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Abstract

The estimation of conditional probability distribution functions (PDFs) in a kernel nonpara-
metric framework has recently received attention. As emphasized by Hall, Racine & Li (2004),
these conditional PDFs are extremely useful for a range of tasks including modelling and pre-
dicting consumer choice. The aim of this paper is threefold. First, we implement nonparametric
kernel estimation of PDF with a binary choice variable and both continuous and discrete ex-
planatory variables. Second, we address the issue of the performances of this nonparametric
estimator when compared to a classic on-the-shelf parametric estimator, namely a probit. We
propose to evaluate these estimators in terms of their predictive performances, in the line of the
recent ”revealed performance” test proposed by Racine & Parmeter (2009). Third, we provide
a detailed discussion of the results focusing on environmental insights provided by the two esti-
mators, revealing some patterns that can only be detected using the nonparametric estimator.
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1 Introduction

Recent developments in nonparametric estimation techniques have challenged conventional (para-
metric) practices when dealing with empirical questions. Most attention has been devoted to cases
where the response variable is continuous (see Pagan (1999)). The existing literature addressing
the issue of discrete response variables is more scarce. In this framework, efforts have been mostly
done in the field of semiparametric tools. These tools have soften parametric specification assump-
tions involved in the computation of the probability that a given outcome of the response variable
occurs as a function of a set of explanatory variables. For example, single index models allow for
an unknown link function while maintaining the assumption that the explanatory variables enter
the probability through a parametric index. These models have been surveyed by Horowitz (1998).
In other models, explanatory variables enter through a general nonparametric additive structure,
the link function being specified as the usual logistic or normal cumulative density function. Few
attempts to introduce purely nonparametric estimation methods can be found in the literature on
discrete choice (see Briesch, Chintagunta & Matzkin (2002)). While these methods produce results
that are consistent with the economic foundations of choice theory, they are difficult to implement
in practice.

The estimation of conditional PDFs in a kernel nonparametric framework has recently received
attention. As emphasized by Hall et al. (2004), these conditional PDFs are extremely useful for
a range of tasks including modelling and predicting consumer choice. The aim of this paper is
threefold. First, we implement nonparametric kernel estimation of PDF with a binary choice vari-
able and both continuous and discrete explanatory variables. Second, we address the issue of the
performances of this nonparametric estimator when compared to a classic on-the-shelf parametric
estimator, namely a probit. We propose to evaluate these estimators in terms of their predictive
performances, in the line of the recent ”revealed performance” test proposed by Racine & Parmeter
(2009). Third, we provide a detailed discussion of the results focusing on environmental insights
provided by the two estimators, emphasizing some patterns that can only be detected using the
nonparametric estimator.

The empirical application reported here concerns an environmental question that was treated
in Bontemps & Nauges (2009). In France, despite an access to safe public drinking water, and in
spite of its excessively high price compared to tap water, 42% of the population still regularly drink
bottled water. Using scanner data on French consumption combined with raw water quality and
other environmental data, and using a Probit model, Bontemps & Nauges (2009) show that raw
water bad quality seems to be the most important factor driving the decision not to drink tap water.
The estimated effect is found to be stronger for low-income households. Significant direct impact of
socioeconomic and demographic households’characteristics, as well as the role of cultural/regional
factors are revealed. Overall, this study shows that pollution of raw water implies indirect costs for
households who instead of drinking water from the tap spend up to 100 times more for bottled wa-
ter. We revisit this question using the same dataset and using a kernel nonparametric estimator of
the PDF in order to recover estimates of the probability to drink tap water. We address the three is-
sues mentioned above, and show that the nonparametric estimator outperforms the parametric one.

