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Abstract

In empirical research, one commonly aims to obtain evidence in favor of re-

strictions on parameters, appearing as an economic hypothesis, a consequence of

economic theory, or an econometric modeling assumption. I propose a new theoret-

ical framework based on the Kullback-Leibler information to assess the approximate

validity of multivariate restrictions in parametric models. I construct tests that are

locally asymptotically maximin and locally asymptotically uniformly most powerful

invariant. The tests are applied to three different empirical problems.
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If by the truth of Newtonian mechanics we mean that it is approximately true

in some appropriate well defined sense we could obtain strong evidence that it

is true; but if we mean by its truth that it is exactly true then it has already

been refuted. I.J. Good (1981)

1 Introduction

A rather common objective in econometric or statistical modeling is to obtain evidence

in favor of restrictions on parameters. For instance, practitioners often test whether a

parametric model is correctly specified by embedding their model in one involving more

parameters and testing for the significance of the extra coefficients, see e.g. Godfrey

(1988). While in a test of significance, the researcher is typically hoping that the null

hypothesis of insignificance will be rejected, in a specification error test, the researcher

often hopes the null will be accepted. Specification testing is by no means an atypical

situation, and there are many instances where we would like to obtain evidence in favor

of restrictions that appear as (i) an economic hypothesis, for instance constant returns

to scale in an aggregate production function; (ii) a consequence of economic theory, for

instance homogeneity of demand in prices and income as implied by consumer rationality;

(iii) a key assumption to estimate a structural model, such as exogeneity. While it has

been early acknowledged that applied researchers are often looking for positive evidence

in favor of restrictions, there seems to be no clear consensus on how to provide such

evidence. Berkson (1942) argues that the p-value of a significance test can be used as

evidential measure in favor of the null hypothesis. Some authors instead favor Bayes

factors as introduced by Jeffreys (1961), see Kass and Raftery (1995) and the references

therein. Good (1983, 1992) advocates for a compromise of Bayesian and non Bayesian

approaches. Casella and Berger (1987) show that it is possible to reconcile p-values and

bayesian posterior probability in one-sided testing problems, but Berger and Sellke (1987)

argue that this is difficult for two-sided tests. However, Andrews (1994) shows that under

certain asymptotics there exists a correspondence between p-values and Bayesian posterior

odds.
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The goal of this work is to develop “classical” tests for assessing the approximate

validity of restrictions in parametric models. The interest of approximate hypotheses

has been long recognized in statistics, see e.g. Hodges and Lehmann (1954). Leamer

(1988) argues that “genuinely interesting hypotheses are neighborhoods, not points. No

parameter is exactly equal to zero; many may be so close that we can act as if they

were zero,” see also Good (1981) in statistics or McCloskey (2001) in economics among

others. Here the approximate validity of the restrictions of interest is considered as the

alternative hypothesis to reflect where the burden of proof is. This is known in biostatistics

as equivalence testing, see Lehman and Romano (2005), Wellek’s monograph (2003), and

Senn’s review (2001). Another application of this principle is provided by Dette and

Munk (1998) for specification testing. Finally, the approximate alternative hypothesis

concentrates around the sharp restrictions of interest to formalize that we are interested

in showing that our restrictions are close to be fulfilled, see Rosenblatt (1962) for an

early example. In this vein, Romano (2005) considers assessing an univariate restriction

on parameters of the form θ = 0 through a setting where the alternative hypothesis of

interest is a neighborhood of the hypothesis of interest that becomes narrower as sample

size, and thus information, increases, see also Borovkov (1998) for related results. The

related test yields a decision on whether a set of parameter values that are close to the

restrictions is consistent with the data at hand.

By contrast to the latter approach, the framework developed here does not directly

focus on the restrictions themselves, but on the consequences of imposing these restric-

tions. Following Akaike (1973) and Vuong (1989), I evaluate the effect of the restrictions

as measured by the Kullback Leibler Information Criterion (KLIC), which is a natural

divergence measure between the unrestricted model and the restricted one. Hence the al-

ternative hypothesis of interest states that the KLIC is less than a small tolerance. This

allows to consider univariate as well as multivariate restrictions on parameters, which has

not been dealt with in previous work. I derive a test based on the usual likelihood-ratio

(LR) statistic, but that uses a decision rule different from the one of a significance test: the

alternative hypothesis is accepted for small values of the statistic, and the critical value

is not derived under the assumption that the restrictions perfectly hold. The procedure
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has desirable invariance properties. I label this approach model equivalence testing.

One may wonder whether and why a new approach, that considers an alternative

approximate hypothesis, is needed. Many authors in statistics and economics have em-

phasized that considering an approximate hypothesis makes more sense and can be more

interesting than a point hypothesis. The issue actually dates back at least to Berkson

(1938, 1942). Cox (1958) writes that for a point null hypothesis “Exact truth of a null

hypothesis is very unlikely except in a genuine uniformity trial.” Berger and Delampady

(1987) discuss “precise” hypotheses, which “in reality are better represented as tests of,

say,

H0 : |θ − θ0| ≤ ε versus H1 : |θ − θ0| > ε,

where ε is “small”.” In many practical cases, it seems that an approximate hypothesis

is exactly what we want to consider. For instance, in demand analysis, do we expect

observations to strictly conform to consumer theory or to be “close” to what is predicted by

our theory? Considering as our alternative hypothesis one that states that the restrictions

are “almost” valid allows to “flip” the usual null and alternative hypothesis. While this is

not in line with common econometric practice, it is however in line with the well-known

statistical principle in classical hypothesis testing that states that we should consider

as the alternative hypothesis what we expect or would like to show. Hence, when one

expects a parameter θ to be positive (e.g. an income demand elasticity), sound statistical

practice considers the alternative hypothesis Ha : θ > 0. Similarly, when one would

like to show that a variable is pertinent, one considers that its coefficient θ 6= 0 as the

alternative hypothesis and entertains a significance test. But the contradiction appears

when one wants to show that the variable is not pertinent, since one still keeps θ 6= 0

as the alternative hypothesis. In that case, common practice not only forgets about

the principle, but turns it upside down. Our choice of the alternative hypothesis thus

acknowledges where the burden of proof is.

Could one use instead well-known procedures to address the same issue? Significance

testing is well suited for rejecting a point null hypothesis. But there are many instances

where the aim is indeed to show that the restrictions are (close to be) fulfilled, see our

examples above and our illustrations below. A significance test entertained at usual nom-
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inal levels can never accept the null hypothesis, and thus cannot assess the validity of

restrictions, even in an approximate sense. This is because it tunes the probability of

type-I error, that is the odds of falsely rejecting the restrictions, but does not control

the probability of type-II error, that is the probability of falsely not rejecting them. The

pervasive observation that practitioners commonly use significance tests when they actu-

ally intend to accept the insignificance hypothesis should be enough motivation for a new

look at this issue. Could confidence intervals or regions be used instead? As these are

defined as sets of parameters values that cannot be rejected by a significance test, they

do not provide a suitable answer either. Another advocated approach is to rely on power

evaluation of significance tests. In particular, Andrews (1989) proposes approximations

of the asymptotic inverse power function as an aid to interpret non significant outcomes.

These are based on the Wald test and are thus not invariant to nonlinear transforma-

tions of restrictions under scrutiny, see e.g. Gregory and Veall (1985). It is also known

that asymptotic power approximations of the Wald test can be misleading in a nonlin-

ear model, see Nelson and Savin (1990). Apart from these technicalities, evaluating the

asymptotic power of a significance test of given level does not directly provide evidence

in favor of the restrictions under consideration. Other issues surround post-experiment

power calculations, as summarized by Hoenig and Heisey (2001).1 To sum up, model

equivalence testing is not a substitute or competitor of significance testing, but instead

delivers inference in situations where the latter approach is not well suited.

I also investigate whether alternatives procedures to the LR model equivalence test can

be considered. I show indeed that one can derive asymptotically equivalent formulations

of the hypotheses, and I focus on three of these. The first one relies on a Hausman-Wald

approach, following the terminology of Gourieroux and Monfort (1989), and evaluates

how the restrictions affect the whole parameter vector. The second relies on a Wald ap-

proach and is similar to Romano’s equivalence test in the case of an univariate restriction.

