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Summary

Estimating the cumulative distribution function in survey sampling is of interest on the
population but also on a sub-population (domain). However, in most practical applica-
tions, sample sizes in the domains are not large enough to produce sufficiently precise
estimators. Therefore, we propose new nonparametric estimators of the cumulative dis-
tribution function in a domain based on M-quantile estimation. The obtained estimators
are compared by simulations and applied to real data.

1 Introduction
Sample surveys allow to obtain estimates for characteristics of interest at both population
and domain level. A domain can be for example a geographic area or a socio-demographic
group. If a domain is large enough, the estimation of interest parameters relies on data
from sample units in the domain and the resultant estimates will be of acceptable pre-
cision. However in most practical applications, sample sizes are not large enough to
produce sufficiently precise estimators. In such situations, the estimation is based on aux-
iliary information related to the variable of interest and information is ”borrowed” from
the other domains. The term Small area estimation denotes the set of techniques of esti-
mation for such domains (Rao, 2003). The actual literature focuses on estimation of totals
or means in small areas but in many applications the interest parameters are more com-
plex: they can be quantiles, or other non linear parameters derived from the cumulative
distribution function of the interest variable. Estimating the cumulative distribution func-
tion (cdf) in survey sampling has been widely studied at population level. In a parametric
regression frame and a model-based approach, Chambers and Dunstan (1986) propose an
estimator of the cdf. They prove the asymptotic normality of their estimator when both
the population and the sample sizes tend to infinity. More recently, Breidt, Johnson and
Opsomer (2008) propose a non parametric approach using local polynomials to estimate
the cdf. Small area estimation methods are used when sample data can not provide ac-
ceptably precise direct estimators. The classical technique in order to capture the domain
effect is the linear mixed random effects model which includes area-specific random ef-
fects to take into account the between-area variation in addition to that explained by the
auxiliary information . The between-area variation is measured by a normally distributed
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random variable. The estimation of the impact of auxiliary information and the prediction
of the area effect are classically made by the Empirical Best Linear Unbiased Prediction
(EBLUP) (see Rao, 2003). But this model is very dependent on strong distributional as-
sumptions such as the normality and homoscedasticity of the residuals. In a parametric
frame and a model-based approach, Chambers and Tzavidis (2006) propose an estimator
of the cdf based on conditional Huber M-quantiles as follows. The position of the do-
main is summarized by a mean M-quantile order and the interest variable for a unit of
the domain outside the sample is predicted by the conditional Huber M-quantile of this
mean order and an estimator of the cdf is derived. The outline of this paper is the follow-
ing. In section 2, we recall the definition of the Huber M-quantiles as well as their main
properties. In section 3 we propose in a first time to extend the Chambers and Tzavidis
estimator of the interest variable to a nonparametric frame by using non parametric esti-
mates of the conditional Huber M-quantiles. In a second time, we propose a new class
of estimators also based on Huber M-quantiles nonparametric estimation. As a matter
of fact, nonparametric estimation is more flexible than parametric estimation because we
do not make any assumption about the relationship between the interest variable and the
auxiliary information. We compare these estimators using simulated data in section 3.
Finally in section 4, we apply our methods on a sample that contains measurements on
2802 physicians in the Midi-Pyrénées region of France during 1999 to estimate the cu-
mulative distribution function of the drug prescribing activity in each department taking
into account some individual characteristics of the physicians.

2 Huber M-quantiles of a distribution
Let F denote the cumulative distribution function of a random variable Y . Consider the
minimization problem

min
θ

∫
ρq(y − θ)dF (y) (1)

where ρq is a loss function and q is fixed, 0 < q < 1. Differentiating the objective function
in (1) with respect to θ leads to the estimating equation∫

ψq(y − θ)dF (y) = 0 (2)

where ψq(u) = δρq(u)/δu is called the influence function. When for some c > 0 called
the cutoff, we consider the influence function

ψq,c(y) =


−(1− q)c if y < −c

(1− q)y if −c ≤ y < 0
qy if 0 ≤ y ≤ c
qc if y ≥ c

then the solution to (1) and (2) is called the HuberM -quantile of order q of the distribution
of Y. Notice that if c tends to infinity, θ is the q-expectile and moreover if q = 0.5, θ is
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q 0.5 0.6 0.7 0.8 0.9 0.95
c 1.345 1.386 1.517 1.758 2.121 2.379

Table 1: Table of the cutoffs of the standard normal distribution

the expectation. When c tends to 0, then θ is the q-quantile of the distribution of Y . In
addition to it, it can be checked thatM -quantiles are more robust than expectiles and more
efficient than quantiles. An equivalent characterization of the Huber M -quantile is given
by the following ratio of expectations:

q =
IE(c1I(Y − θ < −c)+ | Y − θ | 1I(−c ≤ Y − θ ≤ 0))

