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Abstract

The paper considers a new class of duration models in which unobserved heterogeneity changes with

time. The class addresses two main questions: How does the exit probability from a state vary when

unobserved heterogeneity evolves through time? And do changes in unobserved heterogeneity have a

timing e§ect? We show the non- and semi-parametric identification of the new class by solving a nonlinear

integral equation with unknown kernel. Both the function of observed covariates and the mean of the

distribution of unobserved heterogeneity are nonparametrically identified. Identifying timing e§ects and

the distribution of unobserved heterogeneity requires stronger assumptions on either one of the two.

An extension to the case when unobserved heterogeneity is a function of observed covariates is also

identified. We show that sieve maximum likelihood estimators are consistent and present Monte Carlo

simulations for both correct specification and misspecification. The paper also presents an empirical

model of unemployment duration in which individuals exit unemployment when total accumulated losses

due to unemployment cross over a self-imposed spending limit.

This paper considers a new class of duration models in which individual unobserved heterogeneity changes

with time in an uncertain way and in which unobserved heterogeneity is allowed to have timing e§ects on

the probability of exiting a specific state. The main questions addressed by the new class are: How does

the exit probability from a state vary when unobserved heterogeneity evolves through time? Do changes in

heterogeneity that happen earlier on in the spell have the same e§ect on the exit probability as changes that

happen later on?

The new class, henceforth known as dynamic heterogeneity (DH), is relevant to applied economics,

especially to labor, health, and, potentially, industrial organization. For example, when analyzing the
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probability of promotion, it is important to account for the fact that skills accumulate during the spell of

employment and that skills that are learned earlier on in the spell may have a di§erent e§ect on the probability

of promotion than skills learned later on. As another example, consider the probability of early retirement.

During the spell of employment, health may depreciate, or there may be exposure to a toxic substance, and

the timing of depreciation or exposure may have di§erent e§ects on the probability of exiting employment

early. Likewise, in an IO type setting, when considering the probability of restocking an inventory, it may

be more realistic to think about consumption as a process that depletes the initial inventory in an uncertain

way and that the timing of consumption shocks may a§ect the restocking probability.

In contrast, standard duration models assume unobserved heterogeneity does not change with time. As

such, there is no possibility of studying possible timing e§ects unobserved heterogeneity may have on the

probability of exit. By modeling unobserved heterogeneity as a time invariant random variable, it is implicitly

assumed that unobserved heterogeneity is realized when individuals enter the state and then kept constant

at its initial level throughout the duration of the state. In the examples above this would mean that skills,

health, and consumption remain unchanged during the duration of the initial states of employment and not

restocking, respectively.

The main framework considered in this paper models the instantaneous probability of exit, or the hazard

function, as:

h

t|x, {Z (u)}t0


=  (x)

Z t

0

f (u) dZ (u) (1)

where t 2 R+ is time spent in a state, x 2 R are observed covariates1,  (x) is a function of observed

covariates that acts as a weight on the hazard function, and {Z (u)}t0 is unobserved heterogeneity, modeled
as a stochastic process. The weight function {f (u)}t0 2 R+ allows changes in unobserved heterogeneity to
have a permanent e§ect on the hazard function. The shape of {f (u)}t0 facilitates inference about possible
timing e§ects of {Z (u)}t0 . The parameters of interest are the function of observed covariates  (x) , the
weight function {f (u)}t0, and the distribution of {Z (u)}

t
0.

To illustrate the interpretation of the elements entering (1), consider the hazard of promotion. Let x be

any observed covariate that may a§ect the probability of upward mobility on the job. Then  (x) models the

e§ect of such a covariate. Let {Z (u)}t0 be unobserved skills that accumulate during the spell of employment.
Then {f (u)}t0 models the timing e§ect of accumulating skills. The function {f (u)}

t
0 does not have to be

monotonic, but suppose it is decreasing. Then skills accumulated earlier on in the spell have a higher weight

and, ceteris paribus, they increase the probability of promotion. If the function is increasing, then skills

accumulated later on increase the probability of exit, while if the function is flat, there are no timing e§ects.

In order to preserve the positivity of the hazard function, unobserved heterogeneity in this new class is

1For the moment, x is assumed to be time invariant. However, x can be time varying as well as k-dimensional. Appendix
A.12 shows the identification of  (.) when observed covariates are time varying.
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modeled as a positive Lévy process2. This implies that unobserved heterogeneity accumulates in jumps that

are independently and identically distributed and that happen at random times. The size and the rate of

the jumps can be small or large depending on the distribution of the Lévy process. For example, jumps can

accumulate gradually, in tiny and frequent increments, if the process is the gamma process. On the other

hand, if the process is the compound Poisson process, jumps are large with the total number of jumps in a

spell being a random variable. By considering only positive Lévy processes, the DH class is applicable to

cases where there is positive duration dependence at the individual level. At the sample level, the hazard

function can show negative duration dependence.

A by product of modeling unobserved heterogeneity as a stochastic process is that the relative risk of two

individuals of exiting the sample, also known as the proportionality of hazards, is not required even with

time invariant observed covariates. This is an advantage since the proportionality assumption in standard

duration models is controversial as it excludes transition rates that are converging, diverging, or crossing

during the duration of a spell.

The first contribution of the paper is to show the identification of the parameters of interest entering (1).

The identification strategy is new to duration literature. It is based on formulating the probability of no exit,

or the survival function, in terms of the Laplace transform of unobserved heterogeneity. Setting equal the

survival function obtained from the model to that observed in the data obtains a nonlinear integral equation

of the first kind with unknown kernel and a variable upper limit of integration. Identification is based on

solving this integral equation for the parameters of interest.

The identification results are as follows: Under the assumption of thin tails on the distribution of unob-

served heterogeneity, both  (x) and the mean of the distribution of unobserved heterogeneity are identified

nonparametrically; that is, when the distribution of unobserved heterogeneity is not known. The joint iden-

tification of the weight function {f (u)}t0 and of the distribution of unobserved heterogeneity is not possible
in this framework since the product of these two elements enters under an integral operator, which smooths

out the variation due to each of the two sources3. However, two separate identification results are possible

by making additional assumptions. First, the weight function {f (u)}t0 is identified semiparametrically by
assuming the distribution of unobserved heterogeneity is known up to its mean. Second, the distribution of

unobserved heterogeneity is identified when {f (u)}t0 is assumed known. These two separate results can be
applied as follows. When one may have prior information or beliefs about the distribution of {Z (u)}t0 and
when interest lies in the timing function {f (u)}t0, then one is able to identify {f (u)}

t
0. On the other hand, if

one may have prior beliefs about {f (u)}t0 (or if the function is not relevant to the model and thus set equal

2This restriction could potentially be relaxed by formulating the hazard function as

h

t|x, {Z (u)}t0


=

Z t

0
f (u, x) d exp (Z (u))

In this case, the resulting stochastic process loses the independence of the increments (for example, if Z is the Brownian motion,
exp (Z) would be the geometric Brownian motion). The survival function in this case would have a di§erent form than the one
presented in this paper. Identification of such a model would require controlling the quadratic variation of exp (Z) .

3The failure of joint identification is shown in Appendix A.11.
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to one), one may identify the distribution of unobserved heterogeneity.

The second contribution is to provide semiparametric consistent estimators for  (x), {f (u)}tu>0, and
the mean of the distribution of unobserved heterogeneity when unobserved heterogeneity is known up to its

mean.

Finally, the paper presents an empirical illustration to unemployment duration inspired by behavioral

economics, first hitting-time models, and labor supply decision models with reference points. The reduced

form model is evaluated on NLSY79 data on the first spell of unemployment.

The present framework is not a generalization of the standard model used in duration analysis, the mixed

proportional hazard (MPH) model. The MPH models the hazard function as

hM (t|x, ) = M (x) (t) z (2)

where M (x) is a function of observed covariates, usually parametrized as exp (x
0),  (t) is a deterministic

function of time known as the baseline hazard, and z is a random variable modeling unobserved heterogeneity.

When unobserved heterogeneity is a stochastic process, at each point in time, there is an infinity of sample

paths that unobserved heterogeneity can follow. In the MPH, there is an infinity of sample paths only when

the individual enters the sample. Time e§ects in the MPH come through the baseline hazard which is a

deterministic function of time, while in the DH model, time e§ects are stochastic. The resulting stochastic

process in the DH hazard function, i.e.
R t
0
f (u) dZ (u), cannot be reduced to a deterministic function of time

 (t) multiplied by a random variable, z.

In the framework proposed in this paper there is no equivalent to the baseline hazard function from

standard duration models. It is possible to introduce such a function in the present framework, however the

function would have to be assumed known in order for the identification results presented in this paper to

remain unchanged.

The paper is organized as follows. Section 1 presents a brief literature review of duration models. Section

2 presents the identification results, while Section 3 introduces the estimation procedure and derives the

consistency of the estimators. Section 4 presents a model of unemployment and an empirical application.