The third one relies on a score approach, but is valid only under a more restrictive as-

1In some applied sciences where they are common practice, the debate surrounding post-experiment

power calculation is quite vivid and seems to be an old one: in his 1958 book, Cox writes “Power is

important in choosing between alternative methods of analyzing data and in deciding on an appropriate

size of experiments. It is quite irrelevant in the actual analysis of data.”
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sumption. Each formulation yields an alternative model equivalence test, and each test is

asymptotically equivalent to the LR model equivalence test, though they do not share all

its invariance properties. I show that the four related model equivalence tests are, within

their respective testing framework, locally asymptotically maximin and locally asymptot-

ically most powerful in the class of tests invariant to orthogonal transformations of the

parameter. These optimality properties are the ones used to characterize the classical

trinity of significance tests, see Borovkov (1998) or Lehmann and Romano (2005). When

considering an univariate restriction, the proposed equivalence tests are asymptotically

equivalent to the test proposed by Romano (2005), and thus are locally asymptotically

uniformly most powerful. However, the general theoretical analysis sharply differs from

existing work for reasons to be explained in Section 4.

The paper is organized as follows. In Section 2, I setup the main testing framework

based on the KLIC, I derive the model equivalence LR test, and discuss implementation

through examples. In Section 3, I propose asymptotically equivalent frameworks and tests

and illustrate their use. In Section 4, I study the local asymptotic properties of the tests.

In Section 5, I conclude by suggesting directions for future research.

2 KLIC-Based Testing

2.1 Framework and Test

Let us introduce the basic setup considered throughout this paper. To focus on the main

issues, I deal with unconditional models, but the results can be extended to conditional

models under standard assumptions, such as a fixed or i.i.d. design of the conditioning

variables. We observe a random sample {Xt, t = 1, . . . n} from X, whose probability

density f (·, θ0) belongs to a parametric family of densities {f(·, θ) : θ ∈ Θ}. Denote by

Eθ0 the expectation when θ0 is the parameter value. We are interested in assessing some

multivariate restrictions on parameters of the form g(θ0) = 0, where g(·) is a function

from R
p to R

r, 1 ≤ r < p. Let

θc0 = arg max
θ∈Θ,g(θ)=0

Eθ0 log f(X, θ) . (2.1)
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be the pseudo-true value of the maximum-likelihood estimator under the constraint, see

e.g. Sawa (1978), and note that θc0 depends on g(·) and θ0 only. Following Akaike (1973,

1974), Sawa (1978), and Vuong (1989), among others, consider as a measure of closeness

to the true distribution the Kullback-Leibler Information Criterion defined as

KLIC = Eθ0

[
log

f(X, θ0)

f(X, θc0)

]
.

This divergence measure is always positive and zero if and only if the restrictions perfectly

hold, see Vuong (1989). Consider then as the alternative hypothesis to assess

KLR
n : 2 KLIC < δ2/n .

I label it themodel equivalence hypothesis. It does not entail that the restrictions perfectly

hold, but that these restrictions are close to be valid. We will return to the interpretation

of the model equivalence hypothesis several times later on. For now, let us note that

the smaller the tolerance δ2/n, the more stringent the hypothesis. If one accepts model

equivalence for a particular tolerance, then the decision will be the same for any larger

one. The null hypothesis is the complement of the alternative, that is

HLR
n : 2 KLIC ≥ δ2/n .

The vanishing tolerance acknowledges that the tolerance is small in a substantive sense. In

practice, a small but fixed tolerance ∆2 is typically chosen, so that one can set δ2 = n∆2.

This is how I will apply the test in subsequent illustrations. But because the fixed tolerance

is so small, the asymptotics under a drifting tolerance δ2/n will approximate the finite

sample distribution of the test statistic better than the asymptotics under a fixed tolerance

∆2. Considering a shrinking hypothesis is thus purely a theoretical but very useful device.2

From a theory viewpoint, our shrinking hypothesis setup with tolerance δ2/n puts us in

the most difficult but manageable situation. Indeed, would the tolerance go towards zero

faster than n−1/2, all distributions in KLR
n would be contiguous to some distributions in

2A similar approach is adopted in power analysis, where exploring a significance test’s power under

local alternatives gives a better picture of actual power for a small or moderate sample size.
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HLR
n and then would not be distinguishable from HLR

n , see e.g. Lehmann and Romano

(2005).3

The model equivalence test is based on the likelihood ratio (LR). Consider the (quasi-)

maximum likelihood (ML) estimators of θ0 and θc0

θ̂n = arg sup
Θ
Ln(θ) = arg sup

Θ

n∑

t=1

l(Xt, θ) and θ̂cn = arg sup
Θ,g(θ)=0

Ln(θ) .

The LR test statistic is 2 LRn = 2
[
Ln(θ̂n)− Ln(θ̂

c
n)
]
. The LR model equivalence test of

HLR
n againstKLR

n is πLR
n = I [2 LRn < cα,r,δ2 ], where cα,r,δ2 is the α quantile of a noncentral

chi-square distribution with r degrees of freedom and non centrality parameter δ2. This

stands in contrast to the critical value of a significance test, which is the 1 − α quantile

of a central chi-square distribution. While critical values are non-standard, they can be

readily obtained from most statistical softwares, and are reported in Tables 1 to 6 for the

test at 10% and 5%, δ2 varying from 0.1 to 5, and r =1 to 6.

2.2 Choice of the Tolerance in Applications

The choice of the tolerance is key in our procedure. In practice, it is often easier to choose

a fixed tolerance ∆2 for the divergence we are ready to tolerate between the two models

and embed this into the sequence of hypotheses KLR
n by setting δ2 = n∆2. In what

follows, I illustrate through examples how the tolerance ∆2 can be chosen in practice and

the test implemented.

2.2.1 Linear Regression

Consider first a linear regression model

Y = X ′β0 + ε, ε|X ∼ N(0, σ2
0) ,

3One should note that our setup is different from the one envisaged in model selection, where one

aims to choose the unrestricted model if KLIC > 0 and the restricted one if KLIC = 0. In that aim,

the penalty term added to the likelihood-ratio statistic is used only to ensure that the correct and most

parsimonious model is chosen asymptotically, see e.g. Sin and White (1996) for general results on this

approach.
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and restrictions g(β0) = 0. Using the properties of the conditional expectation,

σ2
0c ≡ Eθ0 [Y −X ′βc

0]
2
= Eθ0 [Y −X ′β0]

2
+ Eθ0 [X

′βc
0 −X ′β0]

2

= σ2
0 + (βc

0 − β0)
′
E(XX ′) (βc

0 − β0) .

Since in that setup

2 KLIC = 2 Eθ0

[
log f(Y |X, θ0)
log f(Y |X, θc0)

]
= log

σ2
0c

σ2
0

,

then for values of σ2
0c − σ2

0 close to 0,

2 KLIC = log

(
1 +

σ2
0c − σ2

0

σ2
0

)
≈ σ2

0c − σ2
0

σ2
0

=
(βc

0 − β0)
′
E(XX ′) (βc

0 − β0)

σ2
0

.

Hence 2 KLIC measures the loss in explanatory power coming from imposing the con-

straint relative to the error’s variance.

Example 1: Restrictions from an Economic Hypothesis. I consider here a

cross-country regression in the spirit of Mankiw and al. (1992), using pooled data on

86 countries averaged over the 1960’s, 1970’s and 1980’s from King and Levine (1986),

as analyzed by Stengos and Liu (1999). Explanatory variables include GDP60, the 1960

level of GDP; POP, population growth, to which 0.05 is added to account for depreciation

rate and technological change; SEC, the enrollment rate in secondary schools; INV, the

share of output allocated to investment; and two dummy variables D70 and D80, acting

as fixed effects for the seventies and the eighties. OLS estimation yields

Growth = 0.0299 − 0.0117 D70 − 0.0300 D80 + 0.0286 log(INV )

(0.0285) (0.0032) (0.0033) (0.0041)

− 0.0324 log(POP ) + 0.0037 log(SEC) − 0.0037 log(GDP60)

(0.0110) (0.0019) (0.0024)

The Solow model assumes constant returns to scale, that is the coefficients of log(INV ),

log(POP ), and log(SEC) should sum to zero. For our application, let ∆2 = 0.1, i.e.

δ2 = 0.1 × n, that is model equivalence is declared if the explanatory power lost by

imposing this constraint is at most 10% of the error’s variance. The LR test statistic has
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a value of 3 10−5, and the p-value of the model equivalence test is 10−8. Hence for any

larger significance level the test concludes that the restriction is approximately valid.4

Another way of running the test is “in the spirit of the p-value approach,” but instead

of letting the test’s level varies, we let δ2 vary for a given level and we formally define

δ2inf(α) = inf
{
δ2 > 0 : 2 LRn < cα,r,δ2

}
.

