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Abstract

This paper studies the problem of redistribution between individuals having

different mortality rates. We use a continuous time model in which there

are two types of individuals characterized by different survival probability

paths. Individual preferences are represented by a generalized life cycle utility

function which can exhibit temporal risk aversion. We successively compare

utilitarian allocations when individuals exhibit temporal risk neutrality and

temporal risk aversion. This problem is analyzed successively in the context

of full information and asymmetric information on mortality rates.

JEL classification: H55, H23, I31.

Key words: Uncertain Lifetime, Redistribution, Annuities, Nonlinear
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1 Introduction

Studies on annuity and pensions are usually based on the seminal paper by

Yaari (1965). This standard approach, though analytically convenient, relies

on some strong assumptions on individuals’ preferences. In particular, life-

time utilities are assumed to be additively separable, which implies temporal

risk neutrality. Such an assumption has major consequences. Firstly, it is

found that the optimal annuity pattern is independent of the individual’s

mortality profile (Yaari, 1965, Levhari and Mirman, 1977, Barro and Fried-

man, 1977). Secondly, optimal allocation of resources between individuals

with different mortality takes a very simple form. As shown for example in

Sheshinski (2007), a utilitarian social planner would like to equalize instan-

taneous levels of consumptions between individuals with different mortality

profiles. Consequently, the Social Security should redistribute lifecycle in-

come from individuals with high mortality to those with low mortality.

Accounting for temporal risk aversion is of crucial importance when con-

sidering risks that have long term consequences. The risk of death being

one of them, temporal risk aversion turns out to be a key aspect of individ-

ual preferences when studying intertemporal choice under uncertain lifetime

(Bommier, 2008). In particular, when temporal risk aversion is introduced,

Yaari’s famous results vanish and the optimal consumption profile depends

on the individuals’ mortality. For a social planner this may be of importance

for two reasons. First, the first best objective no longer corresponds to giving

the same annuity profile to all individuals, independently of their mortality.

Second, since people with different mortality look for different annuity pro-

files, the age profile of annuity becomes an interesting policy tool that can

be used to achieve some redistribution.

The present paper emphasizes the role of temporal risk aversion when

designing pensions for individuals having different mortality profiles. The

question of pension design has been addressed by several papers using the
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standard additive approach, thus assuming temporal risk neutrality. This

is the case in Sheshinski (2007) and Cremer et al. (2007). Accounting for

temporal risk aversion provides new perspectives and actually led us to de-

viate from the above studies in several respects. Firstly, contrary to what

is found with the standard additive approach, it is not necessary to relate

heterogeneity in mortality and heterogeneity in income or wealth to have

non trivial results. Thus, we decided to focus on the simple case where all

agents have the same financial endowments. The problems that result from

the correlation between mortality and income or wealth, which were central

in these two papers, are left for further contributions. Secondly, given the

specificity of our approach, the policy tools that may be of interest are of dif-

ferent natures. In particular, we will consider the case of non linear annuity

pricing, which has attracted little attention so far.1

We consider a setting with heterogeneous individuals differing in their

mortality profile and on the verge of retirement. The low-type individuals

are characterized by a higher mortality rate at any age. Time is continuous

and we consider that the economy is in a steady state. Individuals’ utility

may exhibit temporal risk neutrality as well as temporal risk aversion. We

study the design of annuity profiles implied by a utilitarian Social Planner.

Our main results are as follows. First, when the government can observe

individuals’ mortality profiles, the optimum leads to a pooling allocation if

individuals’ preferences exhibit temporal risk neutrality. However, with tem-

poral risk aversion, low-type individuals should be offered a higher level of

instantaneous consumption at any age with a lower consumption growth rate.

Second, in a pooling optimum with temporal risk aversion, the consumption

growth rate lies between the two first best ones. Third, when mortality rates

1While Sheshinsky (2007) only considers the case of linear taxes on the return from
annuities, Cremer et al. (2007) allow non-linear pricing of annuities. However, their
non-linear taxes or subsidies are the results of differences in productivities rather than
differences in longevity.
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are private information, the trade-off between present and future consump-

tion should be distorted downward for the low-type individuals. We show

that a non-linear tax on annuities purchased by the low-type individuals can

implement this second best optimum. We finally illustrate the model using

mortality rates observed for US females and males. Our results show that

the tax rate on the return from annuity should increase with age; ranging

from 2.5% at age 60 up to 17.5% at age 100.

The rest of the paper is organized as follows. In Section 2, we present the

model and the Laissez Faire problem. In Section 3, we present the first best

and the second best problems of the social planner. Section 4 concludes.

2 The model

We consider a small economy that is assumed to be in steady state. All

individuals are endowed with the same initial wealth W0. The population is

divided into two categories. Individuals of type H are characterized by lower

mortality rates than individuals of type L. Denoting μH(t) and μL(t) agents

H and L hazard rate of death at age t, we thus assume that:

A1 : μH(t) < μL(t) for every t

Agents of type H therefore have higher survival probabilities than agents of

type L. We also assume that mortality rates increase with age:

A2 :
d

dt
μi(t) > 0

Demographic studies indicate that this assumption is realistic when consider-

ing ages greater than 25 or 30. Since our paper deals with pensions that are
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typically received after retirement, such an assumption is rather unrestric-

tive. Assumption A3 further states that the hazard rate of death increases

more slowly for individuals of type L:

A3 :
μH (t+ ε)

μH (t)
> μL (t+ ε)

μL (t)

for any t and t+ ε, where ε > 0. In other words, this assumption states that

the relative difference between mortality rates is decreasing with age. Again

this assumption is supported by studies on differential mortality at adult and

old ages (Brown et al., 2002).

The proportion of type i individual is ni. Whenever a type i individual

dies, he is replaced by an individual of the same type. Throughout the paper,

we denote j (t), the return on private savings at time t, the actuarially fair

return on annuity being j(t) + μH(t) for type H individuals and j(t) + μL(t)

for type L individuals. In the following, we present the utility function and

compare some of its useful properties relative to the individuals types. Finally

we present the Laissez Faire problem.

