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Abstract

We introduce the hair-plot to visualize influential observations in dependent data. It con-

sists of all trajectories of the value of an estimator when each observation is modified in turn

by an additive perturbation. We define two measures of influence: the local influence which

describes the rate of departure from the original estimate due to a small perturbation of

each observation; and the asymptotic influence which indicates the influence on the original

estimate of the most extreme contamination for each observation. The cases of estimators

defined as quadratic forms or ratios of quadratic forms are investigated in detail. Sample

autocovariances, covariograms and variograms belong to the first case. Sample autocorrela-

tions, correlograms, and indices of spatial autocorrelation such as Moran’s I belong to the

second case. We illustrate our approach on various datasets from time series analysis and

spatial statistics.
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1 Introduction

Consider an estimator θ̂(Z) of a parameter θ based on a data vector Z = (Z1, . . . , Zn)T. In

order to study influential observations on this estimator, we define a perturbation of Z by

Z[i, ζ] = Z + ζei, where ei has a nonzero component only at index i, at which it is 1, and ζ

represents the value of the perturbation. The effect of influential observations can be visual-

ized with a plot of each θ̂(Z[i, ζ]), i = 1, . . . , n, as a function of ζ. We coin such a graphical

representation a hair-plot. A hair-plot is a version of the empirical influence function with

replacement (see Hampel et al., 1986, page 93) and with a particular parameterization of

the perturbation. The perturbation ζ is added to the original sample so that at ζ = 0, the

original value θ̂(Z) is recovered for any i = 1, . . . , n. Typically ζ is a real number but for

certain applications, such as for a positive variable, the range of ζ can be restricted to ensure

sensible values of the variable of interest. Note that in the case of dependent data, the ver-

sion of the empirical influence function with replacement of an observation is preferable to

the one with addition of an observation. Indeed, in the context of time series or spatial data,

there is no obvious way to define a new instant or a new location of observation. This is in

contrast to the classical case of independent and identically distributed (i.i.d.) observations

where such an issue does not arise.

Associated to the hair-plot, two influential measures are then of interest. First, we define

the local influence of the i-th observation on the estimator θ̂(Z) as

τi(θ̂,Z) =
∂

∂ζ
θ̂(Z[i, ζ])

∣∣∣
ζ=0

. (1)

It describes the rate of departure from the value θ̂(Z) for each observation due to a small

perturbation. Hence, the most influential observations correspond to the largest absolute

values of τi(θ̂,Z). Second, we define the asymptotic influence of the i-th observation on the
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estimator θ̂(Z) as

νi(θ̂,Z) = lim
ζ→∞

θ̂(Z[i, ζ]). (2)

It indicates the influence on the value θ̂(Z) of the most extreme contamination for each

observation. Note that in general the function θ̂(Z[i, ζ]) of ζ depends on i, the exception

being the case where θ̂ is the sample mean or a function of it, as we show next.

Proposition 1. Let f be a function from Rn into R such that for any z1, z2, . . . , zn in R,

any i, j = 1, . . . , n and ζ in R,

f(z1, . . . , zi−1, zi + ζ, zi+1, . . . , zj, . . . , zn) = f(z1, . . . , zi, . . . , zj−1, zj + ζ, zj+1, . . . , zn).

Then f is a function of
∑n

i=1 zi.

The proof of this result is given in the Appendix.

We have implemented a command hair.plot(data,thetahat,...) in R (R Develop-

ment Core Team, 2009) that is available from the authors upon request. It produces a

hair-plot and allows to identify each observation (i.e., each hair) in the plot. For illustration,

we consider a dataset of n = 91 monthly interest rates of an Austrian bank. Künsch (1984),

