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Abstract

We analyze competition between interconnected networks when content is heterogeneous in

its sensitivity to delivery quality. In a two-sided market framework, we characterize the

equilibrium in a neutral network constrained to offer the same quality and assess the impact

of such a constraint vis-à-vis a non-neutral network where Internet service providers (ISPs)

are allowed to engage in second degree price discrimination with a menu of quality-price pairs.

We find that the merit of net neutrality regulation depends crucially on content providers’

business models. More generally, our analysis can be considered as a contribution to the

literature on second-degree price discrimination in two-sided platform markets.
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1 Introduction

The Internet is a system of interconnected computer networks that is often characterized as a

“network of networks.” The universal connectivity that enables any computers connected to the

Internet to communicate with each other is ensured by cooperative interconnection arrangements

among network operators. The current state of the Internet is also governed by a more or less

implicit principle of “net neutrality” that treats all packets equally and delivers them on a first-

come-first-served basis without blocking or prioritizing any traffic based on types of Internet

content, services or applications.

However, with the emergence of various on-line multi-media services that demand a signif-

icant amount of network bandwidth, network congestion and efficient management of network

resources have become important policy issues. In particular, content and applications differ

in their sensitivity to delay in delivery. For instance, data applications such as E-mail can be

relatively insensitive to moderate delivery delays from users’ viewpoints. By contrast, streaming

video/audio or Voice over Internet Protocol (VoIP) applications can be very sensitive to delay,

leading to jittery delivery of content that provides unsatisfactory user experiences. With such

heterogeneity concerning delay costs, one may argue that network neutrality treating all packets

equally regardless of content is not an efficient way to utilize the network.

Even if there is an agreement concerning the desirability of offering multi-tiered Internet ser-

vices, implementation of such a system is not a simple matter with interconnected networks.

Guaranteeing a specified quality (speed) of content delivery requires cooperation from other net-

works when content providers and end users belong to different networks. Though interconnected

Internet service providers (hereafter ISPs) agree on the provision of delivery quality, they may

compete in the two groups of end users, consumers who subscribe to the Internet access and

content/application providers who want to deliver their content for consumption.

In this paper, we develop a theoretical model of interconnection to reflect these key features

of the Internet ecosystem and highlight the importance of content providers’ business models in

assessing the effects of net neutrality. More specifically, we adopt a two-sided market framework in

which ISPs serve as platforms that connect content providers (hereafter CPs) and end consumers.

On the CP side, there is a continuum of heterogeneous content/application providers who can

multi-home, i.e., subscribe to multiple ISPs. CPs’ contents differ in their sensitivity to delivery

quality: for a clear exposition, we consider two types of CPs. This justifies the need to provide
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multiple lanes of different delivery qualities. On the consumer side, we assume that consumers

single-home and constitute competitive bottlenecks in the market.1 To model competition on

the consumer side of the market we employ a Hotelling model with hinterlands (Armstrong and

Wright, 2009) that allows us to represent elastic subscription demand by consumers and ISPs’

market power vis-a-vis consumers. By contrast, we assume Bertrand competition without friction

on the content side, which simplifies our analysis. These assumptions are to reflect a typical real

world environment in which ISPs have strong market power against consumers because of the

lack of competition for “the last mile” delivery, while their market power is limited with respect

to content providers who can choose among multiple ISPs to distribute their content.

When both CPs and consumers belong to the same ISP, all traffic can be delivered on-net.

However, if a CP purchases a delivery service from one ISP and consumers subscribe to another

ISP, interconnection between these two ISPs is required for the completion of content delivery.

We consider two broad regimes under which packet delivery can take place. Under a neutral

regime mandated by net neutrality regulation, all packets are delivered with the same quality.

Under a non-neutral regime, in contrast, ISPs are allowed to offer multiple lanes with different

delivery quality levels. We assume that the ISPs agree on the delivery quality and reciprocal

access charge(s) for the delivery of other ISPs’ traffic that terminate on their own networks.

We find that any equilibrium in our model is governed by the so-called “off-net cost pricing

principle” on the CP side. The off-net cost pricing principle was discovered by Laffont, Marcus,

Rey, and Tirole (hereafter LMRT, 2003) and Jeon, Laffont and Tirole (2004). It means that

network operators set prices for their customers as if their customers’ traffic were entirely off-

net. We generalize the finding of LMRT to a setting of heterogenous content with different

delivery qualities across content. We establish that off-net cost pricing on the CP side combined

with Hotelling competition with hinterland on the consumer side creates an equivalence between

competing ISPs in our model and a hypothetical benchmark case of monopoly with homogenous

consumers. Competing ISPs essentially agree on access charges and delivery qualities that would

enable them to behave as monopoly bottlenecks against CPs. By using this equivalence, we

consider a scenario that would favor price discrimination and thus stack the deck against the

neutral regime when the surpluses from interactions between the CPs and end consumers are

entirely appropriated by one-side of the market. Nonetheless, we show that a neutral regime can

be welfare-enhancing when the CPs’ surplus extraction is not such extreme cases.

1See Armstrong (2006) for various modes of competition in two-sided markets.
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The intuition for this main result is as follows. When choosing the quality for low type CPs

whose content is relatively insensitive to delivery speed, the ISPs face a trade-off. A downward

distortion in the quality for low type CPs has a benefit of extracting more rent of high type CPs

and a cost of reducing the consumer surplus that the ISPs can extract. This implies that as

the ISPs focus on extracting consumer surplus rather than extracting CPs’ surplus, there will

be less distortion in quality. Because the ISPs have more instruments to extract CPs’ surplus

in a non-neutral network whereas they are constrained to offer one level of quality in a neutral

network, it can happen that they focus on extracting CPs’ surplus under non-neutral networks

while they focus on extracting consumer surplus under neutral networks. When this arises, the

ISPs under neutral networks serve both types’ CPs in order to extract more consumer surplus

and hence social welfare can be higher under neutral networks than under non-neutral networks.

More generally, the welfare comparison between neutral networks and non-neutral ones pos-

sibly may reveal a non-monotonic relationship over the relative allocation of total surplus among

two end-user groups, consumers and CPs. Suppose first that consumers take the entire surplus

generated by content delivery. Then, ISPs will provide the first best quality for each type of CPs

in a non-neutral network because this allows them to extract the highest consumer surplus from

subscription fees. By contrast, a suboptimal single quality is provided in a neutral network due

to the regulatory restriction. Thus, in this case the non-neutral network yields a strictly higher

social welfare than the neutral network. As the rent on the CP side increases, however, the

social welfare ranking between the two regimes would be reversed due to the accelerated quality

distortion against low type CPs in the non-neutral network, provided that the neutral network

still serves both types of CPs. Once the exclusion occurs under a single quality provision, the

non-neutral network reclaims a higher social welfare. This is because the non-neutral network

still serves low type CPs while high type CPs are offered the first best quality in both network

regimes.

Our result highlights the importance of the CPs’ relative share of total surplus generated

by a content delivery—primarily affected by what kinds of business models that CPs would

take—in the evaluation of net neutrality regulation. More generally our finding contributes to

the literature on second degree price discrimination in platform markets. We show that how an

ISP’s second-degree price discrimination fares against no discrimination depends on the relative

allocation of each group’s surplus in a two-sided market.

Our research is closely related to LMRT (2003) who analyze how the access charge allocates
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communication costs between CPs and end consumers and thus affects competitive strategies

of rival networks in an environment of interconnected networks. They show that the principle

of off-net-cost pricing prevails in a broad set of environments. Our model builds upon their

interconnection model, but focuses on the provision of optimal quality in content delivery services

by introducing heterogeneity in CPs’ content type. In this setting, we analyze how the quality

levels and access charges are determined depending on CPs’ business model and on whether there

exists net neutrality regulation.

There is a large literature on interconnection in the telecommunication market, initiated by

Armstrong (1998) and Laffont, Rey, and Tirole (1998a,b). These researchers show that if firms

compete in linear prices, they agree to set interconnection charges above associated costs to obtain

the joint profit-maximizing outcome and derive the welfare-maximizing interconnection charge

that is lower than the privately negotiated level. They also show that the nature of competition

can be altered significantly depending on whether or not two-part tariffs or termination-based

price discrimination are employed as price instruments. Their models, however, are devoid of the

issue of transmission of quality because all calls are homogeneous. In contrast, we assume hetero-

geneous types of CPs requiring different transmission qualities and analyze the quality distortion

associated with a non-neutral network and the (sub)optimality of net neutrality regulation.2

Our research also contributes to the literature on net neutrality. With net neutrality being

one of the most important global regulatory issues concerning the Internet, there has been a

steady stream of academic papers on various issues associated with net neutrality regulation

in recent years.3 To the best of our knowledge, we are the first to explore implications of net

neutrality in the framework of two-sided markets with interconnected and competing ISPs. Choi

and Kim (2010) analyze the effects of net neutrality regulation on investment incentives of a

monopoly ISP and CPs. They show that ISPs may invest less in capacity in a non-neutral

network than in a neutral network because expanding capacity reduces the CPs’ willingness to

pay for having a prioritized service. Economides and Hermalin (forthcoming) derive conditions

under which network neutrality would be welfare superior to any feasible scheme for prioritized

service given a capacity of bandwidth. They show that the ability to price discriminate enhances

2Armstrong (1998) and Laffont, Rey, and Tirole (1998a,b) consider inelastic subscription of consumers while

we consider elastic subscription demand. In this sense, our model is related to the papers that study elastic

subscription demand in the literature on interconnection in telecommunications market, Armstrong and Wright

(2009), Dessein (2003), Hurkens and Jeon (2012).

3See Lee and Wu (2009) and Schuett (2010) for the surveys about economics literature on network neutrality.
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incentives to invest, creating a trade-off between static and dynamic efficiencies. As these papers

consider a monopolistic ISP, the interconnection and competition issues do not arise. Hermalin

and Katz (HK, 2007) examine a situation in which ISPs serve as platforms to connect CPs with

consumers in a framework of two-sided markets. HK consider heterogeneous CPs whose products

are vertically differentiated to analyze the effects of net neutrality regulation. Without any

restrictions, ISPs can potentially offer a continuum of vertically differentiated services, although

the ISPs are required to provide a single tier of Internet service with net neutrality regulation.