2.1 Individual preferences

Yaari’s standard approach involves assuming that a life of length T with a

consumption profile c = c(.) yields a lifetime utility:

Uyaari (c, T ) =

Z T

0

α (t)u (c (t)) dt (1)

where α (t) is an exogenous time discount factor. Bommier (2006) empha-

sized the limits of such an approach which relies on the assumption of tem-

poral risk neutrality, a rather unappealing assumption for dealing with risks

which have long term consequences, such as the risk of death. Temporal
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risk aversion can be introduced, without abandoning the expected utility

framework, by considering utility functions of the form:

U (c, T ) = φ

µZ T

0

α (t) u (c (t)) dt

¶
(2)

where φ is an increasing function. As is known from Kihlstrom and Mir-

man (1974), playing with the function φ involves adjusting individuals risk

aversion. When φ is concave the agent with the above utility function is

simply more risk averse than the agent with Yaari’s utility function (which

is obtained when φ is linear).

A simple interpretation of the specification in (1) is that agents have a

linear "lifetime felicity". Each moment of life gives them an instantaneous

felicity α(t)u(c(t)) that is additively aggregated in order to get the lifetime

felicity. However, given the uncertainty about life duration (and about con-

sumption), individuals cannot know ex-ante what their lifetime felicity will

be. At most, they know the distribution of lifetime felicity. Introducing a

function φ as in (2) enables risk aversion with respect to lifetime felicity to be

considered. For consumption profiles that would provide a constant flow of

felicity, the function φ would determine individual risk aversion with respect

to life duration. A linear φ would involve assuming risk neutrality, while a

concave function φ would indicate a positive risk aversion. While there is no

theoretical obstacle to considering risk prone agents, we limit ourselves to

the case where φ is concave (φ00 ≤ 0) and where −φ00/φ0 is a non increasing
function (consistent with the idea of non increasing absolute risk aversion

with respect to lifetime felicity).

Undeniably, introducing temporal risk aversion complicates the computa-

tion associated with utility maximization. This is probably one of the main

reasons that led economists to focus on Yaari’s specification for so many

years. A major difficulty seems to appear when writing the expected utility
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function. Indeed, when life duration is random, the expected lifetime utility

associated with a given consumption profile c is:

EU (c) =

Z +∞

0

μ(t) exp

µ
−
Z t

0

μ(τ)dτ

¶
φ

µZ t

0

α (τ)u (c (τ)) dτ

¶
dt

By integration by part, this may also be rewritten:

EU (c) =

Z +∞

0

s(t)α (t)u (c (t))φ0
µZ t

0

α (τ)u (c (τ)) dτ

¶
dt

where s(t) = exp
³
−
R t
0
μ(τ)dτ

´
is the probability of being alive at age t.

When φ is not linear, expected utility is then no longer additive, which

might look like the beginning of a nightmare for economists. Bommier (2006)

explains however that this difficulty can be handled by making a linear ap-

proximation. This allows the pangs of endogenous discounting to be avoided

without losing most of the insights brought by this novel approach.

The idea is to rely on what is called the assumption of a "priceless life

context". Basically, this assumption involves assuming that the difference in

terms of welfare between life and death is much greater than the difference

between high and low levels of consumption. Under this assumption (and

through an appropriate renormalization of the functions φ and/or α), prefer-

ences can be approximated by an additive expected lifetime utility function:2

EU (c) =

Z T

0

s (t)α (t)β (t)u (c (t)) dt (3)

where

β (t) =
−1
s(t)

Z T

t

ṡ (τ)φ0
µZ τ

0

u0α (x) dx

¶
dτ (4)

2See appendix A for calculations.
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The main departure from Yaari comes from β (t) which represents the time

discounting factor. Note that when φ is linear, as in Yaari’s case, β (t) is

constant and can be omitted. In the other cases, however, β is not constant

and its shape depends both on the mortality risks (through the survival

function s (t)) and on the degree of temporal risk, via the function φ. When

φ is concave, β is decreasing, reflecting the fact that the combination of

temporal risk aversion with mortality risks generates time discounting as

explained in Bommier (2006). We finally assume in the rest of the paper

that the utility function u (.) exhibits a constant intertemporal elasticity

of substitution. That means that the ratio cu00 (c) /u0 (c) is assumed to be

independent of c.

2.2 Individuals types and preference properties

Before going further, it is useful to compare both types of individuals pref-

erences properties. We prove the following lemma in the appendix.

Lemma 1 If individuals mortality patterns satisfy assumptions A1-A3, then

at any times t and t+ε, βH (t) ≤ βL (t) and βH (t+ ε) /βH (t) ≥ βL (t+ ε) /βL (t) .

This lemma tells that the functions β generated by mortality profiles

are such that individuals of type L value more consumption at any date.

Furthermore, the time discount factor decreases at a higher rate for low-

survival individuals.

Note finally that assumptions A1 to A3 imply some monotonicity prop-

erties on individuals’ indifference curves. To see this, write the marginal rate

of substitution between consumptions at date t and t + ε for any pair of
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consumptions (c (t) , c (t+ ε)). Differentiation of (3) gives:

MRSi
c(t),c(t+ε) =

dc (t)

dc (t+ ε)

¯̄̄̄
EUi

= −s
i (t+ ε)α (t+ ε)βi (t+ ε)u0 (c (t+ ε))

si (t)α (t)βi (t)u0 (c (t))
(5)

A2 implies sL (t+ ε) /sL (t) < sH (t+ ε) /sH (t) and A3 implies βL (t+ ε) /βL (t) <

βH (t+ ε) /βH (t) so thatMRSH
c(t),c(t+ε) < MRSL

c(t),c(t+ε). In other words, the

slope of indifference curves in the {c (t+ ε) , c (t)} space is less steep for the
type L individuals. It merely says that for a given decrease in future con-

sumption, low-type individuals should be less compensated in term of present

consumption than high-type individuals. This is illustrated in figure 1:

c(t+ ε)

EUH

EUL

c(t)

Figure 1: Indifference curves in the {c (t+ ε) , c (t)} space.
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2.3 The individual’s problem and the Laissez Faire

We assume a perfect annuity market. Individuals can buy annuities and the

after-tax rate of interest of these annuities at time t is r (t). Reintroducing

superscripts to distinguish individuals’ types, individual i’s problem is thus:

max
c(t)

EU i (c) =

Z T

0

si (t)α (t)βi (t)u (c (t)) dt

s.to
Z T

0

exp

µZ t

0

−r (τ) dτ
¶
c (t) dt ≤W0.