This provide a useful benchmark, since practitioners may agree in some instances on

whether ∆2
inf(α) = δ2inf(α)/n is close enough to zero or substantially different. Example 1

provides an illustration.

Example 1 (continued): In our application, δ2inf(1%) = 0, because the test statistic is

smaller than c0.01,1,0, that is the LR model equivalence test accepts model equivalence at

a 1% level for any δ2 > 0. This gives strong evidence in favor of the approximate validity

of the constant returns to scale hypothesis.

2.2.2 The General Case

While the precise interpretation of 2 KLIC may be case dependent, as exemplified above,

some general remarks can be made. The divergence is a unitless quantity since it depends

only on the ratio f(·, θ0)/f(·, θc0). If this ratio is close to one uniformly in x, as it should

be if the two models are close, then

2 KLIC = −2 Eθ0

[
log

(
1 +

f(X, θc0)− f(X, θ0)

f(X, θ0)

)]

= −2
{
Eθ0

[
f(X, θc0)− f(X, θ0)

f(X, θ0)

]
− 1

2
Eθ0

[(
f(X, θc0)− f(X, θ0)

f(X, θ0)

)2
]
(1 + o(1))

}

= Eθ0

[(
f(X, θc0)− f(X, θ0)

f(X, θ0)

)2
]
(1 + o(1)) . (2.2)

The divergence measures the expected squared proportional difference between distribu-

tions and is thus a squared percentage. Hence the tolerance ∆ can be seen as a percentage.5

4R and Matlab codes to obtain the p-value of a model equivalence test are available from the author

upon request.
5The previous interpretation for the linear regression model as the loss of fit in proportion of the error’s

variance is easily reconciled with the current one, by noting that the variance is expressed in squared
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Example 2: Restrictions from a Consequence of Economic Theory. Ander-

son and Blundell (1983) estimated a flexible dynamic demand system by full information

ML on first-differenced budget shares using annual aggregate Canadian data. They note

that more restrictive models, namely an autoregressive model, a partial adjustment model,

and a static model, are strongly rejected by significance tests, see their Table 3. They also

note that while homogeneity and symmetry restrictions are rejected for these restrictive

models, they are not within their general dynamic setup. Their testing results are based

on LR tests at 1% level and summarized in their Table 5. I focus on the results relative

to their model labeled “Dynamic: Price Index (10).”

Consider homogeneity, that is four restrictions, and let us assume that one fix a tol-

erance ∆2 = (50%)2 for the chosen divergence measure. The test statistic is 10.6 and the

corresponding p-value is 47.01%. Therefore, the test does not confirm that homogeneity

approximately holds. When considering simultaneously homogeneity and symmetry (ten

restrictions), and assuming we chose the same tolerance, the test statistic equals 24.6 and

the p-value is 82.78%.

To determine whether a particular percentage, such as about 50% in the previous

example, is sensible, it may be helpful to have in mind an upper bound for the divergence.

Theoretical upper bounds can be derived, see for instance Borovkov (1998, Section 31,

Theorem 3A), but might be not very useful in practice. In any application however, it

is often easy to determine such a bound by considering the KLIC between the complete

model and a model that has already been judged inadequate on economic or statistical

grounds. For instance, if a model has been strongly rejected by a significance test, then

one can confidently assess that the divergence between this model and the complete one

is large.6

Example 2 (continued): The gain of the general dynamic structure compared to the

autoregressive model is 1.5063 = (122.73%)2, as estimated from the data.7 Now for ho-

units.
6This illustrates that model equivalence testing is by no means a substitute of significance testing, on

the contrary the two approaches deliver useful complementary information.
7This is twice the difference of the log-likelihood of the maintained model, 686.2, and the one of the

autoregressive model, 662.1, divided by the sample size, 32.
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mogeneity and symmetry (ten restrictions), δ2inf(1%) = 42.13 and ∆2
inf(1%) = (114.74%)2.

Hence, to confirm that these restrictions approximately hold, we would need to forsake

almost the whole gain of modeling general dynamics. So, while significance tests fail to

reject these restrictions, model equivalence tests fail short to accept that homogeneity

and symmetry approximately hold.

To sum up, three pieces of information can guide us in the practical choice of the

tolerance: (i) the interpretation of 2KLIC as the fit lost by imposing the constraint (ii)

the divergence between our general model and a model that is known to be inadequate,

(iii) the determination of the value of the tolerance for which the the model equivalence

test’s outcome changes. We will see below that alternative expressions of the model

equivalence hypothesis can shed more light on the interpretation and practical choice of

the tolerance.

To complete our understanding, it is useful to know how the power of the test varies

with the tolerance. Figure 1 depicts the asymptotic power curves of the test for values of r,

α, and δ2, selected to illustrate their influence on the tests’ power. The power is increasing

in, and pretty sensitive to, δ2 and α. It is seen that the power is always maximum when

KLIC = 0, that is when the restrictions perfectly hold, but never attains one. In nature,

the test is “tough” with the restrictions to be assessed. This is the price that we pay

for controlling the probability of falsely confirming an hypothesis that narrows with the

sample size. As will be shown, no test can achieve a larger local asymptotic power at

zero. Since the test statistic is the same as in a significance test, we could interpret a

model equivalence test as a significance test in reverse that controls the power for some

values of the parameters space, as recommended for instance by Lehmann (1958) and

Arrow (1960). If Λ(γ2) = Pr
[
πLR
n |2nKLIC = γ2

]
is the (normalized) power function of

the model equivalence test, then 1− Λ(·) is the power function of a significance test that

tests g(θ0) = 0 for which the level is chosen so that the power has some predetermined

value when 2KLIC = δ2/n. The model equivalence approach however relies on a precise

characterization of the approximate hypothesis and is much more direct.
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3 Alternative Tests

3.1 Testing Frameworks

While KLIC is a classical divergence measure between models, it is just one among

several. We have noted that the chi-squared distance (2.2) is equivalent to KLIC for two

“close” models. Let us formalize such a concept of equivalence.

Definition 1 1. d(g, θ0) is a divergence measure between f(X, θ0) and the model con-

strained by g(θ) = 0, as given by f(X, θc0), if d(g, θ0) ≥ 0 with equality iff g(θ0) = 0.

2. We say that two divergence measures di, i = 1, 2, are locally equivalent if, under any

drifting sequence of parameters θ0n , n ≥ 1, such that di(g, θ0n) = o(1) or dj(g, θ0n) = o(1),

we have di(g, θ0n) = dj(g, θ0n)(1 + o(1)).

Most usual divergences, such as the chi-squared distance (2.2) or Hellinger’s distance (up

to a multiplicative factor 4), are locally equivalent to KLIC, see e.g. Borovkov (1998).

This entails first that there is no “best” divergence to construct a testing framework,

and second that we may consider other locally equivalent divergences. In what follows,

I focus on alternative divergences that yield familiar testing frameworks. Denote by ∇θ

differentiation with respect to θ and by ∇θ,θ′ second differentiation, and let us make the

following standard assumptions.

Assumption A (a) The densities f(X, θ), θ ∈ Θ, are defined with respect to a com-

mon dominating measure ν. (b) The set Θ is an open bounded subspace of R
p. (c)

f(·, θ1) ≡ f(·, θ2) implies θ1 = θ2. (d) The function l(·, θ) = log f(·, θ) is twice con-

tinuously differentiable in θ almost everywhere. There exists a function l̄(x) such that

‖∇θ,θ′l(x, θ)‖ < l̄(x) and Eθ l̄
2(X) < ∞ uniformly over a neighborhood of θ0. (e) The

information matrix I(θ) ≡ Eθ [∇θl(X, θ)∇′θl(X, θ)] exists, is continuous in θ and positive

definite uniformly over a neighborhood of θ0.

Assumption B (i) g(·) is continuously differentiable and ∇θg(·) is of full rank r uni-

formly over a neighborhood of θ0. (ii) θc0 is unique.

Since in what follows we are considering a drifting sequence of parameters, Assumptions

A and B are assumed to hold for each member of this sequence for n large enough.
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Lemma 3.1 Consider the divergences dH(g, θ0) = (θ0 − θc0)
′ I(θ0) (θ0 − θc0) and dW (g, θ0)

= g′(θ0) [∇′θg(θ0)I−1(θ0)∇θg(θ0)]
−1
g(θ0). Under Assumptions A and B, 2 KLIC, dH ,

and dW are locally equivalent.