Section 5 concludes. All proofs, further identification results of possible interest, and Monte Carlo simulation

results, as well as a brief summary of mathematical properties of Lévy processes and the description of the

data are found in the Appendix.

Remark 1 One advantage of modeling unobserved heterogeneity as a stochastic process is that the hetero-
geneity can be a function of observed covariates. That is, the process {Z (u)}t0 can be time deformed by a
function g (.) that depends on time varying covariates y (t). The hazard function in this case takes the form

h

t|x, {y (u)}t0 , {Z (u)}

t
0


=  (x)

Z t

0

dZ (g (y (u))) (3)

4



As (J.H. Stock 1988) notes, the process {Z (u)}t0 evolves in calendar time. In contrast, the process {Z (g (y (u)))}
t
0

evolves on a data driven time scale {g (y (u))}t0. The function g controls the speed at which the jumps in
{Z (u)}t0 happen: If g is an increasing function, for greater values of y (t), the faster the jumps will accumu-
late. In the skill example mentioned above, suppose the individual is paid a bonus, y (t), for a successfully

finished project. Then the bonus paid may a§ect the speed at which skills accumulate. Supposing g was an

increasing function, the higher the bonus paid, the faster the accumulation of skills. The parameters of in-

terest are (, g) and the mean of the distribution distribution of {Z (u)}t0. Identification of these parameters
is presented in Appendix A.13.

The time deformed framework is presented separately from (1) since the two frameworks are both mathe-

matically and conceptually di§erent. Mathematically, in (1) the process is stationary, while the time deformed

process in (3) is not. Conceptually, when unobserved heterogeneity takes place in calendar time, i.e. when

it is modeled as {Z (u)}t0, the heterogeneity evolves for reasons related to time but independent from current

observed covariates. This is not the case when unobserved heterogeneity is time deformed by observed covari-

ates. In certain applications one framework may be more appropriate than the other. Appendix A.13 also

presents an application of (3) that may be of interest.

Notation 1 In this paper, the following notation for derivatives is used. Let H (., x) and  (., .) be di§er-
entiable functions.

Htt (t, x) =
@2

@t2
H (t, x) (4)

1 (, k) =
@

@
 (, k) ; 2 (, k) =

@

@
 (, k)

11 (, k) =
@2

@2
 (, k) ; 12 (, k) =

@2

@@k
 (, k)

1 Literature Review

The paper belongs to the literature on duration models. Regression analysis of duration data is usually

based on the MPH model, where the hazard function is defined by (2) and where z is assumed to be

distributed according to G (z) . The MPH has been studied extensively. Two of the first papers dealing with

the nonparametric identification of (, (t) , G (z)) are (C. Elbers & G. Ridder 1982) and (J.J. Heckman

& B. Singer 1984). These papers show the identification of the triplet (, (t) , G (z)) entering (2) under

assumptions on either the mean of G (z) or the tail of G (z), respectively. The identification of the MPH

with time varying observed covariates has been studied by (J.J. Heckman & C.R. Taber 1994), under the

assumption that covariates are deterministic functions of t and by (B.E. Honoré 1993), under the assumption

that observed covariates are step functions. (Heckman & Taber 1994) generalized the results of (Honoré 1993)

to the case when observed covariates are realizations from a stochastic process with continuous sample paths

almost surely. Along the same lines, (B.P. McCall 1993) presents conditions under which an MPH model
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with time-varying coe¢cients is identified. More recently, (C.N. Brinch 2007) shows the identification of the

standard MPH when the baseline hazard in (2) is a function  (t, x).

The identification of the MPH rests on the multiplicative structure of the hazard function. When time

invariant z enters the hazard multiplicatively, the survival function has the form of a Laplace transform of

the probability density function of z, which allows the identification of G (z).

Another class of duration models is formed by mixed hitting time (MHT) models, which are first passage

models. In MHT, agents leave the initial state as soon as a spectrally negative Lévy process, Y (t), hits a

barrier,  (x) z, where  (x) is a function of observed covariates and z is unobserved heterogeneity. Duration

is defined as:

T = inf {t  0 : Y (t) >  (x) z} (5)

The barrier is time invariant. As in the MPH, unobserved heterogeneity is determined at the beginning of

the spell and kept constant throughout the duration of the spell.

The MHT has been studied in a series of papers by (M-L.T. Lee & G.A. Whitmore 2004) and (M-L.T.

Lee & G.A. Whitmore 2006). (J.H. Abbring 2011) shows the nonparametric identification of the distribution

of Y (t),  (x), and z under a strategy similar to that used by (Heckman & Singer 1984).

Rather than having an exogenously given barrier determine the timing of the event of interest as in the

MHT, and in an attempt to allow unobserved factors change through time, unobserved heterogeneity can

be modeled as a stochastic process. One of the first papers to mention the importance of having stochastic

unobserved heterogeneity in duration models was (Y. Kebir 1991). An overview of models with stochastic

randomness is given in (N.D. Singpurwalla 1995) and models with Lévy frailties are introduced in (O. Aalen

& N.L. Hjört 2002) and (O. Aalen, H.K. Gjessing & N.L. Hjört 2003). (N.D. Singpurwalla 2006) presents a

nice overview of models in which the hazard rate is viewed as a stochastic process.

A model similar to (1) was introduced in (Aalen, Gjessing & Hjört 2003). In their paper, (Aalen, Gjessing

& Hjört 2003) do not allow dependence of the hazard function on observed covariates. They also model

state dependence explicitly by a baseline hazard function. (Aalen, Gjessing & Hjört 2003) present certain

properties of the survival function, without studying the identification of the model or the asymptotic

properties of their estimators.

2 Identification

The section explains the identification of (, f), and the distribution of {Z (u)}t0 entering (1).
The identification strategy requires the existence and finiteness of the mean of the distribution of the

stochastic process {Z (u)}t0, which implies the distribution has thin tails. This assumption excludes processes
such as the stable process.

The identification strategy proceeds in several steps. First, under normalization and regularity assump-

tions, the function of observed covariates,  (x), and the mean, k1, of the distribution of the stochastic process
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{Z (u)}t0 are nonparametrically identified; that is, they are identified when the distribution of {Z (u)}
t
0 is

unknown. The identification holds in the limit as the time index approaches zero. This result is similar to

identification at infinity, and may run into problems similar to irregular thin set identification4. In order

to avoid this issue, the function  (x) is shown to be identified for all values of time, t > 0, but when

the distribution of the stochastic process is parametrized up to its mean. Thus, there is a trade-o§ in the

identification of  (x).

Second, because of the special interaction between the weight function {f (u)}t0 and the stochastic process,
{Z (u)}t0, the two cannot be identified jointly. By assuming the distribution of the stochastic process to be
known up to its mean, the weight function is identified for all t > 0. The identification of the weight function

proceeds by the Banach fixed-point theorem. As a separate result, assuming the weight function {f (u)}t0 to
be known, the distribution of {Z (u)}t0 is identified.
Misspecification of the mixing distribution generally results in inconsistent estimates. In practice, when

choosing an appropriate distribution for unobserved heterogeneity, one can use mathematical properties of

stochastic processes that explain real-life phenomena, as well as results from biostatistics, operations manage-

ment, engineering, and psychology. Despite this limitation, there is scope to allow unobserved heterogeneity

to develop in an uncertain manner as this specification may capture dynamic operating conditions in a more

realistic way.

The intuition for the identification results begins with the transition rate out of the initial state among

those surviving up to some t in the initial state, defined as:

 (X)EZ

Z t

0

f (u) dZ (u)

T  t,X (6)

For t > 0, the variation in the transition rate is due to variation in both observed and unobserved

heterogeneity.

Near the start of the spell, as t approaches zero, individuals in the sample are similar in terms of

unobserved heterogeneity up to the mean of the distribution of unobserved heterogeneity, k1. That is so

because under independence of {Z (u)}t0 and X, for all t, and under both a normalization assumption on
{f (u)}t0 and the existence and finiteness of k1, the expectation term in expression (6) collapses to k1 as

t # 0. Then variation in (6) is due to both the heterogeneity at the beginning of the spell, captured by k1,
and the variation in observed heterogeneity, captured by  (x). The mean, k1, is identified by imposing a

normalization assumption on  (x), which eliminates the variation in observed heterogeneity.

As time elapses, and given  (x), variation in the transition rate is due to variation that comes in from

two sources: the weight function {f (u)}t0 and unobserved heterogeneity {Z (u)}
t
0. For identification, the

variation in {f (u)}t0 needs to be separated from that in {Z (u)}t0 . However, the integral operator smooths
out, or lumps together, the variation from each source. To recover the individual variation due to each

4See (S. Khan & E. Tamer 2010).
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source, stronger restrictions on either {f (u)}t0 or {Z (u)}
t
0 need be imposed. To identify {f (u)}t0, the

mechanism that generates the variation in {Z (u)}t0, i.e. the distribution of unobserved heterogeneity, needs
to be assumed known up to its mean. On the other hand, the distribution of {Z (u)}t0 is identified assuming
{f (u)}t0 to be known.