The first order condition of the individual’s problem is given by:

si (t)βi (t)α (t)u0
¡
ci (t)

¢
= λ exp

µ
−
Z t

0

r (τ) dτ

¶
(6)

where λ is the Lagrange multiplier associated with the individual’s budget

constraint. Note that when annuity prices are fair, r (t) = j (t) + μ (t) and

(6) can be rewritten as:

βi (t)α (t)u0
¡
ci (t)

¢
= λ exp

µ
−
Z t

0

j (τ) dτ

¶
(7)

where j (t) is the interest rate. It can then be shown that:3

Proposition 1 When the return of the annuity is actuarially fair and under

assumptions A1-A3, the Laissez Faire allocation is such that:

(a) With temporal risk neutrality (i.e. when φ is linear): ċL (t) /cL (t) =

ċH (t) /cH (t) for every t.

(b) With temporal risk aversion (i.e. when φ is concave): ċL (t) /cL (t) <

ċH (t) /cH (t) for every t.

3See appendix C.
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When temporal risk aversion is introduced, type H and L agents choose

different consumption paths. Indeed, agentH, whose mortality is low, chooses

a higher rate of consumption growth (or a lower rate of consumption decline)

than agent L. This reflects the relation between mortality and impatience

discussed in Bommier (2008). Since agents’ optimal strategies are different,

we may anticipate that a social planner may be willing to provide different

pension levels and different pension profiles to individuals of different types.

Moreover, in the case where the type is not observable, the planner may

use this heterogeneity of individuals’ optimal strategies to make them reveal

their type by letting them choose a pension plan among several alternatives.

We address these questions below where we discuss the planner’s optimal

strategy, depending on whether individuals’ mortality is private information

or not.

Note finally for further reference in section 3.2 that (6) can be rewritten

in terms of marginal rate of substitution as follows:

MRSi
c(t),c(t+ε) = − exp

µ
−
Z t+�

t

r (τ) dτ

¶
(8)

where MRSi
c(t),c(t+ε) is given by (5).

3 The optimal policy

3.1 Full information

Assume first that the government is utilitarian and can perfectly observe the

individuals’ types. In this first best problem, the social planner is maxi-

mizing the sum of individuals’ expected utility functions under the resource
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constraint of the economy. Its problem is thus:

max
cH(t),cL(t)

nHEUH
¡
cH
¢
+ nLEUL

¡
cL
¢

s.to
Z T

0

nHsH(t) exp

µZ t

0

−j (τ) dτ
¶
cH(t)dt

+

Z T

0

nLsL (t) exp

µZ t

0

−j (τ) dτ
¶
cL(t)dt ≤W0

First order conditions of the first best problem are:

βi (t)α (t)u0
¡
ci (t)

¢
= λ exp

µ
−
Z t

0

j (τ) dτ

¶
(9)

for any i = H,L and every t and λ is the Lagrange multiplier associated with

the resource constraint. We prove the following proposition in the appendix:

Proposition 2 With assumptions A1-A2, the first best allocation is charac-

terized by:

(a) With temporal risk neutrality, cH (t) = cL (t) ∀t.
(b) With temporal risk aversion on the length of life:

(i) cH (t) < cL (t) for every t.

(ii) With assumption A3, ċL (t) /cL (t) < ċH (t) /cH (t) for every t.

Under the assumption of temporal risk neutrality, point (a) of proposi-

tion 2 states that the optimum involves providing all individuals with the

same consumption profiles. However, as stressed in point (b), when individ-

uals’ preferences exhibit temporal risk aversion, the optimum is to offer a

higher instantaneous consumption level for the low survival individuals at

all ages. This is because low-type individuals have on average a lower life-

time felicity and that lifetime utility is concave in lifetime felicity. As in the

Laissez Faire approach however, the consumption level of type H individuals
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increases (resp. decreases) at a higher (resp. lower) rate. In case (a), it is

clear that there is a positive transfer of (expected) lifetime income from the

low- to the high-type individuals. The level of this transfer is measured by¡R∞
0

nHsH(t)c(t)dt−
R∞
0

nLsL(t)c(t)dt
¢
where c (t) is the optimal consump-

tion profile for both types of individuals. In case (b) however, the sign of the

transfer is ambiguous.

To decentralize this first best optimum, one only needs lump sum transfers

from one type to the other and fair annuity prices. To see this, observe that

equation (9) is equivalent to its Laissez Faire counterpart (7) where annuity

prices are actuarially fair.

3.2 Asymmetric information

Assume now that the government is unable to tell who is of type L and

who is of type H. Such a government may have different strategies. A first

possibility is to look for a pooling optimum. Another consists in offering a

menu of pensions, so that individuals would voluntarily reveal their type.

3.2.1 Pooling optimum

Let us assume that the government is now constrained to offer the same

instantaneous consumption c (t) to both types of individuals. The govern-

ment’s problem can be expressed:

max
c(t)

nHEUH (c) + nLEUL (c)

s.to
Z ∞

0

¡
nHsH(t) + nLsL (t)

¢
exp

µZ t

0

−j (τ) dτ
¶
c(t)dt ≤W0
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The first order condition with respect to c(t) yields:

β̄ (t)α (t)u0 (c (t)) = λ exp

µZ t

0

−j (τ) dτ
¶

(10)

where λ is the Lagrange multiplier associated with the resource constraint

and β̄ (t) =
£
nHsH (t)βH (t) + nLsL (t)βL (t)

¤
/
£
nHsH(t) + nLsL (t)

¤
. β̄ (t)

is a weighted sum of the βi (t)’s with the weight given on βi (t) by the fraction

of individuals of type i surviving at period t: nisi (t) /
P

j=H,L

njsj (t). In the

appendix, we prove that β̇
L
(t) /βL (t) <

.