Ma and Genton (2000), Azzalini and Genton (2008), and Wang et al. (2009) have previously

studied this dataset in the context of robust time series analysis and noted the presence of

three large outliers for the months 18, 28 and 29. Because these authors have argued that

an autoregressive model of order one, AR(1), is appropriate for these data, we focus on the

lag-one sample autocorrelation r̂(1) = 0.78 obtained from

r̂(h) =

∑n−h
i=1 (Zi+h − Z̄)(Zi − Z̄)∑n

i=1(Zi − Z̄)2
, 0 ≤ h ≤ n− 1,

where Z̄ is the sample mean. The top panel of Figure 1 depicts the hair-plot of r̂(1) for

ζ ∈ [−3, 3] and allows to identify any curve, that is, any observation. It reveals that the

months 17, 18, 19 and 27, 30 are quite influential. The months 76 is also identified to be

somewhat influential.
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Figure 1: Hair-plot and disc-plot (for ζ > 0) of the lag-one sample autocorrelation r̂(1) on

the monthly interest rates dataset.
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The bottom panel of Figure 1 presents a disc-plot for ζ > 0 of the monthly interest rates

time series. The radii of the discs are proportional to the rate of departure from r̂(1) = 0.78

due to a small contamination at each observation. Open discs denote an increase of the value

r̂(1) whereas closed discs denote a decrease. The discs with large radii correspond to the

most influential observations. The months 4 and 76 are also seen to be somewhat influential.

The paper is organized as follows. In Section 2, we study the local and asymptotic

influence of estimators that are defined as quadratic forms in the data vector, whereas we

concentrate on ratios of quadratic forms in Section 3. Sample autocovariances, covariograms

and variograms belong to the former. Sample autocorrelations, correlograms, and indices of

spatial autocorrelation such as Moran’s I belong to the latter. In Section 4, we illustrate

our approach on applications to pollution data and to African conflict data. We end with

a discussion in Section 5 where we propose the use of the hair-plot on robust estimators for

dependent data. We also discuss extensions to the case of multiple simultaneous influential

observations.

2 Influence on Quadratic Forms

We study the effect of an influential observation on estimators defined as quadratic forms in

the data vector, that is, θ̂Q(Z,A) = ZTAZ, where A = (aij) is an n× n matrix. It follows

that, under the contamination scheme Z[i, ζ], we have:

θ̂Q(Z[i, ζ],A) = ZTAZ + (ZTAei + eT
i AZ)ζ + (eT

i Aei)ζ
2.

Therefore, the local and asymptotic influences (1) and (2) of the i-th observation are respec-

tively:

τi(θ̂Q,Z) = ZTAei + eT
i AZ, (3)

νi(θ̂Q,Z) = ∞.
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If the matrix A is symmetric, then the local influence reduces to τi(θ̂Q,Z) = 2aT
i Z where ai

is the i-th row of the matrix A.

In time series analysis, the sample autocovariance function is an important tool defined

at time lag h by

ĉ(h) =
1

n

n−h∑
i=1

(Zi+h − Z̄)(Zi − Z̄), 0 ≤ h ≤ n− 1.

It can also be expressed as a quadratic form in the vector of time series data. The corre-

sponding matrix is A = 1
n
HD(h)H where H = In− 1

n
1n1

T
n is the symmetric and idempotent

(H2 = H) centering matrix with In the n × n identity matrix and 1n the n-vector of ones.

The matrix D(h) = 1
2
(P(h) + P(h)T) is the temporal design matrix at lag h, where P(h) is

an n× n matrix with ones on the h-th upper diagonal and zeroes elsewhere, 1 ≤ h ≤ n− 1,

and P(0) = In, see Genton (1999). Therefore, the matrix A is symmetric and the lo-

cal influence of the i-th observation on the sample autocovariance function takes the form

τi(ĉ(h),Z) = 2aT
i Z with the j-th component of the vector ai given by:

aij =
1

n

{
dij(h)− 1

n
di·(h)− 1

n
d·j(h) +

1

n2
d··(h)

}
, (4)

where D(h) = (dij(h)) with di·(h) =
∑n

j=1 dij(h), d·j(h) =
∑n

i=1 dij(h), and d··(h) =

∑n
i=1

∑n
j=1 dij(h). Note that the local influence changes as a function of the temporal lag

h. From the particular form of the matrix D(h), it follows that d··(h) = n− h. Moreover, if

1 ≤ h ≤ bn
2
c then di·(h) = d·i(h) = 1 for h < i < n− h and di·(h) = d·i(h) = 1

2
otherwise. If

bn
2
c < h ≤ n− 1 then di·(h) = d·i(h) = 0 for h < i < n−h and di·(h) = d·i(h) = 1 otherwise.

