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1 Introduction

Among the inverse problems arising in econometrics, more and more attention has been
recently paid on nonparametric instrumental regression. In that problem we analyse an
economic relationship between a response Y and a vector Z of p explanatory variables that
are endogenous. It is also assumed that a set of q instruments denoted by the vector W is
given and such that1

Y = ϕ(Z) + U , Z ∈ [0, 1]p (1.1a)

and

E(U |W ) = 0 , W ∈ [0, 1]q . (1.1b)

In this model, ϕ is a nonparametric function that defines the relationship of interest, and
is solution of the conditional moment equation

E(Y |W ) = E(ϕ(Z)|W ). (1.2)

The identification of the function ϕ from (1.2) is of course not straightforward and sufficient
conditions can be found in Carrasco, Florens, and Renault (2008).

The above setting is the core of many econometric studies, see e.g. Darolles, Florens,
and Renault (2002), Newey and Powell (2003), Matzkin (2003), Chernozhukov and Hansen
(2005), Das (2005) or Hall and Horowitz (2005) to name but a few. Among the recent devel-
opments in econometric theory, we mention the test of exogeneity of Blundell and Horowitz
(2007), the nonparametric instrumental quantile regression of Horowitz and Lee (2007)
and the semi-nonparametric estimation of Engel curve with shape-invariant specification of
Blundell, Chen, and Kristensen (2007).

Solving the moment equation (1.2) is an ill-posed inverse problem because the solution
ϕ does not depend continuously on the regression function E(Y |W ) in the L2 norm. There-
fore, even if we estimate F consistently and get a consistent estimator of the conditional
expectations in equation (1.2), it is not guaranteed that the resulting estimator ϕ̂ converges
in probability to ϕ.

Note that, if the problem was well-posed, a simple least square estimator of ϕ would be
legitimated. If Ê(Y |W ) and Ê(ϕ(Z)|W ) denote some consistent estimators of the conditional
expectations (nonparametric kernel estimators for instance), the least square estimator
finds the function ϕ̂LS that minimizes the L2 norm ‖Ê(ϕ(Z)|W ) − Ê(Y |W )‖ over ϕ ∈
L2([0, 1]p). However because the inversion of (1.2) is ill-posed, that procedure does not lead
to a consistent estimator and needs to be modified. One popular recommendation in that
situation is, instead of minimizing the above L2 norm, to minimize the following biased, or
penalized, L2 norm:

‖Ê(ϕ(Z)|W )− Ê(Y |W )‖2 + α‖ϕ‖2

1In this paper we consider the support of Z and W to be compact and included in [0, 1]p and [0, 1]q respec-

tively. All results extend to non compact support in a straightforward way. The simplification considered

here allows to use a discrete decompositon of the operators appearing in the proof section.
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for some strictly positive α.
Adding a small bias in order to stabilize the inversion is in the line of the well-known

paradigm of shrinkage estimators, among which the ridge regression is one standard ex-
ample. In inverse problem theory, that stabilization procedure is called the “Tikhonov
regularization” and has been largely considered in econometric theory, see the above men-
tioned papers. Of course, the choice of α is crucial in this procedure and in theory α

decreases to zero as the sample size growths. The rate of decreasing of α results from a
balance between the bias due to the regularization and the variance due to the instability
of the inversion.

Another important question is the choice of the norm used in the penalty. The choice of
an L2 norm has been extensively studied in econometrics and leads to the so-called Tikhonov
regularization. However, the literature in nonparametric statistics sometimes recommends
the use of another penalty function (Wahba (1977), Craven and Wahba (1979), White and
Wooldridge (1991), Gagliardini and Scaillet (2006), Chen (2008)). For instance, we could
ask what would be the advantages if that norm was replaced by a norm that includes the
derivatives of ϕ such as the Sobolev norm.

It is an open question to analyse what would be the gain when using another penalty
norm in the context of nonparametric instrumental regression. The goal of this paper is to
give a precise answer and recommendation to that question. Moreover, we link that question
to the question of identification of the function ϕ from (1.2). That issue is addressed below
at three levels:

(A) Suppose that the function ϕ is not identified from (1.2), but a minimal norm least
square solution exists (we give existence conditions below). In that case, we derive
the rate of convergence of the Tikhonov-regularized estimator to this solution. We
show that in some situations the rate of convergence is not optimal. This is what we
call the saturation effect ;

(B) Suppose we replace the above L2 penalty by a stronger penalty. By “stronger penalty”,
we think on a Sobolev penalty that includes the L2 norm of the first m derivatives of
ϕ for instance. We give conditions on the instruments W and the joint distribution F
such that the function ϕ is identified and under which the optimal rate of convergence
can now be recovered (no saturation effect);

(C) If the instruments do not fulfill the conditions in (B) and the solution ϕ is not identified,
a minimal Sobolev norm least square solution can be defined. Then, if we use a
Sobolev-type penalty, we also derive the rate of convergence to this solution, and
show that this rate is not always optimal. In other words, in that general situation,
we again discover a saturation effect.

In the following, each of these three steps is addressed in a separate section. One
important aspect of the results below is the structural assumption we impose on ϕ in order
to derive the rates of convergence. These rates are driven by a relative measure of regularity
of ϕ with respect to the conditional expectation operation E(ϕ(Z)|W ), a condition that is
called “source condition” and already motivated in Florens, Johannes, and Van Bellegem
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(2005) and Johannes, Van Bellegem, and Vanhems (2007). It can be surprising that the rate
of convergence is not related to the sole smoothness regularity of ϕ. The intuitive reason is
that ϕ is only identified through the conditional moment equation (1.2) and therefore the
conditional expectation operation (is an integral transform of ϕ) is also determinant in the
rate. A precise discussion on that aspect is to be found in the following Section.

Finally, the appendix of the paper presents a unified framework for the proof of all
results.

2 Convergence rate of Tikhonov estimator in the nonidenti-

fied case

2.1 Source conditions on the minimal norm least square solution

It is convenient to rewrite the moment equation (1.2) in terms of operators between Hilbert
spaces. Assume that the vector (Z,W ) has a joint density fZW and fW , resp. fZ , denote
the marginal densities of W , resp. Z. The moment equation can then be written as

r = Tϕ (2.1)

with the function

r(w) = E(Y |W = w)fW (w)

and the operator

T : L2[0, 1]p → L2[0, 1]q : g → Tg = E(g(Z)|W = ·)fW (·).

Using this notation, it is easy to give conditions on T and r for the identification and the
existence of a solution ϕ to the moment equation (2.1). A solution is identified if and only
if the operator T is injective. If it is not the case that is if the solution is not identified, we
may consider the minimal norm least square solution ϕ+ that we will now define. We first
consider the set of least square solutions of (2.1), that is the set of functions ϕ ∈ L2[0, 1]p

that minimize the L2 norm ‖r− Tϕ‖. One can show2 that ϕ is least square solution if and
only if

T ?Tϕ = T ?r (2.2)

where T ? is the adjoint operator of T that is given by

T ? : L2[0, 1]q → L2[0, 1]p : h→ T ?h = E(h(W )|Z = ·)fZ(·).

Among the set of least square solutions, the minimal L2 norm (or minimal norm) solution
is the function ϕ+ such that ‖ϕ+‖ 6 ‖ϕ‖ for all least square solution ϕ. That solution is
unique3.