2.1 Identification of k1 and  (x)

Consider the hazard function (1). Under certain assumptions listed in Appendix A.2.1, the survival function

associated to (1) is defined by applying the usual exponential formula:

S (t|x) = EZ exp


Z t

0

h (s|x, Z (s)) ds


(7)

By using the independence and stationarity of the increments of {Z (u)}t0 as well as the definition of the
Laplace exponent of the distribution of {Z (u)}t0 (see A.1), (7) can be written as a function of the Laplace
transform of the distribution of {Z (u)}t0. The survival function has the following form:

S (t|x) = exp


Z t

0

 ( (x) f (u) (t u)) du


(8)

where  (.) is the Laplace exponent of the subordinator and S (t|x) 2 (0, 1). The detailed derivation of (8)
is shown in Appendix A.2.2.

Let the true survival function be noted as S0 (t|x). The true survival function equals S (t|x), the survival
function associated to (1), i.e.

S0 (t|x) = S (t|x) (9)

Taking log of both sides of (9) and rearranging obtains:

H (t, x) =

Z t

0

 ( (x) f (u) (t u)) du (10)

where H (t, x) =  logS0 (t|x) .
The identification of the parameters of interest is based on solving (10) for  (x) , f (t) , and for the

moments of the distribution of {Z (u)}t0 for all x 2 R and t 2 R+. Equations similar to equation (10) are
known as nonlinear Volterra integral equations of the first kind5. Note that the kernel in (10) is unknown.

In general, Volterra integral equations of the first kind do not have unique solutions. However, if they

5An integral equation of the form below is a nonlinear Volterra integral equation of the first kind:

h (y) =

Z y

a
K ( (s) , y, s) ds

where y  a, where h is a given function and  is the solution to find. K (z, y, s) is the nonlinear kernel.
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can be transformed into Volterra integral equations of the second kind6, then it is possible to show they have

unique solutions. Under certain regularity assumptions, it is possible to reduce a Volterra integral equation of

first kind to one of the second kind by di§erentiating the former with respect to its upper limit of integration

until one obtains a free term added to the integral. This term usually depends on the functions of interest,

and it allows one to solve for the unknown functions by the method of contraction mappings. Once the

existence and uniqueness of the solution to the Volterra integral equation of the second kind has been shown,

the solution also solves uniquely the Volterra integral equation of the first kind by the Fundamental Theorem

of Calculus. This is the solution strategy adopted in this paper: First, the Volterra integral equation of the

first kind, equation (10), is reduced to an integral equation of the second kind by di§erentiating (10) twice

with respect to t. The di§erentiation is possible by Property A.1 (i), and by assumptions ID1(i) and ID2

below, where Htt (t, 0) =  @2

@t2 logS0 (t|x) .

Assumption ID1 (i)H (t, x) is twice continuously di§erentiable in t 2 R+ for all x 2 R; (ii) limt!0Htt (t, 0)

is well-defined.

Assumption ID2 The Laplace exponent is di§erentiable at zero.

Assumption ID3 (i)  (0) = 1; (ii) limt!0 f (t) = 1.

Assumption ID2 implies that k1 exists and is a nonzero finite number. ID2 excludes subordinators for

which the mean does not exist, such as the stable processes. This assumption can be thought of as the

analogue of the finite mean assumption in (Elbers & Ridder 1982), used to show the identification of the

MPH model. Assumption ID3 are normalization assumptions. ID3(i) is standard in duration analysis, while

ID3(ii) is needed in order to completely identify (, k1). Else, the two parameters  and k1, would be

nonparametrically identified up to limt!0 f (t) .

Lemma 1 Let unobserved heterogeneity {Z (u)}t0 entering the hazard function (1) be described by a positive
Lévy process with unknown distribution. By Property A.1 (i) and (ii), and under assumptions ID1(i) and

ID2, the Volterra integral equation of the first kind with unknown kernel (10) is reduced to a Volterra integral

equation of the second kind

f (t) =
1

k1 (x)


Htt (t, x) 2 (x)

Z t

0

f2 (u)11 ( (x) f (u) (t u)) du


(11)

where 11 (.) = @2

@t2 (.).

6An integral equation of the second kind has the following form:

h0 (x) = K ( (y) , y, y) +

Z y

a
Ky ( (s) , y, s) ds

where y  a, where the mapping K (z, y, y) is invertible in z for all y and K ( (y) , y, y) 6= 0.
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Proof. See Appendix A.3.

Theorem 2 Let the distribution of the positive Lévy process {Z (u)}t0 be unknown and let assumptions ID1,
ID2, and ID3 hold. Then the mean of the distribution is identified and given by

k1 = lim
t!0

Htt (t, 0)

Proof. See Appendix A.4.

Theorem 3 Let the distribution of the positive Lévy process {Z (u)}t0 be unknown. Under assumptions ID1,
ID2, and ID3, the function  (x) is identified and given by

 (x) =
limt!0Htt (t, x)

limt!0Htt (t, 0)

Proof. See Appendix A.5.

2.2 Identification of the Weight Function

The identification of the weight function {f (u)}t0 proceeds by first assuming that the distribution of {Z (u)}
t
0

is known up to k1. Then the true survival function depends on the true parameter k01, i.e. S0

t|x, k01


. The

survival function associated to (1) is S (t|x, k1) . Property A.1 and assumptions ID1 and ID2 hold for all k1,
so that the integral equation of the first kind that is obtained by setting S0


t|x, k01


= S (t|x, k1) can be

reduced to an integral equation of the second kind just as before.

The mean, k1, is a nonlinear function of possibly d elements, such as the rate of the jumps, the scale of

the jumps, the expected number of jumps, and so on7. If interest lies not only in {f (u)}t0 but also in one of
the d elements of k1, it is shown that by normalizing all but the element of interest in k1, the free parameter

of k1 is identified. This result is shown for both the gamma process and the compound Poisson processes.

Let f (t) 2 Csw (R+), where Csw is the Banach space of s-times continuously di§erentiable functions

endowed with the appropriate norm, weighted by a continuous, positive weight function, w (t), defined by

(13). The function, {f (u)}t0, is identified if (11) has a unique solution in C
s
w, which is established via

the Banach Fixed Point Theorem by showing the integral operator defined below is an inclusion and a

contraction:

(Tf) (t) =
1

k1


Htt


t, x, k01


x=0


Z t

0

f2 (u)11 (f (u) (t u) , k1) du


(12)

where Htt

t, 0, k01


=  @2

@t2 logS0

t|x = 0, k01


.

Let the following assumptions hold:

7See examples in Appendix A.1.
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Assumption ID4 (i) f (t) 2 Csw (R+) ; (ii) limt!0
@
@tf (t) is well-defined; (iii) 0 < f (t)  M < 1, 8

t 2 R+.

Assumption ID5
 @3@3 (, k1)  B, 8  > 0 and k1 2 R+.

Assumption ID6 (i) Htt

t, x, k01


2 Csw; and (ii) There exists a constant  > 0 such that

lim
t!0

Htt

t, 0, k01


 

Assumptions ID4(iii) and ID5 coupled with property A.1(i), imply the second partial derivative of the

Laplace exponent with respect to its first argument is Lipschitz continuous with Lipschitz constant B:

|11 (1, k1)11 (2, k1)|  B |1  2|

Lipschitz continuity is needed in order guarantee the kernel of (11) is Lipschitz continuous, which will further

reflect into the operator T being Lipschitz continuous with a bounded Lipschitz constant. Assumption ID6(ii)

implies the mean of the distribution of {Z (u)}t0 is bounded from below by a positive number . ID6(ii) is

needed in order to guarantee that the operator T is a contraction. The Lipschitz constant of the operator is

shown to be 
k1
. Since k1 = limt!0Htt


t, 0, k01


, the operator is a contraction if 

k1
2 (0, 1). Examples 1 and

2 in Appendix A.6 show assumptions ID2, ID4 to ID6 are satisfied for both the gamma and the compound

Poisson processes.

Theorem 4 Assume the distribution of the stochastic process is known up to its mean, k1. Under assump-
tions ID1 to ID6, the function f (t) 2 Csw is identified. The weight function for the norm is given by

w (t) = exp


3BM2


t


(13)

The solution is found by the successive approximation method. That is, for n  1:

f0 (t) =
1

limt!0Htt (t, 0, k01)
Htt


t, 0, k01


fn (t) =

1

limt!0Htt (t, 0, k01)


Htt


t, 0, k01



Z t

0

f2n1 (u)11 (fn1 (u) (t u) , k1) du


Proof. See Appendix A.9.
Theorem 2 identifies the mean of the distribution of {Z (u)}t0 when the distribution is unknown. Once

the distribution is parametrized up to k1, the mean becomes a nonlinear function of several parameters such

as the scale and the rate of the jumps. If interest lies in identifying the rate parameter , then the other

parameters entering the formulation of k1 need to be normalized.
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Assumption R1 The scale of the gamma process is normalized to one:  = 1.

