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Abstract

We address the problem of prediction in the classical spatial autoregressive lag
model for areal data. In contrast with the spatial econometrics literature, the geo-
statistical literature has devoted much attention to prediction using the Best Linear
Unbiased Prediction approach. From the methodological point of view, we explore
the limits of the extension of BLUP formulas in the context of the spatial autore-
gressive lag models for in sample prediction as well as out-of-sample prediction
simultaneously at several sites. We propose a more tractable “almost best” alterna-
tive. From an empirical perspective, we present data-based simulations to compare
the efficiency of the classical formulas with the best and almost best predictions.

JEL classification: C21, C53

Key Words: Spatial simultaneous autoregressive models, out of sample prediction,
best linear unbiased prediction

1 Introduction

Whereas prediction is a basic concern in geostatistics (Cressie, 1990), it has not been
paid as much attention in the econometrics literature. Bivand (2002) recognizes
the importance of the question: “Prediction for new data ... is a challenge for
legacy spatial econometric models, raising the question of what a BLUP (best linear
prediction) would look like”. Kato (2008) explores the best linear prediction problem
in the framework of spatial error models. In the context of spatial lag models,
other authors (LeSage and Pace (2004), Pace and LeSage (2008), Kelejian and
Prucha (2007), Pace and LeSage (2008), Bennet, Griffith and Haining (1989)) have
addressed some aspects of this question and we will summarize their contribution
in section 2.
We first present the different types of prediction situations encountered according
to whether we predict at a sample unit or an out-of-sample one and to whether
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one or several points are predicted simultaneously. To motivate the need for out-
of-sample prediction, let us present the context of a case study in Lesne et al.
(2008). Until 1999, the French population census was exhaustive and realized by
the French statistical institute (INSEE) approximately every ten years. Since 2004,
this exhaustive census has been replaced by a census survey which consists in annual
samples and delivers an up-to-date information. In particular, the communes with
less than 10000 inhabitants at the 1999 census (called small communes) are sampled
exhaustively every five year at the rate of one fifth per year. The sampling design
of these small communes is stratified by region and inside each region, the small
communes are partitioned into five rotational groups by using a balanced sample
design taking into account some auxiliary socio-economics variables given by the
1999 census. Between 2004 and 2009, polling organizations needed an estimate of
the population for all the small communes and of its evolution since the previous
complete census of 1999. The population of all the small communes would not be
delivered by the INSEE before 2009 but data sets containing the population of the
two first rotational groups, corresponding to 2004 and 2005, were already known and
could be used to predict the population of the other three rotational groups. In that
case, out-of-sample prediction formulae were necessary for spatial models. Figure
1 presents the positions of the spatial units where population data was available at
the time of this case study.

Data available in the base

Data not available

big communes

Figure 1: Spatial units where population data was available at the time of this study

We first review the classical prediction formulae encountered in the literature for the
spatial simultaneous autoregressive (SAR or LAG depending on authors) models.
Then we recall how best linear unbiased prediction (BLUP) can be done in the
framework of these models using an adapted formulation of the Goldberger formula.
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We introduce several alternatives to this formula and finally demonstrate that the
simple formulas classically implemented in usual softwares can thus be improved
upon substantially.

2 State of the art about best prediction in

spatial autoregressive lag models

2.1 Models and prediction situations

We consider prediction in the classical homoscedastic spatial autoregressive lag
model (LAG model hereafter). Given a spatial weight matrix W , this model can be
written

Y = ρWY +Xβ + ϵ, (1)

where ϵ ∼ N (0, σ2I). In reduced form, this is equivalent to

Y = (I − ρW )−1Xβ + (I − ρW )−1ϵ. (2)

Let us recall a few classical facts about this model. The mean of Y in this model is
given by

µ = (I − ρW )−1Xβ

and its covariance structure by

Σ = [(I − ρW ′)(I − ρW )]−1σ2, (3)

The precision matrix Q is then easily derived

Q = Σ−1 =
1

σ2
(I − ρW ′)(I − ρW ) (4)