IE(c1I(| Y − θ |> c)+ | Y − θ | 1I(| Y − θ |≤ c))
. (3)

The choice of an accurate cutoff has to be discussed in order to estimate Huber M-
quantiles. It is straightforward that the optimal c depends on q and increases with q being
far from 0.5. The value of c is chosen to ensure a given asymptotic variance at the standard
normal distribution. It is well known that if c = 1.345, the variance of the Huber M -
quantile of order 0.5 at the normal is only 5% larger than that of the empirical mean (see
for example Maronna et al. (2004)). Similarly an optimal cutoff can be computed in order
to obtain an asymptotic relative efficiency of 95% for the Huber M-quantile estimator
with respect to the q-expectile estimator in the standard gaussian case. Table (1) gives the
values of the cutoffs associated different values of q. In a regression context, the cutoff
can be computed by first performing a local regression to the mean and then computing
a robust estimation σ̂ of the standard deviation of the residuals of the regression. The
cutoff is then equal to the product of the ”gaussian” cutoff by σ̂. In what follows Huber
M-quantiles will be called M-quantiles.

3 Estimation of the cdf in a domain
In what follows we assume that the population is partitioned into m domains Ui of size
Ni, i = 1, · · · ,m. Let s a sample of size n of the population and si = s ∩ Ui be a sample
of size ni of the domain Ui. yij denotes the interest variable y for the j-th individual of
the domain Ui and is only available for units in the sample. Auxiliary information at
individual level is available at population level through a covariate x. More precisely, xij

denotes the value of the covariate measured for the jth individual of the domain Ui. Since
the sample is possibly small, ”borrowing strength” from the other domains will improve
the estimation. The cdf on the domain Ui can be written as:

Fi(t) =
1

Ni

(
∑
j∈si

1I(yij ≤ t) +
∑

j∈Ui\si

1I(yij ≤ t)).

The first term of the sum only depends on the sample and the purpose is therefore the
prediction of 1I(yij ≤ t) for j ∈ Ui \ si which requires the prediction of yij . This
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prediction is based on conditional M-quantiles as follows. According to (3), for any point
(y, x), there exists a real q so that y is the q-M-quantile of the conditional cdf F (.|x). q is
called the M-quantile order of the point (y, x). Let us denote (yk, xk) the k-th individual
of the sample s. Using the technique developed in Aragon et al. (2005) for the expectile-
orders, we estimate non parametrically the M-quantile orders of each point (yk, xk) of the
sample s by :

q̂c(yk, xk) =

∑
l∈s

(c1I(yl−yk≤−c) + |yl − yk|1I(−c≤yl−yk≤0))K(
xk − xl

h
)

∑
l∈s

(c1I(|yl−yk|>c) + |yl − yk|1I(|yl−yk|≤c))K(
xk − xl

h
)
.

K denotes a kernel and h an adequate bandwidth. The adequate cutoff c has to be de-
termined. To this aim, we first estimate the quantile-order of each point of s by the
Nadaraya-Watson estimator of the conditional cdf. :

q̂∗(yk, xk) =

∑
l∈s

1I(yl ≤ yk)K
(
xk − xl

h

)
∑
l∈s

K
(
xk − xl

h

) .

We deduce a average quantile order of the sample q̂∗ = n−1
n∑

k=1

q̂∗(yk, xk). The ”gaussian”

cutoff associated with q̂∗ is obtained from table (1) by interpolation. As we are in a regres-
sion context, we perform a local regression to the mean and compute a robust estimation
σ̂ of the standard deviation of the residuals of the regression. The cutoff c is then equal to
the product of the ”gaussian” cutoff by σ̂.
Notice that M-quantile orders are determined at population level. These orders define a
conditional ordering of the individual’s value relative to the values of other units of the
population.

3.1 First class of estimators
We adapt the estimator of Chambers and Tzavidis (2006) to the nonparametric framework.
The position of the domain Ui with respect to the population is summarized by a mean M-

quantile order q̂i,c =
1

ni

∑
l∈si

q̂c(yil, xil). For each domain Ui, a M-quantile nonparametric

model of order q̂i,c is then fitted. And m̂(q̂i,c, x) is the local constant estimator of the
conditional M-quantile of order q̂i,c of Y conditionally to x. This estimator is the solution
of the estimating equation :

∑
k∈s

ψ(yk − θ)K(
x− xk

h
) = 0 (4)

4



with ψ = ψq̂i,c
and h is an adequate bandwidth. Notice that all the sample (and not only

the sample of the domain) is used to perform the estimation on the domain. Following the
technique developped by Chambers and Dustan (1986), the ni residuals

