cooperate in the first group. To account for this double edge threat to

the cooperative group, we thus introduce Double-Edge Trigger Strategies (DETSs) which constitute, we

believe, a plausible explanation for the stability of within-group cooperation in the intergroup competition.

More formally, the strategy for player i in group j, for all i = 1, 2, ..., nj , who takes a decision in period

t, is

σ0ij = eej ;
σtij = eej if

¡
Eτ
j , E

τ
k

¢
=
³ eEj , E∗k´ , j 6= k, τ = 0, ..., t− 1, t = 1, 2, ....;

σtij = e∗j if Et−1j 6= eEj , j 6= k and Eτ
k = E

∗
k , τ = 0, ..., t− 1;

σtij = e∗j if there exists t
0
, with 2 ≤ t0 < t, such that

¡
Eτ
j , E

τ
k

¢
=
³
E∗j , eEk´ , j 6= k

τ = t0, ..., t− 1, t = t0 + 1, t0 + 2....;

σtij = e∗∗j otherwise (29)

17



and the strategy for player i in group k 6= j, for all i = 1, 2, ..., nk, who takes a decision in period t, is

σ0ik = e∗k;

σtik = e∗k if
¡
Eτ
j , E

τ
k

¢
=
³ eEj , E∗k´ , j 6= k, τ = 0, ..., t− 1, t = 1, 2, ....;

σtik = eek if Et−1j 6= eEj , j 6= k and Eτ
k = E

∗
k , τ = 0, ..., t− 1;

σtik = eek if there exists t0, with 2 ≤ t0 < t, such that
¡
Eτ
j , E

τ
k

¢
=
³
E∗j , eEk´ , j 6= k

τ = t0, ..., t− 1, t = t0 + 1, t0 + 2....;

σtik = e∗∗k , otherwise. (30)

In words, in the first period - the first line of (29) and (30) - each individual in group j cooperates and

contributes the joint-welfare maximizing level of effort eej , given by (13), while the members of group k 6= j
do not cooperate and then contribute e∗k, given by (14). In any period t > 0 - the second line of (29)

and (30) - the members of group j will continue to cooperate and to contribute eej while the members
of group k will continue to behave non-cooperatively and to contribute e∗k as long as group j members

have cooperated in the past. If a member of group j deviated in period t− 1 - the third line of (29) and

(30) -, then in period t all members of group j revert to the non-cooperative level of effort e∗j and all

members of group k 6= j are called to start to cooperate with each other and to contribute the joint-welfare

maximizing level of effort eek. In any period t > 2 - the fourth line of (29) and (30) -, group j members will
not cooperate while group k members will continue to cooperate if there exists t0, with 2 ≤ t0 < t , such

that from period t0 until period t− 1, all group k members have cooperated while group j members have

not cooperated. The third and fourth lines of (29) and (30) then mean that, following a deviation from

the cooperative phase within group j, the game enters a new phase with cooperation within group k and

non-cooperation within group j. This phase lasts until a member of group k 6= j also deviates from the

cooperative level of effort. In this case - the fifth line of (29) and (30) - all members of group k revert back

to the non-cooperative outcome and contribute the non-cooperative level of effort, so that the members of

the two groups are stuck at the one-shot non-cooperative equilibrium and contribute e∗∗j and e∗∗k given by

(5). Observe that DETSs allow for within-group cooperation after a phase of non-cooperation but only if

group members never cooperated before.

DETSs are subgame perfect equilibrium strategies of the infinitely repeated game if and only if a single-

period deviation from the strategy (and sticking to it subsequently) after any history, is not profitable for

any member of either group. Suppose first that no single deviation has taken place in the previous periods.

DETSs then prescribe that all members of group j cooperate while the members of group k 6= j do not

cooperate. As long as all players follow this prescription, each member of group j collects a payoff of
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πj

³ eEj , E∗k´ given by (16) in each period. In contrast, suppose a member of group j (optimally) deviates
from DETSs in period t. She then obtains, in that period, a payoff of πdij

³ eEjÂi, E∗k´ given by (21). DETSs
prescribe that, in the subsequent periods, the members of group j do not cooperate while the member of

group k 6= j cooperate with each other. Hence, from period t+1 onwards, each member of group j collects

a payoff of πj
³
E∗j ,

eEk´ given by (17). It follows that no member of group j has an incentive to deviate
from within-group cooperation if