Similarly in spatial analysis, the sample covariogram is defined by

ĉ(h) =
1

n

∑

(i,j)∈Nh

(Zi − Z̄)(Zj − Z̄),

where Nh is the set of spatial locations separated by the lag vector h. It can be rewritten

as a quadratic form in the vector of data with A = 1
n
HD(h)H where now h is a lag vector
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in space. Thus, the description of the matrix D(h) is more involved, but (4) still holds and

expressions for its terms can be derived. The sample variogram is an alternative tool for

measuring spatial dependence and is defined by:

2γ̂(h) =
1

|Nh|
∑

(i,j)∈Nh

(Zi − Zj)
2,

where |Nh| is the cardinality of the set Nh. It can also be defined as a quadratic form in the

vector of data with A = D∗(h). Here, the specific form of D∗(h) is different from the one

of D(h), see Genton (1998a), Gorsich et al. (2002), and Hillier and Martellosio (2006). The

local influence for the sample variogram is still given by (3) with D(h) replaced by D∗(h) in

(4).

3 Influence on Ratios of Quadratic Forms

We investigate the effect of an influential observation on estimators defined as a ratio of two

quadratic forms, for example such as the lag-one autocorrelation studied in the introduction.

Traditionally, the asymptotic influence of an observation has been to push the value of the

estimator to the edge of the parameter space. However, Genton and Lucas (2003, 2005)

and Genton (2003) have shown that this needs not be the case for time series and spatial

statistics settings. Instead, the estimator is sometimes pushed towards the center of the

parameter space by a single outlying value. In Figure 1 we have seen the behavior of the

lag-one autocorrelation for perturbations ζ within the interval [−3, 3]. How will an estimator

defined as a ratio of two quadratic forms based on the contaminated sample Z[i, ζ] be affected

when ζ becomes large?

To this end, we investigate the behavior of an estimator defined by

θ̂RQ(Z,A,B) =
ZTAZ

ZTBZ
,
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where A = (aij) and B = (bij) are n× n matrices, under the contamination scheme Z[i, ζ].

It follows that:

θ̂RQ(Z[i, ζ],A,B) =
ZTAZ + (ZTAei + eT

i AZ)ζ + (eT
i Aei)ζ

2

ZTBZ + (ZTBei + eT
i BZ)ζ + (eT

i Bei)ζ2
.

Therefore, the local and asymptotic influence of the i-th observation are respectively:

τi(θ̂RQ,Z) =
(ZTAei + eT

i AZ)(ZTBZ)− (ZTAZ)(ZTBei + eT
i BZ)

(ZTBZ)2
,

νi(θ̂RQ,Z) =
aii

bii

,

provided that bii 6= 0. Hence, the asymptotic influence on the estimator is dictated by the

ratio of the ii-th entries of the matrices A and B. If the matrices A and B are symmetric,

then the local influence reduces to

τi(θ̂RQ,Z) =
2

ZTBZ
(ai − θ̂RQbi)

TZ, (5)

where ai and bi are the i-th rows of the matrices A and B, respectively. We study these

quantities for various estimators below.

Returning to time series analysis, the sample autocorrelation function studied in the

introduction can be written as a ratio of quadratic forms in the data vector with A =

HD(h)H and B = H, where H and D(h) were defined in Section 2. Hence, its local influence

is given by (5) where ai and bi can be derived based on (4). Its asymptotic influence is simply

given by:

νi(r̂(h),Z) =
n− h− 2ndi·(h)

n(n− 1)
, (6)

where di·(h) is defined after (4). Note that limn→∞ νi(r̂(h),Z) = 0 for any observation i.