According to properties of the gamma process, if Z is a gamma process with scale parameter , then

Z is a gamma process with scale parameter 1, see (N. Tsilevich, A. Vershik & M. Yor 2001). As such, a

normalization assumption on the scale of the gamma process cannot be avoided. By normalizing the scale

of the process, the jumps of the process have a magnitude of 1.

Lemma 2 Let the conditions of Lemma 2 and Theorem 4 hold. Let the process be the gamma process and

assume R1 holds. Then the rate of the jumps, , is identified.

Proof. For the gamma process, the mean is given by:

k1 =



= lim

t!0
Htt


t, 0, k01


= lim

t!0
Htt


t, 0, k01


by assumption R1.

Consider now the case of the compound Poisson process for which the following extra assumption is

imposed:

Assumption R2 The scale and rate of the Poisson process are normalized to one:  =  = 1.

The Lévy measure of the compound Poisson process is proportional to the jump distribution by the factor

, as such a normalization assumption on  cannot be avoided. The intensity parameter  represents the

expected number of events that occur per unit time. For example, if the expenditure process is modeled

as the compound Poisson process, the expected number of expenditure shocks that happen in the interval

(t, t+  ] is  . Normalizing  implies that the expected number of expenditure shocks that happen in an

interval of time equals the length of the interval.

Lemma 3 Let the conditions of Lemma 2 and Theorem 4 hold. Let the process be the compound Poisson

process and assume R2 holds. The rate parameter  and the weight function are identified.

Proof. For the compound Poisson process, the mean is given by:

k1 =



= lim

t!0
Htt


t, 0, k01


= lim

t!0
Htt


t, 0, k01


by Assumption R2.

Consider now the identification of  (x) when the distribution of {Z (u)}t0 is known up to k1.

Theorem 5 Let all the assumptions necessary for the identification of f (t) and of k1 hold, and let the
distribution of the stochastic process be known up to k1. Then the covariate function  (x) is identified and

given by

 (x) =
1

k1f (t)


Htt


t, x, k01


 2 (x)

Z t

0

f2 (u)11 ( (x) f (u) (t u) , k1) du


Proof. See Appendix A.10.
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2.3 Identification of the Marginal Distribution of the Process

Suppose either one had prior information about the weight function {f (u)}tu>0 or the weight function was
not relevant in the model, i.e. {f (u)}tu>0 = 1, 8t. Then all moments of the distribution of {Z (u)}t0 can
be identified as t # 0. This result should be regarded as separate from those above as the weight function

{f (u)}tu>0 and the distribution of {Z (u)}
t
0 cannot be jointly identified.

Condition A Let f (t) be analytic and such that for all t > 0
lim
t!0

@n

@tn
f (t)


n1

= 1

Condition B (i) H (t, x) 2 C1 in t > 0 for all x 2 R. (ii)  (.) is infinitely many times di§erentiable at
zero.

Condition A implies that f (t) has the following form:

f (t) = f (0) + f 0 (0) t+
f 00 (0)

2!
t2 + ... = 1 +

1X
i=1

ti

i!
= et

Condition B(ii) implies all moments of the distribution of {Z (u)}t0 exist and are finite. The assumption
implies that Carleman’s condition holds. Carleman’s condition is a su¢cient condition for the uniqueness of

the moment sequence. If the moment sequence is unique, then the moment generating function determines the

distribution. Carleman’s condition states that a sequence of moments {Mn}n2N that satisfy
P

j (M2j)
1/2j

=

1 uniquely determines a random variable with moments Mn. See (W. Feller 1970). For the problem,

Carleman’s condition takes the form (14) below:

1X
r=1


1

k2r

1/2r
=1 (14)

where kr is the rth moment of the distribution of {Z (u)}
t
0 . A su¢cient condition for (14) to hold is B(ii).

Theorem 6 Let conditions A and B hold. Then the distribution of the stochastic process {Z (u)}t0 is uniquely
determined by its positive order integer moments.

Proof. See A.11.

3 Sieve Maximum Likelihood

The section considers the estimation of (1), where the distribution of {Z (u)}t0 is known up to the jump rate,
. The parameters of interest are (, f, ).
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The identification strategy presented above is constructive. However, it is based on the second partial

derivative of the true survival function with respect to the time index. Translating this into an estimation

procedure means numerically di§erentiating a consistent nonparametric estimator of the conditional survival

function, which would introduce numerical error in the estimation of the functions of interest. In order

to overcome possible estimation issues resulting from numerical di§erentiation, the estimation procedure

proposed in this paper does not follow the identification strategy. Since the weight function {f (u)}t0 is
identified by parametrizing the distribution of {Z (u)}t0 up to , the estimation procedure is semiparametric
maximum likelihood (ML).

Parametrizing the distribution of {Z (u)}t0 up to  obtains the conditional density function of duration
given observed covariates. Since interest lies in estimating two infinite dimensional parameters,  and f , un-

der shape restrictions and which enter the criterion function nonlinearly, the estimation procedure proposed

in this section is semiparametric sieve ML. The basic picture is that sieve estimation avoids possible theoret-

ical and computational issues associated with optimization over infinite dimensional spaces. Theoretically,

the MLE may be inconsistent if the estimation procedure is carried out over an infinite dimensional space8,

while computationally, working with finite-dimensional spaces significantly reduces the dimensionality of the

optimization problem.

The proposed estimation method is to approximate the unknown positive smooth functions by positive

transformations of a linear span of known basis functions9. The basis functions chosen in this paper are

polynomial splines since splines are known to approximate smooth functions well and have been widely

applied in nonparametric estimation. Both the finite dimensional parameter and the coe¢cients in the linear

expansions are then simultaneously estimated by maximizing the likelihood over a sequence of approximating

spaces with the approximating error decreasing to zero as the sample size increases.

3.1 The Model and the Estimator

Let {(Xi, Ti)}
n
i=1 be iid draws from the distribution of (X,T ) with bounded support X T where X = [0, 1]

and T = (0, 1].10 . The survival function associated with the hazard function considered is given by

S (t|x;, f, ) = exp


Z t

0

 ( (x) f (u) (t u) , ) du


(15)

8See (S. Geman & C. Hwang 1982), (A.R. Gallant & D.W. Nychka 1987), (X. Shen & W.H. Wong 1994), (X. Shen 1995),
(C. Ai & X. Chen 2003), (X. Chen 2007).

9 See (C. de Boor 1978), (L.L. Schumaker 1981), (C.J. Stone, M.H. Hansen, C. Kooperberg & Y.K. Truong 1997), (Chen 2007).
10As (M. Crowder 2001) discusses, the covariates of interest are more likely to have bounded supports in applications.

Bounded support is usually assumed in the biostatistics literature on the MPH model. See (J.A. Wellner & Y. Zhang 2007),
(J. Huang 1996). The result of this section can be easily extended to the case of X  Rd with  (x) approximated by a tensor
product.
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where  (, ) ,   0 is the Laplace exponent of {Z (u)}
t
0. The conditional distribution of T |X is given by

p (t|x;, f, ) = 
@

@t
S (t|x;, f, )

The true value 0 = (0, f0, 0) 2 A =  F  solves

0 = arg max
(,f,)2A

Q (, f, )

= arg max
(,f,)2A

Ex,t log p (t|x;, f, ) (16)

where the finite dimensional parameter  2 , a compact subset of R+  {0}, while the two functions are
assumed to belong to the following spaces:

 = { (x) 2 Cs1 (X ,R+) :  (0) = 1} (17a)

F =
n
f (u) 2 Cs2 (T ,R+) : lim

t!0
f (t) = 1

o
(17b)

A sieve ML estimator is proposed for 0 2 A by replacing A by a sieve space An that is compact,
linear, finite dimensional space and that becomes dense in A as n!1. Let Bj (.) be a sequence of known
univariate basis functions. Then An is a linear span of finitely many Bj (.). For sieve approximation, we
consider the functions  and f in finite dimensional spaces n and Fn, respectively, defined as:

n =

8<:n (x) 2  : n (x) = exp
mnX
j=1

ajBj (x)

9=; (18a)

Fn =

8<:fn (t) 2 F : fn (t) = exp
mnX
j=1

bjBj (t)

9=; (18b)

where mn is the dimension of the sieve spaces, such that mn ! 1 with mn

n ! 0. The exponential

transformation serves to impose the positivity of the functions. The sieve spaces are open and convex, with

approximation rate of order O (ns1) and O (ns2) , respectively.

The sieve ML estimator bn = bn, bfn,bn 2 An = n  Fn   maximizes the sample analog of (16)

with  restricted to the sieve space An :

bn = arg max
2An

bQn (, f, )
= arg max

2An

1

n

nX
i=1

log p (ti|xi;, f, )
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Then, the sieve ML estimator satisfies

bQn (bn)  sup
2An

Qn ()Op (n) , n = o (1)

3.2 Consistency

The following assumption is made on the parameter space, A.

Assumption C0. (i) A is connected in the sense that for any 1,2 2 A, there exists a continuous path
{ () :  2 [0, 1]} in A such that  (0) = 1 and  (1) = 2. (ii) The parameter space is convex

at 0, such that for any  2 A, (1 )0 +  2 A for small  > 0. (iii) For almost all (X,T ),

p (t|x, (1 )0 + ) is continuously di§erentiable at  = 0.