2See e.g. Theorem 2.6 of Engl, Hanke, and Neubauer (2000).
3See e.g. Theorem 2.5 of Engl, Hanke, and Neubauer (2000).
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The existence conditions of the minimal norm least square solution ϕ+ can also be
characterized in terms of the operator T and the function r. Consider the range of the
operator R(T ). That range is not a closed subset of L2[0, 1]q in general.4 Define the
orthogonal subspace R(T )⊥, that is the set of all functions that are orthogonal to the
functions in R(T ). Then, the minimal norm least square solution ϕ+ exists if and only if
the function r belongs to the subset R(T )⊕R(T )⊥ of L2[0, 1]q.

We can now define the measure of regularity of the nonparametric problem that leads
the rates the convergence of the estimator. To simplify the exposition, we assume that
the operator T is compact but we note that, although that assumption is reasonable for
most practical cases, it can be easily relaxed. The compactness of T allows to decompose
the operator (T ?T ) that appears in (2.2) using a discrete system of eigenfunctions. More
precisely, there exists an orthogonal system {φj} in L2[0, 1]p and a strictly positive sequence
λ1 > λ2 > . . . > 0 such that

(T ?T )g =
∞∑
j=1

λ2
j 〈g, φj〉φj for all g ∈ L2[0, 1]p

where 〈·, ·〉 represents the inner product in L2. The sequence (λ2
j , φj) is called the eigenvalue

decomposition of T ?T . Because the problem is ill-posed, the sequence of eigenvalues λj tends
to zero as j tends to infinity, and the degree of ill-posedness is characterized by the rate of
decreasing of λ2

j to zero.
Once the eigenvalue decomposition of a selfadjoint operator is defined, we can easily

define any exponent of the operator: for all γ ∈ R we set

(T ?T )γg :=
∞∑
j=1

λ2γ
j 〈g, φj〉φj

which is defined for all g ∈ L2[0, 1]p such that the series is a well-defined function in L2[0, 1]p

(that is for all g such that
∑∞

j=1 λ
4γ
j 〈g, φj〉2 <∞). That definition is used in the following

assumption.

Assumption 2.1 (Source condition). There exists an exponent β > 0 and function ψ ∈
L2[0, 1]p such that the minimal norm least square solution fulfills ϕ+ = (T ?T )β/2ψ.

Equivalently, the source condition assumes that the function (T ?T )−β/2ϕ+ belongs to
L2[0, 1]p. Note that, for all appropriate g,

(T ?T )−β/2g =
∞∑
j=1

〈g, φj〉
λβj

φj

and, because the eigenvalues λj tend to zero, the index β that appears in the source condition
is one measure of the degree of ill-posedness of the problem. As we will see below, that index
is driving the rate of convergence of the nonparametric estimator. Using a converse result,

4The fact that R(T ) is not a closed set is another way to tell that the problem is ill-posed. For a complete

exposition, see chapter 2 in Engl, Hanke, and Neubauer (2000). Note that in the parametric model R(T ) is

a closed space.
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we also show below why the source condition is the natural assumption in the context of
nonparametric instrumental variables.

To close this section, we illustrate the source condition in two meaningful examples
where ϕ is univariate.

Example 2.1. Some results of Hall and Horowitz (2005) are based under the assumption
that there exists two constants 0 < c1 6 c2 <∞ and γ > 0 such that c1j−2γ 6 λ2

j 6 c2j
−2γ ,

and assuming that the eigenvectors φj are the trigonometric functions. In that setting, the
source condition is equivalent to assume

∞∑
j=1

〈ϕ+, φj〉2

j−2γβ
<∞

which is equivalent to assume that ϕ+ is (γβ) times weakly differentiable.

Example 2.2. In the case where (Y,Z,W ) is jointly Normal, the joint density fY ZW is
infinitely differentiable. In that situation one can show that the eigenvalues are expo-
nentially decreasing (e.g. Hille and Tamarkin (1931)), that is there exists two constants
0 < c1 6 c2 < ∞ and γ > 0 such that c1 exp(−2jγ) 6 λ2

j 6 c2 exp(−2jγ). The source
condition is here equivalent to assume

∞∑
j=1

〈ϕ+, φj〉2

exp(−2βjγ)
<∞ .

In that setting, if φj are the trigonometric functions, one can show (e.g. Kawata (1972))
that the source condition implies that ϕ+ is infinitely differentiable (whatever the value of
β is).

These examples also show that usual regularity conditions such as the number of deriva-
tives of the solution can be recovered by the source condition.

2.2 Tikhonov regularization with known conditional expectation

The function r and the operator T in the moment equation (2.1) are unknown and must be
estimated in practice. It is not the goal of this paper to analyse the statistical properties of
estimators of r and T . In subsection 2.4 below, we recall usual nonparametric estimators
of these quantities.

Our goal is instead to relate the rate of convergence of penalized L2 norm estimators
of ϕ+ to the rate of convergence of the estimators of r and T . To start with, let us first
suppose that the operator T is known and only r is estimated from a sample of (Y, Z,W ).
Denote by r̂ an estimator of r. The penalized L2 norm estimator of ϕ+ is defined as the
minimizer of

ϕ̂α = arg inf
φ:‖φ‖<∞

{‖Tφ− r̂‖2 + α‖φ‖2} (2.3)

for a given regularization parameter α > 0. The minimizer is unique and given by:

ϕ̂α =
(
αI + T ?T

)−1
T ?r̂
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where I denotes the identity operator. The next result gives the rate of convergence of this
regularized estimator.

Theorem 2.1. Suppose there exists a function ψ ∈ L2[0, 1]p such that ϕ+ = (T ?T )β/2ψ for
some β > 0 (Assumption 2.1). Let ϕ̂α be the minimizer of the penalized quadratic error
(2.3).

If β 6 2 and if the regularization parameter α is chosen as

α = C{E‖r̂ − r‖2}
1

1+β

for any strictly positive constant C, then the rate of convergence of ϕ̂α is given by

E‖ϕ̂α − ϕ+‖2 = O
(
{E‖r̂ − r‖2}

β
β+1

)
.

If β > 2 and if the regularization parameter α is chosen as

α = C{E‖r̂ − r‖2}1/3

for any strictly positive constant C, then the rate of convergence of ϕ̂α is given by

E‖ϕ̂α − ϕ+‖2 = O
(
{E‖r̂ − r‖2}2/3

)
.

Remark 2.1. (i) The quality of the convergence of the penalized estimator is different for
β 6 2 or β > 2. That phenomenon is called the “saturation effect” of the Tikhonov
regularization. It is a limitation of the Tikhonov regularization method which is not
observed with other regularization methods (see e.g. Johannes, Van Bellegem, and
Vanhems (2007)). To understand the technical reason of this limitation, we refer to
the appendix, in particular inequality (A.1) of Lemma A.1.

(ii) When β 6 2, the result is known to be optimal over the class of functions that fulfill
the source condition (a related reference is Mair and Ruymgaart (1996)).

(iii) When β > 2, then the rate of convergence is not optimal in the minimax sense. In
a purely deterministic setting, Proposition 5.3 of Engl, Hanke, and Neubauer (2000)
shows that for any choice of the regularization parameter α, the bound

sup
{
E‖ϕ̂α − ϕ+‖2 such that E‖r̂ − r‖2 ≤ δ

}
= o(δ2/3)

can only hold if ϕ+ = 0. We conjecture that this result holds also in the random
setting, meaning that the Tikhonov regularization for the ill-posed linear problem
(1.2) never yields a convergence rate faster than O({E‖r̂ − r‖2}2/3).