β̄ (t)/β̄ (t) < β̇
H
(t) /βH (t) for every

t. This implies that:

µ
ċL (t)

cL (t)

¶FB

<
ċ (t)

c (t)
<

µ
ċH (t)

cH (t)

¶FB

for every t and where FB stands for the first best allocation. In other words,

the variation rate of the consumption profile in the pooling optimum lies

between variation rates obtained in the First Best optimum.

3.2.2 Second best

We now look for the case where the planner can offer different annuity pro-

files. When agents are temporal risk neutral, there is no adverse selection

since the optimum is to pool individuals with the same level of instantaneous

consumption (point (i) of Proposition 2). However, with temporal risk aver-

sion, it is clear that individuals of type H would like to mimic individuals

of type L. The government’s problem is the first best problem to which we

add an incentive compatible constraint stating that type H individuals do
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not get a lower utility if they reveal their true type:

max
cH(t),cL(t)

nHEUH
¡
cH
¢
+ nLEUL

¡
cL
¢

s.to :
Z ∞

0

nHsH (t) exp

µZ t

0

−j (τ) dτ
¶
cH(t)dt+Z ∞

0

nLsL (t) exp

µZ t

0

−j (τ) dτ
¶
cL(t)dt ≤W0,

EUH
¡
cH
¢
≥ EUH

¡
cL
¢
.

Denoting γ the Lagrange multiplier associated with the incentive compati-

bility constraint and π (t) =
£
γ/nL

¤ £
sH (t)βH (t)

¤
/
£
sL (t)βL (t)

¤
> 0, the

first order conditions yield:

MRSH
c(t),c(t+ε)

= − exp
µ
−
Z t+ε

t

¡
j (τ) + μH (τ)

¢
dτ

¶
, (11)

MRSL
c(t),c(t+ε)

= − exp
µ
−
Z t+ε

t

¡
j (τ) + μL (τ)

¢
dτ

¶

×

⎡⎢⎢⎣ 1− π (t)

1− π (t)
MRS

H

c(t),c(t+ε)

MRSL
c(t),c(t+ε)

⎤⎥⎥⎦ (12)

for any t and t+ε and whereMRS
H

c(t),c(t+ε)
is the marginal rate of substitution

of a type H individual mimicking a type L individual.

Comparing (11) with (8), we obtain the usual result of no distortion

at the top, which means that the first best trade-off between two-period

consumptions is preserved for the high-survival individual. Conversely, the

second best optimum introduces a distortion in the trade-off between two-

period consumptions for the low-type individual. As shown in section 2.2,

MRSH
c(t),c(t+ε) < MRSL

c(t),c(t+ε) for the same pair of consumption {c (t) , c (t+ ε)}.
ThusMRS

H

c(t),c(t+ε)
/MRSL

c(t),c(t+ε)
> 1 and the expression in brackets of (12) is

14



greater than one. We summarize these results in the following proposition:4

Proposition 3 With assumptions A1-A3, the second best allocation is char-

acterized by:

(i) With risk neutrality on the length of life, the first best solution is

implementable.

(ii) With risk aversion on the length of life, the second best solution is

characterized by:

(a) MRSH
c(t),c(t+�)

= −
£
sH(t+ ε)/sH(t)

¤
exp

³
−
R t+ε
t

j (τ) dτ
´
for any t

and ε > 0.

(b) MRSL
c(t),c(t+�)

< −
£
sL(t+ ε)/sL(t)

¤
exp

³
−
R t+ε
t

j (τ) dτ
´
for any t

and ε > 0.

(c)
¡
ċL (t) /cL (t)

¢SB
<
¡
ċL (t) /cL (t)

¢FB
<
¡
ċH (t) /cH (t)

¢SB
=
¡
ċH (t) /cH (t)

¢FB
where FB and SB stand respectively for the first and the second best

allocations.

As argued above, the first best solution is incentive compatible when

individuals are risk neutral towards the length of life. When risk averse,

point ii(a) states that the consumption path of individuals of type H is not

distorted. This is the usual "no distortion at the top" result. However,

for type L individuals, the marginal rate of substitution between present

and future consumption is distorted downward. In words, it is desirable to

encourage early consumption in life as compared to the first best trade-off.

Intuitively, this property can be explained by the fact that type L individuals

have steeper indifference curves in the {c (t+ ε) , c (t)} space. This implies
that, starting from the first best trade-off, a variation dc (t+ ε) < 0 along

with a variation dc (t) =MRSL
c(t),c(t+ε)dc (t+ ε) > 0 has no first order effect

on the utility of type L individuals while it decreases the life cycle utility of

type H individuals mimicking type L individuals. This distortion is thus a

4See the appendix for details.
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way to relax an otherwise binding self-selection constraint. As a result, point

(c) stresses that the variation rate of consumption of type L individuals

is lower than the one in the first best. As discussed in the following, this

optimum is compatible with a tax on the return from annuities for the type

L individuals. We present an implementation procedure with such a tax in

the following section.

3.2.3 Implementation of the second best

The second best allocation described in Proposition 3 can be implemented

by letting agents chose among two combinations of lump-sum transfers and

age specific annuity returns. That is by letting agents decide either to receive

the transfer TH and have annuity returns given by rH(t) or to receive TL

and have annuity returns given by rL(t), where TH , TL, rH(.) and rL(.) are

designed to reproduce the allocation given in proposition 3. From equation

(12) we immediately get that rH(t) must equal j(t) + μH(t), consistent with

the fact that consumption path of individuals of type H does need to be

distorted. The function rL (t) is obtained by equating the RHS of (8) and

(12) which yields:

exp

µ
−
Z t+�

t

rL (τ) dτ

¶
=

⎡⎢⎢⎣ 1− π (t)

1− π (t)
MRS

H

c(t),c(t+�)

MRSL
c(t),c(t+�)

⎤⎥⎥⎦ expµZ t+ε

t

−
¡
j (τ) + μL (τ)

¢
dτ

¶
.