The consistency of the estimators is established under metric ||.||1 defined below. For any  2 A:

|| 0||1 = sup
x
|( 0) (x)|+ sup

t

Z t

0

(f  f0) (u) du
+ ||||E (19)

where ||.||E is the Euclidean norm. To establish the consistency of the estimators, it is assumed that:

Assumption C1. (i) The functions  (x) and f (t) are such that (17a) and (17b) hold. (ii) f (t) is bounded
from above. (iii)  (x) and f (t) are bounded away from zero for all x and all t, respectively.

Assumption C2. Let  (, ) be such that for all  > 0 and , the following partial derivatives are bounded
below and above:

0 < m1  1 (, ) M1 <1

1 < m11  11 (, )  0

1 < m12  12 (, ) M12 <1

0 < m2  2 (, ) M2 <1

where the partial derivatives are evaluated at  =  (x) f (u) (t u).

Let Ao be an open and convex space such that

Ao = o  Fo o = { 2 A : || 0||1 = o (1)}

Assumption C3.  (, ) is pathwise di§erentiable with respect to  2 Ao for all t 2 T and for all  2 
and continuously di§erentiable in  2 o for all  2 A in the norm ||.||w defined in 19.

Assumption C4.  (, ) is monotonic in .
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Assumption C1(ii) implies that the hazard function is bounded away from zero. As noted by (D.M.

Dabrowska 2005), this assumption holds if the covariates are bounded and the regression coe¢cients vary

over a bounded neighborhood of the true parameter, conditions which hold by construction in this paper.

The uniform boundedness assumption on the functions of interest is used to verify the continuity of the

sample criterion function in the consistency norm. The assumption controls the behavior of a term that

explodes as the product of the functions (x) and f(t) approaches zero.

Assumption C2 coupled with the di§erentiability property of the Laplace exponent with respect to  and

, implies the Laplace exponent as well as its first partial derivative with respect to  and  are Lipschitz

continuous in  and . Define the following infima and suprema: m = inf , M = sup, mf = inf f , and

Mf = sup f . In the problem,  =  (x) f (u) (t u), where  : X ! [m,M]  R+, f : T ! [mf ,Mf ] 
R+, and t 2 T . Although the partial derivatives of  are continuous on [m,M] [mf ,Mf ] T , the range
of  is not closed, so that the partial derivatives are not bounded unless C2 holds. Note that C2 holds for

both gamma and compound Poisson processes.

Assumption C4 is needed in order to derive the bracketing number of the class of functions indexing the

criterion function. For the gamma and compound Poisson processes, assumption C4 holds automatically,

see A.1.

Theorem 7 Under Assumptions C0-C4 above

||bn  0||1 = op (1) as n!1

Proof. The proof can be found in Appendix A.14.
Monte Carlo studies for three separate studies have been performed; simulation results can be found in

Appendix B. In the first study, the data was generated and estimated by the DH model. In the second

study, the data was generated by the DH specification, but the model was estimated by the MPH with

gamma heterogeneity. In the third study, the data was generated by the MPH with gamma heterogeneity,

but estimated with the DH model. A summary of data generating processes (DGP) and estimating models

is given below:
Study DGP Hazard Hazard of Estimating Model

1 (DH)  (x)
R t
0
f (u) dZ (u) (DH)  (x)

R t
0
f (u) dZ (u)

2 (DH)  (x)
R t
0
f (u) dZ (u) (MPH) M (x) (t) z

3 (MPH) M (x) (t) z (DH)  (x)
R t
0
f (u) dZ (u)

where {Z (t)}t>0  Gamma (t, ) and z  Gamma (, ) .
Under correct specification, the estimators for (, f, ) perform quite well on average. There is individual

variation in the estimators, particularly for the weight function {f (u)}t0. The standard error for b is relative
small to b.
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Under the first misspecification analysis, the true DGP is the DH model with stochastic gamma het-

erogeneity with the model being estimated by the MPH with gamma distributed heterogeneity. The MPH

estimator for the function  (x) performs very well on average when the baseline hazard is estimated by

a flexible function, i.e. by a polynomial spline. When the baseline hazard is parametrized as the Weibull

function (which is usually done in practice), the MPH estimator for  (x) is performing much worse, with the

estimator showing positive bias in the tail. The MPH estimates of the survival function perform very poorly,

showing a large negative bias. This may be because all the variation in t is picked up by the integrated

baseline hazard and by the rate of the distribution of the gamma random variable; both of these estimators

are very large. The bias is smaller when the baseline hazard is flexible rather than when it is parametrized.

For the second misspecification analysis, the true DGP is the MPH with gamma heterogeneity while the

estimating model is the DH model with gamma heterogeneity. The DH estimators of  (x) perform well

on average, but they have high individual variance (relative to when the model is not misspecified). The

estimate of the survival function shows a negative bias, but much smaller than that of the first misspecification

analysis. In this case, both the rate parameter of the gamma process and the weight function {f (u)}t0 pick
up the variation in the baseline hazard.

4 Unemployment Duration with Sunk Costs

4.1 The Model

This section presents a one-sided empirical job search model in which unemployment duration is defined as the

first time a stochastic process hits a random threshold. Individuals exit unemployment when accumulating

losses due to unemployment cross over a self-imposed spending limit on how many losses they are able and

willing to sustain during the unemployment spell. The self-imposed limit can be thought of as a reference

point. Under certain conditions, the survival function resulting from this model is that associated with the

hazard of (1).

Let {Z (t)}t0, with Z (0) = 011 , denote monetary and non-monetary losses that accumulate in an

uncertain way during the spell of unemployment. The process {Z (t)}t0 is an adapted, increasing, right-
continuous process with independent and stationary increments on a filtered probability space. Losses can

be thought of as damage accumulating over time in a sequence of increments, whose size is governed by

the Lévy measure of the stochastic process. It is assumed that losses have the same distribution for all

individuals and that losses are unobserved by the econometrician.

In this set-up, there is one job o§er per period and jobs are of di§erent types. Rejecting an o§er that

may be preferred to another has a higher cost than rejecting the preferred o§er. Rejection costs contribute

to the process of losses due to unemployment.

11For now, it is assumed individuals have the same initial condition: They begin the unemployment spell with zero monetary
and non-monetary losses due to unemployment.
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At the beginning of the unemployment spell, individuals are endowed with a resource, R, denoting

the total amount of losses individuals are willing (or able) to sustain during the spell of unemployment.

The resource is a non-negative random variable, independent of accumulating losses, with a continuous

distribution function GR. It is a self-imposed spending limit, which can be thought of as a reference point.

Total losses (are perceived to) accumulate during the spell of unemployment at the rate
R t
0
f (u) dZ (u).

The weight function {f (u)}tu>0 is positive, right-continuous, and bounded away from zero. It accounts for

how individuals weigh past losses and it can be used to test whether the sunk cost e§ect may weaken over

time. For example, if {f (u)}tu>0 is increasing, individuals put more weight on more recent losses, and the
sunk cost e§ect weakens over time. The rate of accumulation is further weighted by a function of observed

covariates12 ,  (x). The rate at which perceived losses accumulate is modeled as (1) so that so that  (x)

has a scaling e§ect on the rate.

Total losses during the spell of unemployment are given by:

H

t|x, {Z (t)}t0


=

Z t

0


 (x)

Z s

0

f (u) dZ (u)


ds

Individuals exit unemployment when perceived total losses are greater than the threshold R, that is when

H

t|x, {Z (t)}t0


> R. The survival function for this model is given by:

P (T > t|x) = P

H

t|x, {Z (t)}t0


< R


=

Z 1

0

P (R > h) dFt (h)

= EZ

h
1GR


H

t|x, {Z (t)}t0

i
where Ft (.) is the distribution function of {Z (u)}

t
0. When R is assumed to be exponentially distributed

with parameter one13, the survival function becomes:

P (T > t|x) = E exp
h
H


t|x, {Z (t)}t0

i
(20)

which is the expression for the survival function introduced in Section 2.

The resource level is based on financial wealth. Empirical studies have shown that the distribution of

financial wealth among the low and middle class in the USA (or the lower 95% of the population) follows the

exponential distribution, see, among many others, (J. Gruber 2001), (A. Dragulescu & V.M. Yakovenko 2001),

(R. Lopez-Ruiz, J.L. Lopez & X. Calbet 2011). Note that in the empirical study, the sample is composed of

12 Such as age, education level, marital status, etc.
13Note that the distribution can be allowed to be exponential with parameter . In this case,  cannot be identified as it can

be absorbed by the mean of the distribution of {Z (u)}t0. In order to identify , one has to parametrize fully the distribution.
Else, in order to keep the previous identification results intact, one has to assume  to be known.
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low and middle class individuals. Thus, assuming R is exponentially distributed is justified.

In conclusion, unemployment duration is given by the first time perceived sunk losses cross over a random

threshold with the standard exponential distribution.