(iv) The result also shows that the index β of the source condition is the parameter that
leads to the rate of convergence. This shows that the source condition is a natural
sufficient condition in the context of nonparametric instrumental variables. A natural
question to ask is whether a necessary condition can be proved. A partial answer is
given in Section 5.1 (p. 120) of Engl, Hanke, and Neubauer (2000): If the estimator

ϕ̂α is such that O({E‖r̂−r‖2}
β
β+1 ) for a β 6 2, then (T ?T )−ν/2ϕ+ belongs to L2[0, 1]p
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for all ν < β. Because that converse result does not hold for ν = β, we cannot say
that the source condition with β is a necessary condition, but each solution that has
this rate of convergence also fulfills the source condition with ν < β. In that sense,
the source condition is the natural assumption to impose on ϕ in order to derive the
rate of convergence in nonparametric instrumental regression.

2.3 Convergence of the general Tikhonov regularized estimator

If moreover the operator T is unknown, we need to estimate it from a sample of (Y, Z,W )
and we denote by T̂ the resulting estimator. The penalized estimator of ϕ+ is thus defined
as the minimizer

ϕ̂α = arg inf
φ:‖φ‖<∞

{‖T̂ φ− r̂‖2 + α‖φ‖2}. (2.4)

Again, the minimizer is unique and given by

ϕ̂α =
(
αI + T̂ ?T̂

)−1
T̂ ?r̂.

The next theorem generalizes the previous one and related the rate of convergence of
ϕ̂+ to the one of r̂ and T̂ . In order to state that result, we first need to define the norm for
the operator T . By definition, for any operator T ,

‖T‖ = sup
φ∈L2[0,1]p

‖Tφ‖

where ‖Tφ‖ in this formula is the L2[0, 1]q norm of the function Tφ.

Theorem 2.2. Suppose there exists a function ψ ∈ L2[0, 1]p such that ϕ+ = (T ?T )β/2ψ for
some β > 0. Let ϕ̂α be the minimizer of the penalized quadratic error (2.4). Assume that
there exists a constant K such that E‖T̂ − T‖4 6 K(E‖T̂ − T‖2)2.

If 0 < β 6 2 and if the regularization parameter α is chosen as

α = C{E‖r̂ − r‖2 + E‖T̂ − T‖2}
1

1+β

for any strictly positive constant C, then the rate of convergence of ϕ̂α is given by

E‖ϕ̂α − ϕ+‖2 = O
(
{E‖r̂ − r‖2 + E‖T̂ − T‖2}

β
1+β

)
.

If β > 2 and if the regularization parameter α is chosen as

α = C{E‖r̂ − r‖2 + E‖T̂ − T‖2}1/3

for any strictly positive constant C, then the rate of convergence of ϕ̂α is given by

E‖ϕ̂α − ϕ+‖2 = O
(
{E‖r̂ − r‖2 + E‖T̂ − T‖2}2/3

)
.

Remark 2.2. (i) The remarks of the previous result still holds for this theorem. For the
minimax optimality of the rate of convergence we refer to Chen and Reiss (2007).
Note also that the saturation effect is still present.
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(ii) In many econometric studies a preconditionning of the moment equation is considered,
that is we preliminary apply the dual operator T ? to (2.1) and start the analysis from
the moment equation T ?r = T ?Tϕ. If we denote r̃ = T ?r and T̃ = T ?T , then the
new moment equation can be written as r̃ = T̃ϕ and the above results hold with r̃, T̃
instead of r, T . To illustrate that point, consider Theorem 2.2. The source condition
assumed in that theorem is ϕ = (T ?T )β/2ψ, that is ϕ = (T̃ ?T̃ )

β/2
2 . Therefore the rate

of convergence of the estimator is

E‖ϕ̂α − ϕ+‖2 = O
(
{E‖T̂ ?r − T ?r‖2 + E‖T̂ ?T − T ?T‖2}

β
2+β

)
.

when β < 2 (and similarly for β > 2). Preconditionning is considered for instance in
the seminal work of Darolles, Florens, and Renault (2002).

2.4 Examples

Even if this paper does not study the statistical properties of r̂ and T̂ , we find useful to
give two examples of estimators that fulfill the assumptions of our results. To write these
estimators, we suppose that we observe n vectors (Yi, Zi,Wi) identically distributed as
(Y,Z,W ).

Example 2.3 (Kernel estimator). Kernel estimators of r and T have often been used, see
e.g. Darolles, Florens, and Renault (2002), Hall and Horowitz (2005), Carrasco, Florens,
and Renault (2008) among others. Let K(·) be a multivariate kernel function. Estimators
of r, T and T ? are given by

r̂(·) =
1

nhqW

n∑
i=1

YiK

(
Wi − ·
hW

)

T̂ φ(·) =
1

nhqWh
p
Z

n∑
i=1

K

(
Wi − ·
hW

)∫
K

(
Zi − z
hZ

)
φ(z)dz for all φ ∈ L2[0, 1]p

T̂ ?g(·) =
1

nhqWh
p
Z

n∑
i=1

K

(
Zi − ·
hZ

)∫
K

(
Wi − w
hW

)
g(w)dw for all g ∈ L2[0, 1]q

Rates of convergence of these estimators under sampling assumptions and smoothness re-
strictions on the joint density fY,W,Z can be found e.g. in Lemma A.3 of Florens, Johannes,
and Van Bellegem (2005).

Example 2.4 (Series expansion). Another popular nonparametric estimator is given by
series expansion or sieve estimators, see e.g. Hall and Horowitz (2005), Blundell, Chen, and
Kristensen (2007) or Chen (2008). Let φ(·) = (φ1(·), . . . , φmZ (·))′ be a vector of functions
that form an orthonormal a basis of ΦmZ ⊆ L2[0, 1]p and ψ(·) = (ψ1(·), . . . , ψmW (·))′ be
a vector of functions that form an orthonormal basis of ΨmW ⊆ L2[0, 1]q. Note that the
number of elements in these bases depends on the parameters mZ ,mW . In order to derive
the series estimator of r and T , we first define the vector and matrix

v̂ =
1
n

n∑
i=1

Yiψ(Wi) , M̂ =
1
n

n∑
i=1

ψ(Wi)φ(Zi)′

8



Therefore the series estimator of T is T̂ g(·) := ψ(·)′M̂〈g,φ〉 where 〈g,φ〉 denotes the column
vector (〈g, φ1〉, . . . , 〈g, φmZ 〉)′. The estimator of T ? is the dual of T̂ , that is T̂ ?h(·) :=
φ(·)′M̂ ′〈h, ψ̃〉 where 〈h,ψ〉 analogously denotes the column vector (〈h, ψ1〉, . . . , 〈h, ψmW 〉)′.
Finally the series estimator of r is r̂(·) = ψ(·)′v̂. The estimator of the least square norm
solution ϕ+ is ϕ̂ =

∑mZ
j=1 âjφj where the coefficients â = (âj) are given by â = (αI +

M̂ ′M̂)−1M̂ ′v̂. Rates of convergence of these estimators under sampling assumptions and
smoothness restrictions on the joint density fY,W,Z can be found e.g. in Proposition 3.1 of
Johannes, Van Bellegem, and Vanhems (2007), who also consider the most relevant case
where φ and ψ are not orthonormal.

3 Recovering the optimal rate of convergence by stronger

penalization

In this section, we start to study the situation where the norm of the penalty is no longer
the L2 norm. We give conditions on the penalty function under which the optimal rate of
convergence is always recovered, that is there is no saturation effect.