They compare the single service equilibrium with the multi-service equilibrium. One novelty of

our paper with respect to HK is that we analyze how the relative benefit and cost of allowing

second-degree price discrimination depends on CPs’ business model.

Bourreau, Kourandi, and Valletti (2012) analyze the effect of net neutrality regulation on

capacity investments and innovation in the content market with competing ISPs. They show

that investments in broadband capacity and content innovation are higher under a non-neutral

regime. However, they do not allow interconnection between ISPs by assuming that a CP has

access only to the end users connected to the same ISP. Economides and T̊ag (2012) also consider

both a monopolistic ISP and duopolistic ISPs. Once again the issue of internet interconnection is

not considered as they focus on how net neutrality regulation as a zero pricing rule affects pricing

schemes on both sides of the market and social welfare.

The remainder of the paper is organized as follows. In section 2, we set up a basic model of

interconnected networks with competition where two ISPs play the role of a two-sided market

platform that connects CPs on one side and end consumers on the other side. In section 3, we

consider two benchmarks of the first best and a monopolistic ISP with homogenous consumers.

The latter is intended to introduce some of the key parametric assumptions and establish con-

nections between the monopoly case and competing ISPs later. In section 4, we analyze network

competition on the CP side of the market and show that any equilibrium is characterized by

the off-net cost pricing principle regardless of net neutrality regulation. In section 5, we analyze

network competition in the consumer subscription market and derive a central equivalence re-

sult between competing ISPs and a monopolistic ISP: the ISPs that agree to access charges and

delivery qualities to maximize their joint profits behave as a monopoly ISP facing homogeneous

consumers with inelastic subscription. In sections 6, we analyze ISPs’ choice of quality and access

charges in each regime and compare them. In particular, we derive conditions under which zero

termination fee (“bill and keep”) arises endogenously as an equilibrium outcome. In section 7, we
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conduct a welfare analysis and derive conditions under which the neutral regime can outperform

the non-neutral network in social welfare. This result shows the importance of CPs’ business

models in the evaluation of net neutrality regulation. Section 8 contains our concluding remarks,

along with suggestions for possible extensions of our analysis and policy implications with respect

to making net neutrality regulation contingent on whether we consider mobile or fixed Internet.

2 A Model of Interconnected Networks with Competition

2.1 ISPs, CPs, and Consumers

We consider two interconnected ISPs denoted by i = 1, 2. ISPs serve as platforms in a two-sided

market where CPs and end consumers constitute two distinct groups of customers. As pointed

out by LMRT (2001, 2003), the traffic between CPs and the traffic between consumers such as

E-mail exchanges take up trivial volumes relative to the volume of traffic from CPs to consumers.

Thus, we focus on the primary traffic from CPs to consumers who browse web pages, download

files, stream multi-media content, etc. As in the literature of interconnected networks, we assume

a balanced traffic pattern that consumers’ interest in a CP is independent of the CP’s ISP choice

and reciprocal access pricing that implies no asymmetry in the access charge for incoming and

outgoing traffics.

There is a continuum of CPs whose mass is normalized to one. We consider a simple case

of CP heterogeneity. There are two types of CPs: θ ∈ {θH , θL}, with ∆θ = θH− θL > 0. The

measure of θk type CP is denoted by νk, where k = H,L, and νH = ν and νL = 1 − ν. There

is also a continuum of consumers who demand one unit of each content whose value depends on

content type θ and its quality q. In our context, quality means speed and reliability of content

delivery. Let qk denote the quality of delivery associated with content of type θk. The total

surplus generated from interaction between a consumer and a CP of type θ is equal to θu(q),

where u′ > 0 and u′′ < 0 with the Inada condition lim
q→0

u′(q) = ∞. According to our utility

formulation, θ reflects the sensitivity of content to delay, with higher valuation content being

more time/congestion sensitive. Note that θu(q) captures not only a consumer’s gross surplus

but also a CP’s revenue from advertising. We assume that this surplus is divided between a CP

and a consumer such that the former gets αθu(q) and the latter (1 − α)θu(q) with α ∈ [0, 1].

The parameter α reflects the nature of CPs’ business model. We have in mind two sources of
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revenue for CPs: micropayments and advertising revenue.4 For instance, the parameter α would

be higher if CPs can extract surplus from consumers via micropayments in addition to advertising

revenues. If CPs’ revenue source is limited to advertising, α can be relatively low. We later show

that CPs’ business models, captured by α, plays an important role in assessing the effects of net

neutrality regulations.5

The two ISPs are horizontally differentiated on the consumer side. To model elastic partici-

pation of consumers, we adopt a “Hotelling model with hinterlands” as in Armstrong and Wright

(2009) and Hagiu and Lee (2011). More specifically, let Ui(α) denote the gross utility a consumer

derives from the content side by subscribing to ISP i. We have Ui(α) = u+(1−α)
∑

k=H,L

νkiθku(qk),

where u is the intrinsic utility associated with the Internet connection and νki is the measure of

type k(= H,L) CPs whose content can be consumed by subscribing to ISP i. Under interconnec-

tion with the reciprocal access pricing described in subsection 2.2, we have νk1 = νk2 ≡ ν∗k where

ν∗k is the measure of type k(= H,L) CPs subscribed to any of the two ISPs. A consumer’s net

utility from subscribing to ISP i (gross of the transportation cost), ui, is given by

ui(α, fi) = Ui(α)− fi, (1)

where fi is the subscription price charged by ISP i.

The demand for network i in a Hotelling model with hinterlands is given by

ni =

[
1

2
+
ui − uj

2t

]
+ λui, (2)

where ni is the measure of consumers subscribing to ISP i, t is the “transportation cost” param-

eter. The expression in the square bracket in (2) is the standard Hotelling demand specification

with inelastic subscription in which consumers of mass one are uniformly located on the Hotelling

line, assuming that u is sufficiently large relative to t such that the competitive Hotelling market

4Our simplifying assumption is that CPs are homogeneous in all dimensions except for their type θ. This implies

that they use the same business model; otherwise, CPs have two-dimensional types (θ and business model). In

ad-based business model, we can assume that the advertising revenue is proportional to consumer gross utility,

which in turn is proportional to θu(q). Then, the total surplus is given by bθu(q) where b is a positive constant.

Hence, by redefining bθ as θ′, we are back to our original formulation.

5Casadesus-Masanell and Llanes (2012) also emphasize the importance of user bargaining power vis-a-vis appli-

cation developers in their analysis of investment incentives in two-sided platforms. See Jullien and Sand-Zantman

(2012) for an analysis that endogenizes the choice of business model in the context of congestion pricing and net

neutrality. They study a “missing price” problem which arises since consumers do not know each CP’s type, which

is about the traffic loads on the ISP resulting from the use of the CP’s content.
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segment is fully covered. The term λui represents the demand from ISP i’s “hinterlands,” with

λ ≥ 0 representing the relative importance of market expansion possibilities. More specifically,

each ISP faces a downward sloping demand of loyal consumers on each side of the unit inter-

val; consumers in these areas never consider buying from the alternative ISP and have the same

transportation cost parameter of t, but are uniformly distributed with a density of h. In such

a scenario, the marginal consumer type in the loyal consumer group who is indifferent between

not subscribing and subscribing to ISP i is distance x∗i away (in the hinterlands) from the ISP,

where x∗i is defined by ui − tx∗i = 0. Thus, the number of consumers in the hinterland is given

by hx∗i = λui with λ = h
t .

6

2.2 Network Interconnection and Network Neutrality

ISPs provide network services that deliver content from CPs to consumers. The total marginal

cost of providing a unit traffic of quality q from CP to end users is assumed to be linear, i.e.,

c(q) = cq for q ≥ 0.7 The total marginal cost has two components, i.e., c = cO+cT , where cO ≥ 0

and cT ≥ 0 stand for the cost of origination and that of termination per quality, respectively.

We assume that ISPs cannot engage in first-degree price discrimination across content providers

depending on content types.

We consider two different regimes under which ISPs can deliver content: neutral regime or

non-neutral regime. For simplicity, we consider cooperative choice of quality and access charge

under both regimes. Under a non-neutral regime, ISPs can offer multiple classes of services that

differ in delivery quality. In other words, they can engage in second degree price discrimination

by offering a menu of contracts that charges different prices depending on the quality of delivery.

Let qH be the quality for high type CPs and qL for low type CPs; let AH and AL denote the

reciprocal termination charges for each quality class. The termination charge per unit quality

for type k traffic can be implicitly defined as ak = Ak
qk
. Then, for one unit of off-net traffic of

quality q = qH from ISP j to ISP i (i.e., a consumer subscribed to ISP i asks for content from a

CP subscribed to ISP j), the origination ISP j incurs a cost of cOqH and pays an access charge

of aHqH (= AH) to ISP i, and the termination ISP i incurs a cost of cT qH and receives an access

6The market expansion possibility parameter λ can also be represented by the same density of consumers in the

hinterlands (i.e., h = 1), but with a different transportation parameter for consumers in the hinterlands, say th.

7The assumption of a linear marginal cost in quality can be made without any loss of generality because we

can normalize quality to satisfy the assumption of linearity. Suppose that c(q) is nonlinear. By redefining q̃ as

c(q)/c, we have a linear marginal cost function c̃(q̃)= cq̃. Starting from a concave utility function and a convex cost

function, after this linealization, the utility function with the normalized cost remains still concave.
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charge of aHqH from ISP i. Let ĉk ≡ c+ ak − cT (= cO + ak) denote the perceived unit quality

cost of the off-net content that terminates in the other network for q = qk, where k = H,L.8

In a neutral regime or in the presence of net neutrality regulation, ISP i is constrained to

offer a single uniform delivery quality q.9 The ISPs jointly choose a single quality level and a

single access charge A with a = A
q . Let ĉ ≡ c + a − cT denote the off-net cost per unit quality

in the neutral network. Define ĉ such that ĉ ≡ (ĉH , ĉL) in the non-neutral network and ĉ ≡ ĉ in

the neutral network.

We note that because of the interconnection agreement between the two ISPs, a CP can reach

any consumer subscribed to either ISP regardless of the ISP it chooses to deliver its content.