In the paper, we provide an estimation of the probability of drinking tap water using a non-
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parametric kernel conditional probability specification based on the conditional PDF of the decision
variable. This specification uses the same information set than the probit specification and we use
recent developments on generalized kernel estimation to deal with both continuous and discrete
variables (see Li & Racine (2007)). Moreover, this setup enables to assess the relevance of the
explanatory variables through the data-driven bandwidth selection method. We find a similar set
of significant variables with e.g. the raw water bad quality index. We find similar in-sample pre-
dictive performances, that is the overall correct classification ratio is 70.04% when considering the
NP specification while it is of 69.17% for the probit specification. We then address the issue of
selecting a preferred model specification between the fully NP and the probit. We take the view
that fitted statistical models are approximations, a perspective that differs from that of consistent
models selection which posits a finite dimensional ‘true model’. Recently, p Racine & Parmeter
(2009) propose a test based on this idea that we implement here. The test results indicate that
the NP specification possesses an expected ‘true error’ that is statistically significantly lower than
that for the parametric specification and is therefore preferred. Finally, we contrast the parametric
specification with the nonparametric specification on some interesting cases.

The rest of the paper proceeds as follows. Section 2 outlines the nonparametric estimator and the
test procedure. Section 3 presents the empirical application of these methods to the environmental
question raised in Bontemps & Nauges (2009). Section 4 presents some concluding remarks.

2 Nonparametric estimation and test procedures

2.1 Nonparametric PDF estimator

Let f(.) and m(.) denote the joint and marginal density of (X,Y ) and X, respectively, where Y is a
binary discrete variable and where we allow X to include both continuous, unordered, and ordered
variables. For what follows, we shall refer to Y as a dependent variable (i.e., Y is explained), and
to X as covariates (i.e., X is the vector of the explanatory variables). The density of Y conditional
on X is then defined as

g(y|x) =
f(x, y)
m(x)

(1)

Consider the kernel estimators of the previous joint and marginal densities we denote by f̂ and
m̂. We then estimate the conditional density by replacing the unknown densities in (1) by their
estimators, i.e.

ĝ(y|x) =
f̂(x, y)
m̂(x)

(2)

As we are facing a mix of discrete (unordered and ordered) and continuous variables when
estimating the two unconditional densities, we use the ”generalized product kernel” estimator
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proposed by Li and Racine (2003). Let X = (Xc,Xd, X̃d) represent the division of X into its p
continuous, q discrete unordered, and r discrete ordered components, then the estimator of the
marginal density m(.) for a given realization of X denoted by x = (xc, xd, x̃d) is given by

m̂(x) = m̂(xc, xd, x̃d)

= n−1
n∑

i=1

p∏
j=1

W (Xc
ij, x

c
j)

q∏
j=1

l(Xd
ij , x

d
j )

r∏
j=1

l̃(X̃d
ij , x̃

d
j ) (3)

where we use different kernels depending on the nature of the variable under consideration. That
is:

• For a continuous variable xc
j , we use the function W (.) defined as

W (Xc
ij, x

c
j) =

1
hj

K(
Xc

ij − xc
j

hj
)

where K(.) is a traditional kernel function, i.e. a symmetric, univariate probability density,
and hj is the bandwidth.

• For an unordered discrete variable xd
j with cj categories, we use Aitchison & Aitken (1976)

kernel given by:

l(Xd
ij , x

d) =

{
1 − λj if Xd

ij = xd
j

λj

cj−1 otherwise.

where the bandwidth λj belongs to the interval [0, (cj − 1)/cj ]. Note that when λj = 0
the kernel l becomes an indicator function, i.e., the function which is usually chosen as the
kernel in the ”frequency” approach of discrete variables in nonparametric estimation. When
λj = (cj − 1)/cj , the kernel l(Xd

ij , x
d) = 1/cj for all values of Xd

ij and xd.

• For an ordered discrete variable x̃d
j , we use Wang & Van Ryzin (1981) kernel given by:

l̃(X̃d
ij , x̃

d) =

⎧⎨⎩ 1 if X̃d
ij = x̃d

j

γ
|X̃d

ij−x̃d
j |

j otherwise.

where the bandwidth γj belongs to the interval [0, 1]. Again, when γj = 0, the kernel l̃
becomes an indicator function, and, when γj = 1, this kernel is a uniform weight function.
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Similarly, the estimator of the joint density f(.) for a given realization of (X,Y ) denoted by
(x, y) = (xc, xd, x̃d, y) is given by

f̂(x, y) = f̂(xc, xd, x̃d, y)

