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Abstract

The estimation of optimal support boundaries under the monotonicity constraint is relatively
unexplored and still in full development. This article examines a new extreme-value based model
which provides a valid alternative for completely envelopment frontier models that often suffer
from lack of precision, and for purely stochastic ones that are known to be sensitive to model
misspecification. We provide different motivating applications including the estimation of the
minimal cost in production activity and the assessment of the reliability of nuclear reactors.
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1 Introduction

1.1. Setting and objectives. Given a data set {(Y1, X1), . . . , (Yn, Xn)} from a support P ={
(y, x) ∈ Rq+ × R+|ϕ(y) ≤ x

}
, we wish to estimate the unknown function ϕ, called boundary or

frontier. This problem arised in various contexts, such as for example edge estimation in image

reconstruction, where the boundary is typically the interface of areas of different intensities or dif-

ferent color tones (see, e.g., Park (2001) for the literature therein). The major task of this paper is

to estimate the lower boundary ϕ(·) of P under the monotonicity constraint. Our first motivating

application concerns frontier estimation in econometrics : the data typically consist of input factors

Xi ∈ R+ used to produce multiple outputs Yi ∈ Rq+ in a certain firm i, and the aim is to investigate

the performance of the firms by looking at the minimal amount of input-usage ϕ(y) needed to

produce a given level of outputs y. Econometric considerations lead to the natural assumption

that the cost function is isotonic nondecreasing with respect to the partial order in the sense that

y ≤ y′ componentwise implies ϕ(y) ≤ ϕ(y′), for two vectors y, y′ ∈ Rq+. Our second motivating field

of application is the reliability of nuclear reactors where the objective is to analyze the fracture

toughness Xi of the reactor pressure vessel material i as a function of the temperature Yi. The goal

is to estimate the so-called master curve prediction x = ϕ(y) of the lowest fracture toughness as a

function of the temperature.

1.2. Previous work on frontier modeling. Most of the works on boundary estimation in the

statistical literature deal with the output-oriented case, where the problem is rather to estimate the
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upper curve φ(·) of the joint support of (X,Y ), characterized by P =
{

(x, y) ∈ Rp+ × R+| y ≤ φ(x)
}

.

It is often assumed that (X1, Y1), . . . , (Xn, Yn) are independent and identically distributed with a

density f(x, y) defined as an algebraic function of the distance from the upper frontier, {φ(x)− y},
with a power βx > −1. The quantity βx = 0 corresponds to a jump of the density at the boundary

φ(x). When βx 6= 0, it describes the rate at which the density decays to zero smoothly (in case

βx > 0) or rises up to infinity (in case βx < 0) as it approaches to the boundary. The case βx > 1

has been considered in Hall et al. (1997), where the estimation of φ(x) is based on an increasing

number of upper order statistics generated by the Yi’s falling into a strip around x. The case of

general βx can be found in Gijbels and Peng (2000), where the maximum of all Yi observations

falling into a strip around x and another frontier estimator based on three large order statistics of

the Yi’s in the strip are considered. Piecewise polynomial estimators for φ(x) have been studied in

Härdle et al. (1995) in the case of non-sharp boundaries, and polynomial estimators have been used

in Hall et al. (1998). All of these elegant approaches do not rely, however, on the monotonicity

constraint.

There is a vast econometrics literature on monotone frontier analysis, but there are mainly two

popular nonparametric methods based on envelopment techniques: the free disposal hull (FDH)

estimator introduced by Deprins et al. (1984) and defined as the optimal step and monotone surface

which envelops all the data points, and the data envelopment analysis (DEA) estimator initiated by

Farrell (1957) and which can be defined as the optimal piecewise and concave function covering the

FDH estimator. Although their simplicity, the statistical aspects of these envelopment estimators

have been explored only during the last decade. See, e.g., Jeong and Park (2006), Kneip et al.

(2008), Daouia et al. (2010) and Park et al. (2010) for recent asymptotic developments in the

output-orientation. Note that the convexity assumption on P is not always valid, although it is

widely used in economics. Hence, the FDH is a more general estimator than the DEA. Note also

that the output-orientation measures the maximal quantity of outputs which can be produced with

a given level of inputs, while the input-orientation searches for the minimal cost needed to produce

a given amount of outputs. The optimal support boundary, P∂ , is unique and the graphs of the

“minimum input” function ϕ(y) and the “maximum output” function φ(x) are two different ways

of describing it.

1.3. Benchmark free disposal hull model. In the input-orientation, which is of genuine interest

from the economic viewpoint, the estimation of the lower frontier ϕ(·) under the monotonicity

constraint is relatively unexplored and still in full development. A closed form expression of ϕ(y)

has been suggested by Cazals et al. (2002) in terms of the non-standard conditional distribution

of X given Y ≥ y. If (Ω,A,P) denotes the probability space on which the random vector (Y,X) ∈
Rq+ × R+ is defined and S(x|y) = P(X > x|Y ≥ y) is the survival function of X conditioned

by Y ≥ y assuming P(Y ≥ y) > 0, then ϕ(y) can be characterized as the lower endpoint of the
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non-standard conditional distribution, i.e.,

ϕ(y) = inf{x ≥ 0 |S(x|y) < 1}. (1)

Generally speaking, ϕ(y) is not the lower boundary ψ(y) of the support of (Y,X) at Y = y,

but equals infy′≥y ψ(y′). Therefore, it is isotonic nondecreasing and envelops the lower support

boundary. In the case where the frontier function ψ is nondecreasing, which is the main shape

constraint in the present paper, ϕ coincides with ψ. Then, consideration of ϕ is advantageous

since it is expected to afford estimation at a faster rate than ψ. Because of the local nature

of ψ, one can use only the observations in a local strip around y to estimate it, while it is not

the case with estimation of ϕ. Replacing the survival function S(x|y) in (1) with its empirical

counterpart Ŝn(x|y) =
∑n

i=1 1l{Xi>x,Yi≥y}/
∑n

i=1 1l{Yi≥y}, Cazals et al. (2002) recover the intuitive

FDH estimator

ϕ̂n(y) = inf{x ≥ 0 | Ŝn(x|y) < 1} ≡ min{Xi : 1 ≤ i ≤ n, Yi ≥ y}, (2)

which defines the largest step and monotone function lying below the sample points (Yi, Xi). Only

Park et al. (2000) have determined its limit distribution under the restrictive condition that the

density of data is strictly positive at the boundary.

1.4. Contributions and organization of the paper. Starting from the formulations (1) and (2)

of ϕ(y) and ϕ̂n(y) as conditional endpoints, the problem of convergence in distribution of suitably

normalized FDH is elucidated in a general setting in Section 2.1 by using simple arguments from

extreme value theory. An intuitive interpretation of the so-called extreme-value index γy, which is

involved in the necessary and sufficient condition of convergence as well as in the limit distribution,

is provided in terms of the data dimension (q+1) and the shape of the joint density near its support

boundary. This allows in particular to recover the results of Park et al. (2000) in the special case

γy = −(q + 1)−1. The convergence of moments is also easily derived in the general setting.

In absence of information on whether the data are measured accurately, it would look awk-

ward for practitioners to assume that only the FDH boundary points (Yi, Xi ≡ ϕ̂n(Yi)) contain

valuable information about the lower distribution tail, especially as FDH observations may look so

isolated from the cloud points that they seem hardly related to the sample. Different estimation

techniques have been developed for so-called stochastic frontier models, where observational errors

or random noise allow some observations to be outside of the frontier. The advantages of such

(semi-)parametric models come at the cost of explicit assumptions on the functional form of the

frontier and/or the distribution of noise; see, e.g., Kumbhakar and Lovell (2000) for a nice survey.

In Section 2.2, we show how other top observations, well inside the sample, could help the practi-

tioners to achieve their objective by using ideas from de Haan and Ferreira (2006) which in turn

are based on the popular moments device of Dekkers et al. (1989).
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The resulting moment frontier estimator is quite appealing for huge samples of the order of sev-

eral thousands, but unfortunately disappoints by its rather large volatility for small and moderate

samples. This motivated the quest for alternative estimators in Section 2.3: we have been able to

come up with a sensible correction of the FDH boundary for its inherent bias via the convergence

of its moments, which then inspired our main methodological innovation in this article, Γ-moment

estimation called. Practical guidelines to effect the necessary computations of the estimators are

described in Section 2.4: they are first based on the prescription of Ferreira et al. (2003) about op-

timizing the estimation of endpoints, and then on a monotonization technique of the unconstrained

estimators. Evidence is given in Section 3 to demonstrate the superiority of the Γ-moment fron-

tiers over the usual moment and FDH estimators. Section 4 returns to our motivating applications

and explores boundary estimation for a large dataset on the delivery activity of postal services

and two small datasets on the reliability of nuclear reactors and the productivity of electric utility

companies.