Similarly in spatial analysis, the sample correlogram can be written as a quadratic form in

the vector of data with A = HD(h)H and B = H, where now h is a lag vector in space.

The presence of spatial dependence in data on a lattice is often assessed by means of

a statistic such as Moran’s I (Moran, 1950). If Z = (Z1, . . . , Zn)T is a spatial sample of
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dimension n, that is Zi represents an observation at the location i on the lattice, then

Moran’s I is defined by

Î(Z) =

∑n
i=1

∑n
j=1 wij(Zi − Z̄)(Zj − Z̄)∑n

i=1(Zi − Z̄)2
, (7)

where the spatial structure matrix W = (wij) is of dimension n × n and contains nonneg-

ative weights describing the degree of interaction between neighbor locations in the plane.

The spatial structure matrix W does not need to be symmetric but can be transformed to

symmetry by (W+WT )/2 without changing the value of Moran’s I defined in (7). Usually,

the matrix W is obtained from a particular coding scheme in order to stabilize the het-

erogeneity resulting from different degrees of interaction between the spatial observations.

In particular, one can distinguish between the globally standardized C-coding scheme, the

row-sum standardized W -coding scheme, and the variance stabilizing S-coding scheme, see,

e.g., Tiefelsdorf (2000). For all three coding schemes, the resulting matrix W is such that

the sum of its elements is equal to n. The W -coding scheme is often used in practice and

implies that W1n = 1n. Under normality of Z, the expectation of Moran’s I under the

hypothesis of independence is given by E(Î(Z)) = −1/(n− 1), see, e.g., Cliff and Ord (1981,

p. 44).

For the case of Moran’s I defined in (7), we have again a ratio of quadratic forms in the

data vector with A = HWH and B = H. It follows that the local influence on Moran’s I

can be derived similarly to the correlogram above. Regarding the asymptotic influence, we

have aii = 1
n
(w··/n−w·i−wi·) and bii = 1−1/n, where w·· =

∑n
i=1

∑n
j=1 wij, w·i =

∑n
j=1 wji,

and wi· =
∑n

j=1 wij. Hence

νi(Î ,Z) =
1

n− 1

(
w··/n− w·i − wi·

)
. (8)

Consequently, as ζ → ∞, we have Î(Z[i, ζ]) → νi(Î ,Z) whatever the true value of I, i.e.,

whatever the realization of the uncontaminated sample Z. Moran’s I no longer conveys any
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useful information on I and the estimate is totally dictated by the contamination. Therefore,

according to Genton and Lucas (2003, 2005), the breakdown-point of Moran’s I defined in

(7) is zero. The precise value of the asymptotic influence νi(Î ,Z) given by (8) depends

on the coding scheme. For all three coding schemes listed above, we have w·· = n. By

noticing that 0 ≤ w·i + wi· ≤ n, we obtain for the C-coding and S-coding schemes that

−1 ≤ νi(Î ,Z) ≤ 1/(n − 1), whereas for the W -coding scheme we have −1 ≤ νi(Î ,Z) ≤ 0.

In the latter case, νi(Î ,Z) = −w·i/(n − 1). If the observations are collected on a regular

grid and the edge effects are neglected, then approximately we have w·i = 1. In this case,

Moran’s I estimator breaks down to −1/(n− 1), the expected value of Moran’s I under the

null hypothesis of independence, with one extreme contamination. Note that −1/(n− 1) is

not at the edge of the parameter space. In addition, the aforementioned behavior of Moran’s

I for large sample size n will break the estimator towards 0. For finite and infinite ζ, there

is dependence on W since ζ will affect several local averages depending on the structure of

W. Finally, note that when Z̄ = 0, we have A = W and B = In for Moran’s I, hence

aii = wii = 0 and bii = 1. Therefore, νi(Î ,Z) = 0 in that case for any n.