If ρ is known, the best linear unbiased estimator (BLUE) of µ = (I − ρW )−1Xβ is
µ̂ = (I − ρW )−1Xβ̂.
We will distinguish two types of prediction situations: the in-sample and out-of-
sample cases. In the in-sample prediction problem, we have n spatial units for
which we observe the dependent variable Y as well as the independent variables
X and we want to predict the value of Y at the observed sites after fitting the
model which is the same as computing the fitted value of Y . These predicted values
can be used for example to compute a goodness of fit criterion. This situation is
illustrated in the left part of Figure 2. In the out-of-sample case, we have two types
of spatial units: the in-sample units for which we observe the dependent variable
YS as well as the independent variable XS and the out-of-sample units for which
we only observe the independent variable X0 and we want to predict the variable
YO from the knowledge of YS , XS and XO. This situation is illustrated in the right
part of Figure 2. In the out-of-sample case, we will further distinguish according to
the number of spatial units to be predicted simultaneously: if there is only one such
unit, we will talk about a single out-of-sample prediction case, otherwise about a
multiple out-of-sample prediction case.
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x,y known

y to predict (x,y, known)

x,y known

y unknown, x known

y to predict (x known)

not used for fitting the model

not used for prediction

Figure 2: In-sample (left) and and out-of-sample (right) single prediction problem. Shaded
areas are sample units which are not used at the model fitting stage. Crosses are in-sample
units, empty circles are out-of-sample units and full circle is the point to predict.

2.2 Submodels for in-sample and out-of-sample units

We need to relate the model driving the in-sample units to the out-of-sample ones
and we assume there is an overall model driving the in- and out-of sample units. As
in Kato (2008), we partition X and Y in X = (XS , X0) and Y = (YS , Y0) where XS

(resp YS) denote the vector of components of X corresponding to in-sample spatial
units and XO (resp YO) denote the vector of components of X corresponding to
out-of-sample spatial units. Let nO and nS denote respectively the number of out-
of sample and in-sample units with n = nO +nS . Similarly, we partition the spatial
weights matrix W as follows

W =

(
WS WSO

WOS WO

)
, (5)

where

• WS is the nS × nS submatrix corresponding to the neighborhood structure of
the nS in-sample sites,

• WO the nO × nO submatrix corresponding to the neighborhood structure of
the nO out-of-sample sites,

• WOS the nO × nS submatrix indicating the neighbors of the out-of-sample
units among the in-sample units

• WSO the nS × nO submatrix indicating the neighbors of the in-sample units
among the out-of-sample units.
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We assume that there is a model corresponding to (1) with a normalized matrix
W for the n observations of (X,Y ) and that the sub-model MS driving the vector
XS , YS corresponding to the sample units has the same expression but using sub-
matrix WS renormalized. This natural assumption leads to two constraints : one
comes from the mean ((I−ρW )−1X)S = (I−ρWS)

−1XS and the other comes from
the variance (var(Y ))S = var(YS). It is important to note that while a correspond-
ing decomposition of the precision matrix is easily derived from (4), the covariance
matrix for sub-model MS on the other hand is not an extraction of Σ because of
the inversion in formula (3).

2.3 Classical prediction formulas

2.3.1 Goldberger formula

Goldberger (1962) proposed a formula for prediction in the framework of a general
linear model Y = µ+ V with known V . It is well known that

E(YO | YS) = E(YO) + Cov(YO, YS)V ar(YS)
−1(YS − E(YS))

and the Golberger formula (1962) gives the BLUP

Y ∗
O = µ̂O + Cov(YO, YS)V ar(YS)

−1(YS − µ̂S),

where Y ∗
O = λ′YS minimizes E(Y ∗

O−YO)
2 under the constraint that E(Y ∗

O−YO) = 0
and where µ̂O and µ̂S are estimators of respectively E(YO) and E(YS). In practice,
one does not know V (i.e. ρ in the LAG model) and needs to replace it in the
formula by an estimator. To simplify, by a slight abuse of language, we will call
the ensuing predictor BLUP as well since the theoretical BLUP has no practical
interest. It is the application of this formula which has given rise to the famous
Kriging predictor in geostatistics. In fact Golberger (1962) gave the formula for a
set O reduced to a point but the formula remains true for a set of points O . In that
case the problem is to find Y ∗

O = Λ′YS minimizing Tr(E(Y ∗
O −YO)(Y

∗
O −YO)

′) under
the constraint that E(Y ∗

O − YO) = 0 where Λ is a matrix. Note that the matrix
formulation is equivalent to applying the Goldberger formula one point at a time.