2 Main results

Let (y, ϕ(y)) be the point we want to estimate at the lower boundary of the support of (Y,X) such

that P(Y ≥ y) > 0 and ϕ(y) > 0. For the sake of conciseness, we focus in this section on the

monotone nondecreasing case. Similar considerations evidently apply to the nonincreasing case.

2.1 Data envelopment estimation

To estimate ϕ(y) we look at observations Xi having Yi ≥ y, and estimate ϕ(y) via extreme order

statistics of these Xi’s. More precisely, we propose to transform the random vectors (Yi, Xi) into

the dimensionless variables

Zyi = X−1i 1l{Yi≥y}, i = 1, . . . , n.

It is not hard to verify that the common distribution function of the Zyi ’s satisfies

FZy(z) =

{
1− P(X < 1

z , Y ≥ y) for z > 0
1− P(Y ≥ y) for z = 0.

Writing F←Zy(α) := inf{z ≥ 0|FZy(z) ≥ α} for the quantile of order α ∈ (0, 1] of FZy , it is then

easily seen from (1) that

ϕ(y) ≡ {F←Zy(1)}−1.

Likewise, it is immediate from (2) that ϕ̂n(y) is identical to {max1≤i≤n Z
y
i }−1. Therefore, the

asymptotic properties of the maximum carry over automatically to the FDH estimator.

In all the sequel, denote by Uy(t) the tail quantile function defined as Uy(t) := F←Zy(1−1/t). Assume

the classical first order condition

lim
t↑∞

Uy(tx)− Uy(t)
a(t)

=
xγ − 1

γ
for x > 0 (3)
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where a(.) is a positive auxiliary function, regularly varying with index γ, denoted as RVγ (see

Bingham et al., 1987).

Theorem 1.

(i) There exists {an > 0} such that a−1n (ϕ(y) − ϕ̂n(y)) converges to a non-degenerate distribu-

tion if and only if, for some γ < 0 and for all z > 0, (3) holds. The limit distribution

function is then given by Gγ(x) = exp{−(−x)−1/γ} with support (−∞, 0), and we can set

an = ϕ2(y)
{

1
ϕ(y) − Uy(n)

}
.

(ii) Assume that the upper endpoint of the support of X is finite and that a−1n {ϕ(y)− ϕ̂n(y)} d−→
Gγ with an = ϕ2(y)

{
1

ϕ(y) − Uy(n)
}

. Then, for any integer k ≥ 1,

lim
n→∞

E
[
a−1n {ϕ(y)− ϕ̂n(y)}

]k
= (−1)k Γ(1− kγ) (4)

where Γ(·) stands for the gamma function.

Proof. Part (i). According to Resnick (1987, Propositions 0.3 and 1.13), if bn = ϕ−1(y) − Uy(n),

then b−1n (ϕ̂−1n (y) − ϕ−1(y)) converges to a non degenerate distribution function if and only if 1 −
FZy

(
ϕ−1(y)− x−1

)
∈ RV1/γ as x→∞. Now, using (2.11) in Beirlant et al. (2004), this condition

is equivalent to Uy(x) = ϕ−1(y)−xγ`U (x) as x→∞ where `U is a slowly varying function at infinity,

i.e. equivalent to condition (3) (see Corollary 1.2.10, de Haan and Ferreira, 2006). Finally, note that

by Slutsky’s lemma, saying that b−1n (ϕ̂−1n (y)− ϕ−1(y)) converges to a non degenerate distribution

function is equivalent to the same convergence for a−1n (ϕ(y)− ϕ̂n(y)) with an = bnϕ
2(y).

Part (ii). Using directly Zy does not give the desired convergence of moments. Here we shall use

the alternative transformation Z̃y := −X1l{Y≥y} − x∗1l{Y �y} and its independent and identically

distributed copies Z̃y1 , . . . , Z̃
y
n, with x∗ being the upper endpoint of the support of X. Clearly, the

upper endpoint of the support of Z̃y coincides with −ϕ(y) and the sample maximum Z̃y(n) = maxi Z̃
y
i

is identical to −ϕ̂n(y). Moreover, it is easy to see that the distribution function of Z̃y is given

by F
Z̃y

(z̃) = {1 − P[X < −z̃, Y ≥ y]}1l{−x∗≤z̃≤−ϕ(y)}. Then F
Z̃y

(z̃) = FZy(−1/z̃) for every

z̃ ∈ [−x∗,−ϕ(y)]. Whence, for all t > P−1(Y ≥ y),

F←
Z̃y

(1− 1/t) = inf
{
z̃ ∈ [−x∗,−ϕ(y)] : F

Z̃y
(z̃) ≥ 1− 1/t

}
= −1/ inf

{
−z̃−1 ∈ [x−1∗ , ϕ−1(y)] : FZy(−z̃−1) ≥ 1− 1/t

}
= −1/F←Zy (1− 1/t) = −1/Uy(t).

Therefore, the sequence cn := F←
Z̃y

(1)−F←
Z̃y

(1−1/n) satisfies cn = an/[ϕ(y)Uy(n)] ∼ an as n→∞.

Thus, a−1n {ϕ(y)− ϕ̂n(y)} d−→ Gγ implies c−1n (Z̃y(n)−F
←
Z̃y

(1))
d−→ Gγ . On the other hand, E|Z̃y|k ≤

xk∗ <∞ for all k > 0. Hence, following e.g. Resnick (1987, Proposition 2.1(ii), p.77), we have

lim
n→∞

E
[
c−1n {Z̃

y
(n) − F

←
Z̃y

(1)}
]k

= (−1)k Γ(1− kγ),
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which ends the proof since cn ∼ an, Z̃y(n) = −ϕ̂n(y) and F←
Z̃y

(1) = −ϕ(y).

Note that the normalizing sequence an > 0 and the extreme-value index γ < 0 of the transformed

distribution FZy(·) depend on y. For simplicity of notation we do not mention this dependence.

Next we shall provide more motivation for the assumption (3) under which the FDH estimator

converges in distribution, and give an intuitive meaning for the parameter γ. The necessary and

sufficient condition (3) has the following equivalent representation in terms of the joint distribution

of (Y,X) :

P(Y ≥ y,X < x) =

(
x− ϕ(y)

x

)−1/γ
Ly

(
x

x− ϕ(y)

)
for x > ϕ(y),

where Ly(·) is a slowly varying function. In order to recover the usual assumption in frontier

analysis that the joint density of data is an algebraic function of the distance (x − ϕ(y)) from

the lower support boundary, it is enough to consider the simple class of functions Ly(·) satisfying

Ly(t) = `y > 0 for all t sufficiently large. Indeed, this leads to the sufficient condition

P(Y ≥ y,X < x) = `y x
1/γ (x− ϕ(y))−1/γ as x ↓ ϕ(y). (5)

Then, by differentiating both sides of (5) with respect to x and y (assuming that the functions `y,

γ = γy and ϕ(y) are differentiable in y), it is not hard to verify that the density f(y, x) of (Y,X)

exhibits algebraic tails, i.e.,

f(y, x) = cy {x− ϕ(y)}βy + o
(
{x− ϕ(y)}βy

)
as x ↓ ϕ(y), (6)

where the shape parameter βy of the joint density has the explicit expression

βy = −1

γ
− (q + 1), (7)

and cy is a strictly positive constant (provided that γ > −1
q and the first partial derivatives of ϕ(y)

are strictly positive). As such, the regular-variation exponent γ in (3) turns into a parameter with

an intuitive interpretation: When γ > −{q + 1}−1, the density of data decays to zero smoothly

as it approaches to the lower boundary; When γ = −{q + 1}−1, the joint density has sudden

jumps at the frontier; Finally, the range γ < −{q + 1}−1 corresponds to a density rising up

to infinity as it approaches to the frontier. In the sequel, we focus on the more realistic range

γ ≥ −{q + 1}−1 ≥ −1/2.