Li et al. (2007) have put forward an alternative closed-form measure of spatial auto-

correlation defined as an approximate profile likelihood estimator (APLE) of the spatial

dependence parameter of a spatial autoregressive (SAR) model. The estimator, a ratio of

two quadratic forms, is defined by

ÂPLE(Z) =
ZTH[(W + WT)/2]HZ

ZTH[WTW + tr(W2)In/n]HZ
, (9)

where tr(·) is the trace operator. Note that (9) is a slight extension of the original definition

of Li et al. (2007) who set Z̄ = 0. We claim also that their use of λTλ, where λ is the

explicit vector of eigenvalues of W, is unnecessary since λTλ = tr(W2). For the case of

APLE defined in (9), we have A = H[(W + WT)/2]H and B = H[WTW + tr(W2)In/n]H,

where again H is the centering matrix. Therefore, aii = 1
n
(w··/n − w·i − wi·) and bii =
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∑
k w2

ki + tr(W2)(n− 1)/n2 − 4(
∑

k wkiwk·)/n− 2(
∑

k w2
k·)/n

2. Hence

νi(ÂPLE,Z) =
w··/n− w·i − wi·

n
∑

k w2
ki + tr(W2)(n− 1)/n− 4(

∑
k wkiwk·)− 2(

∑
k w2

k·)/n
.

Here again, as ζ → ∞, we have ÂPLE(Z[i, ζ]) → νi(ÂPLE,Z) whatever the true value of

APLE, i.e., whatever the realization of the uncontaminated sample Z. Therefore, according

to Genton and Lucas (2003, 2005), the breakdown-point of the APLE statistic defined in

(9) is zero. It is more difficult to give bounds for νi(ÂPLE,Z) depending on the coding

scheme of W, but clearly for large n we have νi(ÂPLE,Z) → 0. When Z̄ = 0, we have

A = (W + WT)/2 and B = WTW + tr(W2)In/n for the APLE statistic, hence aii = 0 and

bii =
∑

k w2
ki + tr(W2)/n. Therefore, νi(ÂPLE,Z) = 0 in that case for any n.

4 Applications

4.1 Pollution Data

We consider the application of our methodology to the analysis of pollution levels arising

from the pumping of waste material into the English Channel and reported by Haining

(1990, p. 217). The dataset consists of reflectance values extracted from an aerial survey

and located on a regular 9×9 spatial lattice. High levels of pollution induce high reflectance

values. Following a previous study of this pollution data by Haining (1987), a linear trend

in the reflectance values is first removed, yielding residuals Z(s1, s2), s1, s2 = 1, . . . , 9. Our

interest is now in modeling the possible dependence structure in these residual values. To

this end, we compute the empirical variogram 2γ̂(h) at spatial lag distances h = 1, 2, 3, 4

assuming isotropy.

Genton and Ronchetti (2003) have noticed several possible outliers in the residual values

at locations (1, 1), (1, 2), (2, 2), (2, 7) and (7, 5) on the lattice, and the largest residual takes

the value 40 at location (2, 2). For this reason, we investigate the influence of each residual
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on the variogram estimator. Figure 2 depicts hair-plots of the sample variogram 2γ̂(h) on

the reflectance residual values for h = 1, 2, 3, 4 and ζ ∈ [−40, 40]. The variogram estimates

on the original data at each lag h are identified by a closed black disc. The influence of

the largest residual (the observation #17) is identified by the black curve. Notice that the

influence changes from one lag to another. For example for ζ > 0, the observation #17 is
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Figure 2: Hair-plots of the sample variogram 2γ̂(h) on the reflectance residual values for

spatial lag distance h = 1, 2, 3, 4.
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the most influential at lag h = 1, but not at other lags. This fact has been the motivation of

Genton (1998b) for the definition of a spatial breakdown-point of variogram estimators; see

also Lark (2008) for recent discussions on this topic. In addition, as can be seen in Figure 2,
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Figure 3: Disc-plot for ζ > 0 of the sample variogram 2γ̂(h) on the reflectance residual values

for lag distances h = 1, 2, 3, 4.
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the effect of a perturbation ζ results in a quadratic departure.