Figure 1 illustrates the flows of traffic and payment over two interconnected networks.

Figure 1: The flows of traffic and payment over interconnected networks

8In a non-neutral regime, we can further distinguish two cases depending on whether or not termination-based

price discrimination (TPD) is possible. With TPD, ISP i proposes a pricing schedule {pi(q), p̂i(q)} for q ∈ {qH , qL}
such that upon paying pi(q) (respectively, p̂i(q)) a CP can obtain delivery of its content with quality q from ISP i

for a unit of on-net traffic (respectively, a unit of off-net traffic). In this paper, we do not consider the possibility

of TPD, that is, we analyze only the case where pi(q) = p̂i(q). However, the qualitative results do not change

when we consider TPD if CPs are allowed to multi-home.

9Under the neutral regime, there is no TPD because content cannot be treated differently depending on its

destination.

9



2.3 Timing of Decisions

The game is played in the following sequence.

• Stage 1: The quality levels and the corresponding access charges are negotiated between

the ISPs.

• Stage 2: In the non-neutral regime, each ISP i with i = 1, 2 simultaneously sets for CPs

{pi(qH), pi(qL)} a menu of a unit price for each delivery quality. In the neutral regime, there

is only one delivery quality and each ISP sets a price of pi(q). Given the price schedules,

each CP decides whether to participate in the market, and if it participates, decides which

ISP to use to deliver its content (and what type of delivery service to purchase in the

non-neutral regime).

• Stage 3: Each ISP i with i = 1, 2 simultaneously posts its consumer subscription fee fi and

consumers make their subscription decisions.

One main reason to consider this sequential timing rather than two alternative timing sce-

narios where stages 2 and 3 are reversed or take place simultaneously is that the ISPs have less

incentive to deviate from the joint-profit maximizing prices under this sequential timing than

under the other ones.10 We establish that the off-net cost pricing on the content side holds re-

gardless of the timing (in section 4) and show that there is an upper bound on the ISPs’ joint

profit associated with the off-net cost pricing (in section 5). Hence, the upper bound does not

depend on the timing we choose. Finally, we show that the ISPs can achieve this upper bound

under the sequential timing specified above (in section 6).

3 Benchmarks

3.1 First-Best

Before analyzing market outcomes under various regimes, we first analyze the first-best outcome

as a benchmark. Note first that the access charge plays no role in the first-best since it is a pure

transfer and that the social cost of providing q to a pair of consumer and CP is cq regardless of

whether they belong to the same ISP or two different ISPs. Therefore, for any given configuration

10For instance, under the simultaneous timing, if ISP i deviates in its offer to CPs, it can also adjust its offer to

consumers, but ISP j cannot. In contrast, in the sequential timing that we consider, if ISP i deviates in stage 2

by changing its offer to CPs, ISP j can adjust its offer to consumers in stage 3.
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of consumers subscribing to the networks, the socially optimal quality should maximize θku(q)−cq

and hence, the first-best quality level for CPs of type θk, denoted by qFBk , is determined by the

following condition:

θku
′(qFBk ) = c, where k = H,L. (3)

The marginal benefit of an incremental improvement of delivery quality for the content of type θ

must be equal to c, the marginal cost associated with such an adjustment.

Define uFB and cFB as the gross utility from all content providers and its associated content

delivery cost for each consumer when the first best delivery qualities are chosen:

uFB =
∑
k=H,L

νkθku(qFBk ),

cFB =
∑
k=H,L

νkcq
FB
k .

Then, social welfare as a function of the measure of subscribed consumers, denoted by N(≥ 1),

is given by

WFB(N) = N ×
(
u+ uFB − cFB

)
− T (N),

where T (N) represents the total transportation cost incurred by consumers. Since the number

of consumers in the competitive market is normalized to one, the total number of consumers

from the hinterlands is given by (N − 1). The total transportation cost T (N) is minimized

with a symmetric subscription pattern to the two ISPs. Let x be the distance from the marginal

consumer in the hinterlands to the closest ISP with (N−1)/2 subscribers. Then, x = N−1
2h where

h(= λt) is the density for the consumers in the hinterlands. With our ”hinterlands” specification,

we thus have

T (N) = 2

∫ 1
2

0
txdx+ 2h

∫ N−1
2h

0
txdx =

t

4
+

(N − 1)2

4λ
.

The first-best measure of subscribed consumers, denoted by NFB, is given by the following first

order condition:

u+ uFB − cFB =
dT (N)

dN

∣∣∣∣
N=NFB

=
NFB − 1

2λ
(= txFB). (4)

The transportation cost of the marginal consumer (txFB) should be equal to (u+ uFB − cFB) in

the first-best outcome.
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Proposition 1 (First-best) The first best outcome characterized by (3) and (4) requires non-

neutrality since qFBH > qFBL . Under perfect price discrimination, the first-best outcome can be

implemented by a price schedule to CPs p(qFBk ) = αθku(qFBk ) and consumer subscription price

f = cFB − αuFB: it requires a subsidy on consumer side if cFB < αuFB. Then, each CP and

each ISP realize zero profit.

The point of the proposition is simple. With heterogeneous content that differs in sensitivity

to delivery quality, the uniform treatment of content mandated by net neutrality in general would

not yield a socially optimal outcome. The prices described in Proposition 1 are the unique ones

that implement the first-best outcome under the budget constraint of the social planner: each

ISP and each CP realizes zero profit and the marginal consumer is indifferent between subscribing

and not subscribing.

3.2 Monopoly ISP with Homogeneous Consumers and Key Assumptions

As another benchmark, we consider a hypothetical setting in which a monopoly ISP provides

content delivery service from the continuum of CPs (described previously) to homogeneous con-

sumers with inelastic subscription.11 This benchmark serves a crucial role in characterizing the

equilibrium with competing ISPs because we establish an equivalence result between the monop-

olistic outcome of this benchmark and the competitive outcome on the CP side. This benchmark

is also useful in introducing our key assumptions. We normalize, without loss of generality, the

total measure of consumers to one. We assume that the monopoly simultaneously announces the

price-quality pairs for CPs and the fee for consumers.12

� Non-neutral Network

Let {(pH , qH) , (pL, qL)} be the menu of contracts offered to CPs which satisfies the incentive

and participation constraints of CPs (defined below). Then, each consumer’s gross utility is given

by U(α) = u+ (1−α)
∑

k=H,L

νk[θku(qk)], which can be fully extracted by a subscription fee f with

homogeneous consumers. The ISP’s profit from the content side is πCP =
∑

k=H,L

νk [pk − cqk].

The overall profit for the ISP can be written as ΠM (α) = U(α) + πCP . Thus, the monopolistic

11In this setup with homogenous consumers, the monopolistic ISP can extract the whole consumer surplus.
12The optimal outcome chosen by the monopoly ISP with simultaneous pricing is the same as the one chosen

with sequential pricing in which it first chooses the price-quality pairs for CPs and then the fee for consumers.
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ISP’s mechanism design problem can be described as:

max
(pk,qk)

ΠM (α) = u+
∑
k=H,L

νk[pk + (1− α)θku(qk)− cqk]

subject to

ICH : αθHu(qH)− pH ≥ αθHu(qL)− pL;

ICL : αθLu(qL)− pL ≥ αθLu(qH)− pH ;

IRH : αθHu(qH)− pH ≥ 0;

IRL : αθLu(qL)− pL ≥ 0,

where ICk and IRk refer to type k CPs’ incentive compatibility constraint and individual ratio-

nality constraint, respectively.

This is a standard mechanism design problem for second-degree price discrimination. As usual,

the high-type’s incentive compatibility constraint ICH and the low-type’s individual rationality

constraint IRL are binding: we thus have

pH = αθHu(qH)− α∆θu(qL); pL = αθLu(qL). (5)

This leads to the following reduced problem

max
{qH ,qL}

ΠM (α, qH(α), qL(α)) = u+
∑
k=H,L

νk[θku(qk)− cqk]− ν · α∆θu(qL).

The objective in the reduced program shows that the ISP extracts full surplus except for the rent

to high type CPs, which is given by ν · α∆θu(qL). From the first order conditions, we find that

the optimal quality for the high type is determined by θHu
′(q∗H) = c for any α, which is equal

to the first-best level, regardless of α, i.e., q∗H = qFBH . By contrast, the low type CPs’ quality is

characterized by (
θL −

ν

(1− ν)
· α∆θ

)
u′(q∗L(α)) = c. (6)

As in the standard mechanism design problem, there is a downward distortion in quality for the

low type, that is, q∗L(α) ≤ qFBL with the equality holding only for α = 0.

We assume that if CPs extract all the surplus from consumers (i.e., α = 1), the monopoly

13



ISP prefers serving both types under second-degree price discrimination.

Assumption 1 q∗L(α = 1) > 0

q∗L(α = 1) requires θL >
ν

1−ν∆θ. Assumption 1 ensures that q∗L(α) > 0 for any α ∈ [0, 1] because

total differentiation applied to (6) shows that the low-type quality is decreasing in α :

dq∗L
dα

=
ν∆θu′(q∗L)

((1− ν)θL − να∆θ)u′′(q∗L)
< 0. (7)

For a given qL, the rent obtained by a high type CP increases with α. Hence, as the CPs’

share of surplus (i.e., α) increases, the ISP has more incentives to distort the quality for the low

type. From the envelope theorem, the maximized objective under non-neutral network strictly

decreases with α:

dΠM (α, q∗H(α), q∗L(α))

dα
= −ν ·∆θu(qL) < 0.

� Neutral Network

Now consider a neutral network where the ISP is constrained to choose only a single price-quality

pair (p, q). Given this single quality offer constraint, the ISP decides between serving only the

high type CPs with the exclusion of the low type CPs and serving both types of CPs. With the

exclusion, it is straightforward that the ISP will choose q = qFBH and p = αθHu(qFBH ), which gives

Π̃EX = u+ ν[θHu(qFBH )− cqFBH ].13

If the monopolistic ISP decides to serve both types, then p = αθLu(q) and f = u + (1 −

α)
∑

k=H,L νkθku(q). Hence, the monopoly ISP chooses a single quality q to solve

max
q

Π̃(α) = u+ (θL + (1− α)ν∆θ)u(q)− cq.