The previous lemma yields alternative formulations of the testing problem. The Hausman-

Wald approach considers the hypotheses

HH
n : (θ0 − θc0)

′ I(θ0) (θ0 − θc0) ≥ δ2/n against KH
n : (θ0 − θc0)

′ I(θ0) (θ0 − θc0) < δ2/n .

The alternative hypothesis involves the norm of the difference between the true and

pseudo-true values, defined through the information contained in the model. Such a

standardization amount to a change of units and make the different components com-

parable, which is useful when considering parameters with possibly different units: even

in a standard linear regression, the parameter vector includes the intercept, the different

slopes, and the error’s variance. The Wald approach considers

HW
n : g′(θ0)

[
∇′θg(θ0)I−1(θ0)∇θg(θ0)

]−1
g(θ0) ≥ δ2/n

against KW
n : g′(θ0)

[
∇′θg(θ0)I−1(θ0)∇θg(θ0)

]−1
g(θ0) < δ2/n .

Here the model equivalence hypothesis focuses on the restrictions themselves, have a clear

intuitive content, and provides further insight on the choice of the tolerance. Relying on

this formulation, we can interpret the model equivalence hypothesis as a region of the

parameters values “centered” around the restrictions of interest. For instance, when

considering an univariate restriction of the form θ01 = 0,

KW
n :

∣∣∣∣
θ01
σ01

∣∣∣∣ <
δ√
n
,

where σ01 is the
√
n asymptotic standard deviation of θ̂01. In considering a t-test about

a mean, Arrow (1960) argued that the “economically significant difference” should be

measured in standard deviations units. It is therefore interesting to note that such a

standardization appears naturally in the model equivalence approach. The Wald formu-

lation recasts the equivalence hypothesis in terms of parameter values. However it does

not tell us exactly what are these values, because σ01 is unknown. Now one can always
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approximate σ01/
√
n by the standard error s01. I define the “equivalence interval” as

(−δs01, δs01), that is the approximation of the equivalence hypothesis based on the stan-

dard error. An “equivalence region” is defined similarly for multiple restrictions. As will

be seen in the next application, such an equivalence interval or region can yield useful

information and guidance for implementation.

Let us conclude this section by looking at another divergence.

Lemma 3.2 Consider the score divergence dS = Eθ0∇′θl(X, θc0)I−1(θ0)Eθ0∇θl(X, θ
c
0). If

the theoretical likelihood equations Eθ0∇θl(X, θ) = 0 have a unique solution, then under

Assumptions A and B, 2 KLIC and dS are locally equivalent.

We need a supplementary assumption to obtain local equivalence of the two divergences,

because it could be that Eθ0∇′θl(X, θc0) is zero, but θc0 is distant from θ0. This phe-

nomenon, scarcely acknowledged in the econometric literature, can happen whenever the

likelihood equations have multiple roots. Reeds (1985) illustrates it for a Cauchy model.

Freedman (2007) gives an example for a discrete distribution and points out that this

yields inconsistency of the classical score significance test. The nonlinear regression Ex-

ample 2 of Dominguez and Lobato (2004), where Y = θ20X + θ0X
2 + ε, can be recast in

a maximum likelihood setup assuming ε ∼ N(0, σ2) to give another illustration. These

counter-examples show that in nonlinear models the score divergence may not be adapted.

However, it can be used whenever the theoretical likelihood equations have a unique root,

as in the standard linear regression model. In that case, the hypotheses are

HS
n : Eθ0∇′θl(X, θc0)I−1(θ0)Eθ0∇θl(X, θ

c
0) ≥ δ2/n

against KS
n : Eθ0∇′θl(X, θc0)I−1(θ0)Eθ0∇θl(X, θ

c
0) < δ2/n .

The model equivalence hypothesis thus focuses on whether the expected score vector of

the restricted model is close to zero in the metric defined by I−1(θ0).
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3.2 Tests and Applications

To each alternative sets of hypotheses corresponds a different model equivalence test.

Define the Hausman-Wald, Wald, and score statistic, respectively as

Hn = n
(
θ̂n − θ̂cn

)′
I(θ̂n)

(
θ̂n − θ̂cn

)

Wn = ng′(θ̂n)
[
∇′θg(θ̂n)I−1(θ̂n)∇θg(θ̂n)

]−1
g(θ̂n)

Sn = n∇′θLn(θ̂
c
n)I

−1(θ̂n)∇θLn(θ̂
c
n) .

Then each test πJ
n , J = H,W, or S, is defined as πJ

n = I [Jn < cα,r,δ2 ]. Alternatively, the

information matrix can be approximated by

In(θ) = n−1
n∑

t=1

∇θ ln f(Xt; θ)∇′θ ln f(Xt; θ) ,

without altering the asymptotic properties of each test. Also, as is usual for the score

statistic, the information matrix could be evaluated at θ̂cn. Clearly, not every hypotheses-

test pair has the same invariance properties. While the KLIC-based LR model equiv-

alence test is invariant to (possibly nonlinear) reparameterizations or transformations of

the restrictions, the above three tests are invariant to linear transformations of the pa-

rameter space only. The Hausman-Wald model equivalence test is invariant to nonlinear

transformation of the restrictions, while the Wald model equivalence test is invariant to

linear transformations only. Invariance of the score model equivalence test is dependent

on how the information matrix is evaluated.

Example 1 (continued): I computed each of the three alternative test statistics H, W,

and S. They agree with the LR statistic up to the tenth decimal. All tests then yield the

same conclusion for any δ2, and also δ2inf(0.01) = 0 for each test. In particular, the Wald

model equivalence test asserts that the sum of the estimated coefficients of log(INV ),

log(POP ), and log(SEC) is within ∆ standard deviation of zero for an arbitrary small

tolerance ∆.

It is interesting to compare our Wald equivalence test with the procedure advocated

by Andrews (1989). As done in his paper, assume that the restrictions of interest can be
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reparameterized as θ1 = 0, with θ = (θ1, θ2) and θ2 is a nuisance parameter. The procedure

can be summed up as follows. First test the restrictions using a standard Wald test, which

rejects the restrictions at level α if Wn = nθ̂′1Σ̂
−1
1 θ̂1 > c1−α,r,0 , where Σ̂1 estimates the

√
n-asymptotic variance of θ̂1. If the test does not reject the restrictions, then evaluate

for which values of the parameters the test has power at least p = 1 − α. If these

values are “close” to fulfill the restrictions, conclude that the restrictions approximately

hold. Formally, one should estimate the inverse power function of the significance test in

direction η and for θ2 = b, defined as

π(η, p, b) = inf {‖θ1‖ : θ ∈ Θ, θ1 ∝ η, θ2 = b,Pr [Wn > c1−α,r,0 | θ] ≥ p} × η .

Andrews shows that this inverse power function can be estimated through

Π(η, p, b) =
λr,α(p)√

n

(
η′Σ̂−11 η

)−1/2
× η ,

for values of λr,α(p) tabulated in Andrews (1989). This estimated inverse power function

depends on the value of the nuisance parameter θ2 through Σ̂1. One hence needs to

evaluate it at selected values of the nuisance parameter and for different directions to be

able to conclude whether the restrictions approximately hold. By contrast, the equivalence

approach accepts that the restrictions almost hold by a direct test of

HW
n : θ′1Σ

−1
1 θ1 ≥ δ2/n against KW

n : θ′1Σ
−1
1 θ1 < δ2/n ,

that (asymptotically) controls Pr
[
Reject HW

n |HW
n true

]
, the probability of Type-I error.

The two procedures may reach the same qualitative conclusion, as the following example

shows, though the details may not coincide.

Example 3 : Exogeneity Restrictions. Lillard and Aigner’s (1984) analysis of

time-of-day electricity demand rely on a two-equations triangular system in which the first

equation explains air conditioning appliance ownership and the second explains electricity

demand. The appliance ownership variables enter the second equation as explanatory

variables and are exogenous if the first equation error ε is uncorrelated with each of the

two components k and r of the second equation error. These correlations are denoted by

ρkε and ρrε respectively. The system is estimated by full information ML. This application
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is also considered by Andrews (1989), which allows to compare his findings with ours. As

Andrews, I focus on the “Rate B all customers” results. Lillard and Aigner found that the

correlation coefficients are jointly insignificant at the 5% level using a LR significance test.

Andrews argued that this conclusion does not seem warranted, as the estimated inverse

power measures of the two univariate significance Wald tests indicate that correlations of

|ρ1| = 0.47 and |ρ2| = 0.55 have 50% chances of going undetected.