1

1− δ
πj

³ eEj , E∗k´ ≥ πdj

³ eEjÂi, E∗k´+ δ

1− δ
πj

³
E∗j , eEk´ , j 6= k. (31)

Focusing on situations where self-enforcement is a binding constraint, the critical value of the discount

parameter is

δNCj (nj , nk) =
πdj

³ eEjÂi, E∗k´− πj

³ eEj , E∗k´
πdj

³ eEjÂi, E∗k´− πj

³
E∗j ,

eEk´ , j 6= k (32)

where the NC superscript indicates that Non-cooperation is followed by Cooperation in the other group

in case of a deviation within group j. Clearly, because cooperation of the others is always detrimental to

the members of a given group (Lemma 1), δNCj (nj , nk) is lower than δNj (nj , nk), for j = A,B, which was

calculated assuming perpetual non-cooperation within the rival group.

To ensure subgame perfection, we must also verify that no player of group k 6= j has an incentive to

deviate from cooperation along the out-of-equilibrium path following a deviation within group j. From

the analysis of the previous section, we know that, when there is non-cooperation within group j, it is not

profitable for any member of group k 6= j to deviate from cooperation (provided any deviation is met with

permanent reversion to the one-shot symmetric Nash equilibrium) as long as δ ≥ δNk (nj , nk) for k 6= j.

Therefore, cooperation within group j (and non-cooperation within group k 6= j) can be sustained as a

SSPE using DETSs if and only if

δ ≥ max
n
δNCj (nj , nk) , δ

N
k (nj , nk)

o
, j 6= k. (33)

Suppose first that the members of the smaller group, i.e. group B, start by cooperating and follow the

strategy described in (29) while the members of the larger group, i.e. group A, start by not cooperating

and follow the strategy described in (30). Since DETSs involve harsher punishments than FTSs, we have

that δNCB (nA, nB) < δNB (nA, nB). From (28), we also have that δNA (nA, nB) ≥ δNB (nA, nB). This implies

that δNCB (nA, nB) < δNA (nA, nB), and so, from (33), the following Proposition holds.

Proposition 2: Suppose that group B members start by cooperating and adopt DETSs given by (29) and

that group A members start by not cooperating and adopt DETSs given by (30). Then, cooperation only
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in the smaller group (i.e. group B) can be sustained as a SSPE if and only if δ ≥ δNA (nA, nB).

δNCB (nA, nB) is not relevant to the outcome of the game. Indeed, if cooperation can be maintained

within group A (following defection and reversion to the non-cooperative outcome within group B),

it can also be maintained within group B (when there is non-cooperation within group A) because

δNA (nA, nB) > δNB (nA, nB) . Then, for any δ ≥ δNA (nA, nB), each member of group B finds it more

profitable to pursue cooperation than to deviate while the members of group A never cooperate. If how-

ever δ < δNA (nA, nB), then defection of one group B member (triggering reversion to the non-cooperative

outcome within that group) cannot credibly trigger perpetual cooperation within group A and, therefore,

DETSs do not satisfy the subgame perfection requirement. DETSs can then be compared to FTSs to yield

the following Proposition.

Proposition 3: If δ < δNA (nA, nB), DETSs with cooperation only in the smaller group (i.e., group B)

do not form a SSPE. However, if δ ≥ δNB (nA, nB) (with δNB (nA, nB) < δNA (nA, nB)), cooperation can be

sustained as a SSPE in the smaller group if its members adopt FTSs and face a non-cooperative group.

This result is somewhat counterintuitive. Because DETSs involve harsher punishments than FTSs, one

would expect that DETSs would increase the range of discount factors for which cooperative behavior can

be supported in the smaller group. This is not however the case because cooperative behavior is more diffi-

cult to support in the larger group than in the smaller group when facing a non-cooperative group (Lemma

5). Therefore, the threat of cooperation within the rival group is not effective in this case and DETSs are

simply FTSs completed with an out-of-equilibrium “perfection” constraint that further restrains the range

of discount factors for which cooperation can be supported as a SSPE in the smaller group.