= n−1
n∑

i=1

p∏
j=1

W (Xc
ij , x

c
j)

q∏
j=1

l(Xd
ij , x

d
j )

r∏
j=1

l̃(X̃d
ij , x̃

d
j ) × l(Y d

i , y)

The computation of the two previous estimators involves the choice of the bandwidths hj ,
j = 1, . . . , p, λj, j = 1, . . . , q, and γj, j = 1, . . . , r. Recently, Hall et al. (2004) show that we could
pursue a least-squares cross validation to selecting these bandwidths. They consider the following
criterion which is based upon a weighted integrated square error:

∑
xd

∫
{ĝ(y|x) − g(y|x)}2 m(x) M(xc) dx dy

where M(.) is a weight function. Moreover the choice of this criterion allows to determine which
components of the vector X are relevant when conducting conditional inference. Indeed, the data-
driven chosen bandwidths will exhibit a markedly dichotomous behavior. On one hand, the min-
imization of the least-squares cross-validation criterion will assign large smoothing parameters to
the irrelevant components (i.e., hj → ∞ or λj → (cj − 1)/cj or γj → 1 depending on the nature of
the variable), and, consequently, will shrink these components toward the uniform distribution on
the respective marginals. On the other hand, the minimization will assign smoothing parameters of
conventional size to the relevant components. For example, hj = Op(n−1/(p+5)). To sum up, cross-
validation produces asymptotically optimal smoothing for relevant components, while eliminating
irrelevant ones by oversmoothing.

2.2 Preferred model selection

We consider two non-nested model specifications, a parametric probit specification and a nonpara-
metric kernel conditional probability specification. Both models use identical information sets and
deliver estimates of the probability that Y = 1 conditional on the covariates X.

We approach the issue of selecting a parametric versus nonparametric specification from the
perspective that fitted statistical models are approximations. Clearly our perspective is distinct
from that of consistent model selection which posits a finite-dimensional ‘true model’. We therefore
consider selection of a parametric versus nonparametric specification not from the perspective of
a test that posits that one model is ‘true’ hence set up a null as such. Rather, both are at best
decent approximations, therefore we select that model that has lowest expected ‘true error’.

Our approach is therefore firmly embedded in the statistics literature dealing with ‘apparent’
versus ‘true’ error estimation; for a detailed overview of expected apparent and excess error, we di-
rect the reader to Efron (1982, Chapter 7). In effect, in-sample measures of fit such as the standard
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error of the regression or R2 and so forth measure ‘apparent error’ which will be smaller than ‘true
error’ which is the expected error when the model is used to predict new draws from the underlying
data generating process. For example, for a continuous regression model Yi = g(Xi)+εi, one might
compute the Average Square Prediction Error or ASPE given by ASPE = n−1

1

∑n1
i=1(Yi − ĝ(Xi))2

which is a measure of apparent error. But all such in-sample measures are fallible which is why
they cannot be recommended as guides for model selection. Our procedure can be thought of as a
means of estimating a model’s true error and testing whether the true error is statistically smaller
for one model than another. The statistics literature on cross-validated estimation of excess er-
ror is a well-studied field. However, this literature deals with model specification within a class
of models (i.e., which predictor variables should be used, whether or not to conduct logarithmic
transformations on the dependent variable and so forth) and proceeds by minimizing excess error.
Our purpose here is substantively different. Here we pose the question of whether the true error
associated with one model differs significantly from that for another model. We adopt the ‘revealed
performance’, or RP, test proposed by Racine & Parmeter (2009).

Before introducing the RP test, let us recall how predictive performance is measured in binary
choice models. Different indices can be used to measure this predictive performance. Efron (1978)
gives a detailed discussion of such indices. The most common index used is the Correctly Classified
Ratio (CCR) or accuracy. This index measures the exact proportion of right predictions over the
considered sample. That is, for each observation i, we compute the value of the loss function

Q(Yi, ηi, α) =

{
0 if Yi = 1 and ηi > α or if Yi = 0 and ηi ≤ α
1 otherwise

where ηi is the probability assigned by the binary choice model to the ith observation, and α is the
cut-off-value used to map the classifier, namely the probabilities ηi, to classes of predicted 0 or 1.
For a given cut-off-value (usually, α = 0.5), the CCR is then computed as