2.3.2 In-sample prediction

In an ordinary linear model which is model (1) for ρ = 0, the best linear unbiased
predictor (BLUP) of YS coincides with the best linear unbiased estimator (BLUE)
of µ and is given by

Ŷ T
S = XS β̂ = µ̂, (6)

where β̂ is the estimator of β calculated by fitting the model with in-sample units.
One could imagine using this predictor in a LAG model and we would call it the
“trend predictor”.
Based on the equality between BLUE and BLUP for the OLS model, it is then easy
and natural to imagine a predictor for the general case ρ ̸= 0 which we will call the
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“trend corrected predictor” given by

Ŷ TC
S = (I − ρ̂W )−1XS β̂, (7)

where β̂ and ρ̂ are the estimators of β and ρ calculated by fitting the model with
in-sample units. This predictor is used for example in the LeSage matlab toolbox
for computing the in-sample predicted values. Note however that this one does not
possess any kind of optimality property.
Another predictor introduced by Haining (1990) and detailed by Bivand (2004) is
given by

Ŷ TS
S = XS β̂ + ρ̂WYS (8)

Thereafter, we call this predictor the “trend-signal-noise” predictor. This one is
used in the Bivand R package spdep. Note that if ρ̂ = 0, then these three predictors
are all equal.
If we had ρ̂ = ρ and β̂ = β, we would get

E(Ŷ TC
S ) = E(Ŷ TS

S ) = E(YS)

Another version of the Goldberger formula used in the framework of conditional
autoregressive CAR models (see for example Guyon and Gaetan (2008) for in-sample
prediction is the following

ŶS = µ̂S −Diag(QS)
−1[QS ](Y − µ̂) (9)

where Diag(QS) denotes the diagonal matrix containing the diagonal of the precision
matrix QS and [QS ] = QS −Diag(QS). Again, in practice, ρ is unknown and must
be substituted by ρ̂.
In the framework of the LAG model, the same arguments yield the following version
of Goldberger formula

Ŷ BP
S = (I − ρWS)

−1XS β̂ −Diag(QS)
−1[QS ](Y − (I − ρWS)

−1XS β̂), (10)

where QS = 1
σ2 (I − ρW ′

S)(I − ρWS). Note that since this second version of Gold-
berger is based on the precision matrix rather than the covariance matrix, it should
be preferred to the first one for the LAG model. Using a coordinate formulation
rather than a matrix form, this formula is equivalent to

Ŷ BP
i = µ̂i −

n∑
j=1,j ̸=i

qij
qii

(Yj − µ̂j), (11)

where qij is the (i, j) element of matrix QS and µ̂i are the components of µ̂ given
by (6).
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2.3.3 Out-of-sample prediction

The trend-signal-noise predictor Ŷ TS cannot be defined in the case of out-of-sample
prediction since it requires some values of Y0 which are unobserved. However in the
case of a single prediction it is possible to compute it because of the zeros on the
diagonal of W.
The trend-corrected strategy can be applied here because it only involves the values
of X for the out-of-sample units

Ŷ TC = (I − ρ̂W )−1β̂X =

(
Ŷ TC
S

Ŷ TC
O

)
(12)

and

Ŷ TC
O = −(D − CA−1B)−1CA−1XS β̂ + (D − CA−1B)−1XOβ̂ (13)

for (I − ρ̂W ) =

(
A B
C D

)
=

(
In−p − ρ̂WS −ρ̂WSO

−ρ̂WOS Ip − ρ̂WO

)
Kelejian and Prucha (2007) use Goldberger formula for single out-of-sample predic-
tion in the particular case when O = {i} and for Wi.Y replacing YS . Griffith (2010)
proposes an EM procedure combining estimation of spatial parameters and impu-
tation of missing values in the framework of the spatial filtering method (Griffith,
2003).

3 Out-of-sample prediction: extensions and

new proposals

3.1 Another formulation of Goldberger formula for LAG
models

For out-of-sample best prediction, if we first concentrate on the case of single pre-
diction, formula (11) can be applied with the precision matrix Q corresponding to
the sample units augmented with the point to predict.