ε̂il = yil − m̂(q̂i,c, xil)

allow to build as many predictions m(xij, q̂i,c) + ε̂il of Y with covariate xij known in Ui .
The estimator of the cdf of Y in the domain Ui is defined by :

F̂CT
i (t) =

1

Ni

(
∑
j∈si

1I(yij ≤ t) +
∑

j∈Ui\si

n−1
i

∑
l∈si

1I(m̂(q̂i,c, xij) + ε̂il ≤ t)). (5)

Kokic et al. (1997) proved that if F (|x) belongs to a location-scale family of distributions,
than the distribution of conditional M-quantile orders does not depend on the covariate.
But this distribution depends on x in the domain. Therefore, a kernel should be added
in formula (5) to give more weight to observations whose covariate is close to x. The
following estimator derives from this consideration.

F̂CTK
i (t) =

1

Ni

(
∑
j∈si

1I(yij ≤ t) +
∑

j∈Ui\si

∑
l∈si

K(
xil − xij

h1

)1I(m̂(q̂i,c, xij) + ε̂il ≤ t)

∑
l∈si

K(
xil − xij

h1

)
).

h1 denotes an appropriate bandwidth.

3.2 Second class of estimators
Instead of summarizing the domain Ui by a mean M-quantile order, we propose to de-
scribe the domain by the set of estimated orders {q̂ik k = 1, · · ·ni} in the sample si. We
can think that this technique will give better results than the previous one when there is a
large variation of the orders inside the domain. For each non sampled individual j with
covariate xij of the domain, there are ni possible predictions m̂(q̂il, xij) of yij (m̂(q̂il, x)
solution of the estimating equation (4) with q = q̂il.) Therefore, 1I(yij ≤ t) will be pre-
dicted by the average of the 1I(m̂(q̂il, xij) ≤ t) on the sample si. This estimator is not
derived from Chambers and Dunstan (1986) in the sense that we do not add any residual,
considering that the deviation between the M-quantile order and 0.5 can be viewed as a
residual. The obtained estimator denoted F̂C

i is:

F̂C
i (t) =

1

Ni

(
∑
j∈si

1I(yij ≤ t) +
∑

j∈Ui\si

n−1
i

∑
l∈si

1I(m̂(q̂il, xij) ≤ t)) (6)

If we consider the whole population, the distribution of the M -quantile orders calculated
at the first step is independent on the value of the covariate. But the distribution of these
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M -quantile coefficients of a considered domain may depend on the covariate. Taking
the previous remark into account, we will give a more important weight to the prediction
m̂(qil, xij) when the value of the covariate xil is close to xij . This leads to the following
estimator:

F̂CK
i (t) =

1
Ni

(
∑
j∈si

1I(yij ≤ t) +
∑

j∈Ui\si

∑
l∈si

K(
xil − xij

h1
)1I(m̂(q̂il, xij) ≤ t)

∑
l∈si

K(
xil − xij

h1
)

)

Practically, for each order q̂il, the estimator m̂(q̂il, .) is evaluated on a grid of 50 points x
regularly spaced in the range of the non sampled points of the domain. The value of the
prediction for each non sampled point is then evaluated by interpolation or extrapolation.

4 Simulations
One generates a population U of size N = 1000 = N1 +N2 = 600 + 400 following the
model y1j = 1 + 2(1 + 4x1j) + x1ju on the domain U1 and y2j = 1 + 5(1 + 4x2j) + 1.5u
on the domain U2 where x is uniformally distributed on [0, 1] and u follows a standard
normal distribution. For domain 1, we take a simple random sample without replacement
of size n1 = 30 and for domain 2, we take a simple random sample without replacement
of size n2 = 20, leading to an overall sample size of n = 50. The simulation is performed
with S = 500 samples. For each simulation, the bandwidth h is equal to 30% of the range
of the covariate in the sample s and the bandidth h1 is equal to 30% of the range of the
covariate in the sample si. Figure (1) shows the scatterplot of the data for the simulated
domains. Figure (2) represents the estimated conditional M-quantile orders in the two
domains. Let us notice that the M-quantiles orders depend on x in the domain U1 because
of the heteroscedasticity. We also remark that the estimated orders vary more in domain
U1 than in domain U2.
For each domain Ui, the different estimators are compared to the Horvitz-Thompson esti-
mator :

F̂HT
i (t) =

1

ni

∑
j∈si

1I(yij ≤ t)

For each domain Ui,the estimators of the cdf were computed for a set ofM = 50 regularly
spaced values {t1, · · · , tM} of y in [tmin,i, tmax,i] where tmin,i (resp. tmax,i) represents the
minimum (resp.maximum) of y in the domain Ui. Table (2) gives the mean averaged
squared error (MASE) of the different estimators in each domain. The MASE is defined
by:

MASE(F est,s
i ) =

1

S

1

M

S∑
s=1

M∑
j=1

{F̂ est,s
i (tj)− Fi(tj)}2

for est in the set {CT,C,CTK,CK,HT}. The kernel estimators perform very well and
bring an important gain with respect to the Horvitz-Thompson estimator especially in the
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Figure 1: Scatterplot of the simulated data
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Figure 2: Scatterplot of the estimated conditional M-quantile orders

HT CT C CTK CK
U1 13.8393 14.8493 12.0546 9.3250 9.7695
U2 31.5092 37.6701 29.0494 6.9951 7.8160

Table 2: table of the MASE of the 5 estimators for the 2 domains (×10−4)

domain U2.