CCR(α) = 1 −
∑n

i=1 Q(Yi, ηi, α)
n

. (4)

This index can be also linked to the so-called confusion matrix we define in Table 1 where ON
and OP are the total numbers of observed 0 and 1 respectively, TN stands for ‘true negative’,
occurring when both the observed value and the prediction outcome (ηi ≤ α) are 0, and FN for
‘false negative’, when the observed value is 0 and the prediction outcome is 1 (ηi > α), while FP
and TP are the ‘false’ and ‘true positive’ respectively.

The CCR index can be shown to be very sensitive to the choice of the cut-off-value. An other
well-known classification performance metric that circumvents this drawback, is the ”Receiver Op-
erating Characteristic” curve (ROC), described in Egan (1975). This curve is a graphical plot of
the sensitivity (percentage of predicted true positive) versus 1− specificity (percentage of predicted
false positive) (see Table 1 for more precise definitions), letting the classification cut-off-value vary
between its extremes. The AUROC, i.e., the ”Area Under the Receiver Operating Characteristic”
curve, can then be computed as a summary measure of the classification performance. These sec-
ond measure whose values are between 0.5 (worthless classification) and 1 (perfect classification),
provides a better evaluation ratio than the CCR index, since it is independent of any cut-off-value.
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Table 1: Notations

Predicted
0 1 Total

Obs. 0 TN FP ON
1 FN TP OP

Total n

Accuracy (CCR) = TN+TP
n

Sensitivity (TPR) = TP
TP+FN

Specificity (SPC) = TN
TN+FP

Confusion matrix Index

Given the two previous measures (CCR and AUROC), we can define two different ways of
measuring the ’apparent error’ when estimating a binary choice model. For instance, the second
term in the definition of the CCR measure (see equation 4) can be viewed as the empirical realiza-
tion of E

n1,F̂
[Q(Y n1 , ηn1

n1
), 0.5)] where En1,F denotes the expectation over the n1 observed points

Zn1 = {Yi,Xi}n1
i=1 which are independently and identically distributed with empirical cumulative

distribution function F̂ (we refer Zn1 as the training sample, terminolgy borrowed from the liter-
ature on statistical discriminant analysis), Y n1 = {Yi}n1

i=1, and ηn1
n1

= {ηi}n1
i=1, i.e. the vector of

the assigned probabilities to the observations calibrated using the observed sample. In order to
implement the RP test, we are interested in estimating a quantity known as ’expected true error’.
Following Efron (1982), we can define the ’true error’ to be

En2,F [Q(Y n2, ηn2
n1

, 0.5)]

where En2,F denotes the expectation over the n2 new points Zn2 = {Yi,Xi}n
i=n1+1 which are

independently and identically distributed with cumulative distribution function F , and are inde-
pendent of the training sample Zn1 (we refer Zn2 as the evaluation sample), Y n2 = {Yi}n

i=n1+1, and
ηn2

n1
= {ηi}n

i=n1+1, i.e. the vector of the probabilities assigned to the new points calibrated using
the training sample. Next, we define the ’expected true error’ as

E (En2,F [Q(.)])

where the expectation is taken over all potential classifiers ηn2
n1

, for the selected loss function Q(.).
When comparing two approximate models, the model possessing the lower ‘expected true error’
will be preferred in applied settings.

A realization of the ‘true error’ based upon the observed zn2 = {yi, xi}n
i=n1+1 is given by

1
n2

n∑
i=n1+1

Q(yi, η
n2
n1,i, 0.5) (5)
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In the following, we consider the corresponding CCR for ease of interpretation. If we consider
S splits of the data into training and evaluation samples, we can then construct the empirical
distribution function of loss, or equivalently, of CCR. The algorithm used to construct the empirical
distributions of CCR for the two competing models proceeds as follows:

(i) Resample without replacement pairwise from Z = {Xi, Yi}n
i=1 and call these Z∗ = {X∗

i , Y ∗
i }n

i=1.