2.2 Moment frontier estimation

Let Zy(1) ≤ · · · ≤ Zy(n) be the order statistics of the dimensionless sample Zy1 , . . . , Z
y
n. Instead of

the maximum estimator Zy(n) which is very simple in nature, a prominent way of estimating the
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endpoint F←Zy(1) based on other extreme observations has been proposed by Dekkers et al. (1989).

The underlying idea is to estimate an anchor quantile well inside the transformed sample but near

the frontier point, and then to shift it to the right place. Our second estimator of the frontier

function ϕ(y) = 1/F←Zy(1) follows the prescription of de Haan and Ferreira (2006) which is based

on the moment estimator (Dekkers et al., 1989) of the extreme-value index γ. For our problem the

tail condition (3) means

ϕ(y) = {Uy(∞)}−1 ≈
{
Uy

(n
k

)
−
a(nk )

γ

}−1
(8)

for a sequence k := k(n) = o(n) as n → ∞, that is, the frontier point ϕ(y) is linked to γ, a(n/k)

and the quantile Uy(n/k) = F←Zy(1 − k/n). This latter quantity can be estimated simply by its

empirical counterpart Zy(n−k), whereas the quantities γ and a(n/k) are estimated by the moment

estimators given by

γ̂M := M (1)
n + 1− 1

2

(
1− (M

(1)
n )2

M
(2)
n

)−1
â
(n
k

)
:= Zy(n−k)M

(1)
n (1− γ̂M +M (1)

n ),

where

M (r)
n =

1

k

k−1∑
i=0

(
logZy(n−i) − logZy(n−k)

)r
, r ≥ 1.

A detailed description of their asymptotic properties can be found in de Haan and Ferreira (2006,

Sections 3.5 and 4.2). Hence the approximation (8) motivates the following frontier point estimator

ϕ̂∗M (y) =

{
Zy(n−k) −

â
(
n
k

)
γ̂M

}−1
. (9)

In order to be able to derive its asymptotic normality, as usual in extreme value theory, we shall need

the following second-order refinement of the relation (3) which specifies the rate of convergence:

lim
t↑∞

Uy(tx)−Uy(t)
a(t) − xγ−1

γ

A(t)
=

1

ρ

(
xγ+ρ − 1

γ + ρ
− xγ − 1

γ

)
(10)

holds for x > 0 with ρ ≤ 0 and A not changing sign and such that A(t) → 0, as t → ∞. Then

for γ 6= ρ, a second-order condition also holds for logUy(t) (see e.g. de Haan and Ferreira, 2006,

p.130), namely

lim
t↑∞

logUy(tx)−logUy(t)
a(t)/Uy(t)

− xγ−1
γ

Q(t)
=

1

ρ′

(
xγ+ρ

′ − 1

γ + ρ′
− xγ − 1

γ

)
with ρ′ = max(γ, ρ) and Q not changing sign and such that Q(t)→ 0 as t→∞. Finally, assume

k = k(n)→∞, n/k →∞ and
√
k Q(n/k)→ λ ∈ R as n→∞. (11)
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The asymptotic distribution of the moment frontier estimator ϕ̂∗M (y) of ϕ(y) is given in the next

proposition.

Theorem 2. Given (10) and (11),

√
k γ̂2M

â
(
n
k

)
{ϕ̂∗M (y)}2

{ϕ(y)− ϕ̂∗M (y)} d−→ N(µy, σ
2
y)

where

µy =

{
λρ(1−γ)

(γ+ρ)(1−γ−ρ)(1−2γ−ρ) , γ < ρ ≤ 0
λγ(1−3γ2)

(1−γ)(1−2γ)(1−3γ) , ρ < γ < 0
and σ2y =

(1− γ)2(1− 3γ + 4γ2)

(1− 2γ)(1− 3γ)(1− 4γ)
.

Proof. On the first hand, ϕ(y)−1 coincides with the endpoint F←Zy(1) of our univariate transformed

distribution. On the other hand, it is easy to see that ϕ̂∗M (y)−1 is identical to the moment estimator

(Dekkers et al., 1989) of the upper endpoint F←Zy(1). Then, one can simply use the same consid-

erations applied by de Haan and Ferreira (2006, Paragraph 4.3.2, p.140) to obtain the asymptotic

normality √
k γ̂2M
â
(
n
k

) { 1

ϕ̂∗M (y)
− 1

ϕ(y)

}
d−→ N(µy, σ

2
y).

The stated result follows immediately.

An alternative option would be to use in (9) the estimator

γ̂ := 1− 1

2

(
1− (M

(1)
n )2

M
(2)
n

)−1
= γ̂M −M (1)

n

of the negative extreme-value index γ in place of the general moment estimator γ̂M to get the

frontier estimator

ϕ̂∗n(y) :=

{
Zy(n−k) −

â
(
n
k

)
γ̂

}−1
, (12)

with the same definition of â
(
n
k

)
as above. Then, following e.g. de Haan and Ferreira (2006, p.148),

we have under the conditions of Theorem 2,

√
k γ̂2

â
(
n
k

)
{ϕ̂∗n(y)}2

{ϕ(y)− ϕ̂∗n(y)} d−→ N(µ̃y, σ
2
y)

where

µ̃y =

{
µy , γ < ρ ≤ 0
λγ(1−3γ+3γ2)
(1−2γ)(1−3γ) , ρ < γ < 0.

From a theoretical point of view, there is no advantage of using the estimator (9) rather than (12)

for a fixed y, but in our context of curve estimation, it appears in practice that the latter version

provides more sensible and stable results as y varies than the former.
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2.3 Γ-moment frontier estimation

According to the analysis of Aarssen and de Haan (1994, Lemma A.3) on endpoint estimation (see

also de Haan and Ferreira, 2006, Remark 4.5.5), it turns out that it is most efficient to use the

moment estimator ϕ̂∗n(y) for estimating ϕ(y) = {F←Zy(1)}−1 in the range γ > −1
2 . Good estimates

may, however, require a large sample size of the order of several thousands. For small samples,

as demonstrated in our simulation study, the naive FDH estimator appears to be superior to the

moment estimator in terms of mean-squared error, whereas the latter is the winner in terms of

bias. On the other hand, when γ < −1
2 , the FDH ϕ̂n(y) = {Zy(n)}

−1 converges faster than ϕ̂∗n(y).

A similar result has been established by Girard et al. (2012) for a high order moments estimator

of the endpoint. Nevertheless, even in this latter advantageous setting, ϕ̂n(y) overestimates ϕ(y)

uniformly in y, with probability 1. In this section, we shall first build intuitive bias-reduced versions

of this envelopment estimator.

If a−1n {ϕ(y) − ϕ̂n(y)} d−→ Gγ , then the key element is that a−1n {ϕ(y) − E[ϕ̂n(y)]} → E(Gγ) =

−Γ(1 − γ) as n → ∞, in view of (4). This moment’s convergence naturally suggests to use

the alternative estimator ϕ̃(y) := ϕ̂n(y) − anΓ(1 − γ) since then a−1n {ϕ(y) − E[ϕ̃(y)]} → 0 and

a−1n {ϕ(y) − ϕ̃(y)} converges to the centered Weibull extreme-value distribution Gγ + Γ(1 − γ), as

n→∞. In applications, the correction term anΓ(1− γ) must, however, be estimated. This can be

achieved by substituting the estimated values γ̂ and

ãn := −â
(n
k

) kγ̂

γ̂
{ϕ̂n(y)}2

in place of the extreme-value index γ and the scaling an, respectively. The asymptotic distribution

of the resulting estimator

ϕ̃n(y) := ϕ̂n(y)− ãnΓ(1− γ̂)

=

{
Zy(n) + â

(n
k

) kγ̂

γ̂
Γ(1− γ̂)

}(
Zy(n)

)−2
of ϕ(y) is established in the next theorem. The scale a(·) in the tail conditions above being regularly

varying with index γ, it can be written equivalently as a(x) = xγ`(x), where `(·) is a slowly varying

function.

Theorem 3. Given (10)-(11) and assuming that `(n)
`(n/k) → 1, we have

ã−1n {ϕ(y)− ϕ̃n(y)} d−→ Gγ + Γ(1− γ).