In the case of out-of-sample best prediction, Harville (1997) derives a Goldberger
formula written in terms of inverse matrix Q, similar to the prediction formula for
markov gaussian vector field of Rue (2005, page 31). As Pace and LeSage (2008)
point out, it is based on the fact that Cov(YO, YS)V ar(YS)

−1 = −Q−1
O QOS , which

arises from expressing that the partitioned matrix Q is the inverse of the partitioned
matrix V ar(Y ). The Goldberger formula can thus be expressed in terms of precision
matrices as follows

Ŷ BP
O = Ŷ TC

O −Q−1
O QOS × (YS − Ŷ TC

S ) (14)

with

Q = I − ρ(W ′ +W ) + ρ2W ′W =

(
QS QSO

QOS QO

)
7



Let us note that the matrix to invert is QO and has the size of the number of out-
of-sample units whereas in the first version of the Goldberger formula, the size of
the matrix to invert is equal to the number of in-sample units. If the size of the
matrix to be inverted is a crucial point, then using the precision formula instead of
the variance one can help.

3.2 Extension of the Kelejian-Prucha predictor

We first propose to generalize the Kelejian-Prucha approach to multiple prediction
where YO is predicted by linear combination of WOSYS instead of YS . Golberger
formula gives the best predictor as

Ŷ BPW
O = Ŷ TC

O +ΣOSW
′
OS(WOSΣSW

′
OS)

−1(WOSYS −WOS Ŷ
TC
S ) (15)

However we believe that it is unlikely in practical situations that one has the infor-
mation about the linear combination of neighboring values WOSYS without having
the entire knowledge of YS . Moreover, formula (15) is not simpler to compute than
the best prediction given by formula (14): the size of the matrix to invert is equal
to the number of out-of-sample units.

For this reason, we propose the following alternative which consists in using the
Harville formula for a case where the set S is replaced by N where N is the set of
all sites in S which are neighbors in the sense of W of at least one site in O. The
idea is to use only the neighbors of the out-of-sample sites (the ones in in O) in
order to predict. Let J be the set of such indices and nJ its size. Let W {J,O} be
the neighborhood matrix for sites which are in S or J .

W {J,O} =

nJ nO

←→ ↔ WJ WJO

WOJ WO

 ↕ nJ

↕ nO

The corresponding partition of the precision matrix corresponding to sites in {J,O}
is

Q{J,O} = InJ+p − ρ̂(W{J,O} +W ′
{J,O}) + ρ̂2(W ′

{J,O}W{J,O}) =

(
QJ QJO

QOJ QO

)
and thus we get the following predictor

Ŷ BPN
O = Ŷ TC

O −Q−1
O QOJ(YJ − Ŷ TC

J )J . (16)

The advantage of this predictor lies in the fact that it reduces the computational
burden since the size of the matrix QOJ(YJ − Ŷ TC

J )J is nO×nJ instead of nO×nS .
If we were using the Goldberger formula, the new predictor would be written
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Y BPN
O = Ŷ TC

O + Cov(YO, YJ)V ar(YJ)
−1(YJ − Ŷ TC

J ),

Clearly the new predictor is not optimal, but one can hope it has some almost
optimality behavior. Our proposition can be related to the classical “kriging with
moving neighborhood” which is often used in geostatistics. In the same spirit, Kato
(2008) considers the feasible generalized least square predictor in the framework
of SEM models. Note that because of the links between W and Q, if we consider
W ′W -neighbouring, that is order 2 W-neighbouring, the predictor will be optimal
and is equal to the predictor with Q-neighbours. Indeed the reason is that if we
look at prediction with a set of Q-neighbours then it means that Q can be written :

Q =

(
QS\J 0

0 Q{J,O}

)
and thus Q−1

O QOS × (YS − Ŷ TC
S ) is equal to Q−1

O Q{J,O} × (Y{J,O} − Ŷ TC
{J,O}) and

therefore is optimal.

3.3 Alternative: back to single prediction

Because the single prediction formulas are simpler, when p out-of-sample units have
to be predicted, we propose to apply the “single out-of-sample” formula to each of
the out-of-sample unit separately, ignoring at each stage the remaining p− 1 units.
This allows also to include the Trend-signal strategy which exists out-of-sample only
in the single prediction case. This leads us to defining alternatives of each of the five
predictors Ŷ TC , Ŷ TS , Ŷ BP , Ŷ BPW and Ŷ BPN which will be denoted respectively by
Ŷ TC1

, Ŷ TS1
, Ŷ BP 1

, Ŷ BPW
1
and Ŷ BPN

1
. These formulae of course do not apply if an

out-of-sample point has no neighbors among the sample units but in that situation
a non-spatial formula is doing just as well.