(13)

Note that for � small, one has:

MRSi
c(t),c(t+�)

= 1 + �

"
ṡi (t)

si (t)
+

α̇ (t)

α (t)
+

β̇
i
(t)

βi (t)
+

u00 (c (t))

u0 (c (t))
ċ (t)

#
(14)
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We show in the appendix that (13) together with (14) yields for � small:

rL (t)−
¡
j (t) + μL (t)

¢
=

π (t)

1− π (t)

"
ṡL (t)

sL (t)
− ṡH (t)

sH (t)
+

β̇
L
(t)

βL (t)
− β̇

H
(t)

βH (t)

#

The return on annuity offered to agents claiming to be of low type, rL (t),

is therefore lower than the actuarially fair rate of return, j (t) + μL (t) , as a

result of assumption A2 and lemma 1. Defining an implict tax rate ρL(t) by

rL(t) = (1− ρL(t))
¡
j (t) + μL (t)

¢
one gets

ρL (t) =

µ
1

(j (t) + μL (t))

¶µ
π (t)

1− π (t)

¶"
ṡH (t)

sH (t)
− ṡL (t)

sL (t)
+

β̇
H
(t)

βH (t)
− β̇

L
(t)

βL (t)

#
(15)

Given the complexity of the formula, it proves difficult to derive general

properties of this tax function, other than its sign (positive). The following

section presents a numerical simulation of the model in order to gain an

insight into its shape and levels when considering realistic mortality patterns.

3.2.4 Numerical simulation

For this numerical part, we take a population aged above 60. This corre-

sponds to the case in which individuals are endowed with a certain amount

of capital W0 and decide to annuitize it at the age of 60. Our types of in-

dividuals H and L have mortality rates similar to US women and men born

in the 40’s. We did not choose these gender specific mortality to provide

conclusion on gender issues. Actually, gender is generally well observed by

17



the social planner and, therefore, not associated with the problem of asym-

metric information that motivated the second best approach. We only used

these male and female mortality rates since they provide mortality rates and

a differential mortality that are of a reasonable order of magnitude. It is

assumed that nH = nL = 0.5. We calibrate the mortality patterns with a

Gompertz law which is a generally accepted distribution of mortality after

the age of 40. Formally, the Gompertz law is written as:

μi (t) = μi0 exp(kt),

We took k = 0.08 per year, which corresponds to a rather consensual value in

demographic studies. The parameters μi0 are taken to match observed yearly

mortality rates at 60, which are 0.76 % for women and 1.12% for men.5 We

further assume that the subjective discount factor is such that α (x) = 1 and

the gross rate of interest is 3%. We use a function φ (x) = [1− exp(−ax)] ,
assuming therefore constant absolute risk aversion with respect to life dura-

tion. The parameter a is set to get plausible rates of time discounting. It is

such that −β̇L (60) /βL (60) = 0.03 per year. Finally, the utility function is
given by the isoelastic utility function:

u (c) = 1 + ξ
c1−σ

1− σ

where σ = 0.8 and ξ is assumed to be very small, so that it makes sense to

rely on the first order approximation which gives equation (3).

In the first best optimum, the results suggest that type L individuals

are net recipients of the transfer scheme. Their expected income is equal

to 54.9% of the total income. In the second best optimum however, their

5These data come from the Berkeley Mortality Database.
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expected income falls to 47.3% of the total income thus making them net

contributors to the transfer scheme. The figure 2 represents the tax rate

on the return of annuities obtained for type L individuals as a result of the

second best allocation presented in the preceding section. It can be seen that

this tax rate is monotonically increasing with age. It goes from 2.5% at the

age 60 to more than 17.5% at age 100.

60 70 80 90 100
age0.00

0.05

0.10

0.15

tax rate

Figure 2: The annuity tax rate on type L individuals

4 Conclusion

This paper has studied the problem of redistribution between individuals dif-

fering in their survival probabilities. We have successively compared utilitar-

ian allocations when individuals are either temporal risk neutral or temporal

risk averse. In a first best setting, we find that if individuals are temporal risk

averse, long-lived individuals should have a lower instantaneous consumption

than short-lived individuals. Conversely, with temporal risk neutrality, the

pooling allocation is socially optimal.

When the government cannot observe individuals’ risk of death and agents

are temporal risk averse, the first best allocation is not implementable. The
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second best can be implemented by offering an appropriate menu of transfers

and age specific annuity returns. In fact, in order to reach the second best,

high type individuals are provided with actuarially fair annuities, while low

individuals are incited to consume more during the early periods of life,

through a tax on their annuity returns. A numerical illustration based on

gender mortality differences shows a tax rate on low type annuity returns

which increases with age, ranging from 2.5% at age 60 to 17.5% at age 100.
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Appendix

A Construction of the expected lifetime util-

ity

In order to be able to get back to a simple additive specification, we make

the assumption of a "priceless life context". As defined in Bommier (2006),

this corresponds to a situation where u (c (t)) = 1 + ξω (c (t)) where ξ is a
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(small) scalar and ω (.) is bounded. The lifetime expected utility function

can then be rewritten as:

EU (c) =

Z T

0

s(t)α (t)φ0
µZ t

0

α (x) (1 + ξω (c (x))) dx

¶
dt

+ξ

Z T

0

s(t)α (t)ω (c (t))φ0
µZ t

0

α (x) (1 + ξω (c (x))) dx

¶
dt.

We assume that ξ → 0 which means that the individual would agree to give

up most of his consumption to live longer. Taking the Taylor expansion of

the function φ0 and keeping only the terms of order zero and one in ξ, this

yields:

EU (c) =

Z T

0

s(t)α (t)φ0
µZ t

0

α (x) dx

¶
dt

+ξ

Z T

0

s(t)α (t)ω (c (t))φ0
µZ t

0

α (x) dx

¶
dt

+ξ

Z T

0

s(t)α (t)

µZ t

0

α (x)ω (c (x)) dx

¶
φ”

µZ t

0

α (x) dx

¶
dt.