From the first-order condition, we obtain the optimal quality choice when both types of CPs are

served:

(θL + (1− α)ν∆θ)u′(q̃(α)) = c. (8)

Equation (8) indicates that the optimal quality choice lies between the first level qualities for the

high and the low types, that is, qFBL ≤ q̃(α) < qFBH to balance the competing needs of the two

types with a single quality level, with a higher proportion of the high type CPs (i.e., a higher

ν) implying a higher quality provision by the monopolist. By totally differentiating (8), we can

13We use a tilde (˜) to denote variables associated with a neutral network.
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derive that the quality decreases with α:

dq̃(α)

dα
=

ν∆θu′(q̃)

(θL + (1− α)ν∆θ)u′′(q̃)
< 0. (9)

In particular, q̃(α) = qFBL when α = 1. From the envelope theorem, the monopolistic ISP’s profit

without exclusion strictly decreases with α as in the non-neutral regime.

dΠ̃(α)

dα
= −ν∆θu(q̃(α)) < 0

By contrast, the ISP’s profit under exclusion, Π̃EX is independent of α. We assume the following.

Assumption 2 Π̃(α = 0) > Π̃EX > Π̃(α = 1)

This assumption, together with the monotonicity of Π̃(α), implies that there exists a unique

threshold level of α denoted by αN ∈ (0, 1) such that the monopolist ISP serves both types of

CPs for α < αN and excludes the low type CPs α > αN where αN is implicitly defined by

Π̃(αN ) = Π̃EX , that is,

(θL + (1− αN )ν∆θ)u(q̃(αN ))− cq̃(αN ) = ν · (θHu(qFBH )− cqFBH ). (10)

Therefore, the monopolist ISP’s profit under the neutral system, Π̃M (α), can be written as

Π̃M (α) =

 Π̃(α) for α < αN

Π̃EX for α ≥ αN

Let (p̃∗(α), q̃∗(α)) represent the ISP’s choice under neutral network. Then, the quality chosen by

the ISP is given by:

q̃∗(α) =

 q̃(α) for α < αN

qFBH for α ≥ αN

The corresponding retail prices are given by p̃∗(α) = αθLu(q̃(α)) for α < αN and p̃∗(α) =

αθHu(qFBH ) for α > αN .

� Assumptions and Social Welfare

Two remarks on our assumptions are in order. First, Assumptions 1 and 2 correspond to a

situation analyzed in Hermalin and Katz (2007). Specifically, when a CP extracts the entire
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surplus, the monopoly ISP prefers excluding the low-type CP without a second degree price

discrimination, though it serves both types with it.

Second, from the social welfare point of view, the non-neutral network dominates the neutral

network for the extreme cases of α = 1 and α = 0. Essentially, these two cases can be considered

as a representation of one-sided markets. Consider first the case in which CPs capture the whole

surplus from interactions with consumers, i.e., α = 1. Then, each consumer obtains the basic

utility u only. So, the monopoly ISP will set f = u both under non-neutral and neutral networks.

Consequently, we can focus on the monopoly ISP’s problem of maximizing profit from CPs, which

is a standard problem of one-sided market. In this case, high type CPs consume qFBH in both

regimes, but low types are served only under non-neutral network. This is a standard argument

in favor of second-degree price discrimination.

For the other extreme case of α = 0, consumers capture all surplus from interactions with CPs.

Since consumers are homogeneous, the monopoly ISP can extract full surplus from consumers.

The case of α = 0 is the same as a standard monopoly in one-sided market with cost function cq.

The monopoly will provide services for free to CPs, which means that the ISP bears the entire

cost of cq. Under a non-neutral regime, the monopoly ISP provides the first-best quality for each

type of CPs and charges the consumer subscription fee f(α = 0) = u+uFB.14 The ISP replicates

the first-best outcome and earns the profit of Π(α = 0) = u+uFB−cFB. Under a neutral regime,

the monopoly ISP is constrained to offer one level of quality and hence can never achieve the

first-best outcome. Therefore, the ISP and a social planner prefer a non-neutral network over a

neutral network for α = 0. In summary, we have:

Proposition 2 (Monopoly ISP) Consider a monopoly ISP facing homogenous consumers with

inelastic subscription.

(i) If α = 1, under Assumptions 1-2, the ISP serves both types of CPs in a non-neutral network

but serves only high types in a neutral network. Therefore, social welfare is higher under a

non-neutral network than under a neutral network.

(ii) If α = 0, the outcome chosen by the ISP coincides with the first-best under a non-neutral

network. By contrast, under a neutral network, the first-best can never be realized. There-

fore, social welfare is higher under a non-neutral network than under a neutral network.

14When α = 0, every CP makes zero profit and we can assume that a CP follows the ISP’ desire in case of

indifference. For any α > 0 (hence α can be as close as possible to zero) and q > 0, the ISP can exclude low types

by charging p = αθHu(q).
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Under Assumptions 1-2, we consider a scenario in which the neutral network is always dom-

inated in one-sided market settings, stacking the deck against the neutral network. Later, this

result will be contrasted to the case where a neutral network can provide a higher social welfare

relative to a non-neutral network.

4 Networks Competition in CP Market and Off-Net Cost Pricing

In this section, we analyze the ISPs’ competition in the content market and establish that any

equilibrium prices for CPs satisfy the off-net cost pricing principle, which we use for subsequent

analysis. In the beginning of stage 2, quality levels and access charges are given from stage 1.

LMRT (2003) first showed that in a broad range of environments, network operators set

prices for their customers as if their customers’ traffic were entirely off-net, which they termed

the off-net cost pricing principle. We extend their analysis and confirm that their result is robust

to the introduction of heterogenous content types with menu pricing and to alternative timing

assumptions.

Lemma 1 (Off-net cost pricing) Any equilibrium prices that generates positive sales to CPs must

satisfy the off-net cost pricing principle. This holds regardless of whether or not networks are

neutral.

Proof. See the Appendix.

Lemma 1 shows that off-net cost pricing is a necessary condition that any equilibrium price

for CPs generating positive sales must satisfy. This property holds more generally regardless of

the timing we consider. In fact, it is straightforward to prove it for the sequential timing of

reverse order (i.e., stages 2 and 3 are reversed) or for the simultaneous timing (i.e., stages 2 and 3

take place at the same time). With these alternative timing assumptions, a necessary condition

that equilibrium prices on the content side should satisfy is that an ISP should be indifferent

between winning a given type of CPs and losing it, given the prices and subscription decisions

on the consumer side. For instance, consider a neutral network and let p(q) be an equilibrium

price for CPs given that the ISPs previously agreed on (q, a). We normalize the total number

of consumers subscribed to one, without loss of generality, and let si ∈ [0, 1] represent ISP i’s

consumer market share. Suppose first that at p(q) both types of CPs buy connections from ISP

i. Then, ISP i’s profit from the content side in equilibrium is p(q)− sicq− (1− si) (c+ a− cT ) q.
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If it loses the CPs by charging a higher price, its profit from the content side will be si(a− cT )q.

Therefore, the following inequality must hold in equilibrium:

p(q)− sicq − (1− si) (c+ a− cT ) q ≥ si(a− cT )q,

which is equivalent to

p(q) ≥ (c+ a− cT ) q = ĉq.

Symmetrically, the condition for ISP j to weakly prefer losing CPs to winning CPs gives the

condition

p(q) ≤ (c+ a− cT ) q = ĉq.

Therefore, any equilibrium price should satisfy p(q) = ĉq.

Suppose now that at p(q), only high type CPs buy connection and ISP i wins them. Then, ISP

i’s equilibrium profit from content is ν [p(q)− sicq − (1− si) (c+ a− cT ) q] and its content side

profit from losing the CPs is νsi(a− cT )q. The previous logic still applies here again. Therefore,

any equilibrium price should satisfy p(q) = ĉq, regardless of whether exclusion of low types occurs

or not. The same result holds when we consider a non-neutral network.

We note that the proof of lemma 1 is more involved since under the sequential timing we

consider, any ISP’s deviation in the content market is followed by both ISPs’ reactions in the

consumer market and hence we need to explicitly take into account these reactions in our proof.

We also would like to point out that even though off-net cost pricing is a necessary condition

for an equilibrium, it is not a sufficient condition for any arbitrary access charge because an ISP

may have an incentive to deviate.15 However, we show in section 6 that it is both necessary

and sufficient for the access charge(s) optimally agreed on by the ISPs (to maximize their joint

profits) in the first stage.

15To illustrate this point, consider a neutral network and the sequential timing of reverse order (i.e., stage 2 and

stage 3 are reversed). Suppose that a = (αθLu(q)+ε)/q−cO where ε > 0 is infinitesimal. Then, off-net cost pricing

leads to p(q) = αθLu(q) + ε. Hence, only high types purchase the quality at off-net cost pricing. Consider now the

deviation of ISP i to p′(q) = αθLu(q) such that both types purchase the quality. This deviation is profitable in the

content side if and only if

νsi(αθLu(q) + ε− cq) < αθLu(q)− sicq − (1− si) (αθLu(q) + ε) ,

where si is ISP i’s market share in the content side at the off-net cost. The condition is equivalent to

[νsi + (1− si)] ε < (1− ν)si(αθLu(q)− cq),

which holds for ε > 0 small enough as long as αθLu(q) > cq.
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Now we examine the profit that each ISP obtains on the content side under the off-net cost

pricing. Let ni be the number of consumers subscribed to ISP i for i = 1, 2 at stage 3. Consider

a given CP who uses quality q under the off-net cost pricing ĉq. If this CP subscribed to ISP i

at stage 2, then ISP i’s profit from this CP is,

ĉq(ni + nj)− cqni − (c+ a− cT ) qnj = (ĉ− c)qni.

If this CP subscribed to ISP j at stage 2, then ISP i’s profit from this CP is,

(a− cT )qni = (ĉ− c)qni.

Therefore, we derive:

Lemma 2 (Profit from CPs) Consider any off-net cost pricing equilibrium. Then, ISP i’s profit

from the CP side is given by niπ̂
CP , where ni is the number of consumers subscribed to ISP i

for i = 1, 2 and π̂CP ≡
∑
ν∗k

k=H,L

(ak − cT )qk =
∑
ν∗k

k=H,L

(ĉk − cT )qk where ν∗k is the measure of type

k(= H,L) CPs which subscribed to any of the two ISPs. This result holds regardless of whether

networks are neutral or not. In the neutral network, if both types are served, it is required that

aH = aL = a.