For the model equivalence test, the LR statistic equals 1.8 and δ2inf(5%) = 7.37. This

value could be used to evaluate the joint “equivalence region” for ρkε and ρrε, were the

full covariance matrix of the parameters provided in the original paper. Since it is not,

I instead based my reasoning on univariate Wald equivalence tests. Calculations are

first based on the parameterization used by Lillard and Aigner, viz., αkε = tan (ρkεπ/2)

and αrε = tan (ρrεπ/2), and then translated into correlation terms. For αkε and αrε,

δinf(5%) = 3.051 and 2.88 respectively. These give the equivalence intervals |αkε| <
1.414 and |αrε| < 1.718.8 The corresponding equivalence intervals for correlations are

|ρkε| < 0.714 and |ρrε| < 0.731. It is highly unlikely that one would consider such large

correlations as evidence of exogeneity. Model equivalence testing thus does not allow to

conclude that exogeneity holds, even in an approximate sense.

4 Asymptotic Properties

I now turn to the formal properties of the tests. It is well known that in general there is

no asymptotically uniformly most powerful (UMP) tests in parametric models, so that it

is necessary to adopt a local approach in the search of optimal tests, see e.g. Lehmann

and Romano (2005). I adopt such an approach and I focus on two criteria for evaluating

the model equivalence tests. The first is the local asymptotic maximin criterion, which

is also used to characterize the classical trinity of significance tests in parametric models

with multivariate parameters, see Borovkov (1998) and Lehmann and Romano (2005).

The latters note that the maximin approach may not be compelling for multiparameter

significance hypotheses because the distant hypothesis can be defined through different

8Standard errors for α̂kε and αrε are 0.4635 and 0.5966 respectively.
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norms. In the model equivalence framework however, the form of the distant hypothesis is

dictated by the considered hypotheses. I found that the model equivalence tests are locally

asymptotically maximin, and as a consequence are locally asymptotically unbiased and

most powerful against g(θ0) = 0. The second criterion is local power in the class of tests

invariant to orthogonal transformations. Asymptotic invariance to linear transformations

is considered by Choi, Hall, and Schick (1998) to show optimality of classical two-sided

significance tests of multivariate parameters. I found that model equivalence tests are

locally asymptotically UMP among tests invariant to orthogonal transformations of the

parameter space, which is a mild requirement fulfilled even by the Wald test. Moreover,

in the case of univariate restrictions, the local asymptotic UMP property holds without

invariance restriction.

Since model equivalence tests and significance tests are based on the same statistics,

one may think that such results can be derived easily from existing ones. This is however

not the case. Existing results on significance tests use either a restriction that completely

determines the parameter value, see e.g. Lehmann and Romano (2005), or a nuisance

parameter approach, see e.g. Choi, Hall, and Schick (1998). Specifically, one considers

a (possibly nonlinear) reparametrization such that θ0 = (θ01, θ02) and the restrictions

completely determine the value of θ01. The component θ02, which is unconstrained under

the null hypothesis, is then treated as a nuisance parameter. The formal analysis is based

on the score test and the “effective score,” that basically purges the score from the nuisance

parameter’s influence. Such an approach is not suitable for model equivalence testing.

First, the restrictions are not assumed to hold under our null hypothesis. Second, and as

a consequence, the model equivalence hypothesis generally involve the whole parameter

vector, even when the restrictions of interest concern only a subset of them. Third, the

score equivalence test is valid only under the restrictive assumption of a unique root for

the theoretical likelihood equations, as explained in the previous section. As a result, the

theoretical analysis of model equivalence tests cannot rely on the efficient score approach.

Our analysis cannot either directly extend Romano’s approach (2004), because the latter

relies on the univariate dimension of the restriction where g(·) can take positive as well

as negative values.
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I give here results for the four equivalence tests in a compact way, but it should be

understood that each test is considered in turn for testing the corresponding hypotheses,

as spelled out in Section 3. For any γ2 < δ2, define KLR
n (γ) = {θ0 : 2 KLIC ≤ γ2/n}

and its boundary ∂KLR
n (γ) = {θ0 : 2 KLIC = γ2/n}. For J = H,W , or S, define KJ

n (γ)

and ∂KJ
n (γ) as the similar sets based on the different divergence measures defined in the

previous section. The introduction of KJ
n (γ) allows to focus on alternatives distant from

the null hypothesis, as is usual for maximin analysis.

Theorem 4.1 Suppose X1, . . . , Xn are i.i.d. according to Pθ0, θ0 ∈ Θ, and that Assump-

tions A and B hold. Let J be LR, H, W , or S. If J = S, assume that the theoretical

likelihood equations have a unique root.

(A) Let ϕn be a pointwise asymptotically level α tests sequence, that is

lim sup
n→∞

Eθϕn ≤ α ∀ θ ∈ HJ
n .

Let θ̄ ∈ Θ be an arbitrary parameter such g(θ̄) = 0, M > 0 arbitrary large, and N (θ̄,M) =
{
θ̄ + hn−1/2, h ∈ R

p, ‖h‖ ≤M
}
.

1. For γ2 < δ2,

lim sup
n→∞

inf
θ0∈KJ

n (γ)∩N (θ̄,M)
Eθ0ϕn ≤ Pr

[
χ2
r(γ

2) < cα,r,δ2
]
. (4.3)

2. Assume ϕn is invariant to orthogonal transformations of the parameter space. Then

for all γ2 < δ2 and all θ0 ∈ ∂KJ
n (γ) ∩N (θ̄,M),

lim sup
n→∞

Eθ0ϕn ≤ Pr
[
χ2
r(γ

2) < cα,r,δ2
]
. (4.4)

(B) The tests sequence πJ
n

1. is pointwise asymptotically level α,

2. is locally asymptotically maximin, in the sense that Inequality (4.3) is an equality

for πJ
n , and as a consequence, is locally asymptotically unbiased and most powerful

against θ0 = θ̄.

20



3. is locally asymptotically UMP among tests invariant to orthogonal transformations,

i.e. Inequality (4.4) is an equality for πJ
n .

In the formal analysis, I rely on the local asymptotic normality of the likelihood ratio

and the asymptotic equivalent experiments setting, see Le Cam and Lo Yang (2000) and

Van der Vaart (1998). This reduces the problem to one of finding an optimal test in the

normal experiment when we observe a sample of size one from Z ∼ N(µ,Σ) and we want

to test

H : µ′Σ−1/2PΣ−1/2µ ≥ δ2 against K : µ′Σ−1/2PΣ−1/2µ < δ2 ,

where P is a known orthogonal projection matrix of rank r. Because this is of independent

interest, I state here the result that characterizes the UMP invariant test for this problem.

Lemma 4.2 Consider testing H against K from one observation z from Z ∈ R
p that

follows a multivariate normal N(µ,Σ) with unknown mean µ and known nonsingular

covariance matrix Σ. Then the test π(z) that rejects H when z′Σ−1/2PΣ−1/2z < cα,r,δ2

is of level α. For any γ2 < δ2, the test is maximin among α-level tests against K(γ) :

µ′Σ−1/2PΣ−1/2µ ≤ γ2 with guaranteed power Pr [χ2
r(γ

2) < cα,r,δ2 ].

Since the test π(z) is maximin, it is necessarily admissible and unbiased. Moreover, as it is

independent of γ2, it must be most powerful against µ = 0. Finally, as it is also invariant

to orthogonal transformations of the parameter space, it must be UMP invariant. These

properties yield equivalent local asymptotic properties for the model equivalence tests.

I now consider the particular case of univariate restrictions, for which stronger results

hold. Assume that g(·) is real-valued and can take positive and negative values, then our

Wald approximate hypotheses write

Hn : |g(θ0)| ≥ σδ/
√
n against Kn : |g(θ0)| < σδ/

√
n ,

where σ2 = ∇′θg(θ0)I−1(θ0)∇θg(θ0). Romano (2004) considered testing

H̃n : |g(θ)| ≥ δ̃/
√
n against K̃n : |g(θ)| < δ̃/

√
n .
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Clearly, the two set of hypotheses are equivalent for δ̃ = σδ. Romano’s test πR
n rejects

H̃n if n1/2|g(θ̂n)| < C(α, δ̃, σ̂n), where σ̂
2
n = ∇′θg(θ̂n)I−1(θ̂n)∇θg(θ̂n) = σ2 + op(1) and

C = C(α, δ, σ) is the solution of

Φ

(
C − δ

σ

)
− Φ

(−C − δ

σ

)
= α ,

with Φ(·) the c.d.f. of a N(0, 1). Now,

n1/2|g(θ̂n)| < C(α, δ̃, σ̂n)⇐⇒ n
g2(θ̂n)

σ̂2
n

<
C2(α, δ̃, σ̂n)

σ̂2
n

= C2(α,
δ̃

σ̂n
, 1) ,

see Equation (6) in Romano (2005). Since C(α, δ, 1) is continuous in δ for any α,

C(α,
δ̃

σ̂n
, 1) = C(α,

δ̃

σ
, 1) + op(1) .