Denoting the constant Ψ =
R T
0
s(t)α (t)φ0

³R t
0
α (x) dx

´
dt and switching the

order of integration of the third term, the expected utility function can be

approximated by:

EU (c) ≈ Ψ+ ξ

Z T

0

s(t)α (t)ω (c (t))φ0
µZ t

0

α (x) dx

¶
dt

+ξ

Z T

0

α (t)ω (c (t))

µZ +∞

t

s (x)α (x)φ”

µZ x

0

α (τ) dτ

¶
dx

¶
dt

≈ Ψ+ ξ

Z T

0

α (t)ω (c (t))×∙
s(t)φ0

µZ t

0

α (x) dx

¶
+

Z T

t

s (x)α (x)φ”

µZ x

0

α (τ) dτ

¶
dx

¸
dt.
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Integrating by parts the term in brackets yields:

EU (c) ≈ Ψ+ ξ

Z T

0

s(t)α (t)ω (c (t))β (t) dt

where β (t) =
R T
t
− (ṡ (τ) /s (t))φ0

¡R τ
0
α (x) dx

¢
dτ . Using ω (c (t)) = u (c (t))−

1/ξ and forgetting the constant, the expected lifetime utility can thus be ap-

proximated by the following additive utility function:

EU (c) =

Z T

0

s (t)α (t)β (t)u (c (t)) dt.

Finally, denoting respectively β̇ (t) and ṡ (t) the derivatives of β (t) and s (t)

with respect to t yields:

β̇ (t) =
ṡ (t)

s (t)2

Z T

t

ṡ (τ)φ0
µZ τ

0

α (x) dx

¶
dτ +

ṡ (t)

s (t)
φ0
µZ t

0

α (x) dx

¶
= − ṡ (t)

s (t)

Z T

t

s (τ)

s (t)
φ”

µZ τ

0

α (x) dx

¶
dτ (16)

where we made use of integration by part.

B Proof of Lemma 1

Let us denote ∆ (t) = −β̇L (t) /βL (t)−
³
−β̇H (t) /βH (t)

´
. We seek to show

that this term is positive for any t. Using the definition of μ (t), one has:

∆ (t) =
μL (t)

R T
t

sL(τ)
sL(t)

¡
−φ”

¡R τ
0
α (x) dx

¢¢
dτR T

t
μL (τ) s

L(τ)
sL(t)

φ0
¡R τ
0
α (x) dx

¢
dτ

−
μH (t)

R T
t

sH(τ)
sH(t)

¡
−φ”

¡R τ
0
α (x) dx

¢¢
dτR T

t
μH (τ) s

H(τ)
sH(t)

φ0
¡R τ
0
α (x) dx

¢
dτ
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Using assumption A3 and φ” < 0, we thus have the following inequality:

∆ (t) ≥ μL (t)

⎡⎣ R Tt sL(τ)
sL(t)

¡
−φ”

¡R τ
0
α (x) dx

¢¢
dτR T

t
μL (τ) s

L(τ)
sL(t)

φ0
¡R τ
0
α (x) dx

¢
dτ
−
R T
t

sH(τ)
sH(t)

¡
−φ”

¡R τ
0
α (x) dx

¢¢
dτR T

t
μL (τ) s

H(τ)
sH(t)

φ0
¡R τ
0
α (x) dx

¢
dτ

⎤⎦
(17)

Using the following notations:

g (τ) = μL (τ)
sL (τ)

sL (t)
φ0
µZ τ

0

α (x) dx

¶
,

k (τ) = −
φ”
¡R τ
0
α (x) dx

¢
φ0
¡R τ
0
α (x) dx

¢ 1

μL (τ)
,

h (τ) =
sH (τ) /sH (t)

sL (τ) /sL (t)
,

the inequality (17) can be rewritten as:

∆ (t) ≥ μL (t)

"R T
t
g (τ) k (τ) dτR T
t
g (τ) dτ

−
R T
t
g (τ) k (τ)h (τ) dτR T
t
g (τ)h (τ) dτ

#

where the functions g (.) , k (.) and h (.) are non negative. Rearranging the

terms in brackets yields:

∆ (t) ≥ μL (t)

"R T
t
g (τ) k (τ) dτ

R T
t
g (τ)h (τ) dτ −

R T
t
g (τ) k (τ)h (τ) dτ

R T
t
g (τ) dτR T

t
g (τ) dτ

R T
t
g (τ)h (τ) dτ

#

where the denominator is positive. Define the function f (x) =
R x
t
g (τ) k (τ) dτ

R x
t
g (τ)h (τ) dτ−R x

t
g (τ) k (τ)h (τ) dτ

R x
t
g (τ) dτ . By assumption A2, h is non-decreasing, k is

non-increasing since −φ”/φ0 is non-increasing and μL (τ) is increasing. This

implies that f (x) is non-decreasing with x and therefore non negative for

any x > t. Then ∆ (t) is positive for any t which proves the result.

24



C Proof of proposition 1

The proof is similar to the one provided for Proposition 7 in Bommier (2008).

Differentiating (7) with respect to t yields:

α̇ (t)βi (t)u0
¡
ci (t)

¢
+ α (t)

h
ċi (t) u00

¡
ci (t)

¢
βi (t) + u0

¡
ci (t)

¢
β̇
i
(t)
i

= −λ exp
µ
−
Z t

0

j (τ) dτ

¶
j (t)

which after some manipulation gives:

ċi (t)

ci (t)
= − u0 (ci (t))

u00 (ci (t)) ci (t)

"
j (t) +

α̇ (t)

α (t)
+

β̇
i
(t)

βi (t)

#

where u0 (ci (t)) /u00 (ci (t)) ci (t) is a constant by assumption.

(a) With temporal risk neutrality, βi (t) is equal to a constant so that−ċi (t) /ci (t) =
j (t) + α̇ (t) /α (t) for i = H,L.

(b) With temporal risk aversion, the use of the individual’s budget constraintR T
0
c (t) s (t) dt =W0 and assumption A1 yields cL (t) > cH (t) . Finally

lemma 1 implies ċL (t) /cL (t) < ċH (t) /cH (t) .