The model introduced departs from existing models of unemployment duration in several ways:

(1) Sunk costs a§ect the decision of individuals to continue searching.

(2) Individuals weigh their losses di§erently. For example, some individuals may emphasize earlier losses

or may be more prone to become more sensitized to further losses by earlier losses14 (see (R. Thaler & E.

Johnson 1990)). This type of behavior has been observed when individuals (firms) set self-imposed spending

limits (budgets) (see (C. Heath 1995), (R. Thaler 1980), (J. Brockner & J.Z. Rubin 1985)).

(3) The probability of exiting unemployment is driven by three elements: the reaction of individuals

to accumulating losses, their self-imposed limits on losses to be sustained, and their history of losses. In

contrast, the exit probability in standard models is driven by the exogenous distribution of o§ers evaluated

at a reservation wage.

(4) Long term unemployment results because individuals do not perceive their losses as "pressing enough,"

or because they do not have a high enough realization of the loss due to unemployment. In the framework

of this paper it could be that individuals do not put enough e§ort in finding a job because they do not have

a high enough realization of the loss due to unemployment.

4.2 Theoretical Background

The motivation for the framework presented in this section comes from several sources: A recent experimental

study by (M. Brown, C. Flinn & A. Schotter 2011) (henceforth BFS), prospect theory, and the literature on

labor supply with reference dependence.

In an experimental study, BFS find that reservation wages are declining even in a stationary environ-

ment15 for which they propose two behavioral explanations16 . First, when facing accumulating monetary

costs, searchers may fail to recognize previously incurred costs as sunk. Second, searchers may experience

nonstationary subjective costs of search, such as discouragement or the uncertainty of waiting; these costs

accumulate during the spell of unemployment. The first explanation proposed by BFS has been previously

proposed by (Thaler 1980) under the name of the sunk cost fallacy. The second explanation has been par-

tially studied by the behavioral economics literature dealing with how individuals respond to sunk costs when

they had invested time rather than money in an endeavor (see (D. Soman 2001)). The idea that unhappiness

14Those for whom earlier losses loom more important may quit searching faster for nothing more but frustration at what has
already been lost. Such individuals may be regarded as being more averse to loss: They may become more easily frustrated at
losses incurred and may want to stop incurring additional losses.
15A stationary environment is one in which one of the following exogeneous parameters is constant through time: the

unemployment benefit, the arrival rate of job o§ers, or the probability of drawing a new wage o§er. The reservation wage is
declining if either one of the three exogeneous parameters is decreasing during unemployment. See Theorem 2 in (G.J. Van den
Berg 2001).
16The e§ect of either of the two explanations is that individuals may accept lower wage o§ers in response to higher costs and

thus exit unemployment earlier than it is predicted by standard search models.
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and stress accumulate during the spell of unemployment and that they a§ect decisions has been documented

by the literature on happiness and unemployment (see (A. E. Clark & A.J. Oswald 1994)).

The idea that sunk costs a§ect decisions under risk was first formalized by (D. Kahneman & A. Tversky

1979) in their prospect theory. Prospect theory asserts that sunk costs a§ect behavior by either strengthening

commitment to an activity or by increasing the probability that the activity will be abandoned17. In prospect

theory, the timing of sunk costs matters. For example, (Arkes & Blumer 1985) and (J.T. Gourville & D.

Soman 1998) found that the further in the past the cost occurred, the least likely it is for it to influence

present decisions18 . Prospect theory also mentions the importance of self-imposed limits. The existence

of self-imposed spending limits has been documented by a large number of papers in behavioral economics

and in the literature studying mental budgeting (Heath 1995). Empirically, it has been noted that these

self-imposed limits are arbitrary and do not follow any decision rule from economic theory (H. Shefrin & M.

Statement 1985).

First hitting-time models in which individuals solve an optimal stopping problem driven by a stochastic

process, and models in which labor supply decisions depend on a reference point are not new. For example,

(R. Shmer 2008) models the di§erence in lifetime utility in the best available job and lifetime utility in

unemployment as a Brownian motion. The duration of unemployment is determined as the first time this

Brownian motion hits the zero threshold. Likewise, in the literature on labor supply, (H.S. Faber 2008)

models a taxi driver’s continuation value of driving as depending on whether the accumulated income is

greater than a reference level, which is assumed to be a daily income target.

4.3 Data, Empirical Specification, and Results

The model introduced is evaluated empirically on NLSY79 data on the first spell of unemployment. The

data is described in detail in Appendix B.4.

The NLSY79 was the preferred data set since it contains complete work history information for a specific

cohort, available on a weekly basis regardless of the period of non-interview. As the model assumes continuous

time and uncensored spells, the relatively high frequency of the data as well as being able to construct a

complete work history for each surveyed individual are useful characteristics of the data set.

Completed spells are defined as transitions out of employment to unemployment and then back to em-

ployment. Unemployed workers are those who did not work at all during the survey week but have searched

for a job in the four weeks prior to the survey and during the survey week. Out-of-labor force individuals

and individuals for whom there is no information about whether or not they were actively searching during

unemployment are dropped from the sample.

17Further discussion can be found in (Thaler 1980), (K. McKean 1985), (H. Arkes & C. Blumer 1985), and (C.A. Kogut 1990).
18 (Arkes & Blumer 1985) tested in a real-money study whether a family was more likely to go to a basketball game if they

purchased the tickets a week before rather than a year before. The study found that the sunk cost e§ect disappeared during a
six to nine month period.
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The first spell was selected for two reasons: First, it has been documented that future spells of unem-

ployment are significantly a§ected by the first unemployment spell. Thus it seems appropriate to study

what drives the first unemployment spell. Additionally, including future spells into the analysis would mean

allowing for dependence between survival times, which cannot be dealt with by the framework presented in

this paper. Second, the model presented requires uncensored survival times. Since individuals are observed

when they become unemployment for the first time until they exit unemployment, the first unemployment

spell is not censored.

4.3.1 Empirical Specification

For the estimation procedure, 1 is modeled as

h

t|xind, xw, {Z (t)}t0


= 1 (xind)2 (xw)

Z t

0

f (u) dZ (u)

where xw is initial net wealth and xind is a vector of observed variables such as age, number of children,

and either marital status or education group, depending on the analysis performed. The function 1 (xind)

is parametrized as:

log 1 (xind) = 0age+ 1age
2 + 2kids+ 3y

where y 2 {marital status, education group}. Functions log 2 (xw) and log f (t) are approximated by

second degree splines with polynomial basis. log 2 (xw) has one knot located at the 0.5 quantile, while

log f (t) has nine knots located at the {0.1, 0.2, 0.3, ..., 0.8, 0.9} quantiles.
The process modeling costs of unemployment is assumed to be the gamma process with a scale parame-

ter19  =

1
2


106. Although the distribution of unobserved heterogeneity does not follow from economic

theory, the gamma process was chosen for two reasons. First, in standard duration models, unobserved het-

erogeneity is usually parameterized as a gamma distributed variable. As such, the present analysis assumes

that loss increments have a gamma distribution. Second, the gamma process implies losses are increasing

gradually, in small and frequent increments rather than in large jumps that happen at relatively distant

points in time.

The estimation procedure is performed on the following groups: (i) married men, (ii) men who are not

married; (iii) married women, (iv) women who are not married; (v) men with more than twelve years of

education (vi) men with less than twelve years of education; (vii) women with more than twelve years of

education and (viii) women with less than twelve years of education. The optimization procedure used is

Matlab fmincon20.
19The scale parameter, which models the magnitude of the costs, was not normalized to one in order to be consistent with

the scaling of the wealth data.
20 Since Matlab approximates exp (c) by infinity whenever c is large,both the wealth data (which is of order 106) and the

duration data (which is of order 102) are scaled down in order to avoid the approximation by infinity issue. The wealth data is
scaled down by a factor of


1
2


106 and the duration data is scaled down by a factor of 102 such that net wealth, x  2 and
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For comparison purposes, the MPH with gamma heterogeneity is estimated on the same data. The

hazard function for the MPH is specified as

hM (t|x) = M (x) (t) 

where M (x) = exp (x0), with x = [xind xw y]. The variables entering x are the same as those used in

the DH specification. The random variable  is assumed to be gamma distributed with scale equal to that

of the DH model and rate , to be estimated. The baseline hazard is modeled in two di§erent ways. For

Case S, log  (t) is modeled as a spline polynomial of second degree, while for Case P,  (t) is parametrized

as the generalized Weibull function, (70). The parameters of interest are (,, ). The baseline hazard is

parametrized in order to illustrate the di§erence between the survival functions obtained when the following

models are fitted to the data: DH, MPH with spline baseline hazard, and MPH with generalized Weibull

baseline hazard.

Finally, a nonparametric estimator of the survival function is also fitted to the data to provide a bench-

mark for the comparison of the survival functions from the three models. The nonparametric estimator is

the following generalized additive estimator:

S (t|x) =
1

3

3X
=1

f (x)

f (x) =
1

n

nX
j=1

1 (Tj > t)
K

xjx

h


1
n

Pn
i=1K


xix

h


for each t in T , and where x = [xind xw y], h = n1/5, and K (.) is the Epanechnikov kernel. For each

observed variable x,  = 1, 2, 3, represents the mean of that variable.