Proof. Using the fact that

ã−1n {ϕ(y)− ϕ̃n(y)} = a−1n {ϕ(y)− ϕ̂n(y)} an
ãn

+ Γ(1− γ̂),
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it is sufficient to prove that an
ãn

P−→ 1. To this aim, remark that

an
ãn

= −
ϕ2(y)

{
1

ϕ(y) − Uy(n)
}

â
(
n
k

)
kγ̂

γ̂ {ϕ̂n(y)}2

=
γ̂

γ

a
(
n
k

)
â
(
n
k

) kγ−γ̂ a(n)

kγ a
(
n
k

) −γ[Uy(∞)− Uy(n)]

a(n)

(
ϕ(y)

ϕ̂n(y)

)2

.

According to e.g. de Haan and Ferreira (2006, Theorem 4.2.1), we have â
(
n
k

)
/a
(
n
k

) P→ 1 and using

their Lemma 4.5.4 under (10), we have

lim
t→∞

Uy(∞)−Uy(t)
a(t) + 1

γ

A(t)
=

1

γ(ρ+ γ)
.

This convergence combined with the assumption that A(t) → 0 lead to
−γ[Uy(∞)−Uy(t)]

a(t) → 1. On

the other hand, it follows from the representation a(x) = xγ`(x) that

a(n)

a
(
n
k

)
kγ

=
nγ`(n)

kγ
(
n
k

)γ
`
(
n
k

) =
`(n)

`
(
n
k

) → 1, n→∞

by assumption. Finally, since
√
k(γ̂ − γ) converges to a normal distribution by Corollary 3.5.6 in

de Haan and Ferreira (2006, p.108), we easily deduce that kγ̂−γ
P−→ 1 as n → ∞. This concludes

the proof of Theorem 3.

Note that the assumption `(n)
`(n/k) → 1 in Theorem 3 is not very restrictive. It is in particular

satisfied in case where ` is asymptotically a constant or a logarithm function under the additional

condition that log k
logn → 0.

Another option would be to use the estimator

ϕ̃∗n(y) :=

{
Zy(n) − â

(n
k

) kγ̂

γ̂
Γ(1− γ̂)

}−1
,

for which it is not hard to verify that Theorem 3 remains still valid when substituting ϕ̃∗n(y) in place

of ϕ̃n(y). The motivation of this estimator is to correct the sample maximum for its inherent bias

by considering first the hybrid estimator F̃←Zy(1) := Zy(n) + bnΓ(1− γ) (see the proof of Theorem 1

for the limit distribution of Zy(n) and its moment’s convergence). Then we replace the unknown

quantities γ and bn = an/ϕ
2(y) by γ̂ and ãn/ϕ̂

2
n(y) to get the endpoint estimator 1/ϕ̃∗n(y). This

does not seem to have been appreciated in the literature of extreme values before. Even more

generally, one can use the following extended versions

ϕ̃∗n,m(y) :=

{
Zy(n−m) − â

(n
k

) kγ̂

γ̂
Γ(1− γ̂)

}−1
,

ãn,m := −â
(n
k

) kγ̂

γ̂

{
Zy(n−m)

}−2
for some fixed integer m ≥ 0. When m = 0, we recover the estimators ϕ̃∗n(y) and ãn. Next, we show

that ϕ̃∗n,m(y) converges in distribution as well, with the scaling ãn,m to a different limit distribution.

10



Theorem 4. Under the conditions of Theorem 3, we have for any m ≥ 0,

ã−1n,m
{
ϕ(y)− ϕ̃∗n,m(y)

} d−→ Gγ,m + Γ(1− γ)

for the distribution function Gγ,m(x) = Gγ(x)
∑m

i=0 (− logGγ(x))i /i!.

Proof. To check this result, observe that ãn,m/ãn =
{
Zy(n)/Z

y
(n−m)

}2 P−→ 1, and that

ã−1n

{
ϕ̃∗n,m(y)−1 − ϕ(y)−1

}
=
ã−1n
a−1n

{
a−1n

(
Zy(n−m) − ϕ(y)−1

)}
+

Γ(1− γ̂)

{ϕ̂n(y)}2
.

By the proof of Theorem 3, we have ã−1n /a−1n
P−→ 1 and Γ(1 − γ̂)/{ϕ̂n(y)}2 P−→ Γ(1 − γ)/ϕ2(y).

On the other hand, we have b−1n

(
ϕ̂n(y)−1 − ϕ(y)−1

)
≡ b−1n

(
Zy(n) − ϕ(y)−1

)
d−→ Gγ by the proof

of Theorem 1 (i), with bn = an/ϕ
2(y). Then, by applying Theorem 21.18 in van der Vaart (1998,

p.313), we obtain b−1n

(
Zy(n−m) − ϕ(y)−1

)
d−→ Gγ,m, or equivalently a−1n

(
Zy(n−m) − ϕ(y)−1

)
d−→

Gγ,m/ϕ
2(y). Therefore ã−1n

{
ϕ̃∗n,m(y)−1 − ϕ(y)−1

}
d−→ [Gγ,m + Γ(1−γ)]/ϕ2(y), which leads to the

desired result.

The motivation via the convergence of moments of the FDH estimator, the interpretation in

terms of the involved gamma function, and the impact of the popular moment estimators γ̂ and

â(n/k) inspired the name Γ-moment frontiers for the class of estimators ϕ̃∗n,m(y).

2.4 Optimizing the frontier estimation

In this section, we provide practical guidelines on how to pick out the intermediate sequences in

ϕ̂∗n(y) and ϕ̃∗n,m(y), and on how to ensure their monotonicity as functions of y.

2.4.1 Optimal choice of k(n) in ϕ̂∗n(y) and ϕ̃∗n,m(y)

The accuracy of the moment estimator ϕ̂∗n(y) ≡ ϕ̂∗n(y, k) depends on the choice of the sequence

k = k(n) in (11) for which the approximation (8) is believed to be valid. A promising bootstrap

technique by Ferreira et al. (2003) to achieve the optimal value of k, for the endpoint estimator

ϕ̂∗n(y)−1, is a result of balancing variance and bias components. We can employ this bootstrap-

based procedure to solve our optimality problem adaptively. Note that what is important in the

definition of the frontier function ϕ̂∗n(y, k) is not the sample size n itself, as it is the case in the

set-up of Ferreira et al. (2003) for endpoint estimation, but only the number Ny :=
∑n

i=1 1l{Yi≥y}

of observations (Yi, Xi) for which Yi ≥ y or equivalently Zyi > 0. Note also that, by construction,

the number k ranges from 1 to Ny − 1.

We shall determine the value of k that minimizes the asymptotic mean-squared error:

ky(n) := argmin
k

asympt. E (ϕ̂∗n(y, k)− ϕ(y))2 . (13)

11



The adaptive method for optimization consists then in replacing the unknown theoretical quantities

in (13) with their empirical analogues leading thus to the objective function

En
(
ϕ̂∗n,1(y, k)− ϕ̂∗n,2(y, k)

)2
,

where En stands for averaging with respect to the empirical distribution function, and

ϕ̂∗n,i(y, k) :=
{
Zy(n−k) − âi

(n
k

)
/γ̂i

}−1
for i = 1, 2, (14)

with γ̂1 = γ̂, â1
(
n
k

)
= â

(
n
k

)
, γ̂2 and â2

(
n
k

)
being the following alternative estimators

γ̂2 :=
(
M (2)
n /2

)1/2
+ 1− 2

3

(
1−M (1)

n M (2)
n /M (3)

n

)−1
,

â2 (n/k) := Zy(n−k)M
(1)
n (1− γ̂2 +M (1)

n ).

For a fixed y such that Ny > 2 is large enough, the guidelines on how to estimate the optimal value

ky(n) in (13) are as follows:

Step 1 Form the transformed set of dimensionless observations {Zy1 , . . . , Z
y
n} from the multivariate

sample {(Y1, X1), . . . , (Yn, Xn)}, and extract the subset {Zy(n−Ny+1), . . . , Z
y
(n)} of non-null Zyi ’s.