Note that the result of this lemma does not depends on the subscription distribution of CPs

across the two ISPs because each ISP is indifferent between winning and losing CPs at off-net

cost pricing. Note that π̂CP represents the profit per consumer that each ISP makes from the

content side with off-net cost pricing and does not depend on (n1, n2).

5 Networks Competition in Consumer Subscription Market

In the previous section, we showed that off-net cost pricing must be satisfied in any equilibrium

and that under off-net cost pricing, each ISP’s profit from the content side is given by niπ̂
CP .

Given these results, let us study the competition between two ISPs in the consumer subscription

market. With off-net cost pricing in the content side market, ISP i’s total profit can be written

as

Πi = ni · (fi + π̂CP ), where ni =
1

2
+
fj − fi

2t
+ λui.
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In any interior equilibrium of the third stage competition for consumers, each ISP i chooses fi to

maximize its total profit from both CPs and consumers, given fj . With the first order condition,

symmetry, and the relationship λ = h
t , we can derive the symmetric equilibrium subscription

price:

f∗(π̂CP ;h) =
t+ 2hU(α)

1 + 4h
− (1 + 2h)π̂CP

1 + 4h
, (11)

where U(α) = u+ (1−α)
∑

k=H,L

ν∗kθku(qk) is the consumer gross utility. Then each ISP’s equilib-

rium profit is given by

Π∗i (α; ĉ) =

(
1

2
+ λ (U(α)− f∗)

)
· (f∗ + π̂CP ),

where f∗ is from (11). With some algebra, we find that

Proposition 3 Consider any symmetric equilibrium.

(i) Each ISP earns the profit

Π∗i (α; ĉ) =

[
1

2
+ λ

(1 + 2h) · Π̂(α)− t
1 + 4h

][
t+ 2h · Π̂(α)

1 + 4h

]
(12)

where Π̂(α) = U(α) + π̂CP and λ = h
t .

(ii) For h = tλ = 0, each ISP’s profit is always equal to the standard Hotelling profit of t/2.

(iii) For h = tλ > 0, maximizing joint market equilibrium profit of the ISPs is equivalent to

maximizing Π̂(α) = U(α)+ π̂CP = ΠM (α)
∣∣
p=ĉq

. In other words, the ISPs maximizing joint

profit behave as a monopoly ISP facing homogeneous consumers with inelastic subscription.

The result of Proposition 3-(iii) is worth elaborating on. Note first that for h = tλ > 0, the

equilibrium profit (12) is an increasing function of Π̂(α). This implies that what the competing

ISPs maximize when jointly choosing quality levels and access charges is equivalent to what a

monopoly ISP would maximize when it faces homogenous consumers with inelastic subscription,

which we analyzed as a benchmark in section 3.2: U(α) + π̂CP is exactly what the monopoly

ISP of the benchmark maximizes. Recall that Π̂(α) ≤ u+ uFB − cFB, where the equality holds

only when the ISPs capture the entire CPs’ surplus with the first-degree price discrimination.

This implies that there are potentially two sources of distortions in the objective of the ISPs

compared to social welfare: the ISPs neglect the rent of the CPs and endogenous subscription of
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consumers. Later, we will study how these two distortions play differently in non-neutral and

neutral networks.

What drives our result is that for any given
(
U(α), π̂CP

)
, the competition on consumer side

leads to an equilibrium subscription fee of the form

f∗ = βU(α)− (1− β)π̂CP +
t

1 + 4h
, (13)

where β = 2h
1+4h ∈ (0, 1/2) for h = tλ > 0 and β = 0 for h = tλ = 0. When consumer subscription

is inelastic (λ = 0), the equilibrium consumer subscription fee is given by f∗ = t− π̂CP and hence

each ISP obtains the standard Hotelling profit t/2. In this case, any profit from the content side is

completely dissipated away in the competition for the consumer side. Imposing net neutrality has

no impact on each ISP’s profit. This is reminiscent of the profit neutrality result in the literature

on the competition of telecommunications networks (Laffont, Rey, Tirole, 1998a) where the access

charge has no impact on the networks’ profits in a Hotelling model (hence with inelastic consumer

subscription). Our result is stronger in the sense that the profit depends neither on the level of

access charge nor on the number of product lines ISPs are allowed to offer.

When consumer subscription is elastic with h = tλ > 0, the profit neutrality result no longer

holds; the pass-through rate of π̂CP into f is not complete and only partial. As π̂CP increases,

the consumer subscription price decreases but less than the change in π̂CP for any h > 0. This

can be seen from

− 1 <
∂f∗

∂π̂CP
= −(1− β) < −1

2
. (14)

Inequality (14), in turn, implies that each ISP’s total profit per consumer increases with π̂CP :

0 <
∂(f∗ + π̂CP )

∂π̂CP
= β <

1

2
.

More generally, an ISP’s profit is equal to the number of consumers multiplied by the profit per

consumer. The number of consumers is given by 1
2 +λ(1−β)Π̂(α) plus a constant, which linearly

increases with Π̂(α). Furthermore, from (13), profit per consumer f∗ + π̂CP is given by βΠ̂(α)

plus a constant and hence linearly increases with Π̂(α). Therefore, the ISPs will choose quality

levels and access charges to maximize Π̂(α) and replicate the monopolistic solution derived in

section 3.2.
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6 ISPs’ Choice of Quality and Access Charges

In this section, we analyze the ISPs’ choice of quality levels and corresponding access charges.

We showed that the competing ISPs maximize the same objective as a monopoly ISP facing

homogenous consumers and that off-net cost pricing must hold in any equilibrium. One potential

issue is that not all off-net costs can be supported as equilibrium prices for CPs since an ISP

might have an incentive to deviate from off-net cost pricing in stage 2. However, we show that

for the access charge optimally agreed on by the ISPs, this issue does not arise and off-net cost

pricing is both necessary and sufficient for an equilibrium in the CP market.

We proceed in two steps. First, we consider a constrained benchmark case in which no ISP is

allowed to deviate from the off-net cost pricing in stage 2. Therefore the ISPs behave the same

way as the monopoly ISP facing homogenous consumers would behave in section 3.2. This is

because there is one-to-one correspondence between the retail price of content delivery and the

choice of access charge from the off-net cost pricing, p(qk) = ĉkq = (c + ak − cT )qk. In other

words, any second-best quality-price combinations that would be chosen by the monopolistic ISP

can be replicated by agreeing to the same quality levels and appropriate choice of access fees.

Essentially, both the monopolistic ISP and competing ISPs have the same objective function and

the same instruments.

Second, we consider the original case in which any ISP is allowed to deviate from off-net cost

pricing in stage 2 and prove that there is no profitable deviation when the ISPs agree on the

qualities and access charges that would implement the monopoly benchmark outcome.

6.1 Non-Neutral Network

We now consider ISPs’ choice of quality levels and access charges in the non-neutral network

for h = tλ > 0. According to Proposition 3-(iii), the ISPs collectively choose the quality levels

and the corresponding access charges to maximize Π̂(α). Furthermore, according to Proposition

2, maximizing Π̂(α) in the non-neutral network requires to serve both types of CPs (i.e., no

exclusion). Given the quality pairs (qH , qL) which the ISPs agreed to offer to each type of CPs,

no ISP is allowed to deviate from the off-net cost pricing in the constrained benchmark case.

Given the off-net cost pricing constraint, the ISPs can indirectly choose the equilibrium price of

each quality by appropriately choosing the access charge.

From (5) and off-net cost pricing, it is immediate that the access charges will be chosen as
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follows to replicate the monopolistic solution:

a∗H = α (θHu(q∗H)−∆θu(q∗L)) /q∗H − cO and a∗L = αθLu(q∗L)/q∗L − cO. (15)

Proposition 4 Consider a non-neutral network under Assumption 1:

(i) Suppose that no ISP is allowed to deviate from the off-net cost pricing.

(a) The ISPs offer quality levels (q∗H , q
∗
L) such that q∗H = qFBH for any α ∈ [0, 1] and q∗L(α)

is determined by (6): q∗L(0) = qFBL and q∗L(α) strictly decreases with α.

(b) The ISPs choose access charges (a∗H , a
∗
L) given by (15). This leads to the following

retail prices for CPs: p∗H = αθHu(q∗H)− α∆θu(q∗L(α)) and p∗L = αθLu(q∗L(α)).

(ii) When the ISPs agreed on (q∗H , q
∗
L) and (a∗H , a

∗
L), there is no profitable deviation from the

off-net cost pricing in stage 2 and the ISPs implement the outcome that would be chosen by

a monopoly ISP facing homogeneous consumers.

The proof of Proposition 4-(ii) is provided in the Appendix.

6.2 Neutral network

As in the non-neutral network, the monopolistic ISP solution can be replicated by an appropriate

choice of the access charge if they are not allowed to deviate from the off-net cost pricing. More

specifically, the ISPs will serve only high type CPs for α > αN , and they will cooperatively choose

the delivery quality level of q̃∗(α) = qFBH and the access charge of ã∗ (α) = αθHu(qFBH )/qFBH − cO

to replicate the monopolistic solution. For α < αN , the ISPs choose to serve both types of CPs

with q̃∗(α) = q̃(α) and the corresponding access charge of ã∗ (α) = αθLu(q̃(α))/q̃(α)− cO.

Proposition 5 Consider a neutral network under Assumption 2.

(i) Suppose that no ISP is allowed to deviate from the off-net cost pricing. Then there exists a

unique threshold level of α, denoted by αN ∈ (0, 1) .

(a) The ISPs offer q̃∗(α) = qFBH for α > αN and q̃∗(α) = q̃(α) otherwise. q̃(α) is

determined by (8) and it is higher than qFBL and strictly decreases with α. The cut-off

value αN is determined by (10). The ISPs serve only high type CPs for α > αN and

serve both types otherwise.
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(b) The ISPs choose an access charge ã∗ (α) = αθHu(qFBH )/qFBH − cO for α > αN and

ã∗ (α) = αθLu(q̃(α))/q̃(α) − cO otherwise. This generates a retail price for CPs such

that p̃∗(α) = αθHu(qFBH ) for α > αN and p̃∗(α) = αθLu(q̃(α)) otherwise.