The core of the results in this section is to define an appropriate connection between
the operator T and the norm considered in the penalty. We start with the simplest (but
unrealistic) situation where the penalty involves T via the source condition. Then we
consider the realistic case where the penalty norm is a Sobolev-type of norm that includes
the derivatives of the function.

3.1 Convergence with a penalty adapted to T

To simplify the exposition, we assume in this subsection that the solution ϕ is identified
from the moment equation (2.1) (e.g. the operator T is injective).

Suppose first that T is known and the source condition is satisfied for some β > 0
(Assumption 2.1). In the result below we consider the estimator of ϕ that is given by the
unique minimizer

ϕ̂βα = arg inf
φ
{‖Tφ− r̂‖2 + α‖(T ?T )−β/2φ‖2}, (3.1)

for a given regularization parameter α > 0. This estimator is unfeasible as long as T
is unknown, but it can be considered as an ideal estimator and it is worth studying its
properties. Due to the particular penalty function considered here, the solution is forced
to satisfy the source condition. We therefore say that the norm is “stronger” than the L2

norm because it reflects an a priori knowledge about the solution ϕ. To illustrate this, we
can consider the situation of Example 2.1. In that example, the modified penalty imposes
that the solution is (γβ) times weakly differentiable.

The resulting estimator is equivalently given by:

ϕ̂βα =
(
αI + (T ?T )β+1

)−1
(T ?T )βT ?r̂.

The following result derives the rate of convergence of this estimator, which is found to
be the optimal minimax rate of convergence.
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Theorem 3.1. Suppose there exists a function ψ ∈ L2[0, 1]p such that ϕ = (T ?T )β/2ψ for
some β > 0. Let ϕ̂βα be the minimizer of the penalized functional (3.1). If the regularization
parameter α is chosen as

α = C E‖r̂ − r‖2,

for any constant C, then we obtain

E‖ϕ̂βα − ϕ‖2 = O
(
{E‖r̂ − r‖2}

β
β+1

)
.

That result shows that the saturation effect does not occur when the penalty is adapted
to the source condition. Of course, a drawback is that this penalty function depends on the
operator T which is unknown in practice. The next result considers the feasible situation
where the penalty does not involve T .

3.2 Convergence with a Sobolev penalty

Consider the Sobolev space of periodic functions in L2[0, 1], that are defined for all s > 0 as

Hs =

{
g ∈ L2[0, 1] such that ‖g‖2s :=

∞∑
k=1

k2s〈g, ek〉2 <∞

}
where

ek =
√

2 sin [πx(k − 1/2)] . (3.2)

For integer m an equivalent definition of Hm is provided in terms of the weak derivatives
of its elements (e.g. Mair and Ruymgaart (1996)):

Hm =
{
g ∈ L2[0, 1] such that f (m−1) is absolutely continuous, f (m) ∈ L2[0, 1],

f (2j)(0) = f (2j)(1) = 0, j = 0, 1, . . . , b(m− 1)/2c
}
.

In terms of the weak derivatives of g, the Sobolev norm of g is equivalently defined as
‖g‖s = π−2s‖g(s)‖. The Sobolev space in L2[0, 1]p can be defined analogously for multivari-
ate functions. Its definition however involves a multi-index notation that complicates the
presentation of the result without adding any essential benefit. Therefore, in what follows,
we only present the results in the case of an univariate function ϕ. Note further that in
case s < 0 we define the Hilbert space Hs by completion with respect to the Hilbert space
norm ‖ · ‖s.

In the following, we consider a penalty given by the Sobolev norm. We derive the
optimal rate of convergence under the following assumption that determines a particular
connection between the operator T and the Sobolev norm.

Assumption 3.1. The operator T in the moment equation (2.1) is adapted to the Sobolev
spaces (Hs), that is there exists two constants 0 < d 6 D < ∞ and a number a > 0 such
that

d‖g‖−a 6 ‖Tg‖ 6 D‖g‖−a

for every g ∈ L2[0, 1].
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This formal constraint should be seen as an assumption on the joint distribution F

of (Y, Z,W ). We illustrate that assumption on the above examples. In Example 2.1 the
explicit form of the eigenvectors and eigenvalues actually impose a strong constraint on the
distribution F itself. In that example, we can see after some algebra that the operator T
is adapted to the Sobolev spaces with a = γ. Example 2.2 is an example where T is never
adapted, therefore the Normal case is not covered by the results of this section (see also
Remark 3.1 (iii) below).

Note also that Assumption 3.1 implies that the operator T is injective, that is the
solution ϕ is identified from the moment equation (2.1).

For a given p > 0, the estimator of ϕ with Hp penalty is now defined as the minimizer

ϕ̂p
α = arg inf

φ
{‖Tφ− r̂‖2 + α‖φ‖2p}. (3.3)

where the penalty ‖φ‖2p is now the norm in the Sobolev space Hp. In order to give an explicit
expression of this estimator we denote by T|p the operator T restricted on the functions in
Hp. By definition the operator T|p maps Hp[0, 1] to L2[0, 1]. Its adjoint is denoted by T ?|p
and is defined with respect to the inner product in Hp, that is

〈g, h〉p :=
∞∑
k=1

k2p〈g, ek〉〈h, ek〉.

Then the explicit solution to the minimization problem (3.3) is given by

ϕ̂p
α =

(
αI + T ?|pT|p

)−1
T ?|pr̂ .

We can now derive the rate of convergence of ϕ̂p
α.

Theorem 3.2. Assume that the solution ϕ of the moment equation (2.1) satisfies ‖ϕ‖p <∞
for some p > 0, and assume that the operator T is adapted to the Sobolev spaces with
a > 0 (Assumption 3.1). Let ϕ̂p

α be the minimizer of the penalized functional (3.3). If the
regularization parameter α is chosen as

α = C E‖r̂ − r‖2

for any strictly positive constant C and if −a ≤ s ≤ p then

E‖ϕ̂p
α − ϕ‖2s = O

(
{E‖r̂ − r‖2}

p−s
p+a

)
.

Remark 3.1. (i) The two conditions of the theorem are ‖ϕ‖p < ∞ and the adaptation
of T to the Sobolev spaces for some a > 0. When the operator T is adapted, the
condition ‖ϕ‖p < ∞ and the source condition (Assumption 2.1) are equivalent with
β = p/a.

(ii) The result of the theorem is about the asymptotic convergence in the Hs norm. In
particular, if s is an integer, Theorem 3.2 also give the rate of convergence of the sth
derivative of ϕ. Convergence in the L2 norm corresponds to s = 0. As β = p/a, the
optimal minimax rate of convergence is found for every β > 0 (no saturation effect).
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(iii) The fact that the Normal situation of Example 2.2 is not covered by this result has
important consequences in practice. If the variables (Y,Z,W ) are normaly distributed,
the operator is not adapted and the polynomial rate of convergence derived above
cannot be reached. It is known that the minimax-optimal rate of convergence over
the class Hp is logarithmic in that situation, and is reached by a simple penalized
estimator with L2 penalty (without any saturation effect). The conclusion of this
example is that a Sobolev penalty does not improve the convergence in the Normal
model when ϕ is in the class Hp.