Step 2 Select randomly and independently ny times a member from {Zy(n−Ny+1), . . . , Z
y
(n)}, where

ny = O(N1−ε
y ) for some ε ∈ (0, 1/2). Indicate by Zy∗(1) ≤ · · · ≤ Zy∗(ny) the ordered selected members

and calculate the corresponding estimates γ̂∗1 , γ̂∗2 , â∗1
(ny
k

)
, â∗2

(ny
k

)
, ϕ̂∗ny ,1(y, k) and ϕ̂∗ny ,2(y, k), for

k = 1, . . . , ny − 1. Then form the quantities

Q∗ny(k) :=
(
ϕ̂∗ny ,1(y, k)− ϕ̂∗ny ,2(y, k)

)2
for k = 1, . . . , ny − 1. (15)

Step 3 Repeat step 2 ry times independently. The number ry can be taken as big as neces-

sary. Indicate the result by Q∗ny ,1(k), · · · , Q∗ny ,ry(k) and compute the average values Q̄∗ny(k) =

(1/ry)
∑ry

j=1Q
∗
ny ,j

(k), for k = 1, . . . , ny − 1.

Step 4 Determine the minimizer k̂∗n(y) of Q̄∗ny(k) with respect to k over the range of intermediate

sequences, say, from log ny to Ny/ log ny (this restriction allows to reject too small values or those

very near to ny, assuming ny sufficiently large).

Remark 1. In the range γ > −1/2, which is most frequent in applications, one can get a more

refined estimate than k̂∗n(y), which is asymptotically as good as the theoretical number ky(n) in

(13) thanks to a second bootstrap. We refer to Ferreira et al. (2003) for a much more thorough

discussion of the rationale for this approach including proofs of its asymptotic optimality.

Remark 2. In what concerns the bootstrap parameters, we used in all our simulations and appli-

cations the same considerations as in Ferreira et al. (2003) on endpoint estimation, for each fixed y.

12



Evidence has been given in their Monte Carlo experiments to support that the bootstrap moment

estimates are quite stable along ny. Then they always considered ny = N1−ε
y where ε = 0.1 (as

mentioned above, the sample size in the set-up of Ferreira et al. (2003) corresponds to Ny in our

context). They also have recommanded to reject values of k̂∗n(y) which are smaller than 10 and

larger than 0.8ny.

Remark 3. It seems that the bootstrap-based procedure affords satisfactory results only for values

of y such that Ny exceeds, approximately, 2000 (see the conclusions of Ferreira et al., 2003, Sec-

tion 2.3.1). For small and moderate samples, as it is the case in our applications, the optimal choice

of k = ky via the bootstrap method is still possible, but is hard to manage for certain values of y

following the slope and the curvature of the frontier. This happens when the tail assumption (3)

or the approximation (8) is too optimistic. Stated differently, it is in just those values of y that

γ̂ ≥ 0 can appear, and this failure leads to a severe bias. To reduce this vexing defect, we used in

our numerical illustrations the variant of the moment estimator described in the next proposition

instead of (14).

Proposition 1. If (3) holds and k = k(n) satisfies k/n→ 0 with k/(log n)δ →∞ for some δ > 0,

then we have with probability 1, as n→∞,

ϕ̂∗n(y) ≡

{
Zy(n−k) −

â
(
n
k

)
γ̂

1l{γ̂<0}

}−1
, ϕ̃∗n,m(y) ≡

{
Zy(n−m) − â

(n
k

) kγ̂

γ̂
Γ(1− γ̂) 1l{γ̂<0}

}−1
.

Proof. By Theorem 2.1 of Dekkers et al. (1989, p.1834), we have γ̂M
a.s.−→ γ as n → ∞. It is also

shown in the proof of that theorem (see Equation (2.13), p.1840) that M
(1)
n

a.s.−→ max(0, γ) = 0 as

n → ∞. Then γ̂ = γ̂M −M (1)
n

a.s.−→ γ as n → ∞. Since γ < 0, we get 1l{γ̂<0} = 1 as n → ∞, with

probability 1.

For computing the number k in the Γ-moment estimator ϕ̃∗n,m(y) = ϕ̃∗n,m(y, k), we just apply the

same scheme as above (step 1 up to 4) by proceeding to step 2 with

Q∗ny(k) :=
(
ϕ̃∗ny ,m,1(y, k)− ϕ̃∗ny ,m,2(y, k)

)2
,

ϕ̃∗ny ,m,i(y, k) :=

{
Zy∗(ny−m) − â

∗
i

(ny
k

) kγ̂
∗
i

γ̂∗i
Γ(1− γ̂∗i ) 1l{γ̂∗i <0}

}−1
for i = 1, 2. As demonstrated in Section 3, this bootstrap procedure provided quite admirable

estimates ϕ̃∗n,m(y) in terms of both bias and mean-squared error. Even more strongly, the results

for ϕ̃∗n,m(y) were appreciably better than those for the moment estimator ϕ̂∗n(y). So we do not enter

here into further theoretic validation of the method.
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2.4.2 Isotonized frontier estimators

Yet, there is still another difficulty with our ‘pointwise’ selection method of k = ky as y varies. A lack

of smoothness of the resulting estimators ϕ̂∗n(y) and ϕ̃∗n,m(y), as functions of y, can occur for small

and moderate samples. Then, these estimators may not automatically inherit the monotonicity

property of the true frontier ϕ. One way to monotonize and stabilize each of these unconstrained

estimators is by using the isotonic version ϕ̄#
n = [ϕ̄∗1n + ϕ̄∗2n] /2, with

ϕ̄∗1n(y) = sup
y′≤y

ϕ̄∗n(y′) and ϕ̄∗2n(y) = inf
y≤y′

ϕ̄∗n(y′), (16)

where y and y′ run over some domain D interior to the support of Y and ϕ̄∗n is either ϕ̂∗n or ϕ̃∗n,m.

Both ϕ̄∗1n and ϕ̄∗2n are monotone nondecreasing on D with respect to the partial order: ϕ̄∗1n

is the smallest monotone function that lies above the unconstrained estimator ϕ̄∗n, and ϕ̄∗2n is the

largest monotone function that lies below ϕ̄∗n. As a matter of fact, any convex combination of these

envelope estimators would have sufficed as a definition of ϕ̄#
n , but we do not see any reason to bias

the restricted estimator one way or the other. Next, we show that the hybrid estimators ϕ̂#
n and

ϕ̃#
n,m are better than the original versions ϕ̂∗n and ϕ̃∗n,m in the following sense:

sup
y∈D
|ϕ̂#
n (y)− ϕ(y)| ≤ sup

y∈D
|ϕ̂∗n(y)− ϕ(y)|, sup

y∈D
|ϕ̃#
n,m(y)− ϕ(y)| ≤ sup

y∈D
|ϕ̃∗n,m(y)− ϕ(y)|.

Indeed, using the triangle inequality of the sup-norm, it is easily seen that the # operator is sup-

norm contracting in the sense that supy∈D |r#(y)− s#(y)| ≤ supy∈D |r(y)− s(y)|, for any functions

r(·) and s(·) defined on D (see, e.g., Lemma 3.1 in Daouia and Simar, 2005).

In order to compute the restricted estimators ϕ̂#
n (y) and ϕ̃#

n,m(y), one can use in practice a

discrete grid Dn in place of the domain D in the definition (16) of the envelope estimators. In the

general multivariate case where y ∈ Rq+, the idea is to first consider the minimal rectangular set with

edges parallel to the coordinate axes covering all the observations Yi, and then to choose a discrete

grid Dn in this rectangular set including the minimal and maximal points (with respect to the

partial order induced by “≤”) of the rectangular set. In our simulation study we confine ourselves

to a bi-dimensional support of (Y,X) ∈ R2
+, where we used n grid points evenly distributed across

the entire sample space of Yi’s.

3 Some simulation evidence

We have undertaken some Monte Carlo experiments to evaluate finite-sample performance of the

FDH, moment and Γ-moment frontier estimators. The experiments employ the two different frontier

functions

ϕ1(y) = y and ϕ2(y) = exp(−5 + 10y)/(1 + exp(−5 + 10y)).
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Design points, Yi, are generated as U [0, 1], and responses as

Xi = ϕ(Yi) + σ(Yi)Vi, i = 1, . . . , n,

where the lower support boundary ϕ is either ϕ1 or ϕ2, the local scale factor σ(y) = (1 + y)/2

is linearly increasing in y, and the Vi’s given Yi = y are independent Beta(b(y), 1), with the Beta

parameter being either constant, b(y) = 1, or varying above 1 as follows

b(y) = 2

{(
1

10
+ sin(πy)

)(
11

10
− 1

2
exp

[
−64

(
y − 1

2

)2
])}−1

− 1.