(ii) Let the first n1 of the resampled observations form a training sample Zn1∗ = {X∗
i , Y ∗

i }n1
i=1 and

the remaining n2 = n−n1 observations form an evaluation sample, i.e., Zn2∗ = {X∗
i , Y ∗

i }n2
i=n1+1.

(iii) Holding the degree of smoothing at that for the full sample (i.e., the bandwidths scaling
factors) of the nonparametric model and the functional form of the Probit fixed, fit each
model on the training observations Zn1∗ , and then obtain predicted values from the evaluation
Zn2∗ that were not used to fit the model.

(iv) Compute the CCR(0.5) of each model.

(v) Repeat this a large number of times, say, S = 10, 000, yielding S draws of CCR for the two
models.

We clone this procedure with AUROC replacing CCR.

3 Empirical application

3.1 Data

The data set used is based on two main sources. First, data on French households’ purchases are
provided by TNS Worlpanel, for the year 2001. This database contains information on French
households’ purchases of food items as well as households’ socioeconomics and demographics.1 We
define each household as a ”tap water drinker” or ”tap water non-drinker” from observed purchases
of non-alcoholic drinks.2 Second we use various sources of environmental information at the town-
ship level to compute the index of raw water bad quality (RWBQ herafter) as in Bontemps & Nauges
(2009). Data on price of tap water (IFEN-SCEES-Agences de l’eau, 2001), data on raw water
(Ministry of Health, 2001), and data on manure spreading by the Ministry of Agriculture (2000) at
the township level were collected. An information on the management of water supply chosen at
the township level (public versus private) is also included via the dummy variable deleg. Finally,
we compute the index of raw water bad quality and merged it to the households’ panel through
the residential address information of each household.

In addition to the raw water bad quality index, we observe the following socioeconomics and
demographics at the household level:

1Purchases of 10,000 surveyed households are recorded all aver the year 2001.
2We follow the definition of Bontemps & Nauges (2009) by defining the household as ”tap water drinker” (resp.

”tap water non-drinker”) if the average consumption of non-alcoholic drinks by person by day is lower (resp. greater)
than 0.5 liters. The set of non-alcoholic drinks includes: bottled water, tea drinks, sodas, tonics, fruits and vegetables
juices, etc.
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• Head of household’s education level (diploma). We distinguish four education levels: head
without diploma (reference in the probit model), head with diploma less than the baccalaurat
(diplo.L), head with the baccalaurat or a higher diploma (diplo.Q), head for whom information
is missing (diplo.C).

• Household’s monthly income (before income taxes) (Income).

• Rural or urban location (rural): we build an indicator variable which takes the value of 1 if
the household leaves in a ”commune” of less than 2,000 inhabitants, and 0 otherwise.

• Retirement status (iret): we build an indicator variable which takes the value of 1 if house-
hold’s head is retired and 0 otherwise.3

• Household’s geographic location (region). We follow here the regional division chosen by
TNS. France is divided in 8 main zones: Paris, East, North, West, Middle-West, Middle-
East, South-East, and South-West

The sample gathers 4,623 households from 1,282 distinct townships (”communes”) all over
France. A complete description of the sample is given in Bontemps & Nauges (2009). We recall
the main feature of this sample. On this sample 68% of households in the sample are classified as
”tap water drinkers”. This percentage is close to what is usually found in polls at the nation level.
Regional difference are also observed in our sample, the highest percentages of tap water drinkers
are in the Middle-East (82%), South-West (80%), and South-East (77%). The lowest proportion
of tap water drinkers is observed in the North (56%). The average raw water bad quality index is
of 0.93, varying from 0.87 in the North of France up to 0.97 in the Paris Region and in the west
of France, these two regions being particularly affected by nitrogen pollution. Household monthly
income varies from an average of 1,820 euros in Middle-West to an average of 2,490 euros in Paris
and surroundings. The proportion of households living in rural area varies from 1% (Paris and
surroundings) to 15% in the Western region where farming activity dominates. The share of retired
households is quite homogeneous across regions, except in the South-East which attracts a lot of
retired people with its warmer climate.