(iv) Consider again the Normal situation of Example 2.2. For these variables, the source
condition (T ?T )−β/2ϕ ∈ L2[0, 1] for some β > 0 implies that ϕ is infinitely differen-
tiable and therefore ϕ satisfies the moment equation r = T|pϕ for all p > 0. Moreover
we can see after some algebra that if the source condition (T ?T )−β/2ϕ ∈ L2[0, 1] holds
for some β > 0, then (T ?|pT|p)−ν/2ϕ ∈ L2[0, 1] for any p > 0 and ν < β. In that

situation for any p > 0 with (T ?|pT|p)−β/2ϕ ∈ L2[0, 1], Theorem 2.1 gives the optimal

rate of convergence E‖ϕ̂p
α−ϕ‖2p = O

(
{E‖r̂ − r‖2}β/(β+1)

)
when β ≤ 2, while if β > 2

the saturation effect occurs, i.e., E‖ϕ̂p
α − ϕ‖2p = O

(
{E‖r̂ − r‖2}2/3

)
. The conclusion

of this example is that a Sobolev penalty does not allow to overcome the saturation
effect in the Normal setting.

In the case where T is unknown, let T̂ be an estimator from a sample of observations.
In the next general result, we still assume that T is adapted to the Sobolev spaces. The
estimator is given by

ϕ̂p
α = arg inf

φ:‖φ‖p<∞
{‖T̂ φ− r̂‖2 + α‖φ‖2p}. (3.4)

and is explicitly given by

ϕ̂p
α =

(
αI + T̂ ?|pT̂|p

)
T̂ ?|pr̂

The following result extends the previous theorem.

Theorem 3.3. Assume that the minimal norm solution ϕ+ satisfies ‖ϕ+‖p <∞ for some
p > 0, and assume that the operator T is adapted to the Sobolev spaces with a > 0 (Assump-
tion 3.1). Moreover assume there exists two constants C1 and C2 such that the estimators
r̂ and T̂ fulfill E‖r̂ − r‖4 6 C1(E‖r̂ − r‖2)2 and E‖T̂ − T‖4 6 C2(E‖T̂ − T‖2)2. Let ϕ̂p

α be
the minimizer of the penalized functional (3.4). If the regularization parameter α is chosen
as

α = C
(
E‖r̂ − r‖2 + E‖T̂ − T‖2

)
for any strictly positive constant C and if −a 6 s 6 p, then

E‖ϕ̂s
α − ϕ‖2s = O

(
{E‖r̂ − r‖2 + E‖T̂ − T‖2}

p−s
p+a

)
.

As we have already mentioned, although the assumption of adaptation of T to Sobolev
space is convenient and allows to derive fast optimal rates of convergence, it is an strong
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constraint for many practical situations. In particular, when T is not injective, that as-
sumption is not satisfied. It is also not fulfilled in the Normal setting of Example 2.2 (cf.
Remark 3.1 (iii)).

The next section derives rates of convergence when that condition is relaxed.

4 The effect of a stronger penalization in the nonidentified

case

Even if the operator T is not injective, we might want to use a Sobolev-type of penalty if
our economic interest is for instance to focus on the mth derivative, if it exists.

For some s > 0, we therefore define the minimal Hs norm solution among the least-
squares solutions as the function ϕ+

s such that ‖ϕ+‖s 6 ‖ϕ‖s for all least-square solution ϕ
of the moment equation (2.1).

Here again, existence of this solution can be characterized in terms of the operator T .
This solution exists if and only if r ∈ R(T|s)⊕R(T )⊥, where T|s denotes the restriction of
T on the Sobolev space Hs.

We again consider the functional (3.4) with Sobolev penalty. However, note that it is
not obvious that the minimizer defined by

ϕs
α = arg inf

φ
{‖Tφ− r‖2 + α‖φ‖2s}

converges to a solution. Locker and Prenter (1980) showed that the minimizer ϕs
α actually

converges to ϕ+
s ∈ Hs, as the regularization parameter α tends to zero. Moreover, they

proved that ‖ϕs
α‖ → ∞ if there does not exist a least-squares solution in Hs.

Theorem 4.1. Suppose there exists a function ψ ∈ Hs such that the minimal Hs norm least-
squares solution satisfies the source condition ϕ+

s = (T ?|sT|s)
β/2ψ for some β > 0. Suppose

also there exists a positive, finite constant K such that E‖T̂ − T‖4 6 K(E‖T̂ − T‖2)2. Let
ϕ̂s
α be the minimizer of the penalized functional (3.4).

If 0 6 β 6 2 and if the regularization parameter α is chosen as

α = C
(
{E‖r̂ − r‖2 + E‖T̂ − T‖2}

1
1+β

)
for any strictly positive constant C, then the rate of convergence of ϕ̂s

α is

E‖ϕ̂s
α − ϕ+

s ‖2s = O(E‖r̂ − r‖2 + E‖T̂ − T‖2)
β
β+1 .

If β > 2 and if the regularization parameter α is chosen as

α = C
(
{E‖r̂ − r‖2 + E‖T̂ − T‖2}

1
3

)
for any strictly positive constant C, then the rate of convergence of ϕ̂s

α is

E‖ϕ̂s
α − ϕ+

s ‖2s = O(E‖r̂ − r‖2 + E‖T̂ − T‖2)
2
3 .

To understand that result consider e.g. the case s = 1. There we are interested to
estimate the solution ϕ+

1 whose first derivative has minimal L2 norm. Theorem 4.1 derives
the rate of convergence of the first derivative of the estimator, to the first derivative of ϕ+

1 .
Note also that we rediscover a saturation effect in this theorem. Therefore the rate of

convergence is optimal in the minimax sense only if β 6 2.
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5 Discussion

Considering derivatives in the penalty of the Tikhonov estimator is a well studied technique
in the nonparametric literature. In nonparametric instrumental regression the operator to
be inverted is the conditional expectation and has to be estimated from data. Considering
derivatives in the penalty when the operator is estimated is theoreticaly less clear and is an
open topic of econometrics.

The first main result of this paper is to show that if the operator of the inverse problem is
adapted to the space of differentiable functions (Sobolev spaces) then the Tikhonov estima-
tor penalized by derivatives can reach optimal rates of convergence (Theorem 3.3). These
rates of convergence are considered in the L2 norm as well as the L2 norm of the deriva-
tives. Moreover, the adaptation of the operator is a sufficient condition of identification
(Assumption 3.1).

This paper also argue that the adaptivity assumption on the operator is restrictive.
In particular, it does not allow the endogeneous variables and instruments to be normally
distributed. Therefore, we also study the convergence of the estimator when this adaptivity
condition does not hold. Because the solution is not necessarily identified, we study the
convergence to the minimal norm solution, and we show that the penalized estimator is
optimal only if the regression function is not too regular compared with the smoothness of
the operator (Theorem 4.1 with β < 2).

A Proofs

The first lemma collects a set of useful inequalities on the operator norm that are used in our proofs.
Note also that, in what follows, we write A . B when there exists a positive, finite constant c that
does not depend on A,B and is such that A 6 cB.