In this model, the shape parameter of the joint density βy and the extreme-value index (EVI) γy

are given by

βy = b(y)− 1 and γy = −1/(b(y) + 1).

All the experiments were performed over 1000 independent samples of size n = 200. For each

simulated sample, two measures of performance were considered

MSE(ϕn) =
1

L

L∑
`=1

{ϕn(y`)− ϕ(y`)}2 , Bias(ϕn) =
1

L

L∑
`=1

{ϕn(y`)− ϕ(y`)}

for ϕn = ϕ̂n, ϕ̂
∗
n, ϕ̂

#
n , ϕ̃∗n,m, ϕ̃

#
n,m, where only the most extreme values m ∈ {0, 1} were considered

to save place, with y1 . . . , yL being 100 points evenly distributed between Y(1) = min1≤i≤n Yi and

the order statistic Y(n−17) (this choice of the reference points y` ensures that Ny` ≥ 18 for each `,

which in turn allows to use the value 10 (respectively, 0.8ny) as a lower (respectively, upper) bound

of k in the bootstrap-based method, as mentioned in Remark 2).

In what concerns the number of bootstrap resamples (denoted by ry in step 3), 100 replications

seem fairly enough given that n = 200.

To guarantee a fair comparison among the different estimators, our Monte Carlo experiments

were first devoted to their accuracy when the oracle quantity

Q∗ny(k) :=
(
ϕny(y, k)− ϕ(y)

)2
, for ϕny = ϕ̂∗ny , ϕ̃

∗
ny ,m, (17)

is used in step 2 instead of (15). In Table 1 (respectively, Table 2) we report the Monte Carlo

averages of the MSE and the bias, computed over the 1000 replications of the experiment, for the

linear (respectively, non-linear) boundary ϕ in the Beta error model. These results give an overall

impression of the precision of the different estimators:

When γ = −1/2 or equivalently b(·) = 1, it may be seen that the FDH estimator ϕ̂n outperforms

overall both the moment estimator ϕ̂∗n and its monotonized version ϕ̂#
n in terms of MSE, whereas

there is no winner in terms of bias in all cases. In contrast, the Γ-moment estimators ϕ̃∗n,0 and

ϕ̃#
n,0 perform overall clearly better than the FDH and moment estimators in terms of both bias and

MSE.
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Table 1: Results for ϕ = ϕ1 using the oracle quantity (17) in step 2 and 1000 Monte-Carlo simu-
lations with n = 200.

MSE

EVI ϕ̂n ϕ̂∗n ϕ̂#
n ϕ̃∗n,0 ϕ̃#

n,0 ϕ̃∗n,1 ϕ̃#
n,1

γ = − 1
2

0.0074 0.0181 0.0106 0.0062 0.0047 0.0099 0.0067

γ > − 1
2

0.0421 0.0706 0.0393 0.0315 0.0244 0.0447 0.0278

Bias

EVI ϕ̂n ϕ̂∗n ϕ̂#
n ϕ̃∗n,0 ϕ̃#

n,0 ϕ̃∗n,1 ϕ̃#
n,1

γ = − 1
2

0.0757 0.0656 0.0409 0.0237 0.0051 0.0520 0.0255

γ > − 1
2

0.1639 0.1392 0.0610 0.0687 -0.0201 0.1061 0.0060

Table 2: Results for ϕ = ϕ2 using the oracle quantity (17) in step 2 and 1000 Monte-Carlo simu-
lations with n = 200.

MSE

EVI ϕ̂n ϕ̂∗n ϕ̂#
n ϕ̃∗n,0 ϕ̃#

n,0 ϕ̃∗n,1 ϕ̃#
n,1

γ = − 1
2

0.0081 0.0260 0.0156 0.0071 0.0050 0.0114 0.0066

γ > − 1
2

0.0397 0.0788 0.0474 0.0315 0.0262 0.0453 0.0296

Bias

EVI ϕ̂n ϕ̂∗n ϕ̂#
n ϕ̃∗n,0 ϕ̃#

n,0 ϕ̃∗n,1 ϕ̃#
n,1

γ = − 1
2

0.0734 0.0774 0.0738 0.0238 0.0033 0.0489 0.0223

γ > − 1
2

0.1587 0.1519 0.0945 0.0695 -0.0157 0.1117 0.0168

Table 3: Results for ϕ = ϕ1 using the oracle quantity (17) in step 2 and 1000 Monte-Carlo simu-
lations with n = 201 (one outlier included).

MSE

EVI ϕ̂n ϕ̂∗n ϕ̂#
n ϕ̃∗n,0 ϕ̃#

n,0 ϕ̃∗n,1 ϕ̃#
n,1

γ = − 1
2

0.1046 0.1572 0.0733 0.0990 0.0987 0.0418 0.0273

γ > − 1
2

0.1046 0.1572 0.0733 0.0990 0.0987 0.0092 0.0071

Bias

EVI ϕ̂n ϕ̂∗n ϕ̂#
n ϕ̃∗n,0 ϕ̃#

n,0 ϕ̃∗n,1 ϕ̃#
n,1

γ = − 1
2

-0.1251 0.2846 0.1944 -0.1703 -0.1966 0.1015 0.0093

γ > − 1
2

-0.1251 0.2846 0.1944 -0.1703 -0.1966 0.0565 0.0340

Table 4: Results for ϕ = ϕ2 using the oracle quantity (17) in step 2 and 1000 Monte-Carlo simu-
lations with n = 201 (one outlier included).

MSE

EVI ϕ̂n ϕ̂∗n ϕ̂#
n ϕ̃∗n,0 ϕ̃#

n,0 ϕ̃∗n,1 ϕ̃#
n,1

γ = − 1
2

0.1240 0.0604 0.0474 0.1250 0.1247 0.0091 0.0073

γ > − 1
2

0.1459 0.1612 0.0811 0.1410 0.1399 0.0411 0.0294

Bias

EVI ϕ̂n ϕ̂∗n ϕ̂#
n ϕ̃∗n,0 ϕ̃#

n,0 ϕ̃∗n,1 ϕ̃#
n,1

γ = − 1
2

-0.1896 0.1699 0.1511 -0.2085 -0.2183 0.0560 0.0336

γ > − 1
2

-0.1348 0.3010 0.1905 -0.1745 -0.1982 0.1247 0.0356

When γ > −1/2 or equivalently b(·) > 1, the FDH estimator ϕ̂n seems to outperform the

moment estimator ϕ̂∗n in terms of MSE in all cases, which is not the case for the monotonized

version ϕ̂#
n . However, both moment estimators ϕ̂∗n and ϕ̂#

n seem to be overall superior to the FDH

estimator in terms of bias. In contrast, the Γ-moment estimators ϕ̃∗n,0 and ϕ̃#
n,0 have uniformly

smaller MSE and bias than the FDH estimator. Moreover, we can see that the monotonized
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version ϕ̃#
n,0 is clearly the winner in all respects and all cases compared to the standard FDH and

moment estimators.

Table 5: Results for ϕ = ϕ1 using the bootstrap quantity (15) in step 2 and 1000 Monte-Carlo
simulations with n = 200.

MSE

EVI ϕ̂n ϕ̂∗n ϕ̂#
n ϕ̃∗n,0 ϕ̃#

n,0 ϕ̃∗n,1 ϕ̃#
n,1

γ = − 1
2

0.0075 0.0215 0.0199 0.0055 0.0046 0.0091 0.0074

γ > − 1
2

0.0428 0.0836 0.0471 0.0332 0.0266 0.0475 0.0320

Bias

EVI ϕ̂n ϕ̂∗n ϕ̂#
n ϕ̃∗n,0 ϕ̃#

n,0 ϕ̃∗n,1 ϕ̃#
n,1

γ = − 1
2

0.0760 0.1108 0.1058 0.0299 0.0170 0.0614 0.0475

γ > − 1
2

0.1657 0.1897 0.0918 0.0817 -0.0033 0.1247 0.0282

Table 6: Results for ϕ = ϕ2 using the bootstrap quantity (15) in step 2 and 1000 Monte-Carlo
simulations with n = 200.