4 Comparing the predictors by simulation

4.1 Simulation framework

In order to compare the different predictors, we design a simulation study. We use
the Midi-Pyrénées region divided into n = 283 cantons for our study region. We
construct a weight matrix W using the 10 nearest neighbors scheme (distance is
based on the distance between centroids of the cantons).
We simulate three explanatory variables as follows:

• X1 ∼ N (15, 3)

• X2 ∼ B(100, 0.45)/100
• X3 ∼ log(U[0,283])

In order not to restrict attention to gaussian distributions, the choice of the second
distribution is motivated by its bounded support and the choice of the third by its
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right skewness. We use the following spatial autoregressive lag regression model to
generate the dependent variable

Y = (I − ρW )−1(β0 + β1X1 + β2X2 + β3X3 + ϵ) where ϵ ∼ N (0, σ2) (17)

The parameter β and σ are fixed to β = (0, 1/4, 6, 1) and σ = 1. For the in-sample
comparison, ρ takes a range of values ρ = 0.05, 0.2, 0.35, 0.5, 0.65, 0.8, 0.9. For the
out-of-sample comparison, ρ is equal to 1.

4.2 In-sample prediction simulation results

In this section, the sample contains the 283 initial sites described in section 4.1.
For each choice of ρ and σ, we draw 500 samples of the model and we compute the
maximum likelihood estimates of the parameters based on the in-sample locations
and the corresponding predictions. We use the total mean square error of prediction

MSEk =
1

n

n∑
i

(yi− Y k
i )

2 for each method k = TS, TC,BP to compare the quality

of the predictors. Note that this criterion includes the statistical error due to pa-
rameter estimation. The results of the in-sample comparison are in Table 1. The

¯MSEBP
¯MSETS BP/TS ¯MSETC BP/TC

ρ = 0.05 0.9707 0.9720 0.9986 0.9754 0.9952
(0.0832) (0.0833) (0.0838 )

ρ = 0.2 0.9850 0.9884 0.9966 1.0006 0.9844
(0.0832) (0.0835) (0.0852)

ρ = 0.35 0.9646 0.9756 0.9897 1.0192 0.9464
(0.0847) (0.0841) (0.0896)

ρ = 0.5 0.9597 0.9814 0.9779 1.0890 0.8813
( 0.0799) (0.0803) (0.1039)

ρ = 0.65 0.9494 0.9883 0.9606 1.2531 0.7576
(0.0790) (0.0799) (0.1450)

ρ = 0.8 0.9308 0.9871 0.9429 1.6571 0.5660
(0.0844) (0.0848) (0.2738)

ρ = 0.9 0.9152 0.9878 0.9265 2.8981 0.3158
(0.0784) (0.0812) (0.9635)

Table 1: MSE for different predictors and comparison with Best predictor when the
parameter ρ takes different values from 0.05 (mild correlation) to 0.9 (strong correlation).

mean error is stable across values of ρ for TS, is increasing for TC and decreasing
for BP. Variances are stable. The efficiency ratio BP/TS is decreasing with spatial
correlation but remains close to 1 whereas the efficiency ratio BP/TC decreases
dramatically with ρ. We do not report results for different values of σ because they
do not reveal any variation with respect to this parameter.

10



4.3 Out-of-sample prediction simulation results

To evaluate the performance of the different predictors for the out-of-sample case, we
use the same model as before to generate the samples. The number of replications
is 1000 and we report the average mean square error of prediction over the out-of-
sample units.
We choose at random a given number of sites (27 or 54) which will be declared out-
of-sample (in O). We predict the Y variable on the out-of-sample locations based
on the sample S constituted by the remaining sites. We consider several situations
depending upon the number of out-of-sample units and upon the aggregation level
of the out-of-sample units. The corresponding configurations of out-of-sample units
are shown in Figures 3 and 4 and the level of aggregation is increasing from left to
right.