4.3.2 Summary of Results

The results are presented in Appendix B.5. It is found that men and women react di§erently to the costs of

unemployment conditional on their education level and marital status. Conditional on education, transition

rates for men are mostly driven by di§erences in weight functions. For women, the di§erences are driven

by both weight functions and net wealth e§ects, see Figures 8 and 9. Conditional on marital status, the

di§erences in hazard rates for men seem to be driven by di§erences in net wealth. For women, di§erences

are mainly driven by weight functions, see Figure 11.

Table 5 presents the estimated rate of accumulation, . The interpretation of this parameter is that during

a time interval of length t, the expected number of losses are t. It can be seen that high education types

have the highest rate of accumulation, while low education types have the lowest rates.

duration, t  2, respectively.
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Conditional on education, Figure 8 shows that individuals with a college degree are more sensitive to

earlier losses than those with a lower education level. Both men21 and women with a college degree put more

weight on earlier losses. Women with a high school degree show a decreasing sunk cost e§ect since they put

more weight on more current losses. Higher net wealth decreases the probability of exiting unemployment

for all categories except for women with a high school degree22 .

Conditional on being married, men put more emphasis on sunk costs than women23. Women who are not

married emphasize earlier losses more than women who are married, while the opposite happens for men.

The probability of exiting unemployment is decreasing in net wealth, more so for those who are not married

than for those who are. Men who are married exit unemployment faster than those who are not, while for

women the situation is reversed, see Figure 12.

The number of children decreases the exit probability for both men and women with a high school degree,

while it increases it for those with a college degree. Conditional on education level, age has a negative e§ect

on transition rates for all categories, with a nonlinear e§ect for both men and women with a high school

degree. Conditional on marital status, age has a negative e§ect on transition rates, with a nonlinear e§ect

for men who are not married and for married women. Education has a negative e§ect on exit probabilities

for men who are married, while having a positive e§ect for all the other categories. Some of these results

are corroborated by the MPH. The biggest di§erences between the DH and the MPH estimators are related

to the e§ects of age for men with a high school degree and for men who are not married. The two models

obtain di§erent nonlinear relationships of transition rates with respect to age, although the turning points

at which transition rates change sign with respect to age are outside the range of ages in the data. The rate

parameter for the gamma distribution for the MPH is very large in comparison to that in the DH, possibly

because the MPH rate parameter captures time e§ects which are more reasonably modeled by the DH.

Regarding survival functions (see Figures 13 and 14), the DH and the MPH produce di§erent results

depending on how flexible the MPH baseline hazard is allowed to be. When the baseline hazard is estimated

by a spline function, the MPH, the DH, and the nonparametric estimator produce almost identical survival

functions, for both men and women24. When the baseline is the generalized Weibull function, the MPH

produces survival probabilities that are greater (especially in the tails) than those of the DH or of the

nonparametric estimator. The MPH may overestimate the probability of survival since it treats unobserved

heterogeneity as being fully correlated over the spell duration. The MPH fits the survival probability by

fitting the average of the duration outcomes; the DH fits the survival probability by taking into account that

those with longer durations may have a smaller realization of the stochastic process.

21Bootstrap results for estimators for men with a college degree can be found in Appendix B.5.
22This result is in line with the MPH estimator for the e§ect of net wealth on transition rates for women with a high school

degree.
23Married women seem to have a turning point in the weight function at approximately 60 weeks of unemployment, although it

should be noted that this could be a small sample e§ect, as there are few observations with such a long duration of unemployment.
24For the DH function for women who are not married (figure 14), the DH survival function has a kink. This is due to there

being only four observations with a duration greater than 75 weeks.
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4.3.3 Interpretation of the Results

Di§erences in weight functions can be regarded as being generated by di§erences in expectations, aspirations,

costs of adjustment, and social norms. Outside options and work mobility can also a§ect perceptions of losses

as well as the rates of loss accumulation.

Regarding expectations, high education types have invested in their human capital as insurance against

negative labor market shocks. As such, they may perceive unemployment as a greater shock to their self-

worth25. Additionally, reaction to losses may be stronger when the level of material benefits falls behind

expectations rather than when the level of net loss is the greatest26 . High education types may also be the

ones with di§erent career aspirations and unemployment may constitute a greater set-back in terms of their

aspirations.

Social norms may a§ect the way individuals react to losses and the way they adapt to new situations.

It may be more acceptable for women to stay at home than for men (e.g. the breadwinner syndrome) and

women may have di§erent career expectations. For example, women with a high school degree may not

experience as many losses as other categories partially because they may not be as career oriented as women

with a college degree, while in terms of social comparisons, they may not experience the stigma associated

with staying at home that men may.

Perceived outside options, work mobility, or being associated to sectors with high turn-over rates may

also influence the weight put on losses as well as the speed with which losses accumulate. Having more

options available in terms of possible employers or knowing that the duration of employment in a future job

is short may make one less sensitive to losses that happen earlier.

The rate at which costs accumulate can also influence the way individuals weigh their losses. When losses

accumulate at a faster rate, individuals may not have enough time to adapt, resulting in more emphasis on

earlier losses27 .

4.4 Counterfactuals

When losses accumulate at a slower rate, individuals may not perceive losses incurred earlier as pressing,

resulting in an increasing weight function. When the rate of accumulation is higher, individuals may have

less time to adjust and earlier losses may be more important, resulting in a decreasing weight function. In

order to test this hypothesis, the following two counterfactuals are performed.

First, both the weight function and the function of observed covariates are estimated for women with

25Fact which is corroborated by both anecdotal evidence and psychological studies (see (Clark & Oswald 1994)).
26For example, in political science, Davies (1962) and (T.R. Gurr 1970) note that the likelihood of (political) violence is

greater not under conditions of greatest su§ering, but instead when the level of material benefits or rate of improvement falls
behind expectations.
27This is in like with the framework of Chetty and Szeidl (2010). In their model, those who abandon or update consumption

commitments more quickly or frequently when facing large shocks do not exhibit reference dependence. Then it could be the
case that high education types update their consumption commitments faster than lower education types.
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a high school degree using the estimate for the rate of accumulation for women with a college degree28 .

As can be seen in figure 15, when women with a high school degree experience losses at a higher rate of

accumulation, they tend to weigh losses similarly to women with a college degree. The function of net wealth

is still increasing but flatter.

Second, the net wealth function and the behavioral function were estimated for women with a college

degree using the rate for men with a college degree. When women have a higher rate of accumulation, women

tend to put more weight on earlier losses, resulting in a steeper weight function. Their probability of exiting

unemployment also starts decreasing more in initial net wealth, see figure 16.

5 Conclusion

The paper presented, identified, and estimated a new class of duration models in which unobserved hetero-

geneity is time varying. The analysis is restricted to positive Lévy processes for which the distribution of

the increments has finite moments. The identification of the parameters of interest varies from the nonpara-

metric to the parametric, depending on how the e§ects of time can be di§erentiated. The stochastic integral

modeling unobserved heterogeneity exhibits long-memory: All changes in heterogeneity are accumulated and

the past is never forgotten. Such a specification might exaggerate the e§ects of unobservables when the past

is gradually forgotten. It would be useful to extend the framework to allow for processes with short-memory,

such as the moving average. One possible formulation of such a hazard function is

h

t|x, {Z (u)}t0


=  (x)

Z t

0

f (t u) dZ (u)

However, note that the weight function cannot be identified unless the distribution of the stochastic process is

entirely parametrized. The function of observed covariates can still be identified by the arguments presented

in the paper.

It would also be interesting to explore the possibility of extending the framework to semi-martingales, i.e.

to allow unobserved heterogeneity to be modeled by positive transformations of general Lévy processes. This

model would be less restrictive in that it would not require positive duration dependence at the individual

level. When considering semi-martingales, the formulation of the survival function given in this paper will

not hold exactly since the stochastic process resulting from the positive transformation applied to unobserved

heterogeneity process does not have independent increments anymore. It is conjectured the identification

strategies employed in this chapter may still apply after an appropriate formulation of the survival function,

which needs to include a term for the quadratic variation of the process.

The estimation procedure proposed is sieve maximum likelihood, which provides a practical approach

for the joint semiparametric estimation of infinite and finite dimensional parameters. The functions are

28The rate of accumulation for women with a college degree is about 15 times greater than that for women with a high school
degree
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approximated by positive transformations of polynomial splines of the second order and the position of the

knots for the two splines is pre-specified. The estimators are shown to be consistent and their performance

is shown through Monte Carlo studies.