The influence of each observation can be depicted spatially. Figure 3 presents a disc-

plot for ζ > 0 of the sample variogram 2γ̂(h) on the reflectance residual values for each

h = 1, 2, 3, 4. The radii of the discs are proportional to the rate of departure from 2γ̂(h) due

to a small contamination at each observation. Open discs denote an increase of the value
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Figure 4: Disc-plot for ζ > 0 of the sample variogram 2γ̂(h) on the reflectance residual

values, averaged over lag distances h = 1, 2, 3, 4.
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2γ̂(h) whereas closed discs denote a decrease. The discs with large radii correspond to the

most influential observations. Here also we can see that the influence changes from one lag

to another. However, the observation #17, located at (2, 2), is overall influential. In fact,

the influence can be summarized over the various lags, for instance with a mean influence.

This information is presented in Figure 4.

Note that when the locations of the observations are irregularly spaced, then the form

of the matrix A in the quadratic form defining the sample variogram estimator becomes

more complex. In that situation, the visualization of influential observations by means of

the hair-plot is even more useful.

4.2 African Conflict Data

The second application we consider is from the field of Economics. The dataset consists of a

standardized measure of total conflict for 42 African countries. It was used by Anselin (1995)

in order to study the importance of spatial effects in the statistical analysis of international

conflicts. Following Anselin (1995), we consider a W -coding spatial structure matrix W

based on the first-order contiguity (common border) in order to calculate the Moran index.

For this conflict measure, Moran’s I equals 0.417 and strongly evidences positive spatial

autocorrelation. Figure 5 displays the hair-plot of this autocorrelation index with four coun-

tries identified by black curves and labels. South Africa, and to a minor extent Senegal, are

among the most influential units for any ζ ∈ [−10, 10]. More precisely, the hair-plot reveals

that a positive contamination ζ, i.e., a larger total conflict measure, for these countries leads

to a rapid decrease of the autocorrelation index while a low negative contamination leads

to an increase of the index. Sudan is also particularly influential when considering high

negative ζ values leading to a negative Moran index. Finally, Egypt is not very influential

when considering a low level of contamination ζ (positive or negative) but the change in
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Figure 5: Hair-plot of Moran’s I estimator Î for the African conflict data.

the Moran index for large negative ζ is very steep and noticeable. Unlike in the first ap-

plication, the effect of ζ is now a ratio of two quadratics. Furthermore, depending on the

specific observation, the maximum of the curve is shifted to the left or to the right leading

to different influential behaviors. The asymptotic influence of the i-th African country is

νi(Î ,Z) = −w·i/41 and ranges from −0.066 (South Africa) to −0.003 (Lesotho).

Figure 6 displays a disc-plot of the Moran index overlayed on the Africa map. As in

the previous application, open discs denote an increase of the value of Moran’s I, whereas

closed discs denote a decrease. The discs with large radii correspond to the most influential

observations. We recover some of the previous results, namely that South Africa and Senegal
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Figure 6: Disc-plot (ζ > 0) of Moran’s I estimator Î for the African conflict data.

are locally influential for positive contamination while Sudan and Egypt are not influential

in that sense. Other countries that have not been selected on the hair-plot are associated

with large open discs and could also be considered as influential observations.

5 Discussion

Many simple and natural estimators arising in the context of dependent data are unfortu-

nately sensitive to perturbations of a single observation as we illustrated in this paper. This

motivates the need for developing robust estimators for time series and spatial data, and

a few proposals can be found in the literature. Although classical estimators can often be
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defined as quadratic forms or ratios of quadratic forms in the data vector, robust estimators

are typically more involved and therefore closed-form expressions for their local and asymp-

totic influence are not available. In that case, the hair-plot becomes very useful as it allows

to visualize the sensitivity of each observation on complex estimators.