(ii) When the ISPs agreed on q̃∗(α) and ã∗ (α), there is no profitable deviation from the off-net

cost pricing in stage 2 and the ISPs implement the outcome that would be chosen by a

monopoly ISP facing homogeneous consumers.

The proof of Proposition 5-(ii) is provided in the Appendix.

The parameter α represents the surplus division between CPs and end users when they interact

through ISPs and indicates which side to focus for the ISP to extract rents. As α increases,

CPs capture more surplus and the extraction of rents from the CP side becomes more important.

As a result, ISPs distort the quality for the low type CPs further down to reduce the rent of

the high type CPs under the non-neutral network. Under the neutral network, ISPs exclude

the low type CPs when α is high enough (i.e., α > αN ) to reduce the rents of the high type

CPs under assumption 2. This finding may have important policy implications. For instance, α

may capture how much CPs can extract consumer surplus through micropayments. From this

perspective, the concern about potential exclusion of CPs in a neutral network can be heightened

if the business model of CPs shifts from advertising-based one with free access to the one with

micropayments that directly charge consumers for content.

A simple application of the implicit function theorem to equation (10) that defines the critical

value αN yields the following comparative statics results.

Corollary 1 ∂αN

∂c = − q̃∗

ν∆θu(q̃∗) < 0 and ∂αN

∂ν =
(1−αN )∆θu(q̃∗)−(θHu(qFB

H )−cqFB
H )

ν∆θu(q̃∗) = cq̃∗−θLu(q̃∗)
ν2∆θu(q̃∗) < 0

As Corollary 1 shows, the exclusion strategy is more likely to occur when the marginal cost

of delivery increases and the proportion of high-type CP increases, with all other things being

equal. This result has some implication for mobile Internet networks that are constrained by the

scarcity of bandwidth imposed by physical laws and thus have a higher delivery cost (i.e., higher

c) compared to fixed Internet networks with fiber optic cables; the non-neutral network is likely

to increase the allocative efficiency and may provide justifications for differential treatments of

mobile networks.
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6.3 Comparison: quality choices and each group’s payoff

Figure 2 shows the optimal quality schedules for both network regimes. In a non-neutral network,

there is no distortion in the quality for high type CPs and a downward distortion in the quality

for low type CPs. As α decreases, this distortion becomes smaller and becomes zero when α = 0

(i.e., q∗(α = 0) = qFBL ). In a neutral network, the ISPs serve only high type CPs for α > αN

and choose q̃∗(α) = qFBH ; for α ≤ αN , they choose a quality q̃∗(α)(> qFBL ) and serve both types

where q̃∗(α) decreases with α.

The ISPs realize a strictly higher profit in a non-neutral network than in a neutral network

by the revealed preference argument; in a non-neutral network the ISPs could always choose an

equal quality for both delivery services if this would give a higher profit. Since the equilibrium

number of subscribed consumers increases with consumer surplus (gross of transportation cost)

and this consumer surplus increases with the ISPs’ profits,16 consumer surplus is higher in the

non-neutral network than in the neutral network.

Low type CPs always receive zero rents for any α regardless of net neutrality regulation.

Comparison of high type CPs’ surplus depends on whether α is higher or lower than αN . If

α ≤ αN , the relationship of q̃∗(α) > qFBL ≥ q∗L(α) implies that high type CPs obtain a higher

payoff in the neutral network than in the non-neutral network. If α > αN , the reverse holds

since high type CPs obtain no rent in the neutral network while they obtain a strictly positive

rent in the non-neutral network.

6.4 Bill and Keep

Here we further discuss access charges chosen by ISPs. In particular, we study conditions under

which ISPs choose “bill and keep” (i.e., zero access charge), a widely used access charge set-

tlement mechanism in a peering arrangement between ISPs. In this regard, we point out that

implementing negative access charges is impractical because of the ISPs’ incentives to game the

system by sending artificially generated traffics to a rival ISP to generate positive revenues. Thus,

we expect the ISPs to adopt bill and keep if their preferred access charges are negative.

Let us first study the access charges in the first-best world. The prices described in Proposition

1 are the unique ones that implement the first-best outcome under the budget constraint: each

ISP and each CP realizes zero profit and the marginal consumer is indifferent between subscribing

16Recall the result in section 5 that the number of consumers is given by 1
2

+λ(1−β)Π̂(α) plus a constant, which

linearly increases with Π̂(α).
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Figure 2: The optimal quality schedules

and not subscribing. In particular, the price charged for each CP of type θ to use service of quality

qFB(θ) is αθu(qFB(θ)). Suppose now that a social planner chooses access charges to implement

these prices for CPs through off-net cost pricing. Then, the socially optimal access charge is

given by

aFB(θ) = αθu(qFB(θ))/qFB(θ)− cO. (16)

Thus, we have

Bill & Keep (i.e., aFB(θ) ≤ 0) iff αθu(qFB(θ))/qFB(θ)− cO ≤ 0.

It shows that bill and keep is optimal if α is low enough. When α is small enough, most surplus

from interaction between a consumer and a CP is captured by the consumer. Therefore, the social

planner finds it optimal to subsidize content side by charging access charges below the termination

cost. Propositions 4 and 5 show that this property is qualitatively preserved when access charges

are chosen by ISPs that maximize their joint profits, regardless of whether networks are neutral

or not. ISPs have an incentive to subsidize content side while making profits from consumer side

when α is small.

Specifically, the comparison between (15) and (16) yields the following result: In the non-
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neutral network, we have

a∗H < aFB(θH) and a∗L > aFB(θL).

The market equilibrium access charge for the high type content, a∗H , is lower than the first-best

level because of the need to provide rents to high type CPs to satisfy the IC constraint. By

contrast, the market access charge for the low type content, a∗L, is higher than the first-best level

due to the downward distortion in the quality for low type CPs. This implies that bill and keep

would be more likely to be chosen for high type CPs while it is less so for low type CPs in the

market equilibrium compared to the first-best world.

In the neutral network, conditional on no exclusion, q̃(α) > q∗L(α) implies

ã∗ < a∗L.

In addition, if ∆θ [u(q∗H)− u(q∗L(α))] /q∗H > θL [u(q̃(α))/q̃(α)− u(q∗H)/q∗H ] holds, we obtain

ã∗ < a∗H .

In the absence of exclusion, the neutral network thus would choose bill and keep more often than

the non-neutral network.

7 Social Welfare: Neutral vs. Non-Neutral Network

In this section, we compare social welfare under neutral and non-neutral networks to assess the

merit of net neutrality regulations. Recall that a neutral network cannot outperform a non-

neutral network for the two extreme cases of full or zero extraction of surplus by CPs vis-à-vis

consumers (see Proposition 2). For α = 1, the neutral network without second-degree price

discrimination results in the exclusion of low type CPs, while the non-neutral network does not

entail such exclusion.17 For α = 0, the neutral network provides a suboptimal quality for both

types of CPs, while the non-neutral network provides the first-best quality for each type of CP.

We investigate whether this result is robust to intermediate cases of α ∈ (0, 1) and find that the

social welfare ranking between the two regimes would be reversed for intermediate values of α.

As we provided the intuition for this result in the introduction, the single quality restriction

17By assumptions 1 and 2, we have limited our attention to the parameter space where the non-neutral network

serves both types while the neutral network entails exclusion of low type CPs.
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can be welfare-enhancing because of its smaller quality distortion in a neutral network compared

to a non-neutral network, despite offering a suboptimal quality for the high type CPs. Note

that the ISPs have two sources of revenues, the one from the CP side and the one from the

consumer side. When the ISPs choose the quality for low type CPs, they face a trade-off between

extracting the rent of the high type CPs and extracting the consumer surplus. More precisely,

a downward distortion in the quality for low type CPs has the benefit of extracting more rent

from high type CPs and the cost of extracting less consumer surplus. This implies that when

the ISPs focus on making revenue from consumer side rather than from CP side, there will be

less distortion in quality. Because the ISPs have more instruments to extract CPs’ surplus in

a non-neutral network than in a neutral network, it can happen that they focus on extracting

CPs’ surplus under non-neutral networks while they focus on extracting consumer surplus under

neutral networks. In our model, this arises when α becomes smaller than αN . For α ∈
(
0, αN

)
, the

ISPs always distort downward the quality for low type CPs under non-neutral networks whereas

under neutral networks, they serve both types of CPs with a quality higher than qFBL . For this

reason, neutral networks may provide a higher social welfare than non-neutral networks.18

Given this insight, now we provide more rigorous mathematical derivation for our result. The

social welfare in the non-neutral network with optimal quality choices can be written as

W ∗ = N∗ · ω∗ − T (N∗) (17)

where ω∗ the net social surplus per consumer at the optimal quality choices with q∗H = qFBH and

q∗L = q∗L(α), that is,

ω∗ = u+
∑
k=H,L

νk[θku(q∗k)− cq∗k] = u+ ν(θHu(qFBH )− cqFBH ) + (1− ν)(θLu(q∗L(α))− cq∗L(α)).