We now analyze the symmetric situation where the members of the larger group, i.e. group A, start

by cooperating and follow the strategy described in (29) while the members of the smaller group, i.e.

group B, start by not cooperating and follow the strategy described in (30). Again, since DETSs involve

harsher punishments than FTSs, we have that δNCA (nA, nB) < δNA (nA, nB). From (28) we also have

δNA (nA, nB) > δNB (nA, nB). We then need to compare δ
NC
A (nA, nB) and δ

N
B (nA, nB) and determine which

of these critical values is smaller and which is higher. Indeed, and in contrast with the symmetric case

analyzed above, DETSs can potentially be used to support cooperative behavior in group A for some

discount parameters below δNA (nA, nB) if cooperation within group B can be supported when there is

permanent reversion to the non-cooperative outcome within group A, i.e., if δ > δNB (nA, nB).

Substitute (16), (17) and (21) into (32) to get

δNCA (nA, nB) =
nB (nA + 1)

2 [nB (nA − 2) + (nA − 1)]
(nB + 1)

2
[n2A (nAnB − 1)− nB ]

. (34)
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In contrast with δNA (nA, nB), the derivative of δ
NC
A (nA, nB) with respect to nA remains indeterminate and

we cannot rank unambiguously δNB (nA, nB) and δNCA (nA, nB). However, one can establish numerically

that δNB (nA, nB) > δNCA (nA, nB) as long as group size asymmetry is not too strong (see Table 1 where

bold numbers represent a higher level of δNCA (nA, nB)).10
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Figure 1: The difference between δNB (nA, nN ) and δNCA (nA, nN ).

Again, from (33), DETSs are subgame perfect equilibrium strategies only if one agent’s defection within

group A can credibly trigger cooperation within group B, hence only if δ ≥ δNB (nA, nB) > δNCA (nA, nB).

From (33), we then have the following Proposition.

Proposition 4: Suppose that group A members start by cooperating and adopt DETSs given by (29) and

that group B members start by not cooperating and adopt DETSs given by (30). Then, cooperation only

in the larger group, i.e. group A, can be sustained as a SSPE if and only if δ ≥ δNB (nA, nB).

This shows the existence of a situation symmetric to the situation in Proposition 2, except that co-

operation in the larger group can be sustained for a larger range of discount factors than coopera-

tion in the smaller group through the use of DETSs. There is indeed a range of discount factors (i.e.

δ ∈
³
δNB (nA, nB) , δ

N
A (nA, nB)

´
) for which every member of group A has a profitable deviation from co-

operation when there is perpetual non-cooperation in group B while all members of group B find it more

profitable to enforce and to maintain cooperation in case of permanent reversion to the non-cooperative

outcome within group A. In other words, the cooperation of the others constitutes a credible threat for

the members of the larger group when they begin the infinitely repeated game by cooperating. This is not

the case for the members of the smaller group.

In the previous subsection, we have shown that cooperation is generally easier within large groups. This

is the case when we analyze the implications of increasing the size of a given group but also when making

across-groups comparisons assuming perpetual cooperation within the rival group. There is one exception.

10 In the limit i.e. when the larger group grows to infinity, we indeed have δNB (nB) − δNCA (nA, nB) < 0. We have

lim
nA→∞

δNCA (nA, nB) =
1

1+nB
on the one hand and (with the use of (27)) lim

nA→∞
δNB (nA, nB) =

nB−2
nB(nB−1)−1

on the other.

The first limit is larger than the second one.
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Indeed, the smaller group can more easily sustain cooperation if we assume perpetual non-cooperation

within the larger group. But, this greater ability of the smaller group, in this particular case, turns again

to the advantage of the members of the larger group because the members of the larger group play on the

expectation that a deviation might trigger perpetual cooperation within the smaller group.

Combining Propositions 3 and 4, we also see that for the same range of discount factors, cooperation

can be sustained either in the smaller group through the use of FTSs or in the larger group through the

use of DETSs. Hence, the larger group is at least as likely to maintain within-group cooperation as the

smaller group, in which case it gets a larger share of the rent to the detriment of the smaller group.

Note, however, that when the size of the prize is constant, as it is the case in this paper, large groups

are disadvantaged in terms of individual payoff. But it might well be possible that larger groups are more

effective both in terms of aggregate levels of collective action and in terms of per-capita payoffs. In the

context of this paper, when there is cooperation within the larger group and non-cooperation within the

smaller group, individual pay-off is also higher in the larger group if group size asymmetry is not too

strong. From (16) and (17), this is case if
√
nA < nB.