3.2 In-sample global performances

As mentioned in 2.2, we estimate two non-nested model specifications, a parametric probit specifi-
cation and a nonparametric kernel conditional probability specification. Both models use identical
information sets and deliver estimates of the probability of drinking tap water conditional on the
covariates X = {RWBQ, Income, diploma, region, deleg, rural, iret }. For the probit specifi-
cation, we add the interactions RWBQ × Income and RWBQ × iret in order to use the ”preferred”
parametric specification of Bontemps & Nauges (2009).

Table 2 reports the estimates of the parameters of the probit specification and the bandwidths
selected by least-squares cross-validation for the nonparametric specification.4 Empirical signifi-
cance levels allow to test the significance of the associated variables in the parametric specification

3This variable was proven more significant that age of household’s head in Bontemps & Nauges (2009).
4All the computations are made using the np package of R software (see Hayfield & Racine (2008)).

9



Table 2: Probit coefficient estimates and significance vs nonparametric bandwidth estimates and
associated scale factors:

Estimate Pr(| Z |> z) Bandwidth upper bound
(Intercept) 2.3296 0.0000 - -

RWBQ -1.8113 0.0021 0.1801905 ∞
Income -0.5492 0.0155 1.294752 ∞
diploma - - 0.8634835 1

diplo.L -0.1328 0.0464 - -
diplo.Q 0.0435 0.4433 - -
diplo.C -0.0229 0.5703 - -

Region - - 0.1208747 0.875
Region2 -0.0284 0.7376 - -
Region3 -0.5879 0.0000 - -
Region4 -0.0590 0.3836 - -
Region5 -0.0468 0.5887 - -
Region6 0.3706 0.0000 - -
Region7 0.1486 0.0576 - -
Region8 0.2974 0.0005 - -

deleg -0.0178 0.6966 0.5 0.5
rural 0.2397 0.0095 0.0721212 0.5
iret -1.3491 0.0089 3.253532e-13 0.5
RWBQ×Income 0.5789 0.0166 - -
RWBQ× iret 0.9461 0.0871 - -
irob - - 9.802058e-15 0.5
The bandwidths are chosen by minimizing a least-square cross-validation criterion.
The upper bound for a bandwidth, is equal to (cj − 1)/cj in the case of an unordered
discrete variable with cj categories, and 1 in the case of an ordered one.

while the magnitudes of the selected bandwidths reveal the relevance of the associated variables
in the nonparametric specification. We observe that significance tests and relevance assessments
provide coherent results. All the continuous variables have significant effects on the probability to
drink tap water in the parametric specification, and are relevant in the nonparametric specification
as they are far from being ”smoothed-out”. For the discrete variables, rural and iret are signifi-
cant and their bandwidths are far from their upper bounds, indicating clearly their relevance. This
is not the case for the variable deleg. Fot the ordered discrete variables, the two specifications
show that some regional effects exist while the diploma effects seem to be less clear.

Table 3 reports the confusion matrices for the two specifications. As usually done when eval-
uating binary choice models, we use a cut-off value α = 0.5 to map the classifiers, namely the
estimated probabilities, to classes of predicted 0 (“the household does not drink tap water”) or
1 (“the household does”). The comparison of these confusion matrices is not very conclusive,
the two specifications tending to over-predict the fact of drinking tap water. Moreover, the two
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specifications produce similar values for the usual global performance measures as shown in Table 4.

Table 3: Confusion matrices on the sample (n = 4623 and α = 0.5)

Probit specification Nonparametric specification

Predicted
0 1

Obs. 0 143 1324 1467
1 101 3055 3156

244 4379 4623

Predicted
0 1

Obs. 0 134 1333 1467
1 52 3104 3156

186 4437 4623

Table 4: Global performances (n = 4623 and α = 0.5)

Model Sensitivity Specificity CCR
Probit 96.79 % 9.74 % 69.17 %
Nonparametric 98.35 % 9.13 % 70.04 %

In Figure 1 we report two graphs representing the global performances of the two models when
the cut-off-value (α) is varying. The nonparametric specification provides better accuracy for a
given range of the cut-off-values, roughly α ∈ [0.45, 0.70], than the parametric specification, the
difference between the CCR values being very small outside this interval. In the same way, the
ROC curve for the nonparametric specification always dominates the ROC curve for the parametric
specification but the difference between the areas under these two curves is quite small (0.023).