Figure 3: The three configurations for 27 out-of-sample units positions

Figure 4: The three configurations for 54 out-of-sample units positions

The results for the case of 27 out-of-sample units are reported in table 2 and those
for the case of 54 out-of-sample units are reported in table 3.
Aside BP1 whose rank changes, whatever configurations and number of sites to
predict, we obtain the following ranking between methods in decreasing order of
efficiency

BP < BPN < BPW < BP 1
N < BP 1

W < TS1 < TC < TC1
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BP BP 1 BP
BP 1 TC BP

TC
TC1 BP

TC1 TS1 BP
TS1

Conf. 1 0.998 1.000 0.998 1.126 0.886 1.131 0.883 1.026 0.973
(0.275) (0.276) (0.303) (0.305) (0.280)

Conf. 2 1.031 1.048 0.983 1.145 0.900 1.184 0.870 1.069 0.964
(0.296) (0.302) (0.326) (0.340) (0.305)

Conf. 3 1.038 1.060 0.979 1.129 0.919 1.144 0.908 1.064 0.976
(0.280) (0.285) (0.307) (0.309) (0.285)

BPW
BP
BPW

BPW
1 BP

BPW
1 BPN

BP
BPN

BPN
1 BP

BPN
1

Conf. 1 1.003 0.996 1.007 0.992 0.999 1.000 1.003 0.996
(0.276) (0.277) (0.275) (0.277)

Conf. 2 1.035 0.996 1.057 0.975 1.032 0.999 1.055 0.977
(0.298) (0.305) (0.297) (0.305)

Conf. 3 1.041 0.997 1.065 0.975 1.039 1.000 1.063 0.977
(0.281) (0.286) (0.281) (0.285)

Table 2: Simulation results for the 27 out-of-sample units case

Note that the worst ratio is around 0.88.
Because the reported prediction errors are averages over out-of-sample units, we sus-
pected it may hide different situations depending on the number of missing neighbors
of a given out-of-sample unit. The following table 4 reports the prediction errors as
a function of the number of missing neighbors. This number k ranges from 0 to 9
and for each k, we repeat 1000 times the following process

• choose a site i at random

• remove k neighbors at random from the neighbors of i, their set is N

• the in-sample set of sites becomes S \N and the out-of-sample set of sites is
N

• simulate the vector Y for all the sites

• predict the Y on the sites in N and compute the prediction error.

The first column of the table contains the predictive mean square error (PMSE)
of the BP predictor and the remaining ones report the ratio of the optimal PMSE
with the PMSE of all the other methods.
We observe that the BP predictive mean square error indeed slightly increases with
the number of missing neighbors. The efficiency of BP1 and TC1 with respect to
BP decreases with the number of missing neighbors. The efficiency of TC with
respect to BP increases with the number of missing neighbors which we interpret
as revealing the fact that when the information gets poor in the neighborhood, it is
just as well to use the mean to predict (the correction is inefficient). The efficiency
of BPW with respect to BP remains stable.
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BP BP 1 BP
BP 1 TC BP

TC
TC1

BP
TC1 TS1 BP

TS1

Conf. 1 1.009 1.012 0.997 1.130 0.893 1.140 0.886 1.035 0.975
(0.196) (0.196) (0.221) (0.225) (0.201)

Conf. 2 1.029 1.036 0.992 1.137 0.905 1.152 0.893 1.054 0.975
(0.199) (0.199) (0.226) (0.230) (0.204)

Conf. 3 1.037 1.061 0.978 1.136 0.913 1.158 0.896 1.069 0.970
(0.205) (0.213) (0.234) (0.240) (0.214)

BPW
BP
BPW

BPW
1 BP

BPW
1 BPN

BP
BPN

BPN
1 BP

BPN
1

Conf. 1 1.012 0.997 1.017 0.992 1.010 0.999 1.015 0.994
(0.196) (0.196) (0.196) (0.196)

Conf. 2 1.031 0.998 1.042 0.987 1.029 1.000 1.039 0.989
(0.200) (0.201) (0.200) (0.201)

Conf. 3 1.040 0.997 1.070 0.970 1.038 0.999 1.068 0.971
(0.206) (0.214) (0.206) (0.215)