5 Real data
We focus on a data set that contains measurements on 2802 physicians in the Midi-
Pyrénées region of France during 1999, including most of the general practice physicians
in this region. The study variable, denoted Y , measures the drug prescribing activity of
a physician, and is defined as the logarithm of the ratio of the value of drug prescriptions
issued by the physician over the year divided by the number of ”acts” carried out by the
physician over the same period. An act may be a house call or a consultation. 15 co-
variates are available : physician seniority (years), total practice size, ,% of practice less
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Ariège Aveyron Haute-Garonne Gers Lot Hautes-Pyr. Tarn Tarn et Gar.
HT 48.511 19.737 3.8961 46.966 23.952 20.192 14.238 27.070
CT 40.169 16.642 3.4889 38.460 20.752 17.811 12.345 23.156

CTK 39.209 15.270 3.0551 35.881 18.297 15.558 11.209 21.476
C 36.716 15.252 3.1427 34.484 19.093 16.216 11.299 21.824

CK 36.823 15.173 2.8918 33.660 17.682 14.771 10.527 20.755

Table 3: table of the MASE of the 5 estimators for the 8 departments (×10−4)

than 16, % of practice from 60 to 69, % of practice more than 70, % of practice who
don’t pay medical fees, % of practice who are farm employed, % of practice who are self
employed, number of consultations and house calls, proportion of house calls, number of
consultations per patient, number of house calls per patient, average fee per patient, age
of physician, gender of physician. Since nonparametric regression can become unstable
if there are too many covariates, we perform a slice inverse regression (SIR) to reduce
the dimension of the covariate space by taking into account the dependence between the
covariates and the response variable. SIR provides a few number of synthetics indices.
We use the first SIR indice as the covariate in the nonparametric regression fit to the
M-quantiles of the value of drug prescription per act. Our aim is to estimate the cdf of
Y in the 8 departments which contitute the Midi-Pyrénées region. Figure (3) shows the
scatterplot of the physicians by department. The population sizes are respectively 145,
261, 1195, 190, 171, 275, 361, 204 for Ariège (09), Aveyron (12), Haute-Garonne (31),
Gers (32), Lot (46), Hautes-Pyrénées (65), Tarn (81) and Tarn and Garonne (82). Let us
notice that the scatterplots are different according to the departments. In Gers, there are
physicians for whom the SIR index is extreme (almost equal to -4). In Aveyron, Haute-
Garonne, Lot and Tarn, some individuals have extreme values for the prescription and the
SIR index, others have extreme values only for the prescription and some have both (in
Haute-Garonne and Aveyron). In Hautes-Pyrénées, Ariège and Tarn and Garonne, some
physicians have low prescriptions with respect to the others. For each department we take
a simple random sample without replacement, leading to an overall sample size n = 280
most of the time. Notice that we perform a design-based simulation where the original
dataset is acting as a fixed population. Table (3) shows the MASE of the 9 estimators for
the 8 departments. For each method, Haute-Garonne has a widely smaller MASE than the
other departments because its sample size is much more important. The kernel methods
are more efficient which indicates that the dependance of the response variable with re-
spect to the covariate is different according to the domain. Finally, the Chambers-Tzavidis
and the Casanova estimators behave similarly with a light advantage for the latter. Figure
(4) shows the boxplots of the ratios ASE(EST)/ASE(HT) in Gers. For most of the sam-
ples, the estimators obtained by small area estimation techniques have a smaller averaged
squared error than the corresponding Horvitz-Thompson estimators.
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Figure 3: Scatterplots of the data in the 8 departments
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Figure 4: Boxplots of the ratios ASE(EST)/ASE(HT) in Gers
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6 Discussion
The M-quantile approach provides an efficient alternative to the mixed effects models for
small area estimation. Other M-quantiles like Tukey M-quantiles can replace Huber M-
quantiles, the main difficulty being the choice of the cutoff. Moreover, the flexibility of
nonparametric estimation allows to apply easily the proposed estimators. However, it can
be difficult to estimate extreme M-quantiles nonparametrically and a parametric fit can be
more appropriate.
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