Romano’s test is then asymptotically equivalent to the one that rejects Hn if

n
g2(θ̂n)

σ̂2
n

< C2(α,
δ̃

σ
, 1) = C2(α, δ, 1) .

It is clear that C2(α, δ, 1) = cα,1,δ2 , so π
R
n is asymptotically equivalent to our Wald model

equivalence test. Since the other model equivalence tests are also asymptotically equiva-

lent to the Wald model equivalence test, the local asymptotic UMP property of Romano’s

test (2005, Theorem 3.1) extends to each model equivalence tests. The above reasoning

allows to state the following result.

Corollary 4.3 Assume that g(·) takes values in R and g(Θ) includes positive as well as

negative values. Let J be LR, H, W , or S. Under the assumptions of Theorem 4.1, let

ϕn be a pointwise asymptotically level α tests sequence, that is

lim sup
n→∞

Eθϕn ≤ α ∀ θ ∈ HJ
n .

Then for all γ2 < δ2 and all θ0 ∈ ∂KJ
n (γ) ∩N (θ̄,M),

lim sup
n→∞

Eθ0ϕn ≤ Pr
[
χ2
1(γ

2) < cα,1,δ2
]
. (4.5)

Moreover, the tests sequence πJ
n is pointwise asymptotically level α and is locally asymp-

totically UMP, i.e. Inequality (4.5) is an equality for πJ
n .
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5 Conclusion

I have proposed a theoretical framework to test whether some parameters restrictions are

approximately valid in a parametric model. The framework is based on the Kullback-

Leibler Information Criterion, as is the standard likelihood ratio significance test. The

model equivalence hypothesis under test states that the divergence between the restricted

and unrestricted model is smaller than some small tolerance. I also investigated alternative

formulation of this hypothesis. The likelihood-ratio model equivalence test, as well as its

variants derived from alternative formulations of the hypotheses, have desirable optimality

properties. Moreover I have shown through three examples that these tests are easy to

apply and can prove useful in practical applications.

I focused on purpose on a well specified parametric model, i.e. that contains the

true data generating process, while the restrictions are not supposed to perfectly hold.

This allowed us to obtain pretty strong theoretical results. Clearly one would like to

extend model equivalence tests to more general contexts where the parametric model

could be misspecified or to semiparametric models. The latter would allow to propose

model equivalence tests for overidentifying restrictions. The theoretical derivation and

practical properties of such tests will be explored in future research.

6 Proofs

In the proofs, I consider drifting sequences of parameters {θ0n, n ≥ 1}, together with the

corresponding sequence {θc0n, n ≥ 1} defined through (2.1), but for the sake of convenience,

the indexes n are omitted throughout. I also omit arguments for the divergences, so that

I simply write KLIC instead of KLIC(g, θ0).

Proof of Lemmas 3.1 and 3.2. Let us first consider the case where KLIC = o(1). By

Assumption A and the information inequality, Eθ0l(X, θ) is continuous in θ and attains its

unique maximum at θ0. Hence 2 KLIC = o(1) implies ‖θ0 − θc0‖ = o(1). From a Taylor

expansion, the information matrix equality, and the continuity of I(θ) around θ0,

2 KLIC = (θ0 − θc0)
′ I(θ0) (θ0 − θc0) (1 + o(1)) = dH (1 + o(1)) . (6.6)
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Now use

Eθ0∇θl(X, θ
c
0) = I(θ0) (θ0 − θc0) (1 + o(1)) , (6.7)

to show that dS = dH (1 + o(1)). From Assumption B,

0 = g(θc0) = g(θ0) +∇′θg(θ0) (θ0 − θc0) (1 + o(1)) .

Let P0 be the orthogonal projection matrix on I−1/2(θ0)∇θg(θ0). Then

dW = g′(θ0)
[
∇′θg(θ0)I−1(θ0)∇θg(θ0)

]−1
g(θ0)

= (θ0 − θc0)
′ I1/2(θ0)P0I

1/2(θ0) (θ0 − θc0)
′ (1 + o(1)) . (6.8)

The constrained optimization problem for θc0 yields Eθ0∇θl(X, θ
c
0) = ∇θg(θ

c
0)λ for some

λ ∈ R
r. From ‖θ0−θc0‖ = o(1) and (6.7), I−1/2(θ0)∇θg(θ

c
0)λ = I1/2(θ0) (θ0 − θc0) (1 + o(1)).

From Assumption B, ∇θg(θ
c
0) = ∇θg(θ0) (1 + o(1)) and both matrices have the same rank.

Combine these facts to obtain P0I
1/2(θ0) (θ0 − θc0) = I1/2(θ0) (θ0 − θc0) (1 + o(1)), so that

from (6.8) dW = dH(1 + o(1)).

If dH = o(1), then because I(θ0) is non-singular, ‖θ0 − θc0‖ = o(1), and (6.6) yields

local equivalence with 2 KLIC and dW .

If dW = o(1), because I(θ0) is non-singular and ∇θg(θ0) is full rank, g(θ0) = o(1). By

Assumption B there exists θ̄ such that ‖θ0 − θ̄‖ = o(1) with g(θ̄) = 0. Therefore

0 ≤ 2 KLIC ≤ 2 Eθ0

l(X, θ0)

l(X, θ̄)
=

(
θ0 − θ̄

)′
I(θ0)

(
θ0 − θ̄

)
(1 + o(1)) = o(1) .

But 2 KLIC = o(1) implies local equivalence with divergences dH and dW as shown

above.

Finally, if dS = o(1), then under our supplementary assumption, (6.7) holds, and local

equivalence with dH and other divergences follows.

Proof of Lemma 4.2. Because Z can always be pre-multiplied by Σ−1/2 to get an

identity covariance matrix, there is no loss of generality to assume Σ = Ip. Since P is an

orthogonal projection matrix, there exists an orthogonal matrix A, i.e. AA′ = A′A = Ip,

such that

A′PA =

[
Ir 0

0 0

]
for which X ≡ A′Z ∼ N

(
A′µ =

(
εr

εl

)
, Ip

)
.
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Moreover, µ′Pµ = µ′AA′PAA′µ = ε′rεr, so that the hypotheses write

H : ε′rεr ≥ δ2 against K : ε′rεr < δ2 .

As Xr is sufficient for εr, we can restrict to tests based on it only. We aim to deter-

mine a maximin test of H against K(γ) : ε′rεr ≤ γ2, which is a Bayes test under least

favorable a priori distributions. Since the testing problem is invariant under orthogonal

transformations, these distributions should also be invariant. Moreover, they should be

concentrated on the boundary of the hypotheses. Therefore Qδ, the uniform distribution

on the hypersphere S(δ) of radius δ, and Qγ, defined similarly, are the least favorable a

priori distributions. The most powerful Bayes test π(x) of level α rejects H iff
∫

S(γ)

exp

[
−1

2
(xr − εr)

′(xr − εr)

]
dQγ(εr) > C

∫

S(δ)

exp

[
−1

2
(xr − εr)

′(xr − εr)

]
dQδ(εr)

for some constant C. The left-hand side term writes

exp

[
−1

2
(x′rxr + γ2)

] ∫

S(γ)

exp [x′rεr]dQγ(εr) .