MSE

EVI ϕ̂n ϕ̂∗n ϕ̂#
n ϕ̃∗n,0 ϕ̃#

n,0 ϕ̃∗n,1 ϕ̃#
n,1

γ = − 1
2

0.0080 0.0328 0.0324 0.0063 0.0053 0.0099 0.0075

γ > − 1
2

0.0401 0.0927 0.0623 0.0330 0.0278 0.0466 0.0319

Bias

EVI ϕ̂n ϕ̂∗n ϕ̂#
n ϕ̃∗n,0 ϕ̃#

n,0 ϕ̃∗n,1 ϕ̃#
n,1

γ = − 1
2

0.0730 0.1113 0.1276 0.0270 0.0107 0.0557 0.0376

γ > − 1
2

0.1587 0.1951 0.1305 0.0738 -0.0081 0.1195 0.0274

Table 7: Results for ϕ = ϕ1 using the bootstrap quantity (15) in step 2 and 1000 Monte-Carlo
simulations with n = 201 (one outlier included).

MSE

EVI ϕ̂n ϕ̂∗n ϕ̂#
n ϕ̃∗n,0 ϕ̃#

n,0 ϕ̃∗n,1 ϕ̃#
n,1

γ = − 1
2

0.0808 0.0970 0.0678 0.0850 0.0867 0.0092 0.0079

γ > − 1
2

0.1043 0.2314 0.0934 0.1013 0.1005 0.0417 0.0277

Bias

EVI ϕ̂n ϕ̂∗n ϕ̂#
n ϕ̃∗n,0 ϕ̃#

n,0 ϕ̃∗n,1 ϕ̃#
n,1

γ = − 1
2

-0.1753 0.2258 0.2003 -0.2010 -0.2162 0.0452 0.0238

γ > − 1
2

-0.1262 0.3741 0.2315 -0.1681 -0.1993 0.1197 0.0307

Table 8: Results for ϕ = ϕ2 using the bootstrap quantity (15) in step 2 and 1000 Monte-Carlo
simulations n = 201 (one outlier included).

MSE

EVI ϕ̂n ϕ̂∗n ϕ̂#
n ϕ̃∗n,0 ϕ̃#

n,0 ϕ̃∗n,1 ϕ̃#
n,1

γ = − 1
2

0.1238 0.1294 0.0892 0.1251 0.1247 0.0088 0.0072

γ > − 1
2

0.1462 0.2610 0.1162 0.1417 0.1392 0.0418 0.0307

Bias

EVI ϕ̂n ϕ̂∗n ϕ̂#
n ϕ̃∗n,0 ϕ̃#

n,0 ϕ̃∗n,1 ϕ̃#
n,1

γ = − 1
2

-0.1897 0.2600 0.2359 -0.2092 -0.2179 0.0578 0.0388

γ > − 1
2

-0.1346 0.4079 0.2679 -0.1746 -0.1972 0.1333 0.0447

It may be also seen that the behavior of the Γ-moment frontier ϕ̃#
n,1 is quite respectable, but

ϕ̃#
n,0 appears to behave better in almost all cases. However, when the data are contaminated by

adding outliers sufficiently far from the true frontier, the bias-corrected estimator ϕ̃#
n,0 shares a
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serious defect with the FDH estimator: even a single outlying observation (chosen at the point

(0.8, 0.2) and indicated by ‘*’ in Figures 1-4) causes the estimators to take values arbitrarily far

from their values at the initial samples, as can be seen from Tables 3 and 4. Only the Γ-moment

estimators with m = 1, especially the monotonized version ϕ̃#
n,1, do appear to be more resistant

and appreciably better than all the other extreme-value estimators.

Turning to the comparison of the performance of the frontier estimators when the quantity

Q∗ny(k) in (15) itself is used in step 2 of the bootstrap algorithm, the Monte Carlo estimates shown

in Tables 5-8 exhibit qualitatively similar results to those that we observed upon earlier for the

oracle quantity (17).

A typical realization of the experiment in each scenario is shown in Figures 1-4. The top panel

(three pictures) corresponds to the linear boundary ϕ1, while the bottom panel corresponds to ϕ2.

In each panel, we see the unconstrained estimators ϕ̂∗n (left), ϕ̃∗n,0 (middle) and ϕ̃∗n,1 (right) as the

lighter blue curves, while the darker blue curves are the monotonized versions ϕ̂#
n , ϕ̃#

n,0 and ϕ̃#
n,1.

In each picture, we see the sample observations as points, the true lower boundary as the green

curve and the FDH estimator as the red curve. As is to be expected, Figures 1 and 2 show that

• the unconstrained estimators in the lighter blue curves exhibit some unstability due to their

pointwise construction and to the small sample size;

• the restricted estimators in the darker blue curves reduce considerably the unsmoothness of

the original versions;

• the standard moment estimator ϕ̂∗n (left pictures) disappoints by its severe volatility: good

results may require a large sample size of the order of several thousands (see also Remark 3).

The monotonized version ϕ̂#
n provides more stable estimates, but may offset by its rather

large bias;

• the variability and the bias of the Γ-moment estimators ϕ̃#
n,m are quite respectable with an

added advantage for ϕ̃#
n,0 (middle pictures) in terms of bias.

The comparison of the different estimators graphed in Figures 3 and 4 illustrates the resistance of

the Γ-moment frontiers with m = 1 and the fragility of the other frontier estimators in withstanding

the influence of the outlying observation indicated by ‘*’. We repeated the same exercise with

different and more outliers and obtained similar results.

Our tentative conclusion is to favor in practice the use of the Γ-moment estimator ϕ̃#
n,m with

m = 0 when the model is nearly correct, and with m > 0 otherwise. However, with real data

the question:“Are isolated extreme observations anomalous data or is the density very flat near the

boundary?” is a tedious matter. Figure 6 with the data from the French post offices illustrates

exactly the problem. A diagnostic tool which allows to select adequate values for m in this case is

proposed below.
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Figure 1: Results for γy = −1/2 and n = 200 using the bootstrap quantity (15) in step 2.
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Figure 2: Results for γy > −1/2 and n = 200 using the bootstrap quantity (15) in step 2.
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Figure 3: Results for γy = −1/2 and n = 201 (as in Figure 1 with one outlier included)
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Figure 4: Results for γy > −1/2 and n = 201 (as in Figure 2 with one outlier included).
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Trade-offs Bias-Robustness: If the density of data near the support boundary is low, then the

few observations one is likely to observe near or at the sample boundary are quite valuable and

dispensing with them (i.e., letting them be outside the frontier estimator) could be costly. In

this case, it would be more reasonable to use the bias-corrected estimator which corresponds to

m = 0. In contrast, if the practitioner thinks there is a small probability of any observation being

outlying or mis-recorded, it would be unrealistic to use the frontier estimator ϕ̃#
n,0 which envelops

all the data points. In this case, robustification via the choice of a ‘trimming’ order m 6= 0 is very

important.

In absence of information on whether the data are measured accurately, one way to choose an

appropriate number m is by looking to the evolution of the ‘Euclidean’ distance D(m) between

ϕ̃#
n,m and the non-robust FDH frontier ϕ̂n as m varies, where

D(m) :=

√∑
`

(
ϕ̂n(y`)− ϕ̃#

n,m(y`)
)2
,

with the y`’s being evenly distributed between the order statistics Y(1) and Y(n−17). One may

distinguish between two possible scenarios:

• In presence of outliers sufficiently isolated from the sample, the curve should show a severe

increasing jump from some value m1, followed by a stable evolution from a larger value m2.

In other words, the frontiers ϕ̃#
n,m with m ≤ m1 are expected to lie very near to the FDH

frontier so that they are drastically influenced by the outlying points, whereas those with

m > m1 would be more resistant, especially those with m ≥ m2. In this case, it suffices to

pick up a value m ∈ (m1,m2] to avoid systematic underestimation when m ≤ m1 and possible

overestimation when m > m2.

• In absence of influential outliers, no severe increasing jump followed by a stable evolution

would appear. In this case, it is most efficient to use ϕ̃#
n,0.

For the samples used in Figures 1-2 (respectively, Figures 3-4), where each row of 3 pictures

corresponds to the same sample, we obtain the top (respectively, bottom) evolution curves displayed

in Figure 5. As expected the top panels, which correspond to the 4 uncontaminated samples, suggest

to select the value m = 0 since there is no severe increasing jump followed by stable oscillations.