Lemma A.1. Let K : H → G be a linear operator defined between the two Hilbert spaces H and G,
and let K? be the adjoint operator of K. Then, for all α > 0, the following bounds on the operator
norm holds true:

‖α(αI +K?K)(K?K)γ‖ 6

{
αγ if 0 < γ 6 1

‖K?K‖γ−1α if γ > 1
, (A.1)

‖(αI +K?K)−1K?‖ = ‖K(αI +K?K)−1‖ . 1/
√
α , (A.2)

‖αI +K?K‖ 6 1/α , (A.3)

‖K(αI +K?K)−1K?‖ 6 1 , (A.4)

‖K[I − (αI +K?K)−1K?K]‖ .
√
α , (A.5)

‖I − (αI +K?K)−1K?K‖ 6 1 . (A.6)

Proof. By definition of the operator norm for selfadjoint operators, and by straightforward algebra,
we can write for γ 6 1:

‖α(αI +K?K)(K?K)γ‖ = sup
λ∈σ(K?K)

(
αλγ

α+ λ

)
6 αγ

where σ(K?K) denotes the spectrum of the operator K?K. If γ > 1, we have

‖α(αI +K?K)(K?K)γ‖ = sup
λ∈σ(K?K)

(
λγ−1 αλ

α+ λ

)
6 α sup

λ∈σ(K?K)

(
λγ−1

)
= α‖K?K‖γ−1
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for all α > 0. This proves the first inequality. To prove the second inequality, we first notice that
‖K(αI +K?K)−1‖ = ‖(K?K)1/2(αI +K?K)−1‖ and then proceed similarly:

‖(K?K)1/2(αI +K?K)−1‖ = sup
λ∈σ(K?K)

( √
λ

α+ λ

)
6 1/

√
α

for all α > 0. The other inequalities are directly derived from (A.1). �

Proof of Theorem 2.1. The proof is a straightforward generalization of the standard proof when
ϕ is identified, and we give its main lines for the sake of completeness. We start from the standard
decomposition of the loss between the bias term and the stochastic term:

‖ϕ+ − ϕ̂α‖2 . ‖ϕ+ − ϕα‖2 + ‖ϕα − ϕ̂α‖2

where ϕα = (αI + T ?T )−1T ?r is called the regularized solution. Using also T ?r = T ?Tϕ+ and the
source condition (ϕ+ = (T ?T )β/2ψ) the bias term is bounded as follows:

‖ϕ+ − ϕα‖2 = ‖(T ?T )β/2ψ − (αI + T ?T )−1T ?T (T ?T )β/2ψ‖2

6 ‖ψ‖2‖{I − (αI + T ?T )−1T ?T}(T ?T )β/2‖2

where the last norm is now the norm on operators. Note that I−(αI+T ?T )−1T ?T = α(αI+T ?T )−1.
Therefore, Lemma A.1, (A.1), implies that the bias term is bounded by αmin(β,2).

An expansion of ϕ̂α and ϕα in the stochastic term leads to the bound

‖ϕ̂α − ϕα‖2 . ‖(αI + T ?T )−1T ?‖2 · ‖r − r̂‖2 (A.7)

where the first factor is a norm over operators. This norm is equal to the norm of the adjoint
operator, that is ‖(αI + T ?T )−1T ?‖2 = ‖T (αI + T ?T )−1‖2 6 1/α by Lemma A.1, inequality (A.2).
Therefore the stochastic term (A.7) is bounded by ‖r − r̂‖2/α. The final result follows. �

Lemma A.2. Let χ be a random function and K be a linear, compact operator between Hilbert spaces.

1. If E‖χ‖2 . (E‖(K?K)β/2χ‖2)1/2 with 0 < β 6 1, then

(E‖χ‖2)1/β . E‖Kχ‖2(E‖(K?K)β/2χ‖2)−1/2.

2. If E‖(K?K)−β/2χ‖2 . 1 with β > 0, then E‖(K?K)−s/2χ‖2 . (E‖Kχ‖2)(β−s)/(1+β) for all s

such that −1 6 s 6 β.

Proof. Let {λi, gi} denote the eigenvalue decomposition of K?K, where (λi)i is a sequence of
strictly positive eigenvalues of K?K. Define the function Φ(t) := t1/β , t > 0 which is convex for all
0 < β ≤ 1. By Jensen’s inequality,(E‖(K?K)β/2χ‖2

E‖χ‖2
) 1
β

= Φ
(∑

i λ
β
i E〈χ, gi〉2∑
i E〈χ, gi〉2

)
6

∑
i Φ(λβi )E〈χ, gi〉2∑

i E〈χ, gi〉2
=
∑
i λiE〈χ, gi〉2∑
i E〈χ, gi〉2

=
E‖Kχ‖2

E‖χ‖2
.

We multiply this inequality by E‖χ‖2/E‖(K?K)β/2χ‖2 and obtain(E‖(K?K)β/2χ‖2

E‖χ‖2
) 1−β

β

6
E‖Kχ‖2

E‖(K?K)β/2χ‖2
.
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Moreover, we have (E‖(K?K)β/2χ‖2)1/4 . (E‖(K?K)β/2χ‖2)1/2/(E‖χ‖2)1/2 by using that E‖χ‖2 .
(E‖(K?K)β/2χ‖2)1/2. Consequently, it follows(

E‖(K?K)β/2χ‖2
) 1−β

2β
.

E‖Kχ‖2

E‖(K?K)β/2χ‖2

and hence by multiplying with (E‖(K?K)β/2χ‖2)1/2 it follows

(E‖(K?K)β/2χ‖2)
1
2β .

E‖Kχ‖2

(E‖(K?K)β/2χ‖2)1/2
,

which by using again E‖χ‖2 . (E‖(K?K)β/2χ‖2)1/2 implies the first result.
The proof of the second result is similar, we only give a sketch. The function Ψ(t) := t(1+β)/(β−s), t >

0 which is convex for all −1 6 s < β and, by similar arguments, we have that(E‖(K?K)−s/2χ‖2

E‖(K?K)−β/2χ‖2
) 1+β
β−s

=
E‖Kχ‖2

E‖(K?K)−β/2χ‖2
.

The same manipulations as above gives the second result �

Proof of Theorem 2.2. If we denote ϕ+
α = (αI + T ?T )−1T ?Tϕ+ the “regularized minimal norm

solution”, we use the decomposition ϕ̂α − ϕ+ = E1 + E2 + E3 where

E1 = (αI + T̂ ?T̂ )−1
(
T̂ ?r̂ − T̂ ?T̂ϕ+

)
,

E2 = ϕ+
α − ϕ+ ,

E3 = (αI + T̂ ?T̂ )−1T̂ ?T̂ϕ+ − (αI + T ?T )−1T ?Tϕ+ .

The term E‖E1‖2 is bounded using the inequality (A.2) of Lemma A.1:

‖E1‖2 . ‖(αI + T̂ ?T̂ )−1T̂ ?‖2 · ‖r̂ − T̂ϕ+‖2

. (‖r̂ − r‖2 + ‖T̂ − T‖2)/α.

In order to bound the two other terms, we need to consider the two cases where β > 1 and 0 < β 6 1.
In both cases we will show that

E‖E2 + E3‖2 . αmin(β,2) + E‖T̂ − T‖2/α+ (E‖T − T̂‖2)β . (A.8)

Choosing α as in the statement of the theorem will lead to the result.
(i) Consider the case β > 1. The term E2 is the bias term, that we bound as in the proof of

Theorem 2.1:

‖E2‖2 .

{
αβ if β < 2

α2 if β > 2.

In order to control the last term, we first note that ϕ+
α − ϕ+ = −α(αI + T ?T )−1ϕ+ and therefore

E3 = α
{

(αI + T̂ ?T̂ )−1 − (αI + T ?T )−1
}
ϕ+

= (αI + T̂ ?T̂ )−1
(
T ?T − T̂ ?T̂

)
(ϕ+
α − ϕ+).