Table 3: Simulation results for the 54 out-of-sample units case

5 Conclusion

At least in the case of this particular model, the performance ofBPN , BPW ,BPN1,BPW 1
are very close to that of the best prediction and much better than that of TC, TS,
TC1,TS1. We did not consider a larger variety of parameter values because a few
attempts have shown that the results were quite stable.
For the in-sample case, the performance of the trend-signal-noise predictor is not so
bad and it is very easy to compute. BPN is better than BPW in terms of efficiency
but BPW is closer to BP in terms of projection coefficients. BPW is better than
TC, less good than TS.
We developed our study on the case of the LAG model. The conclusions would
apply for the Spatial Durbin model :

y = ρWy + α1 +Xβ +WXγ + ε

with ε ∼ N(0, σ2 I) because the structure of the variance matrix is the same as in
the LAG case and the structure of the mean is similar (I − ρW )−1Zβ1.
For the case of the spatial error model SEM which is a linear model with LAG
residuals, we refer the reader to Kato (2008).
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nb mis. neib. ¯PMSEBP BP/BP 1 BP/TC BP/TC1 BP/TS1 BP/BPW

0 0.979 1.000 0.898 0.898 0.984 0.998
(1.374)

1 0.987 0.989 0.905 0.887 0.972 0.997
(1.377)

2 0.986 0.987 0.902 0.884 0.973 1.000
(1.364)

3 1.015 0.981 0.924 0.901 0.978 0.998
(1.420)

4 0.996 0.971 0.909 0.871 0.958 0.989
(1.379)

5 1.002 0.959 0.913 0.850 0.947 0.991
(1.409)

6 1.015 0.930 0.923 0.850 0.930 0.995
(1.401)

7 1.042 0.902 0.944 0.844 0.914 1.002
(1.456)

8 1.036 0.798 0.939 0.756 0.806 0.989
(1.435)

9 1.059 0.694 0.957 0.706 0.709 0.993
(1.434)

Table 4: Prediction errors as a function of number of missing neighbors

References

[1] N. Cressie (1990), The origins of kriging, Mathematical Geology Volume 22,
Number 3 (1990), 239-252.

[2] R. Bennet, D.Griffith and R. Haining (1989), Statistical analysis of spatial
data in the presence of missing observations: an application to urban census
data, Environment and Planning A, 21: 1511-1523.

[3] R. Bivand (2002) Spatial econometrics functions in R: Classes and methods.
Journal of Geographical Systems, 4, 405-421.

[4] C. Gaetan and X. Guyon (2008), Modlisation et statistique spatiales, Springer
Verlag.

[5] A.S. Goldberger (1962) Best linear unbiased prediction in the generalized
linear regression model. JASA, 57,298, 369-375.

[6] Griffith, D. A. (2003). Spatial autocorrelation and spatial filtering: gaining
understanding through theory and scientific visualization, Springer.

14



[7] D. Griffith (2010) Spatial filtering and missing georeferenced data imputation:
a comparison of the Getis and Griffith methods, in Perpectives on spatial data
analysis, L. Anselin and S.J. Rey (eds), Springer-Verlag.

[8] R.P. Haining (1990) Spatial data analysis in the social and environmental
sciences, Cambridge university Press.

[9] Harville D.(1997) Matrix algebra from a statistician’s perspective, Springer-
Verlag, New-York.

[10] T. Kato (2008) A further exploration into the robustness of spatial autocor-
relation specifications, Journal of Regional Science, 48 (3), 615-638.

[11] H.H. Kelejian and I.R. Prucha (2007) The relative efficiencies of various pre-
dictors in spatial econometric models containing spatial lags, Regional Science
and Urban Economics, 37, 363-374.

[12] J.P. LeSage and R.K. Pace (2004) Models for spatially dependent missing
data, Journal of Real Estate Finance and Economics, 29:2, 233-254.

[13] R. Kelley Pace and James P. LeSage (2008), Spatial Econometric Models, Pre-
diction, Encyclopedia of Geographical Information Science, Shashi Shekhar
and Hui Xiong (eds.), Springer-Verlag, 10.1007/978-0-387-35973-1-1266.

[14] J.P. Lesne, H. Tranger, A. Ruiz-Gazen and C. Thomas-Agnan (2008) Predict-
ing population annual growth rates with spatial models, Preprint.

[15] H. Rue and L. Held (2005), Gaussian Markov Random Fields, Theory and
Applications, Chapman & Hall/CRC.

[16] Wainwright, M., J. and Jordan, M., I. (2008), Graphical Models, Exponential
Families, and Variational Inference, Foundations and Trends R in Machine
Learning, Vol. 1, Nos. 162 (2008) 16305.

15