The first 3 bottom panels (from left to right) indicate an indisputable sharp positive slope of the

graph of D(m) at m = 0, followed by smooth oscillations from m = 1, which favors the use of ϕ̃#
n,1

to estimate the boundary in the corresponding contaminated samples. Looking to the last bottom

panel, the evolution of D(m) becomes stable from m = 2, and so it is preferable in this case to use

either ϕ̃#
n,1 or ϕ̃#

n,2.

21



0 2 4 6 8 10 12
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

m

D
(m

)

Case of linear boundary, with gamma=−0.5 & n=200

0 2 4 6 8 10 12
0.5

1

1.5

2

2.5

3

3.5

m

D
(m

)

Case of nonlinear boundary, with gamma=−0.5 & n=200

0 2 4 6 8 10 12
1

1.2

1.4

1.6

1.8

2

2.2

2.4

m

D
(m

)

Case of linear boundary, with gamma>−0.5 & n=200

0 2 4 6 8 10 12
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

m

D
(m

)

Case of nonlinear boundary, with gamma>−0.5 & n=200

0 2 4 6 8 10 12
0

1

2

3

4

5

6

7

8

m

D
(m

)

Case of linear boundary, with gamma=−0.5 & n=201

0 2 4 6 8 10 12
0

1

2

3

4

5

6

7

8

9

m

D
(m

)

Case of nonlinear boundary, with gamma=−0.5 & n=201

0 2 4 6 8 10 12
1

2

3

4

5

6

7

8

m

D
(m

)

Case of linear boundary, with gamma>−0.5 & n=201

0 2 4 6 8 10 12
1

2

3

4

5

6

7

8

9

m

D
(m

)

Case of nonlinear boundary, with gamma>−0.5 & n=201

Figure 5: Evolution of D(m) with m: the top (bottom) panels correspond to n = 200 (n = 201).
From left to right: (ϕ = ϕ1, γ = −1/2), (ϕ = ϕ2, γ = −1/2), (ϕ = ϕ1, γ > −1/2) and (ϕ = ϕ2, γ >
−1/2).

4 Applications

This section provides results from production and nuclear data examples where one would expect

to find monotonic optimal boundaries.

4.1 Estimation of the minimal cost in production activity

To illustrate our methodology on a large dataset, we analyzed the cost of the delivery activity of

the postal services in France (Cazals et al., 2002). For each post office i = 1, . . . , 5138, we have

the quantity of labor Xi which represents more than 80% of the total cost of the delivery activity.

The volume of the delivered mail defines the output Yi. Figure 6 (top) plots the observed data, the

cost Xi (vertical axis) against the output Yi (horizontal axis), along with the monotonic estimators

ϕ̂n in red curve and ϕ̂#
n in green curve. The diagnostic graph in Figure 7 (l-h.s) shows a severe

increasing jump from the value m1 = 2, followed by stable oscillations from the value m2 = 6. A

sensible practice would be then to select the order m in ϕ̃#
n,m between the values 3 and 6. Both ϕ̃#

n,3

and ϕ̃#
n,6 were superimposed in Figure 6 (top) in darker and lighter blue curves, respectively. As

in the simulations discussed previously, we used ny = [N0.9
y ] (see also Remark 2). For the number

of bootstrap resamples, ry = 500 seems fairly enough in this case. The range taken to look for

the optimal k̂∗n(y) is the same as in simulations, namely 10 for the lower bound and [0.8ny] for the

upper bound.

It appears that the standard moment estimator ϕ̂#
n is too ‘conservative’ because of its severe

robustness to extreme observations, whereas the Γ-moment estimators ϕ̃#
n,m are more ‘liberal’ in

the sense that they are sensitive to the magnitude of valuable extreme post offices but, in the same

time, they remain resistant to the influence of some suspicious isolated observations: The points
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left outside the frontier ϕ̃#
n,6 or ϕ̃#

n,3 look so extreme that they seem hardly related to the sample

and should be then analyzed carefully because they could be outlying or perturbed by noise. On

the other hand, it might also be seen that both the Γ-moment frontiers look like the largest convex

minorant of the standard moment estimator ϕ̂#
n , exhibiting thus non-increasing returns to scale;

i.e., they do not allow the volume of delivered mail to increase faster than the quantity of labor

everywhere. Moreover, they indicate that the joint density of the production process decays to zero

smoothly as it approaches its efficient support boundary.

We also considered for our illustration purposes a small dataset which consists of 123 American

electric utility companies. As in the set-up of Gijbels et al. (1999), we used the measurements of

the variables Yi = log(Qi) and Xi = log(Ci), where Qi is the production output of the company i

and Ci is the total cost involved in the production. Given that the original inputs are constituted of

negative values, we shifted the Xi’s so that all inputs become strictly positive. Figure 6 (bottom)

shows the observations together with the minimum cost function estimators ϕ̂n, ϕ̂#
n and ϕ̃#

n,m.

Here, we used m = 0 as suggested by the evolution of D(m) in Figure 7 (middle). In what concerns

the bootstrap parameters, we always considered ny = [N0.9
y ] with the same bounds for the choice

of k̂∗n(y) as before. For the number of bootstrap resamples, we set ry = 100 as in simulations.

As in the previous example, the Γ-moment frontier estimator does not indicate an ideal pro-

duction activity. Even the standard economic situation hoped for by producers, where the density

of data should be strictly positive at the efficient boundary, does not occur in this sector of pro-

ductivity since most of the companies operate on the interior of the joint support of (Y,X) rather

than near or at its optimal boundary estimator ϕ̃#
n,0. It may be noticed that the electric utility

data do not contain any potential outlier, which is not the case for the postal data. Note also that

the tail of the data generating process is obviously heavier in regions where there are less points.

It is then not surprising that the difference between the FDH frontier ϕ̂n and the bias-corrected

estimator ϕ̃#
n,0 is wider at places where the sparsity of data is greater.

4.2 Assessment of the reliability of nuclear reactors

The knowledge of the behaviour of the pressure vessel is of prime importance in a nuclear power

plant lifetime program. The structural integrity relies upon accurate knowledge of the change in

fracture toughness of the reactor pressure vessel materials over the time of operation. Fracture

toughness is very dependent on material temperature as illustrated on Figure 8. The dataset from

the US Electric Power Research Institute (EPRI) consists of 254 toughness results obtained from

non-irradiated representative steels. For each steel i, fracture toughness Xi and temperature Yi

were measured. The goal is to estimate the so-called master curve prediction x = ϕ(y) of the lowest

fracture toughness as a function of the temperature. Physical considerations permit to establish

that ϕ is nondecreasing.
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Figure 6: Top— Scatterplot of the 5138 post offices, with the minimum cost function estimators
ϕ̂n (red), ϕ̂#

n (green), ϕ̃#
n,3 (darker blue) and ϕ̃#

n,6 (lighter blue). Bottom— The 123 electric utility

data, with the frontier estimators ϕ̂n (red), ϕ̂#
n (green) and ϕ̃#

n,0 (blue).
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Figure 7: Evolution of D(m) with m, for the post offices, electric utility companies and nuclear
reactors, respectively, from left to right.

Figure 8 depicts the minimum fracture toughness function estimators ϕ̂n, ϕ̂#
n and ϕ̃#

n,0. Here

also, the choice m = 0 in the Γ-moment estimator appears to be more appropriate as can be

seen from the graph of D(m) in Figure 7 (r-h.s). Notice that the same bootstrap parameters as

in simulations and the electric utility data example were used. Surprisingly, it may be seen that

the standard moment estimator ϕ̂#
n has a quite remarkable behavior although the small number

of data. Nevertheless, the Γ-moment frontier ϕ̃#
n,0 is stable as well, with the added advantage of

improving better the FDH boundary ϕ̂n for its inherent bias.

5 Conclusion

Frontier modeling is clearly a problem belonging to extreme value theory. Reliable estimation of

boundaries from this perspective involves, however, many delicate issues when the sample size is not

sufficiently large. The Γ-moment method seems to offer a viable approach under the monotonicity

constraint. Simulation evidence suggests that the Γ-moment frontiers are appreciably more efficient

than the popular moment and FDH estimators. Doubtless, further work on the optimal selection

of the intermediate sequence will yield new refinements. Codes for all of the procedures described

in this paper are available upon request, so we hope that this will encourage others to explore the

Γ-moment device.
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