Note that in the last factor the regularization bias E2 appears. Using the preceeding bound on E2

together with inequality (A.3), we get E‖E3‖2 . 1
α2 ·E‖T ?T − T̂ ?T̂‖2 ·αmin(β,2). Note that for β > 1,

αmin(β,2)/α = o(1) if α = o(1) for all β > 1. The assumption E‖T̂ −T‖4 . (E‖T̂ −T‖2)2 implies that
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E‖T̂ ?T̂ − T ?T‖2 . E‖T̂ − T‖2(1 + E‖T̂ − T‖2) = O(E‖T̂ − T‖2) provided that E‖T̂ − T‖2 = o(1).
The inequality (A.8) follows now by combination of the last bounds.

(ii) Let 0 < β 6 1 and write E23 = E2 + E3 = −R̂αϕ+ where R̂α := [I − (αI + T̂ ?T̂ )−1T̂ ?T̂ ].
The idea of the proof is to apply the first result of Lemma A.2, which implies

(E‖E23‖2)1/β . E‖TE23‖2(E‖(T ?T )β/2E23‖2)−1/2 (A.9)

provided that

E‖E23‖2 . (E‖(T ?T )β/2E23‖2)1/2. (A.10)

We first check (A.10) . Following inequality (A.6) of Lemma A.1 we note that ‖R̂1/2
α ‖ 6 1. Therefore

we can write

‖E23‖2 = ‖R̂αϕ+‖2 6 ‖R̂1/2
α ϕ+‖2 = 〈R̂αϕ+, ϕ+〉 = 〈(T ?T )β/2E23, (T ?T )−β/2ϕ+〉. (A.11)

By the source condition (ϕ+ = (T ?T )β/2ψ) and the Cauchy-Schwarz inequality, the last term is
bounded by ‖(T ?T )β/2E23‖ and thus we get (A.10).

It remains to evaluate the right hand side of (A.9). From (A.11) together with inequality (A.2)
of Lemma A.1 it follows

‖T̂E23‖2 = ‖T̂ R̂αϕ+‖2 = ‖(T̂ ?T̂ )1/2R̂αϕ+‖2 6 α‖R̂1/2
α ϕ+‖2 . α‖(T ?T )β/2E23‖

and hence E‖T̂E2‖2 . α(E‖(T ?T )β/2E2‖2)1/2. Using (A.10) and again the Cauchy Schwarz inequal-
ity, we get

E‖(T − T̂ )E23‖2 6 E‖(T − T̂ )‖2‖E23‖2 . (E‖T − T̂‖4)1/2(E‖(T ?T )β/2E23‖2)1/2. (A.12)

Therefore

E‖TE23‖2 . E‖(T − T̂ )E23‖2 + E‖T̂E23‖2

.
{

(E‖T − T̂‖4)1/2 + α
}

(E‖(T ?T )β/2E23‖2)1/2.

that provides the necessary bound for (A.9) implying the expected inequality (A.8). �

Proof of Theorem 3.1. If we define the operator Tβ = T (T ?T )β/2, we can rewrite the estimator
as

ϕ̂βα = (αI + T ?βTβ)−1(T ?T )β/2T ?β r̂ = (T ?T )β/2(αI + T ?βTβ)−1T ?β r̂

and moreover we define

ϕβα = (T ?T )β/2(αI + T ?βTβ)−1T ?βTϕ.

Then using the source condition ϕ = (T ?T )β/2ψ, we easily verify that ϕ̂βα and ϕβα satisfy

T (ϕ̂βα − ϕβα) = Tβ(αI + T ?βTβ)−1T ?β (r̂ − r),
T (ϕ− ϕβα) = Tβ [I − (αI + T ?βTβ)−1T ?βTβ ]ψ,

(T ?T )−β/2(ϕ̂βα − ϕβα) = (αI + T ?βTβ)−1T ?β (r̂ − r),

(T ?T )−β/2(ϕ− ϕβα) = [I − (αI + T ?βTβ)−1T ?βTβ ]ψ.

Using Lemma A.1 together with the triangle inequality we obtain

E‖T (ϕ̂βα − ϕ)‖2 . E‖r̂ − r‖2 + α‖ψ‖2 = (α−1E‖r̂ − r‖2 + ‖ψ‖2)α,

E‖(T ?T )−β/2(ϕ̂βα − ϕ)‖2 . α−1E‖r̂ − r‖2 + ‖ψ‖2.
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Using α = C E‖r̂−r‖2 the last bounds simplify to E‖T (ϕ̂βα−ϕ)‖2 = O(E‖r̂−r‖2) and E‖(T ?T )−β/2(ϕ̂βα−
ϕ)‖2 = O(1). With Lemma A.2 we finally obtain

E‖(ϕ̂βα − ϕ)‖2 = O
(
{E‖T (ϕ̂βα − ϕ)‖2}

β
β+1

)
= O

(
{E‖r̂ − r‖2}

β
1+β

)
which proves the Theorem. �

In order to prove the next results, we introduce the operator L that is defined by Lf :=∑∞
k=1 k

2〈f, ek〉ek, where {ek} is the orthonormal system of trigonometric functions (cf. (3.2)).
The operator L is a densely defined, unbounded, self-adjoint, strictly positive operator in L2[0, 1].
We denote by D(L) the domain of L and R(L) denotes its range. The operator Ls/2 is defined by
Ls/2f :=

∑∞
k=1 k

s〈f, ek〉ek and it generates the Sobolev spaces Hs, that is Hs = D(Ls/2). Moreover,
Hs endowed with the inner product 〈f, g〉s := 〈Ls/2f, Ls/2g〉 is a Hilbert space. The associated norm
is given by ‖f‖s = ‖Ls/2f‖ and satisfies ‖f‖m = π−2m‖f (m)‖ for every integer m.

Lemma A.3. Let K be a linear operator between Hilbert space such that ‖h‖−a . ‖Kh‖ for some
a > 0 and for every function h ∈ L2[0, 1]. If χ is a random function such that E‖χ‖2p . 1 with p > 0,
then for all −a 6 s 6 p the inequality E‖χ‖2s . (E‖Kχ‖2)(p−s)/(a+p) holds true.

Proof. Define the function Ψ(t) := t(a+p)/(p−s), t > 0 which is convex for all −a 6 s < p. Due to
Jensen’s inequality we obtain(E‖χ‖2s

E‖χ‖2p

) a+p
p−s

= Ψ
(∑

k k
−2(p−s)k2pE〈χ, ek〉2∑
k k

2pE〈χ, ei〉2
)
6

∑
k Ψ(k−2(p−s))k2pE〈χ, ek〉2∑

k k
2pE〈χ, ek〉2

=
E‖χ‖2−a

E‖χ‖2p
.

E‖Kχ‖2

E‖χ‖2p
.

We multiply this inequality by E‖χ‖2p/E‖χ‖2s and obtain

(E‖χ‖2s
E‖χ‖2p

) a+s
p−s

6
E‖Kχ‖2

E‖χ‖2s
.

From E‖χ‖2p . 1 we have E‖χ‖2s . E‖χ‖2s/E‖χ‖2p. Consequently, we obtain

(E‖χ‖2s)
a+p
p−s . E‖χ‖2s

(E‖χ‖2s
E‖χ‖2p

) a+s
p−s

. E‖Kχ‖2,

which proves the result. �

Proof of Theorem 3.2. If we define the operator Tp = TL−p/2, we can rewrite the estimator as
ϕ̂p
α = L−p/2(αI + T ?p Tp)−1T ?p r̂. Moreover, define ϕp

α := L−p/2(αI + T ?p Tp)−1T ?p Tϕ. We easily check
the following identities:

T (ϕ̂p
α − ϕp

α) = Tp(αI + T ?p Tp)−1T ?p (r̂ − r),

T (ϕ− ϕp
α) = Tp[I − (αI + T ?p Tp)−1T ?p Tp]Lp/2ϕ,

Lp/2(ϕ̂p
α − ϕp

α) = (αI + T ?p Tp)−1T ?p (r̂ − r),

Lp/2(ϕ− ϕp
α) = [I − (αI + T ?p Tp)−1T ?p Tp]Lp/2ϕ.