To sum up, the nonparametric specification weakly outperforms the Probit specification when
considering in-sample performances measures. But, let us recall first that the Probit specification
with the chosen interactions between explanatory variables was selected to fit the data best using
these criteria in Bontemps & Nauges (2009). Second, as emphasized by (Racine & Parmeter 2009),
there is no guarantee that the nonparametric specification will perform any better than the Pro-
bit specification, even though the former may indeed exhibit an apparent marked improvement in
(in-sample) fit according to the chosen performance measures. We will see in the following that
focusing on out-of-sample predictive ability provides a useful tool for discriminating among the two
specifications.

3.3 Test results

We consider the RP test using S = 10, 000, where S is the number of splits of the data into two
independent samples of size n1 = n−n2 and n2. In our example we have n = 4, 623 and we report
results for n2 = 250.5 For each split into two independent samples, we fit each model to the n1

5Results are qualitatively unchanged for other choices of n2 and are available from the authors upon request.
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Figure 1: Global performances with varying cut-off-value α
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Figure 2: Box-plots of the RP test statistics for the S=10,000 splits of the data
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observations, obtain predictions for the values of the covariates in the independent sample of size
n2, then compute the error associated with the response in the independent sample. We repeat
this S times, then test whether the expected error on the independent data is equal nor not. The
null is that the expected true error is equal for both models, the alternative that is is smaller for
the nonparametric model. We use both a simple t-test and also a Mann-Whitney-Wilcoxon test.
The P -values for each test are 2.816224e − 12 and 1.397127e − 11, respectively, indicating that
the nonparametric specification possesses expected true error that is statistically significantly lower
than that for the parametric specification and is therefore preferred.

In Figure 2a, results are presented in the form of boxplots of ASPE for each of the two spec-
ifications. It can be seen from this figure that a stochastic dominance relationship exists between
the nonparametric specification and the Probit one, confirming the previous RP test result and
again indicating that the nonparametric model is to be preferred on the basis on independent
draws from the data. Does this dominance depend on the choice of a cut-off value α = 0.5? We
address this question by computing the AUROC value for each of the S replications involved in
the RP test. These area do not depend on any chosen cut-off value and thus provide a more robust
indicator of the performance of the classification than ASPE.In Figure 2b we compare the empir-
ical distributions of the AUROC for the two specifications. The two boxplots are less overlapping
than the boxplots in Figure 2a, indicating a clear-cut stochastic dominance of the nonparametric
specification.

3.4 Environmental issues

We now focus on the respective insights on tap water consumption raised by the two models. For
example, a graphical comparison of the estimated probabilities of drinking tap water expressed
as functions of the two continuous variables RWBQ and Income is provided in the 3-Dimensional
surface plots (Figure 3 and 4) where we fix the variables diploma, Region, deleg, and rural at cho-
sen values (resp. for household with diploma lower than Baccalauréat, in the North of France,
no delegation for tap water distribution, not in a rural area) and we let the iret variable change
from retired to non-retired. This comparison allows to show how the variables iret and RWBQ
interact given the way this interaction is introduced in the two specifications. Both probabilities
shift downwards for retired people. We observe that changing from retired to non retired induces a
flip in the shape of the probit probability, being increasing with respect to Income and decreasing
with respect to RWBQ for non-retired consumers and being increasing with respect to both Income
and RWBQ for retired consumers. The nonparametric probability is more flat whatever the value
of Income and RWBQ for non retired people, but it exhibits a similar pattern than the Probit one
for retired people. This effect for retired people is surprising, a closer look shows that the proba-
bility is varying more in the RWBQ dimension than in the Income dimension, capturing an reverse
environmental effect. One still observe, that the richer the household, the higher the probability
to drink tap water, whatever the environmental quality, but to lower extent. The nonparametric
probability is always bigger than the parametric one for retired people, while the two surfaces cross
for non retired people. Note that the surfaces for the nonparametric specification never cross the 0.5
cut-off value, being always bigger for retired people and smaller for non retired people. That is, on
this example, the iret variable fully discriminates between the tap water drinkers and non-drinkers
when using the usual 0.5 cutoff value. This result can be seen on the 2-Dimensional Figure 5, where
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Figure 3: Surface plots for the two models (retired=0)
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Figure 4: Surface plots for the two models (retired=1)
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(b) Nonparametric model
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we superpose the estimated probabilities as functions of RWBQ for both retired and non retired,
Income being fixed at its second quantile.