Recall that the number of consumers is given by N∗ = 2
[

1
2 + λ (1+2h)·Π̂(α)−t

1+4h

]
where Π̂(α) =

ω∗ − να∆θu(q∗L(α)). We take the first-order derivative of the social welfare with respect to α as

dW ∗

dα
= N∗

∂ω∗

∂α
+ (ω∗ − T ′(N∗))∂N

∗

∂α
. (18)

18If we relax Assumption 2 and consider the case where the neutral networks entail no exclusion and the quality

distortion effect is high enough in the non-neutral networks, social welfare may be higher in the neutral networks

when α is close or equal to 1.
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The first term in (18) is negative as ∂ω∗

∂α < 0: this is because the quality distortion increases in

α, i.e.,
dq∗L
dα < 0. Its second term is also negative as ω∗ − T ′(N∗) > 0 and ∂N∗

∂α < 0 . Notice

that ω∗ − T ′(N∗) is positive as long as N∗ is smaller than the first-best level, which holds for

any α ∈ [0, 1].19 We have seen in the monopoly benchmark that the monopoly profit decreases

as α increases, which implies that N∗ decreases with α. Using the first-order optimal quality

condition for the low-type CPs, (1− ν)(θLu
′(qSBL )− c)− να∆θu′(qSBL ) = 0 (see equation (6)), we

obtain an expression as follows:

dW ∗

dα
= N∗ · να∆θu′(q∗L)

dq∗L
dα
− (ω∗ − T ′(N∗))2λ(1 + 2h)

1 + 4h
ν∆θu(q∗L) < 0. (19)

Similarly, we can define social welfare under the neutral network and for the same reason as in

the non-neutral network, we find that the social welfare in the neutral network also decreases in

α for any α < αN :

dW̃ ∗

dα
= Ñ∗ · αν∆θu′(q̃∗)

dq̃∗

dα
−
(
ω̃∗ − T̃ ∗′

)
2λ

(1 + 2h)

1 + 4h
ν∆θu(q̃∗) < 0. (20)

Recall that the quality adjustment to the change in α can be derived as (7) for the non-neutral

network and (9) for the neutral one.

To facilitate the comparison further and gain more intuition, let us consider a utility function

with Arrow-Pratt constant absolute risk aversion (CARA), e.g., u(q) = A − B
r exp(−rq) where

r measures the degree of risk aversion with positive constants A and B. Then, we can obtain a

clear comparison of ∣∣∣∣dq∗L(α)

dα

∣∣∣∣ > ∣∣∣∣dq̃∗dα
∣∣∣∣ for ∀ν ∈ (0, 1) (21)

from − u′(q̃∗)
u′′(q̃∗) = − u′(q∗L)

u′′(q∗L) = r. This implies that the ISPs’ quality degradation gradient for the

low-type in the non-neutral network is steeper than the one for the uniform quality in the neutral

network as α increases. In addition, we find u′(q∗L) > u′(q̃∗) from q∗L < q̃∗ for any utility function

with u′′ < 0. Since the non-neutral network provides consumer surplus (gross of transportation

cost) at least as high as that under the neutral network, we have N∗ ≥ Ñ∗ where the equality

holds for λ = 0. Hence, we find that the social welfare decreases more quickly as α increases

in the non-neutral network compared to the neutral network, i.e.,
∣∣dW ∗
dα

∣∣ > ∣∣∣dW̃ ∗dα

∣∣∣ if the market

19Even if α = 0 and hence the ISPs choose the first-best qualities, N∗ is smaller than the first-best level since

the first-best outcome can be implemented only with zero profit of the ISPs.
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expansion is highly limited (λ ≈ 0).

Given this understanding, let us finally compare the level of social welfare under two different

network regimes. Recalling the definition of αN in (10), the per consumer net surplus in the

neutral network at α = αN can be expressed as

ω̃∗|α=αN = u+ (θL + (1− αN )ν∆θ)u(q̃∗)− cq̃∗ + αNν∆θu(q̃∗)

= u+ ν · (θHu(qFBH )− cqFBH ) + αNν∆θu(q̃∗)

This simplifies the comparison between ω̃∗ and ω∗ evaluated at α = αN as the comparison

between αNν∆θu(q̃∗) and (1− ν)(θLu(qSBL )− cqSBL ) :

ω̃∗|α=αN > ω∗|α=αN ⇔ αNν∆θu(q̃∗) > (1− ν)(θLu(q∗L)− cq∗L), (22)

Under Assumptions 1-2, per consumer social welfare can be higher in a neutral network relative

to a non-neutral network as long as (22) is satisfied. Note that this does not ensure that a neutral

network always dominates a non-neutral network at αN because of N∗ ≥ Ñ∗. However, for a

sufficiently small λ, the difference in number of consumers subscribed is of second-order relative

to the difference in per consumer welfare. Hence, we can state that

Proposition 6 Consider the CARA utility function for which Assumptions 1 and 2, and (22)

are satisfied. For a sufficiently small λ, there exists always intermediate level of α, which is weakly

smaller than αN but is greater than zero, under which the total social surplus also is higher in

the neutral network than in the non-neutral network.

Figure 3 illustrates a plausible case in which a neutral network may yield a higher total

social welfare than a non-neutral network. Let us wrap up our discussion on social welfare with

numerical simulations that verify our findings. Consider a parameter space of θH = 40, θL =

30, u = 5, ν = 0.74, t = 1, and h = 1/4. If we consider a CARA utility function such as

u(q) = 1 − 1
2e
−2q, it satisfies all the assumptions that we make and the neutral network yields

the higher social surplus than the non-neutral network over the range of α ∈ [0.4334, 0.9901].

When we consider a quadratic utility function u(q) =
√
q, then for the same parameters we find

the neutral network provide the higher social welfare compared to the non-neutral network for

α ∈ [0.5254, 0.8711].

Through the sequence of intuition, analysis, and numerical simulations, we find that the merit
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Figure 3: Welfare under neutral and non-neutral networks

of net neutrality regulation may depend crucially on content providers’ business models. Though

we frame our discussion in the context of the recent debate on network neutrality in the Internet,

our analysis can be more generally interpreted. In particular, our findings suggest that welfare

implications of second-degree price discrimination in two-sided platform markets can crucially

depend on the relative allocation of the total surplus between the two sides.

8 Concluding Remarks

In this paper we have analyzed competition between interconnected networks when content is

heterogeneous in its sensitivity to delivery quality. The heterogeneity of content calls for the multi-

tiered Internet to reflect the need for differential treatment of packets depending on its sensitivity.

With interconnected networks, however, the assurance of a certain level of delivery quality requires

cooperation among networks. To address this issue, we have developed a framework of two-sided

markets in which ISPs compete with each other to serve as platforms that connect CPs and end

consumers. We have considered two regimes under which packets can be delivered: a neutral

regime in which all packets are required to be delivered with the same quality (speed) and a non-

neutral regime under which ISPs are allowed to offer multi-tiered services with different delivery

quality levels. We derived conditions under which social welfare can be higher in a neutral

network. The conditions highlight the importance of CPs’ business models in the evaluation of

net neutrality regulation.

31



Looking forward, this paper is a first step towards incorporating heterogeneous content in the

analysis of interconnection issues. There are many worthwhile extensions that call for further

analysis. One limitation of our analysis is its static nature. We have not analyzed dynamic

investment incentives facing ISPs and CPs by assuming away capacity constraints for ISPs and

by considering a fixed mass of active CPs. The effects of net neutrality regulation on ISPs’

capacity expansions and CPs’ entry decisions are important issues.20

It would be an important research agenda to develop a model that can capture differences

between mobile networks and fixed networks. Mobile networks are becoming an increasingly im-

portant channel for Internet content delivery. Fixed and mobile Internet networks are inherently

different in many dimensions, most importantly the scarcity of bandwidth for mobile networks

imposed by physical laws. These differences are recognized by the recent FCC rule on net neutral-

ity. The new FCC rule, announced on December 21, 2010, reaffirmed its commitment to the basic

principle of net neutrality by prohibiting ISPs from “unreasonable discrimination” of web sites or

applications, but wireless telecommunications were exempted from such anti-discrimination rules.

Our model may lend a new justification for asymmetric regulation between fixed and mobile net-

works. For instance, imagine a situation in which the mobile networks are more constrained in

their capacity and expansion possibilities. The network operators thus may prefer to serve only

the high type CPs under neutral network, instead of providing somewhat jittery content delivery

by serving uniform speed to heterogeneous CPs. If CPs in the mobile networks adopt business

models of more content-usage based charge system that enables them to extract more surplus

from consumers than the ad-financed system, our model suggests that net neutrality regulation

may be beneficial for fixed networks but not for mobile networks.

Finally, we assumed a homogeneous and exogenous business model by assuming the same

level of surplus extraction (parameterized by α) for CPs. The analysis can be extended to

heterogeneous business models that would be endogenously derived.

20Choi and Kim (2010) addresses the dynamic investment issue, but with a monopolistic ISP. Njoroge, Ozdaglar,

Stier-Moses, and Weintraub (2010) study investment incentives with multiple ISPs, but neither interconnection

between ISPs nor the role of CPs’ business model in net neutrality regulation is considered.
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Appendix

Proof of Lemma 1

Let ni be the number of consumers subscribing to ISP i in stage 3. First, under a neutral

network, consider an equilibrium price for CPs p(q) given that the ISPs previously agreed on

(q, a). Suppose first that at p(q) both types buy connections from ISP i. Let σi be the ISP

i’s market share in the content side of the market. Then, in stage 3, each ISP maximizes the

following problem when they compete on the consumer side of the market.

max
fi

Πi = niσi(p(q)− cq) + njσi(p(q)− ĉq) + niσj(ĉ− c)q + nifi

= (ni + nj)σi(p(q)− ĉq) + ni(ĉ− c)q + nifi

Let p(q) be in equilibrium p∗ and pi = pi(q). ISP i’s profit from stage 2 on can be represented as

Πi = πi(pi, fi, fj ; pj = p∗).

From the first order condition, we have

dΠi

dpi
=
∂Πi

∂pi
+
∂Πi

∂fj

∂fj
∂pi

+
∂Πi

∂fi

∂fi
∂pi

= 0.

From the envelope theorem, this becomes

dΠi

dpi
=
∂Πi

∂pi
+
∂Πi

∂fj

∂fj
∂pi

= 0,

Now let us consider an approximation of the frictionless CP market: CPs are uniformly distributed

over the Hotelling line and the two ISPs are on the extreme points of the line and we study the

first order condition dΠi
dpi

= 0 when we make the transportation cost of the Hotelling line denoted

by τ converge to zero. Then, we have

σi =
1

2
− pi − p∗

2τ
.

Hence, ISP i’s profit is given by

Πi = (ni + nj)(
1

2
− pi − p∗

2τ
)(pi − ĉq) + ni(ĉ− c)q + nifi.