Using Lemma A.1 together with the triangle inequality we obtain

E‖T (ϕ̂p
α − ϕ)‖2 . E‖r̂ − r‖2 + α‖ϕ‖2p = (α−1E‖r̂ − r‖2 + ‖ϕ‖2p)α,

E‖ϕ̂p
α − ϕ‖2p . α−1E‖r̂ − r‖2 + ‖ϕ‖2p.
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Using α = CE‖r̂−r‖2 the last bounds simplify to E‖T (ϕ̂p
α−ϕ)‖2 = O(E‖r̂−r‖2) and E‖ϕ̂p

α−ϕ‖2p =
O(1). With Lemma A.3 we finally obtain

E‖ϕ̂p
α − ϕ‖2s = O

(
{E‖T (ϕ̂p

α − ϕ)‖2}
p−s
p+a

)
= O

(
{E‖r̂ − r‖2}

p−s
a+p

)
which proves the Theorem. �

Proof of Theorem 3.3. Define the operators Tp = TL−p/2 and T̂p = T̂L−p/2, and rewrite
the estimator as ϕ̂p

α = L−p/2(αI + T̂ ?p T̂p)−1T̂ ?p r̂. We also define ϕp
α := L−p/2(αI + T̂ ?p T̂p)−1T̂ ?p T̂ϕ.

Therefore we directly check

T (ϕ̂p
α − ϕp

α) = Tp(αI + T̂ ?p T̂p)−1T̂ ?p (r̂ − T̂ϕ),

T (ϕ− ϕp
α) = Tp[I − (αI + T̂ ?p T̂p)−1T̂ ?p T̂p]Lp/2ϕ,

Lp/2(ϕ̂p
α − ϕp

α) = (αI + T̂ ?p T̂p)−1T̂ ?p (r̂ − T̂ϕ),

Lp/2(ϕ− ϕp
α) = [I − (αI + T̂ ?p T̂p)−1T̂ ?p T̂p]Lp/2ϕ.

Using Lemma A.1 together with the triangle inequality we obtain

E‖ϕ̂p
α − ϕ‖2p . α−1E‖r̂ − T̂ϕ‖2 + ‖ϕ‖2p.

and moreover we have

E‖T̂ (ϕ̂p
α − ϕ)‖2 . E‖r̂ − T̂ϕ‖2 + α‖ϕ‖2p

and

E‖(T − T̂ )(ϕ̂p
α − ϕ)‖2 . (E‖(T̂p − Tp)?(T̂p − Tp)‖2)1/2(E‖ϕ̂p

α − ϕ‖4p)1/2

. (E‖(T̂p − Tp)?(T̂p − Tp)‖2)1/2{α−1(E‖r̂ − T̂ϕ‖4)1/2 + ‖ϕ‖2p}.

Combining all these bounds we obtain

E‖T (ϕ̂p
α − ϕ)‖2 . E‖(T − T̂ )(ϕ̂p

α − ϕ)‖2 + E‖T̂ (ϕ̂p
α − ϕ)‖2

.
{
α−1(E‖(T̂p − Tp)?(T̂p − Tp)‖2)1/2{α−1(E‖r̂ − T̂ϕ‖4)1/2 + ‖ϕ‖2p}

+ α−1E‖r̂ − T̂ϕ‖2 + ‖ϕ‖2p
}
· α

Using α = C max((E‖(T̂p − Tp)?(T̂p − Tp)‖2)1/2, (E‖r̂ − T̂ϕ‖4)1/2,E‖r̂ − T̂ϕ‖2) the last bounds
simplify to

E‖T (ϕ̂p
α − ϕ)‖2 . max((E‖(T̂p − Tp)?(T̂p − Tp)‖2)1/2, (E‖r̂ − T̂ϕ‖4)1/2,E‖r̂ − T̂ϕ‖2),

E‖ϕ̂p
α − ϕ‖2p . 1.

Applying now Lemma A.3 we obtain

E‖ϕ̂p
α − ϕ‖2s . (E‖T (ϕ̂p

α − ϕ)‖2)(p−s)/(p+a)

. max((E‖(T̂p − Tp)?(T̂p − Tp)‖2)1/2, (E‖r̂ − T̂ϕ‖4)1/2,E‖r̂ − T̂ϕ‖2)(p−s)/(p+a),

which proves the result under the moment conditions stated in the Theorem. �

Proof of Theorem 4.1. Using the definition of the operator L, it is easy to show that T ?|s = L−sT ?.
We proceed now as in the proof of Theorem 2.2. If we denote ϕs

α = (αI + T ?|sT|s)−1T ?|sT|sϕ
+
s the
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“regularized minimal Hs norm solution”, we use the decomposition ϕ̂s
α−ϕ+

s = E1 +E2 +E3 where

E1 = (αI + T̂ ?|sT̂|s)−1
(
T̂ ?|sr̂ − T̂

?
|sT̂|sϕ

+
s

)
,

E2 = ϕs
α − ϕ+

s ,

E3 = (αI + T̂ ?|sT̂|s)−1T̂ ?|sT̂|sϕ
+ − (αI + T ?|sT|s)−1T ?|sT|sϕ

+
s .

The term E‖E1‖2 is bounded using the inequality (A.4) of Lemma A.1:

E‖E1‖2s . sup
φ∈L2[0,1]q
‖φ‖≤1

‖(αI + T̂ ?|sT̂|s)−1T̂ ?|sφ‖
2
s · ‖r̂ − T̂|sϕ+

s ‖2

. (‖r̂ − r‖2 + ‖T̂ − T‖2)/α.

We now show that

E‖E2 + E3‖2s . αmin(β,2) + E‖T̂ − T‖2/α+ (E‖T − T̂‖2)β . (A.13)

which will prove the result from the appropriate choice of α.
The proof of (A.13) follows the lines of the proof of Theorem 2.2. The L2 norms are essentialy

replaces by norms in Hs and we only give below the missing arguments in order to conclude the
proof.

(i) When β > 1, we similarly get the bounds ‖E2‖2s . αmin(β,2) and

‖E3‖2s .
1
α2
· sup
φ∈Hs

‖φ‖s≤1

‖(T ?|sT|s − T̂
?
|sT̂|s)φ‖2s · αmin(β,2)

Because T ?|s = L−sT ?, we have that sup‖φ‖s≤1 ‖(T ?|sT|s−T̂
?
|sT̂|s)φ‖2s . ‖T ?T−T̂ ?T̂‖2 and we conclude

as in the proof of Theorem 2.2.
(ii) When 0 < β 6 1, only the inequalities (A.12) have to be modified as follows:

‖(T − T̂ )E23‖2s 6 ‖E23‖2s · sup
φ∈Hs

‖φ‖s≤1

‖(T|s − T̂|s)φ‖2s . ‖E23‖2s · ‖T − T̂‖2

that implies

E‖(T − T̂ )E23‖2s .
(
‖(T ?|sT|s)β/2E23‖2s

)1/2 (
E‖T − T̂‖4

)1/2

and the conclusion follows. �
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