In figure 6, we report slices of the previous 3-Dimensional surfaces for a very bad level of en-
vironmental quality (the 9th RWBQ quantile). In both models, we observe that the probability
of drinking tap water is greater for non retired people, and this probability is slightly increasing
with income. Here again, the the iret variable discriminates between tap water drinkers and non
drinkers for the nonparametric model when using a cut-off value of 0.5. This is not the case when
considering the Probit model.

Let us now consider the specific case of discrete variables that do not interact with RWBQ.
In the Probit model, changing the value of such a variable, ceteris paribus, induces a translation
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Figure 5: Retirement effect and environment
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(b) Nonparametric model
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Figure 6: Retirement effect and income
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(b) Nonparametric model
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Figure 7: Rural effect
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(b) Nonparametric model
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of the estimated probability. The corresponding effect in the nonparametric setting is less clear.
Figures 7 and 8 illustrate that feature when changing the respective values of rural and Region.6

The rural effect is more pronounced for the nonparametric specification than for the Probit one.
Here again, the rural variable clearly discriminates between tap water drinkers and non drinkers
for the nonparametric model when using a cut-off value of 0.5. As shown by Bontemps & Nauges
(2009), regional effects are important in France due to various cultural habits.

The Probit model shows a less contrasted picture of these regional effects than the nonparametric
one. The parametric probabilities are all increasing with the RWBQ, that is when the quality of the
environment deteriorates, while it is not the case for all regions for the nonparametric specification.
Moreover, two clusters of regions seem to appear in Figure 8a: North vs East, West, and Paris,
while three appear in Figure 8b: North vs East, West vs Paris. With a cut-off value of 0.5, people
in the North never drink tap water whatever the chosen specification, confirming well-known habits
in this region. On the opposite, people in Paris are more likely to drink tap water, this finding may
be partly due to water bottle storage problems in flats. The results for the West and East regions
are more plausible for the nonparametric specification than for the Probit, people being indifferent
between drinking or not tap water in these two regions for the former specification.

4 Concluding remarks

We implement here an estimation of the probability of drinking tap water using a nonparametric
kernel conditional probability specification based on the conditional PDF of the decision variable.
This specification uses the same information set than a probit specification performed in Bontemps
& Nauges (2009). We use recent developments on generalized kernel estimation to deal with both

6In the analysis, we fix the variables diploma, income, deleg, and retired at chosen values (resp. for household with
diploma lower than Baccalauréat, with an income at the 9th quantile, no delegation for tap water distribution,and
for retired people). Unless specified, we choose to work with the North region (where the smallest proportion of
tap-water drinkers is observed) and in non rural areas.
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Figure 8: Regional effect
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(b) Nonparametric model
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continuous and discrete variables (see Li & Racine (2007)). The setup chosen here enables to assess
the relevance of the explanatory variables through the data-driven bandwidth selection method.
We find a similar set of significant or relevant variables, the raw water bad quality index being
relevant as in Bontemps & Nauges (2009). We find close in-sample predictive performances, that is
the overall correct classification ratio is 70.04% when considering the nonparametric specification
while it is of 69.17% for the probit specification. We then address the issue of selecting a preferred
model specification between the fully nonparametric and the probit models. We take the view
that fitted statistical models are approximations, a perspective that differs from that of consistent
models selection which posits a finite dimensional ‘true model’. The RP test recently developed
by Racine & Parmeter (2009) and implemented here, shows that the nonparametric specification
possesses an expected ‘true error’ that is statistically significantly lower than that for the paramet-
ric specification. The nonparametric specification is therefore preferred. The results focusing on
environmental insights provided by the two estimators, emphasize some patterns that can only be
detected using the nonparametric estimator.
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