Then, we can derive from the first-order condition with respect to pi

∂Πi

∂pi

∣∣∣∣
pi=p∗

= (ni + nj)

[
1

2
− p∗ − ĉq

2τ

]
and from the two first order conditions with respect to fi and fj

∂fj
∂pi

∣∣∣∣
pi=p∗

= −
A+ λ

[
p∗−ĉq

2τ

]
B
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where

A =
λ
4t

1
2t + 2λ

,B =
3

2t
+ 2λ

Hence,

dΠi

dpi

∣∣∣∣
pi=p∗

= (ni + nj)

[
1

2
− p∗ − ĉq

2τ

]
−
A+ λ

[
p∗−ĉq

2τ

]
B

{
−λ

2
(p∗ − ĉq) +

1

2t
[(ĉ− c)q + fi]

}
= 0

Multiplying the equation by 2τ gives

(ni + nj) [τ − (p∗ − ĉq)]− 2τA+ λ [p∗ − ĉq]
B

{
−λ

2
(p∗ − ĉq) +

1

2t
[(ĉ− c)q + fi]

}
= 0.

As τ converges to zero, satisfying the equation requires the off-net cost pricing p∗ = ĉq.

Proof of Proposition 4 (ii)

We show that there is no profitable deviation from the off-net cost pricing when the monopolistic

benchmark solution (q∗H , q
∗
L(α)) and the associated access charges (a∗H , a

∗
L) are agreed upon. Let

(q, q) represent the qualities allocated to high and low types, respectively, in any deviation. Note

that ISP i is indifferent between winning CPs of a given type and losing them. Therefore, we

need to consider only two deviation possibilities: ISP i can deviate to induce both types to buy

q∗L(α) or to buy q∗H .

Consider first the deviation of ISP i to induce both types to consume the quality q∗L(α)

intended for the low type CPs in the proposed equilibrium, i.e., (q, q) = (q∗L(α), q∗L(α)). Since

the IC constraint for the high type is binding and high type CPs are indifferent between the

two qualities in the monopolistic solution, the best way for ISP i to achieve this deviation to

set a price at an epsilon discount of the off-net cost pricing for q∗L(α): the price it charges after

the deviation is essentially pi(q
∗
L(α)) = αθLu(q∗L(α)). The CP side profit (per consumer) from

this deviation is given by πCPdev = pi(q
∗
L(α)) − cq∗L(α) = αθLu(q∗L(α))− cq∗L(α). Note that a∗L

the per unit access charge for the low quality delivery two ISPs agreed on in stage 1 is given

by a∗L = αθLu(q∗L(α))/q∗L(α) − cO, with the off-net cost pricing of pi(q
∗
L(α)) = αθLu(q∗L(α)) =

(a∗L + c − cT )q∗L(α). This implies that the stage 3 competition after the deviation leads to a

symmetric equilibrium in which (q, q) = (q∗L(α), q∗L(α)) and πCPi = πCPj = πCP = (a∗L−cT )q∗L(α).

This cannot give a higher profit than the upper bound that each ISP can obtain without deviation;

otherwise, we have a contradiction because the upper bound is not achieved by the ISPs in the

first place.

Consider now the deviation of ISP i to induce both types to consume high quality, i.e.,

(q, q) = (q∗H , q
∗
H). This requires ISP i to charge pi(q

∗
H) = αθLu(q∗H) to induce low type CPs to

purchase high quality delivery. Let (N, si, sj) represent the total number of consumers subscribed

and each ISP’s consumer market share in stage 3. Then, ISP i’s profit from the CP side is

N [αθLu(q∗H)− sicq∗H − (1− si)(c+ a∗H − cT )q∗H ]

= N [αθLu(q∗H)− (c+ a∗H − cT )q∗H + si(a
∗
H − cT )q∗H ]

= N [−α∆θ(u(q∗H)− u(q∗L(α))) + si(a
∗
H − cT )q∗H ] ,
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where we use

a∗H = α [θHu(q∗H)−∆θu(q∗L(α))] /q∗H − cO.

and ISP j’s profit from the CP side is

Nsj(a
∗
H − cT )q∗H .

Our proof strategy is to show a general result (Lemma 3) that when an ISP attracts all CPs

with the same quality of delivery, the ISPs total profit (from the CP and the consumer side) is

decreasing with the access charge associated with that quality, then return to the above specific

set-up (q, q) = (q∗H , q
∗
H). Before proving this, let us describe the setting under which Lemma 3 is

obtained.

Specifically, fix (q, q) = (q, q) and suppose that initially (q, q) = (q, q) is implemented with

the off-net cost pricing such that it generates πCPi = πCPj = πCP : Then, we get

(a− cT )q = πCP ;

p(q) = (c+ a− cT )q = αθLu(q).

Consider now an asymmetric situation with a new access charge a′ = a + ∆a with ∆a > 0 in

which ISP i is assumed to win all CPs with the same retail price

p(q) = αθLu(q).

Then, ISP i’s profit from the CP side is

N
[
αθLu(q)− sicq − (1− si)(c+ a′ − cT )q

]
whereas ISP j’s profit from the CP side is

Nsj(a
′ − cT )q = Nsj [(a− cT )q + ∆aq] .

Note that

(c+ a′ −∆a− cT )q = αθLu(q).

Hence, ISP i’s profit from the CP side is

N
[
−∆aq + si(a

′ − cT )q
]

= N [−(1− si)∆aq + si(a− cT )q] .

Note that a′ will affect (N, si, sj), which is determined in stage 3. Given this, here is the lemma:

Lemma 3 ISP i’s total profit (from the content side and the consumer side) is higher when

∆a = 0 than when ∆a > 0.

Proof. Let Πi(∆a) denote the total profit for ISP i when the access charge is given by a′ = a+∆a.

Then, we have

Πi(∆a) = ni(fi, fj)(fi + πCP )− nj(fi, fj)∆aq

37



By using the envelope theorem, we have

dΠi(∆a)

d∆a
= −nj +

[
∂ni
∂fj

(fi + πCP )− ∂nj
∂fj

∆aq

]
dfj
d∆a

The expression in the square bracket is positive since ∂ni
∂fj

> 0 and
∂nj

∂fj
< 0. By totally

differentiating the first order conditions for fi and fj , we can easily derive a comparative static

result that
dfj
d∆a < 0. The intuition is that an increase in access charge is equivalent to a subsidy

by ISP i that captures the whole CP market to ISP j for each consumer ISP j attracts. ISP i

competes more aggressively to attract consumers to reduce the subsidy and ISP j also competes

more aggressively to attract consumers to increase the subsidy. As a result, competition in the

consumer market is intensified. Taken together, we have dΠi(∆a)
d∆a < 0, which shows that the

winning ISP’s overall profit decreases with the access charge.

As we planned, now use the above lemma to show that a deviation to induce the quality

choice of q∗H by both types of CPs is not profitable. To see this, consider (q, q) = (q∗H , q
∗
H),

∆aq∗H = α∆θ(u(q∗H)− u(q∗L(α))) and a′ = a∗H . Hence, we have

(a− cT ) q∗H = (a∗H − cT −∆a) q∗H

= α [θHu(q∗H)−∆θu(q∗L(α))]− cq∗H − α∆θ [u(q∗H)− u(q∗L(α))]

= αθLu(q∗H)− cq∗H .

With the access charge a given by (a− cT ) q∗H = αθLu(q∗H) − cq∗H , the off-net cost pricing leads

to (c+ a− cT ) q∗H = αθLu(q∗H). Then, from Lemma 3, we proved that the total profit of ISP

i upon deviation is smaller than the profit it obtains in a symmetric equilibrium with (q, q) =

(q∗H , q
∗
H) and a satisfying (c+ a− cT ) q∗H = αθLu(q∗H). Furthermore, the profit in this symmetric

equilibrium is what the ISPs could achieve through the off-net cost pricing and should give each

ISP a profit smaller than the upper bound. This ends the proof.

In sum, therefore, there is no profitable deviation from the upper bound of the joint profits

characterized in Proposition 4.

Proof of Proposition 5 (ii)

Here we show that the upper bound of the joint profits in the neutral network can be achieved

when any ISP is allowed to deviate from the off-net cost pricing.

First, suppose that no type is excluded in the upper bound (qH , qL) = (q̃, q̃). Then, it is clear

that there is no profitable deviation because increasing price for CPs by ISP i attracts no CPs

and hence does not affect πCPi and πCPj , and decreasing the price only reduces πCPi .

Second, consider the case in which low type is excluded (qH , qL) = (qFBH , 0). More precisely,

suppose that the two ISPs agreed on providing quality qFBH at access charge a∗ = αθHu(qFBH )/qFBH −
cO. Then, off-net cost pricing leads to p∗(qFBH ) = αθHu(qFBH ) and each ISP i realizes a profit of

νsi(a
∗ − cT )qFBH .

The previous argument can be applied to show that there is no profitable deviation conditional

on that only high type is served. Hence, it is enough to consider ISP i’s deviation to serve both

types such that (qH , qL) = (qFBH , qFBH ); then it will choose pi(q
FB
H ) = αθLu(qFBH ) and obtain a
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profit of

N
[
αθLu(qFBH )− sicqFBH − (1− si) (c+ a∗ − cT ) qFBH

]
= N

[
−α∆θu(qFBH ) + si (a∗ − cT ) qFBH

]
ISP j’s profit is

N
[
sj (a∗ − cT ) qFBH

]
.

Hence, we can apply the previous lemma 3. Consider (q, q) = (qFBH , qFBH ), ∆aqFBH = α∆θu(qFBH )

and a′ = a∗. Hence, we have

(a− cT ) q∗H = (a∗ − cT −∆a) qFBH

= αθHu(qFBH )− cOqFBH − α∆θu(qFBH )

= αθLu(qFBH )− cOqFBH .

With the access charge a given above, the off-net cost pricing leads to

(c+ a− cT ) qFBH = αθLu(qFBH ).

From Lemma 3, the total profit of ISP i upon deviation is smaller than the profit it obtains

in a symmetric equilibrium with (q, q) = (qFBH , qFBH ) and a that satisfies (c+ a− cT ) qFBH =

αθLu(qFBH ). Furthermore, the profit in this symmetric equilibrium is what the ISPs could achieve

through off-net cost pricing and should give each ISP a profit smaller than the upper bound.

Hence, the upper bound of the joint profits characterized in Proposition 5 can be always

achieved by neutral networks.
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