For instance, Ma and Genton (2000) have proposed a highly robust autocorrelation esti-

mator

r̂HR(h) =
Q2

n−h(U + V)−Q2
n−h(U−V)

Q2
n−h(U + V) + Q2

n−h(U−V)
, 0 ≤ h ≤ n− 1,

where Qn−h is a highly robust scale estimator of a sample of size n−h proposed by Rousseeuw

and Croux (1993), and U and V represent the first and last n− h observations of the data

vector Z, respectively. We apply this highly robust autocorrelation estimator to the Austrian
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Figure 7: Hair-plot of the highly robust lag-one autocorrelation estimator r̂HR(1) on the

Austrian bank monthly interest rates dataset.
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bank monthly interest rate data and present the associated hair-plot for r̂HR(1) = 0.966 in

Figure 7. This value is in line with the optimal robust estimate of 0.96 obtained by Künsch

(1984), with the value of 0.98 obtained by Azzalini and Genton (2008) based on a skew-t

distributional assumption, and with the range of values 0.89-0.96 in Wang et al. (2009). In

Figure 7, the patterns of the curves are mainly due to the discreteness of the sample quantiles

involved in the computation of Qn−h, but overall the vertical variability is very small and the

observation for the month 18 is no longer influential on this highly robust autocorrelation

estimator.

In this paper we have focused on the influential effect of a single observation at a time

for computational and visual simplicity. However, the influence of multiple observations,

k > 1 say, could be studied as well, each with possibly different contamination magnitudes

ζ1, . . . , ζk. Clearly, this would lead to an explosion of the number of hairs (n choose k) and

to dimensional difficulties in their graphical representations. Nevertheless, a particular case

of interest is when those k magnitudes are all equal, to ζ say. Then, for an estimator defined

as a ratio of two quadratic forms in the data vector as in Section 3, the asymptotic influence

of k observations with indices in the set I is given by:

νI(θ̂RQ,Z) =

∑
i,j∈I aij∑
i,j∈I bij

. (10)

Clearly, νI depends on the set I and can be different from the simpler case given by k = 1

that we studied earlier.

For illustration, we return to the time series of monthly interest rates of an Austrian bank.

We had noticed three possible outliers at months 18, 28 and 29 of about the same magnitude.

The influence of those k = 3 observations on the lag-one sample autocorrelation r̂(1) as a

function of the common contamination ζ ∈ [−40, 40] is represented by the dashed curve in

Figure 8. Notice that the dashed curve has a maximum for ζ around −2, which corresponds

to bringing the three outlying observations down to the bulk of the data, see Figure 1. In
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Figure 8: Hair-plot based on various contaminated observations of the lag-one sample auto-

correlation r̂(1) on the monthly interest rates dataset: month 18 contaminated (solid curve)

and months 18, 28, 29 contaminated (dashed curve).

that case the value of r̂(1) increases, as expected from the highly robust autocorrelation

estimator above. From (10), the corresponding asymptotic influence for I = {18, 28, 29} is

given by:

νI(r̂(1),Z) =
n2 − 9n− 9

3n(n− 3)
,

and takes the value 0.310 for the sample size n = 91. For comparison, the influence of the

sole observation at month 18 on the lag-one sample autocorrelation r̂(1) is represented by

the solid curve in Figure 8. From (6), its corresponding asymptotic influence is given by:

ν18(r̂(1),Z) =
−n− 1

n(n− 1)
,

and takes the value −0.011 for the sample size n = 91. Hence, those two asymptotic
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influences are different, as can be seen in Figure 8.

Appendix

Proof of Proposition 1

By assumption:

f(y1, y2 + ζ, y3, . . . , yn) = f(y1 + ζ, y2, y3, . . . , yn),

for any y1, . . . , yn. Consequently, for y1 = z1, y2 = 0, yi = zi, i = 3, . . . , n, and ζ = z2, we

have:

f(z1, z2, z3, . . . , zn) = f(z1 + z2, 0, z3, . . . , zn),

and by recurrence,

f(z1, z2, z3, . . . , zn) = f

(
n∑

i=1

zi, 0, 0, . . . , 0

)
= g

(
n∑

i=1

zi

)
,

a function g of
∑n

i=1 zi only. This concludes the proof. ¤
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