4 Concluding remarks

In this article, we develop an analysis of collective action that exhibits two central features. First, two

groups of different size compete for an exogenous rent and, second, the members of each group can sustain

within-group cooperation through the use of trigger strategies in a repeated game structure. While none

of these features is new in the collective action literature, the innovation of this paper is in putting them

together in a simple framework. We then show that increasing the size of one group (while that of the other

group is kept unchanged) decreases the minimum value of the discount factor above which cooperation

in this group is sustainable as a subgame perfect outcome. We also show that the set of parameters for

which cooperation can be maintained within the larger group as a subgame perfect outcome is as large as

that for which cooperation can be sustained in the smaller group. The crucial features driving our results

is that Nash punishment is more severe for larger groups in a context of competing groups, and that the

threat of cooperation within the rival group is a credible threat only for the members of the larger group.

The simplicity of the framework analyzed in this paper is attractive but might be criticized on several

fronts. First, we have focused on equilibria such that full cooperation within one group or both can be

sustained as a subgame perfect outcome. Alternatively, we could have considered, for a fixed value of the

discount factor, the maximal level of effort that members in a group can achieve. It is, however, important

to remember that in our analysis, the effectiveness of a group is determined not by its absolute efficiency

but by its efficiency relative to that of the other group (through the intergroup competition); hence by its
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relative efficiency at circumventing free-riding. Therefore, as long as the extent of free-riding - as measured

by the divergence between the non-cooperative level and the actual level of collective action - is increasing

in group size, the qualitative results of our rent-seeking game should continue to hold. Second, we assumed

that any deviation from the cooperative path is punished with Nash-reversion within the corresponding

group (and possibly with cooperation within the rival group). A natural extension of the present analysis

would be to consider two-phase punishment schemes à la Abreu (1986). With Abreu’s stick-and-carrot

strategies, the members of each group would conform to a “stick” phase - in which group members would

contribute less than in the one-shot game - because of the “carrot” of a subsequent return to cooperation.

We believe that the analysis of optimal punishment schemes in a setting such as ours is an interesting

question for future research.

5 Appendix

5.1 Proof of Lemma 1

Given nj ≥ 2, πj
³ eEj , E∗k´ given by (16) is equal to πj µeeEA, eeEB¶ given by (10) for nk = 1 and is increasing in

nk for nk > 1.We then have πj
³ eEj , E∗k´ > πj

µeeEA, eeEB¶ for any nj ≥ 2 and nk ≥ 2. Similarly, given nk ≥ 2,
πk (E

∗∗
A , E

∗∗
B ) given by (7) is equal to πk

³
E∗k ,

eEj´ given by (17) for nj = 1 and is increasing in nj for nj > 1.
Hence, we have πk (E∗∗A , E

∗∗
B ) > πk

³
E∗k ,

eEj´ for any nk ≥ 2 and nj ≥ 2.
5.2 Proof of Lemma 2

Suppose first that the members of group j use FTSs to sustain cooperative behavior while there is permanent

cooperation within group k 6= j. When a person of group j defects from the cooperative agreement, the share

allocated to group j is

pj

µeeEjÂi, eeEk¶ = (nj − 1)eeej + edij
(nj − 1)eeej + edij + nkeeek , j 6= k, (A1)

where (from (9)) eeej = Y/4nj and eeek = Y/4nk are the cooperative level of individual effort within group j

and k. edij is the expenditure level of the member who defects. This agent optimally chooses e
d
ij to maximize

πdj

µeeEjÂi, eeEk¶ = ∙pj µeeEjÂi, eeEk¶Y/nj¸− edij . The first-order condition to this problem implies that

4njY
2£

(2nj − 1)Y + 4njedij
¤2 − 1 = 0. (A2)

The left-hand term is decreasing in edij . The individual who defects will then cut her contribution to 0 if

∂πdj

µ eeEjÂ i,
eeEk

¶
∂edij

¯̄̄
edij=0

< 0, i.e., if 4nj < (2nj − 1)2 which is indeed verified for any nj ≥ 2.
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Suppose now that the members of group j use FTSs to sustain cooperative behavior while there is permanent

non-cooperation within group k 6= j. When a person of group j defects from the cooperative agreement, the share

allocated to group j is

pj

³ eEjÂi, E∗k´ = (nj − 1) eej + edij
(nj − 1) eej + edij + nke∗k j 6= k, (A3)

where eej = h
nk/ (nk + 1)

2
i
(Y/nj) (given by 13) and e∗k =

h
1/ (nk + 1)