D Proof of proposition 2

Differentiation of (9) with respect to t yields:

α̇i (t)
£
u0
¡
ci (t)

¢
βi (t)

¤
+ α (t)

h
ċi (t)u00

¡
ci (t)

¢
βi (t) + u0

¡
ci (t)

¢
β̇
i
(t)
i

= −λ exp
µ
−
Z t

0

j (τ) dτ

¶
j (t)
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which after some manipulation gives:

ċi (t)

ci (t)
= − u0 (ci (t))

u00 (ci (t)) ci (t)

"
j (t) +

α̇ (t)

α (t)
+

β̇
i
(t)

βi (t)

#
(18)

where u0 (ci (t)) /u00 (ci (t)) ci (t) is a constant by assumption.

(a) With temporal risk neutrality, βi (t) is equal to a constant so that (9)

implies ci (t) = c (t) for every t and i = H,L.

(b) With temporal risk aversion, (9) implies cH (t) < cL (t). Equation (18)

and lemma 1 imply ċL (t) /cL (t) < ċH (t) /cH (t).

E The pooling optimum

Differentiating (10) with respect to t yields

ċ (t)

c (t)
= − u0 (c (t))

u00 (c (t)) c (t)

⎡⎣j (t) + •
β̄ (t)

β̄ (t)
+

α̇ (t)

α (t)

⎤⎦ (19)

where

•
β̄ (t)

β̄ (t)
=

nh
nH
³
ṡH (t)βH (t) + sH (t) β̇

H
(t)
´

+nL
³
ṡL (t)βL (t) + sL (t) β̇

L
(t)
´i £

nHsH(t) + nLsL (t)
¤

−
£
nHsH (t)βH (t) + nLsL (t)βL (t)

¤ £
nH ṡH(t) + nLṡL (t)

¤ª
[nHsH(t) + nLsL (t)]

£
nHsH (t)βH (t) + nLsL (t)βL (t)

¤
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Developing the numerator in the above expression and rearranging terms

yield:

•
β̄ (t)

β̄ (t)
=

n³
nHsH (t) β̇

H
(t) + nLsL (t) β̇

L
(t)
´ ¡

nHsH(t) + nLsL (t)
¢

+nHnL
¡
βH (t)− βL (t)

¢ ¡
ṡH (t) sL (t)− ṡL (t) sH (t)

¢ª
[nHsH(t) + nLsL (t)]

£
nHsH (t)βH (t) + nLsL (t)βL (t)

¤
We wish to compare

•
β̄ (t) /β̄ (t) with β̇

H
(t) /βH (t) and β̇

L
(t) /βL (t).

Let us first denote Λ, the difference between
•
β̄ (t) /β̄ (t) and β̇

H
(t) /βH (t).

It has the following expression

Λ =

n
nLsL (t)

¡
nHsH(t) + nLsL (t)

¢ ³
β̇
L
(t)− βL (t) β̇

H
(t)

βH(t)

´
+nHnL

¡
βH (t)− βL (t)

¢ ¡
ṡH (t) sL (t)− ṡL (t) sH (t)

¢ª
[nHsH(t) + nLsL (t)]

£
nHsH (t)βH (t) + nLsL (t)βL (t)

¤
which is always negative by Assumption A1 and Lemma 1. This implies
•
β̄ (t) /β̄ (t) < β̇

H
(t) /βH (t).

Let us now denote Υ the difference between
•
β̄ (t) /β̄ (t) and β̇

L
(t) /βL (t).

It yields:

Υ =

nHsH (t)
n¡

nHsH(t) + nLsL (t)
¢ ³

β̇
H
(t)− βH (t) β̇

L
(t)

βL(t)

´
+nLsL (t)

¡
βH (t)− βL (t)

¢ ³ ṡH(t)
sH(t)

− ṡL(t)
sL(t)

´o
[nHsH(t) + nLsL (t)]

£
nHsH (t)βH (t) + nLsL (t) βL (t)

¤
where the first part in the numerator is positive while the second one is
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negative. Equivalently,

Υ = χ
n
μH (t)

³
β̇
H
(t)

μH(t)

¡
nHsH(t) + nLsL (t)

¢
+ nLsL (t)

£
βL (t)− βH (t)

¤´
−μL (t)

³
βH(t)

βL(t)

β̇
L
(t)

μL(t)

¡
nHsH(t) + nLsL (t)

¢
+ nLsL (t)

£
βL (t)− βH (t)

¤´o

with χ = nHsH (t) /
£¡
nHsH(t) + nLsL (t)

¢ ¡
nHsH (t)βH (t) + nLsL (t)βL (t)

¢¤
>

0. First note that, using equation (16), β̇
i
(t) can be rewritten as

β̇
i
(t) = μi (t)

µ
βi (t)− φ0

µZ t

0

α (x) dx

¶¶

where βi (t) − φ0
³R t

0
α (x) dx

´
< 0. Using this expression and rearranging

terms, this yields:

β̇
H
(t)

μH (t)

¡
nHsH(t) + nLsL (t)

¢
+ nLsL (t)

£
βL (t)− βH (t)

¤
=

nHsH(t)

µ
βH (t)− φ0

µZ t

0

α (x) dx

¶¶
+ nLsL (t)

µ
βL (t)− φ0

µZ t

0

α (x) dx

¶¶

which is always negative. Using A1 and Lemma 1, one also has

βH (t)

βL (t)

β̇
L
(t)

μL (t)

¡
nHsH(t) + nLsL (t)

¢
+ nLsL (t)

£
βL (t)− βH (t)

¤
<

β̇
H
(t)

μH (t)

¡
nHsH(t) + nLsL (t)

¢
+ nLsL (t)

£
βL (t)− βH (t)

¤
< 0

so that Υ > 0 and β̇
L
(t) /βL (t) <

•
β̄ (t) /β̄ (t).
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Using expressions (18) and β̇
L
(t) /βL (t) <

•
β̄/β̄ (t) < β̇

H
(t) /βH (t) yields:

ċL (t)

cL (t)

FB

<
ċ (t)

c (t)
<

ċH (t)

cH (t)

FB

which proves the result.