Denoting ex = xr/‖xr‖, the above integral equals

ψ (γ‖xr‖) =
∫

S(1)

exp [γ‖xr‖e′xεr]dQ1(εr) =

∫

S(1)

exp [γ‖xr‖εr1]dQ1(εr) ,

where εr1 is the first component of εr. The last equality holds by a rotation of the space

that makes εr1 parallel to ex while leaving Q1 invariant. The rejection region of the test

is thus

Aψ (γ‖xr‖) > ψ (δ‖xr‖)⇔ h (‖xr‖) ≡ logA+ logψ (γ‖xr‖)− logψ (δ‖xr‖) > 0 ,

for some constant A > 0. The function ψ(·) is positive and strictly increasing on (0,+∞)

with ψ(0) = 1 and ψ′(0) = 0. It is also logarithmically strictly convex. Indeed, by Holder’s

inequality, for t 6= u and 0 < λ < 1,

ψ (λt+ (1− λ)u) =

∫

S(1)

[exp (tεr1)]
λ [exp (uεr1)]

1−λ dQ1(εr)

<

[∫

S(1)

exp (tεr1) dQ1(εr)

]λ [∫

S(1)

exp (uεr1) dQ1(εr)

]1−λ

= ψλ (t)ψ1−λ (u)

⇒ logψ (λt+ (1− λ)u) < λ logψ (t) + (1− λ) logψ (u) .
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Hence, h′(0) = 0 and h′(t) < 0 for all t > 0. So there is at most one t0 such that h(t0) = 0,

and there should be at least one such t0 for a test with level 0 < α < 1. Therefore t0 is

unique, and the test is ‖xr‖2 < c for some constant c, which also writes

x′

[
Ir 0

0 0

]
x = z′Pz < c .

The most powerful Bayes test of level α obtains for c = cα,r,δ2 . Let us check that this test

is maximin of level α. We have

Eµπ(Z) = P [Z ′PZ < c] = P
[
χ2
r(µ

′Pµ) < c
]
.

As this probability is decreasing in µ′Pµ for each c,

Eµπ(Z) = P
[
χ2
r(µ

′Pµ) < c
]
≤ P [χ2

r(δ
2) < c] for µ′Pµ ≥ δ2

Eµπ(Z) = P
[
χ2
r(µ

′Pµ) < c
]
≥ P [χ2

r(γ
2) < c] for µ′Pµ ≤ γ2 ,

which yields

sup
µ∈H

Eµπ(X) = Eµπ(X) ∀µ ∈ Qδ and inf
µ∈K(γ)

Eµπ(X) = Eµπ(X) ∀µ ∈ Qγ .

Hence the test is maximin, see e.g. Borovkov (1998, Theorem 49.1), and is unbiased

by definition of a maximin test. Since it is most powerful for testing H against K (γ)

under Qδ and Qγ and independent of γ, it is the most powerful test of H against K(0).

Moreover, it is also UMP among tests invariant to orthogonal transformations.

Proof of Theorem 4.1. I focus on the Hausman-Wald test, which is more convenient

to deal with because it involves the basic parameter vector. I then explain briefly how

the result extends to the other tests sequences. Let I0 = I(θ0), P0 be the orthogonal

projection matrix on I−1/2(θ0)∇θg(θ0), and define Ī = I(θ̄) and P̄ similarly.

i. Since Eθ0l(X, θ0) ≥ Eθ0l(X, θ
c
0) ≥ Eθ0l(X, θ̄),

0 ≤ KLIC = Eθ0l(X, θ0)− Eθ0l(X, θ
c
0) ≤ Eθ0l(X, θ0)− Eθ0l(X, θ̄) . (6.9)

Since ‖θ0 − θ̄‖ = O(n−1/2) for θ0 ∈ N (θ̄,M) by the definition of N (θ̄,M), a Taylor

expansion yields

Eθ0l(X, θ̄)− Eθ0l(X, θ0) = (1/2)
(
θ0 − θ̄

)′
I(θ0)

(
θ0 − θ̄

)
(1 + o(1)) = O(n−1) (6.10)
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uniformly in θ0 ∈ N (θ̄,M). Therefore, from (6.9), KLIC = O(n−1), and thus dH =

O(n−1) by Lemma 3.1, so that ‖θ0 − θc0‖ = O(n−1/2). From Lemma 3.1’s proof,

(θ0 − θc0)
′ I0 (θ0 − θc0) = (θ0 − θc0)

′ I
1/2
0 P0I

1/2
0 (θ0 − θc0) (1 + o(1)) .

From the uniform continuity of I(θ) and ∇θg(θ) in N (θ̄,M),

(θ0 − θc0)
′ I0 (θ0 − θc0) = (θ0 − θc0)

′ Ī1/2P̄ Ī1/2 (θ0 − θc0) (1 + o(1)) . (6.11)

By another Taylor expansion and the continuity of ∇′θg(·) ,

g(θc0) = 0 = g(θ̄) +∇′θg(θ̄)
(
θc0 − θ̄

)
+ o(‖θc0 − θ̄‖)⇒ P̄ Ī1/2

(
θc0 − θ̄

)
= o(n−1/2) .

Expand the right-hand side term of (6.11) to obtain that uniformly in θ0 ∈ N (θ̄,M)

(θ0 − θc0)
′ I0 (θ0 − θc0)

′ = n−1h′Ī1/2P̄ Ī1/2h+ o(n−1/2) . (6.12)

ii. Since the sequence of experiments P n
θ̄+hn−1/2 converges to a limiting normal ex-

periment Z with unknown mean h and known covariance matrix Ī−1, it follows that we

can approximate pointwise the power of any test ϕn by the power of a test in the limit

experiment, see Van der Vaart (1998, Theorem 15.1) and Lehman and Romano (2005,

Theorem 13.4.1). Since the limit hypothesis is h′Ī1/2P̄ Ī1/2h < δ2, apply Lemma 4.2 to

deduce the bounds (4.3) and (4.4).

iii. Let ∆n = n−1/2
∑n

t=1∇θ log f(Xt; θ̄). Under Assumptions A and B, standard

results on maximum likelihood estimation, see e.g. Gourieroux and Monfort (1989), White

(1994), Van der Vaart (1998), imply that under Pn
θ̄

√
n
(
θ̂n − θ̄

)
= −Ī−1∆n + op(1) ,

√
n
(
θ̂cn − θ̄

)
= Ī−1/2M̄ Ī1/2

√
n
(
θ̂n − θ̄

)
+ op(1) ,

where M̄ = Ip − P̄ . Under Assumption A, the model is differentiable in quadratic mean

over Θ, see van der Vaart (1998, Lemma 7.6), and local asymptotic normality of the

log-likelihood ratio follows, that is

√
n ln

n∏

t=1

fθ̄+hn−1/2(Xt)

fθ̄(Xt)
= h′∆n − h′Īh/2 + op(1) ∀h ∈ R

p .
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Since ∆n
d−→N(0, Ī) under P

n
θ̄
, we obtain by Le Cam’s third Lemma, see e.g. van der

Vaart (1998), that under Pn
θ̄+hn−1/2 and for any h ∈ R

p

√
n
(
θ̂n − θ̄

)
≡ τn = Z + op(1) , Z ∼ N(h, Ī−1) ,

√
n
(
θ̂cn − θ̄

)
= Ī−1/2M̄ Ī1/2τn + op(1) .

This yields
√
n
(
θ̂n − θ̂cn

)
= Ī−1/2P̄ Ī1/2τn for any h ∈ R

p. Since I(θ̂n) = Ī + op(1), then

for any h ∈ R
p

n
(
θ̂n − θ̂cn

)′
In(θ̂n)

(
θ̂n − θ̂cn

)
= n

(
θ̂n − θ̂cn

)′
Ī
(
θ̂n − θ̂cn

)
+op(1) = τnĪ

1/2P̄ Ī1/2τn+op(1) .

iv. Consider π(τn), where π is the test defined in Lemma 4.2. Then Eθ̄+hn−1/2πH
n =

Eθ̄+hn−1/2π(τn)+ o(1) pointwise in h ∈ R
p and τnĪ

1/2P̄ Ī1/2τn is for any h ∈ R
p asymptoti-

cally equivalent to a χ2
r(h

′Ī1/2P̄ Ī1/2h), see Rao and Mitra (1971, Lemma 9.12). As π(τn)

test rejects HH
n when τnĪ

1/2P̄ Ī1/2τn < cα,r,δ2 ,

Eθ̄+hn−1/2π(τn) = P
[
τnĪ

1/2P̄ Ī1/2τn < cα,r,δ2
]
→ P

[
χ2
r(h

′Ī1/2P̄ Ī1/2h) < cα,r,δ2
]
.

In particular, π(τn) and thus πH
n are locally pointwise asymptotic level α. Moreover, for

θ0 such that n1/2 ming(θ)=0 ‖θ0 − θ‖ → ∞, |τn| → ∞ and the power of both tests tends

pointwise to zero.

Since π is Bayesian of level α for a priori measures Qδ and Qγ and

EQγπ(τn) =

∫

S(γ)

Eθ̄+hn−1/2π(τn) dQγ → EQγπ(Z)

by the Lebesgue dominated convergence theorem, π(τn) and thus πH
n are also asymptoti-

cally Bayesian level α for the same a priori measures.