2
i
(Y/nk) (given by (14)) are respec-

tively the cooperative level of individual effort in group j and non-cooperative level of individual effort in group

k. edij is still the expenditure level of the member who defects. This agent optimally chooses e
d
ij to maximize

πdj

³ eEjÂi, E∗k´ = hpj ³ eEjÂi, E∗k´Y/nji− edij . The first-order condition to this problem implies that

nj (nk + 1)
2
Y 2h

(nj − 1)nkY + nj (nk + 1)2 edij + njY
i2 − 1 = 0, j 6= k. (A4)

The left-hand term is decreasing in edij . The individual who defects will then cut her contribution to 0 if

∂πdj ( eEjÂ i,E
∗
k)

∂edij

¯̄̄
edij=0

< 0. This inequality reduces to nj (nk + 1)
2
< [(nj − 1)nk + nj ]2. Rearranging this

inequality, we must have

√
nj
¡√
nj − 1

¢
> nk/ (1 + nk) . (A5)

The right-hand term being strictly lower than 1 (because nk ≥ 2), the inequality is satisfied for any nj ≥ 3.

5.3 Proof of Lemma 3

We have that the sign of dδCj (nj)/dnj is the same as the sign of its numerator which is given by

− (3nj − 2) (nj + 1)
¡
n2j − 3nj + 2

¢
< 0. (A6)

which is indeed negative for any nj ≥ 2.

The sign of ∂δNj (nj , nk) /∂nj is the same as the sign of its numerator which can be shown to be given by

− (nj + nk)
∙
njnk

£
nj (nk + 1) (nj − 5) + n2k (nj − 4) + 7nk + 8

¤
+nj (nj − 1)2 + nk

¡
3n2k − 4nk − 3

¢ ¸
. (A7)

It is immediate to check that the term in brackets is positive for any nk ≥ 2 and nj ≥ 4 in which case

∂δNj (nj , nk) /∂nj < 0.

Finally, the sign of ∂δNj (nj , nk) /∂nk for j 6= k is the same as the sign of its numerator which can be shown

to be given by

− (nj + nk)

⎡⎣ n2k
¡
n4j − 3n3j + n2j + 4nj − 3

¢
+nk(n

5
j − 4n4j + 10n3j − 15n2j + 9nj − 1)

+
¡
n5j − 3n4j + 5n3j − 6n2j + 3nj

¢
⎤⎦ . (A8)

Again, it is immediate to check that the term in brackets is positive for any nj ≥ 4. By symmetry of the model,

this proves Lemma 3.
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5.4 Proof of Lemma 4

Let consider the case of group A. On the one hand, since δCA (nA) is decreasing in nA, δ
C
A (nA) reaches its

minimum when nA goes to infinity. In the limit we have lim
nA→∞

δCA (nA) = 1/2. On the other hand, given nB ,

the maximum of δNA (nA, nB) is obtained when the size of group A is at its minimum i.e. when nA = 4. A

sufficient condition for the inequality δNA (nA, nB) < δCA (nA) to be satisfied is then δNA (nA = 4, nB) < 1/2.

We have δNA (nA = 4, nB) =
(nB+4)

2[2nB+3]

(nB+1)
2(11nB+36)

. Using this expression, the inequality δNA (nA = 4, nB) < 1/2,

reduces to 7n3B + 20n
2
B − 29nB − 60 > 0 which is always satisfied for any nB ≥ 4. By symmetry, we also have

δCB (nB) > δNB (nA, nB) as stated in Lemma 4.

5.5 Proof of Lemma 5

By symmetry and because δCj (nj) (for j = A,B) only depends on nj and is a decreasing function, we have

δCA (nA) ≤ δCB (nB) for any nA ≥ nB . From Lemma 4, we also have δNA (nA, nB) < δCA (nA). Finally, one can

find that the sign of δNA (nA, nB)− δNB (nA, nB) is the same as the sign of

nAnB
£
n2A (nA − 3)− n2B (nB − 3) + (nA − nB) (2nAnB + 5)

¤
+n3A (nA − 4)− n3B (nB − 4) + nA (nA + 2)− nB (nB + 2) (A9)

which is strictly positive for any nA > nB (and equal to 0 for nA = nB). Hence, we also have δ
N
A (nA, nB) ≥

δNB (nA, nB) which proves Lemma 5.
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