F Second best optimum

F.1 Proof of point (ii) of proposition 3

First order conditions of the second best problem are:

∂EUH

∂cH(t)

³
1 +

γ

nH

´
− λsH (t) exp

µ
−
Z t

0

j (τ) dτ

¶
= 0, (20)

∂EUL

∂cL(t)
− λsL (t) exp

µ
−
Z t

0

j (τ) dτ

¶
− γ

nL
∂EUH

∂cL(t)
= 0. (21)

(a) Straightforward rearrangement of (20) taken at time t and t+ � gives the

marginal rate of substitution between two-period consumptions (11)

for the high-type individual which proves point (a).

(b) Denoting EU j
c(t) the expected marginal utility of consumption at date t

and evaluating (21) at time t and t+ �, we get:

EUL
c(t+ε)

EUL
c(t)

"
1− γ

nL
EU

H

c(t+ε)

EUL
c(t)

EUL
c(t)

EUL
c(t+ε)

#
=

sL(t+ ε)

sL(t)
exp

µ
−
Z t

0

j (τ) dτ

¶
×
"
1− γ

nL
EU

H

c(t)

EUL
c(t)

#
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where EU
H

c(t) is the expected marginal utility of a type H individual

mimicking a type L individual. Multiplying the second term inside

brackets of the LHS by EU
H

c(t)/EU
H

c(t) yields:

EUL
c(t+ε)

EUL
c(t)

"
1− γ

nL
EU

H

c(t+ε)

EUL
c(t)

EUL
c(t)

EUL
c(t+ε)

EU
H

c(t)

EU
H

c(t)

#
=

sL(t+ ε)

sL(t)
exp

µ
−
Z t

0

j (τ) dτ

¶
×
"
1− γ

nL
EU

H

c(t)

EUL
c(t)

#

This can be rewritten as:

MRSL
c(t),c(t+ε)

⎡⎣1− γ

nL

MRS
H

c(t),c(t+ε)

MRSL
c(t),c(t+ε)

sH (t)βH (t)

sL (t)βL (t)

⎤⎦ =
sL(t+ ε)

sL(t)
exp

µ
−
Z t

0

j (τ) dτ

¶
×
∙
1− γ

nL
sH (t)βH (t)

sL (t)βL (t)

¸

which yields (12).

(c) The first order conditions (20) and (21) can be rewritten as:

α (t)u0
¡
cH (t)

¢
βH (t)

³
1 +

γ

nH

´
= λ exp

µ
−
Z t

0

j (τ) dτ

¶
(22)

α (t) u0
¡
cL (t)

¢ ∙
βL (t)− γ

nL
sH (t)

sL (t)
βH (t)

¸
= λ exp

µ
−
Z t

0

j (τ) dτ

¶
(23)

Differentiating (22) with respect to time yields ċH (t) /cH (t) to be the
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same as in (18) whereas differentiation of (23) yields:

ċL (t)

cL (t)
= −

u0
¡
cL (t)

¢
cL (t)u00 (cL (t))

×⎛⎝j (t) +
α̇ (t)

α (t)
+

β̇
L
(t)− γ

³
sH(t)
sL(t)

β̇
H
(t) +

³
ṡH(t)
sL(t)
− ṡL(t)

sL(t)
sH(t)
sL(t)

´
βH (t)

´
βL (t)− γ sH(t)

sL(t)
βH (t)

⎞⎠
= −

u0
¡
cL (t)

¢
cL (t)u00 (cL (t))

×

j (t) +
α̇ (t)

α (t)
.+

β̇
L
(t)

βL (t)

⎡⎢⎣1− γ
³
sH(t)
sL(t)

β̇
H
(t)

β̇
L
(t)
+
³
ṡH(t)
sL(t)
− ṡL(t)

sL(t)
sH(t)
sL(t)

´
βH(t)

β̇
L
(t)

´
1− γ sH(t)

sL(t)
βH(t)

βL(t)

⎤⎥⎦ .(24)

Note that by assumption A2 and lemma 1, one has:

ṡH (t)

sH (t)
+

β̇
H
(t)

βH (t)
>

β̇
L
(t)

βL (t)
+

ṡL (t)

sL (t)

so that

Ã
sH (t)

sL (t)

β̇
H
(t)

β̇
L
(t)

+

µ
ṡH (t)

sL (t)
− ṡL (t)

sL (t)

sH (t)

sL (t)

¶
βH (t)

β̇
L
(t)

!
>

sH (t)

sL (t)

βH (t)

βL (t)

which implies

1− γ
³
sH(t)
sL(t)

β̇
H
(t)

β̇
L
(t)
+
³
ṡH(t)
sL(t)
− ṡL(t)

sL(t)
sH(t)
sL(t)

´
βH(t)

β̇
L
(t)

´
1− γ sH(t)

sL(t)
βH(t)

βL(t)

> 1

Thus, comparing (24)with (18) yields
¡
ċL (t) /cL (t)

¢SB
<
¡
ċL (t) /cL (t)

¢FB
.
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F.2 Implementation

For � small enough, (13) can be rewritten as:

¡
1− �rL (t)

¢⎛⎝1− π (t)
MRS

H

c(t),c(t+�)

MRSL
c(t),c(t+�)

⎞⎠ =
¡
1− �

¡
j (t) + μL (t)

¢¢
(1− π (t)) .

Rearranging the terms yields:

¡
1− �rL (t)

¢ h
MRSL

c(t),c(t+ε)
− π (t)MRS

H

c(t),c(t+�)

i
=

¡
1− �

¡
j (t) + μL (t)

¢¢
(1− π (t))MRSL

c(t),c(t+ε)
. (25)

Using (14), one has:

MRSi
c(t),c(t+�)

= 1 + �Ωi

where Ωi =
h
ṡi(t)
si(t)

+ α̇(t)
α(t)

+ β̇
i
(t)

βi(t)
+ u00(c(t))

u0(c(t)) ċ (t)
i
so that (25) can be rewritten

as:

¡
1− �rL (t)

¢ £
(1− π (t)) + �

¡
ΩL − π (t)ΩH

¢¤
=

¡
1− �

¡
j (t) + μL (t)

¢¢
(1− π (t))

¡
1 + �ΩL

¢
.

After some simplification, this yields, for � small enough

£
rL (t)−

¡
j (t) + μL (t)

¢¤
=

π (t)

(1− π (t))

¡
ΩL − ΩH

¢
which gives (15).
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