For any other test sequence ϕn of asymptotically Bayesian level α,

lim sup
n→∞

inf
K(γ)

Eθ̄+hn−1/2ϕn ≤ lim sup
n→∞

EQγϕn ≤ lim sup
n→∞

EQγπ(τn) .

But lim supn→∞ EQγπ(τn) = EQγπ(Z) = infK(γ) Ehπ(Z) = limn→∞ infK(γ) Eθ̄+hn−1/2π(τn).

Gathering results,

lim inf
n→∞

(
inf
K(γ)

Eθ̄+hn−1/2π(τn)− inf
K(γ)

Eθ̄+hn−1/2ϕn

)
≥ 0 ,
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which shows that π(τn) and thus πH
n are locally asymptotically maximin.

Consider a test sequence ϕn of pointwise asymptotic level α and invariant to orthogonal

transformations. Then for any γ and any h ∈ S(γ)

lim sup
n→∞

Eθ̄+hn−1/2ϕn ≤ lim sup
n→∞

EQγϕn ≤ lim sup
n→∞

EQγπ(τn) = lim
n→∞

Eθ̄+hn−1/2π(τn) ,

so that π(τn) and thus πH
n are locally asymptotically UMP among invariant tests.

Since the power of π(τn) converges to a bounded function continuous in θ0, limits of

extrema on K(γ) equal limits of extrema on KH
n (γ) using (6.12). Hence the same local

asymptotic properties hold for π(τn), and thus πH
n , as tests of HH

n against KH
n (γ).

v. To extend the result to the LR test, use a similar reasoning and (6.10) to deduce

that limits of extrema on KH
n ∩ N (θ̄,M) equal limits of extrema on KLR

n ∩ N (θ̄,M).

The local asymptotic equivalence of the LR test follows easily from the local asymptotic

equivalence of the LR statistic to H, which follows by standard arguments, see e.g. Van

der Vaart (1998). The result extends to the Wald and Score tests following the same lines.
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Table 1: Critical Values for r=1 (10% and 5% level)

δ2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 0.017 0.019 0.021 0.024 0.026 0.029 0.032 0.035 0.039 0.043
0.004 0.005 0.005 0.006 0.006 0.007 0.008 0.009 0.010 0.011

1 0.047 0.052 0.057 0.063 0.070 0.077 0.084 0.093 0.102 0.112
0.012 0.013 0.014 0.016 0.018 0.019 0.021 0.024 0.026 0.029

2 0.123 0.135 0.147 0.161 0.176 0.192 0.209 0.227 0.247 0.268
0.032 0.035 0.039 0.042 0.047 0.051 0.057 0.062 0.068 0.075

3 0.290 0.313 0.337 0.363 0.390 0.418 0.447 0.478 0.509 0.542
0.082 0.090 0.099 0.108 0.118 0.129 0.141 0.153 0.167 0.181

4 0.575 0.610 0.646 0.682 0.719 0.758 0.797 0.837 0.877 0.919
0.196 0.212 0.229 0.247 0.266 0.286 0.307 0.328 0.351 0.375

Table 2: Critical Values for r=2 (10% and 5% level)

δ2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 0.222 0.233 0.245 0.257 0.270 0.284 0.298 0.313 0.328 0.344
0.108 0.113 0.119 0.125 0.132 0.138 0.145 0.153 0.160 0.168

1 0.361 0.379 0.397 0.416 0.436 0.457 0.478 0.500 0.523 0.547
0.177 0.186 0.195 0.205 0.215 0.225 0.236 0.248 0.260 0.272

2 0.571 0.597 0.623 0.650 0.678 0.707 0.736 0.766 0.798 0.830
0.285 0.299 0.313 0.328 0.343 0.359 0.375 0.392 0.410 0.428

3 0.862 0.896 0.930 0.965 1.001 1.037 1.074 1.112 1.151 1.190
0.447 0.466 0.487 0.507 0.529 0.551 0.574 0.597 0.621 0.646

4 1.230 1.271 1.312 1.353 1.396 1.439 1.482 1.526 1.571 1.616
0.671 0.697 0.723 0.751 0.778 0.807 0.836 0.865 0.895 0.926

Table 3: Critical Values for r=3 (10% and 5% level)

δ2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 0.604 0.624 0.645 0.667 0.689 0.712 0.735 0.759 0.784 0.809
0.364 0.376 0.389 0.402 0.415 0.429 0.443 0.458 0.473 0.489

1 0.835 0.862 0.889 0.917 0.946 0.975 1.005 1.035 1.066 1.098
0.505 0.521 0.538 0.555 0.573 0.592 0.611 0.630 0.650 0.670

2 1.131 1.164 1.198 1.232 1.267 1.303 1.339 1.376 1.413 1.452
0.691 0.712 0.734 0.756 0.779 0.803 0.826 0.851 0.876 0.901

3 1.490 1.530 1.569 1.610 1.651 1.692 1.734 1.777 1.820 1.864
0.927 0.954 0.981 1.008 1.036 1.065 1.094 1.124 1.154 1.184

4 1.908 1.952 1.997 2.043 2.089 2.135 2.182 2.229 2.277 2.325
1.215 1.247 1.279 1.311 1.344 1.378 1.412 1.446 1.481 1.516



Table 4: Critical Values for r=4 (10% and 5% level)

δ2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 1.090 1.118 1.146 1.174 1.203 1.233 1.263 1.294 1.325 1.357
0.729 0.747 0.766 0.785 0.805 0.825 0.845 0.866 0.887 0.909

1 1.390 1.423 1.456 1.490 1.525 1.560 1.596 1.632 1.669 1.707
0.931 0.953 0.976 1.000 1.024 1.048 1.073 1.098 1.124 1.150

2 1.745 1.783 1.822 1.861 1.901 1.942 1.983 2.024 2.066 2.109
1.176 1.203 1.231 1.259 1.287 1.316 1.345 1.375 1.405 1.436

3 2.152 2.195 2.239 2.283 2.328 2.373 2.419 2.465 2.511 2.558
1.467 1.498 1.530 1.562 1.595 1.628 1.662 1.696 1.730 1.765

4 2.606 2.653 2.701 2.750 2.799 2.848 2.898 2.947 2.998 3.048
1.800 1.836 1.872 1.908 1.945 1.983 2.020 2.058 2.096 2.135

Table 5: Critical Values for r=5 (10% and 5% level)

δ2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 1.643 1.676 1.709 1.743 1.778 1.812 1.848 1.884 1.920 1.957
1.169 1.192 1.216 1.240 1.265 1.290 1.315 1.341 1.367 1.394

1 1.994 2.032 2.071 2.109 2.149 2.188 2.229 2.269 2.310 2.352
1.421 1.449 1.476 1.505 1.533 1.562 1.592 1.622 1.652 1.682

2 2.394 2.436 2.479 2.523 2.566 2.611 2.655 2.700 2.746 2.792
1.713 1.745 1.777 1.809 1.841 1.874 1.908 1.942 1.976 2.010

3 2.838 2.884 2.931 2.979 3.027 3.075 3.123 3.172 3.221 3.271
2.045 2.081 2.116 2.152 2.189 2.225 2.262 2.300 2.338 2.376

4 3.321 3.371 3.421 3.472 3.524 3.575 3.627 3.679 3.732 3.784
2.415 2.453 2.493 2.532 2.572 2.612 2.653 2.694 2.735 2.777

Table 6: Critical Values for r=6 (10% and 5% level)

δ2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 2.241 2.278 2.316 2.355 2.393 2.432 2.472 2.512 2.552 2.593
1.663 1.691 1.719 1.747 1.776 1.805 1.835 1.865 1.895 1.926

1 2.635 2.676 2.718 2.761 2.804 2.847 2.891 2.935 2.980 3.025
1.957 1.989 2.020 2.053 2.085 2.118 2.151 2.185 2.219 2.253

2 3.070 3.116 3.162 3.208 3.255 3.302 3.349 3.397 3.446 3.494
2.288 2.323 2.358 2.394 2.430 2.466 2.503 2.540 2.577 2.615

3 3.543 3.592 3.642 3.692 3.742 3.793 3.843 3.895 3.946 3.998
2.653 2.692 2.730 2.769 2.809 2.849 2.889 2.929 2.970 3.011

4 4.050 4.102 4.155 4.208 4.261 4.315 4.369 4.423 4.477 4.532
3.052 3.093 3.135 3.177 3.220 3.263 3.306 3.349 3.393 3.436



Figure 1: Asymptotic power curves
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