The paper also introduced a first time hitting model in which unemployment duration is defined as

the first time stochastically increasing losses due to unemployment reach a threshold level. The threshold

models a self-imposed limit on the amount of losses individuals are willing to undertake during the spell

of unemployment. The model is applied to NLSY79 data on 1240 first spells of unemployment. Transition

rates out of unemployment are estimated under the assumption that unobserved losses are realizations from

a gamma process, implying losses accumulate gradually, in small jumps. The application shows that men

and women have di§erent perceptions of losses and di§erent loss accumulation rates, conditional on their

education level and marital status.

A Appendix section

A.1 Lévy processes

Lévy processes are stochastic processes whose sample paths are right-continuous with left limits at every

point t, and which have independent and stationary increments. The initial condition for Lévy processes is

that Z (0) = 0. Following (J. Bertoin 1996), the formal definition of a Lévy process is:

Definition 8 (Lévy Process) Let P be a probability measure on (,z). We say that {Z (u)}t0 is a Lévy
process for (,z, P ) if for every s, t  0, the increment Z (s+ t)Z (t) is independent of the process {Z (v)}t0
and has the same law as {Z (s)}t0.

There are two types of Lévy processes: infinite activity and finite activity. Infinite activity processes

have an infinite number of jumps in a finite time interval, while finite activity processes have a finite number

of jumps in a finite time interval. The number of jumps is countable for both finite and infinite activity

processes. Non-negative Lévy processes, also known as subordinators, take values in R+, which implies that
their sample paths are increasing. Figure 1 illustrates the di§erences in the sample paths of these two types

of subordinators.

A Lévy process is uniquely characterized by its Lévy measure, L (dx), which is a measure on Rd  {0}
such that

R 
1 ^ |x|2


L (dx) <1. The Lévy measure is indexed by a finite dimensional parameter  2 Rd,

where d represents the dimension of the parameter . Usually when d = 2,  represents the scale and the

rate of the jumps. For a subordinator, the Lévy measure can be interpreted as the distribution of jump sizes.

Example 9 Let z be a random variable with the gamma distribution with shape parameter  and scale

parameter , i.e. z  Ga (, ).
Let {Z (u)}t0 be a stationary gamma process. Then {Z (t)}t>0  Ga (t, ). The Lévy measure is the

gamma measure, with shape parameter t, and scale parameter . Then  = (t, ), with d = 2.
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Figure 1: Sample paths of the compound Poisson process (left) and of the gamma process (right)

Subordinators are characterized uniquely by their Laplace exponent. The definition of the Laplace

exponent is:

Definition 10 (Laplace Transform) The Laplace transform29 of the subordinator {Z (u)}t0 is defined as

E (exp [Z (t)]) = exp [t ()] ,   0

where  : R+ ! R+ is called the Laplace exponent.

The following property30 of Laplace exponents is key for the derivations in this paper.

Property 1 A function  () is the Laplace exponent of a subordinator if, for   0:
(i)  () is infinitely di§erentiable with respect to   0 ;
(ii)  (0) = 0; and

(iii) (1)n @n

@n ()  0 for every n.

Definition 11 (Cumulants) The jth cumulant of the subordinator {Z (t)}t0 is defined as

d

dj
j ()


=0

= kj (21)

Cumulants are the coe¢cients in the Taylor expansion about the origin of the log of the moment generating

function. As such, there is a one-to-one relationship between cumulants and moments. For example, the

first cumulant of the process is the mean of the distribution, while the second cumulant is the variance.

29The Laplace transform for a subordinator is the moment generating function of the subordinator.
30 See (A. Gnedin & J. Pitman 2008).
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This section is finished o§ with a few examples of subordinators and their Laplace exponents.

Example 12 (Gamma Process) Let {Z (t)}t0  Ga (t, ) . The Gamma process has an infinity of very
small jumps in any time interval. As such, it is commonly used to model processes that take place gradually

in time, such as erosion and wear-and-tear. The Laplace exponent of {Z (t)}t0 and its first two cumulants
are, respectively:

 () = log


1 +



v


k1 =




(22)

k2 = 


2

If Z is a gamma process with scale parameter , then Z is a gamma process with scale parameter 1. The

law of Z is the same as that of Z, which means that the distribution of the gamma process is determined

up to the scale parameter  (see (Tsilevich, Vershik & Yor 2001)).

Example 13 (Standard Compound Poisson Process) The Poisson process has a finite number of jumps
in any time interval. It plays an important role in risk analysis and it is used to model events that occur

randomly in time, such as arrivals at a queue, shocks to a market, accidents, and natural disasters. For

example, suppose events can happen at any time. If event arrivals are independent of one another and past

arrivals do not influence future arrivals, then t events are expected in an interval of length t, that is the

number of events follows a Poisson process with rate .

The jumps are distributed as Ga (, ). The standard compound Poisson process is the sum of the jumps

up to time t. Then the Laplace exponent and the first three cumulants are given by, respectively:

 () = 


1




v + 


k1 = 




(23)

k2 =  (1 + )


2

k3 =  (1 + ) (2 + )


3

Example 14 (Compound Poisson Process) The compound Poisson process is a standard compound
Poisson process where the jumps have a random distribution. Let the jumps be denoted by the random

variable J with a random distribution with Laplace transform L (s) = EesJ . The Laplace exponent of the

compound Poisson subordinator is given by

 () =  (1 L (s))
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 () is bounded for all   0 if and only if the process is the compound Poisson process.

Example 15 (Stable Subordinator) Let {Ji}
n
1 be mutually independent random variables with a common

distribution D and let Sn =
Pn

i=1 Ji. Then D is stable if for each n there exist constants cn > 0 and n
such that Sn has the same distribution as cnJ + n and D is not concentrated at the origin. For example,

the normal distribution centered at zero expectation is strictly stable, i.e. n = 0, with cn =
p
n. The stable

subordinator is a Lévy process with increments that have the strict stable distribution. The Laplace exponent

has the following form:

 () = 

where  > 0 is called the intensity parameter,  2 (0, 1) is the exponent. The first two cumulants do not
exist as the Laplace exponent is not di§erentiable at 0.

A.2 Survival Function: The Exponential Formula and the Laplace Exponent

A.2.1 The Exponential Formula

The hazard function (1) is defined in terms of a stochastic process. In order to apply the usual expo-

nential formula for the survival function, {Z (u)}t0 needs to satisfy certain conditions guaranteeing that
P

T  t|x, {Z (u)}t0


is a martingale. If one of the conditions below is satisfied then the exponential for-

mula for the survival function can be applied.

Condition 16 T given

x, {Z (u)}t0


is a random variable with an absolutely continuous distribution func-

tion (with respect to the Lebesgue measure).

Remark 2 This condition excludes jumps of the conditional survival function induced by changes in the
information set, that is, changes in x and in the filtration of {Z (u)}t0. It allows us to work with density
functions.

Condition 17 (i) P

T  t|x, {Z (u)}t0


is predictable with respect to


x, {Z (u)}t0


and

(ii) For all t > 0, P

T  t|x, {Z (u)}t0


= P (T  t|x, {Z (u)}10 ) a.s.

Remark 3 This condition holds if the processes generating x and the realizations of {Z (u)}t0 are exoge-
nous. The condition rules out the possibility that future values of the stochastic process, not known at

time t, a§ect the probability of exit at time t. It also excludes contemporaneous feedback between Z (t) and

duration. This sort of feedback is not considered since we want to exclude the case that knowledge of Z (t)

and its future realizations may tell us whether the event {T  t} happened or not. If this feedback was not
excluded, the probability P


T  t|x, {Z (u)}t0


would be either 0 or 1. For a proper analysis of duration,

P

T  t|x, {Z (u)}t0


needs to be a value between 0 and 1.
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When the observed covariates vary with time, processes {X (u)}t0 and {Z (u)}
t
0 need to be independent.

As long as the two processes are independent and one of the two conditions above holds, the exponential

formula for the survival function can be applied.

A.2.2 The Laplace Exponent

Below, we present the derivation of the survival function (8). Let F (u, t, x) =
R t
u
 (x) f (u) ds be square

integrable with respect to the distribution of {Z (u)}t0 . Using that {Z (u)}
t
0 has independent increments and

letting 0 = un,0 < un,1 < ... < un,n = t, n = 1, 2, ... and a fixed un,j 2 [un,j1, un,j ], j = 1, 2, ..., n, obtains
in mean square limit:

S(t|x) = EZ exp


Z t

0

F (u, t, x) dZ (u)



= EZ exp

24 lim
n!1

nX
j=1

F

un,j , t, x


(Z (un,j) Z (un,j1))

35 (24)

= EZ lim
n!1

exp

24 nX
j=1

F

un,j , t, x


(Z (un,j) Z (un,j1))

35 (25)

= lim
n!1

EZ exp

24 nX
j=1

F

un,j , t, x


(Z (un,j) Z (un,j1))

35 (26)

= lim
n!1

EZ

nY
j=1

exp

F


un,j , t, x


(Z (un,j) Z (un,j1))


(27)

= lim
n!1

nY
j=1

EZ

exp


F


un,j , t, x


(Z (un,j) Z (un,j1))


(28)

= lim
n!1

nY
j=1

exp

 (un,j  un,j1)


F

un,j , t, x


(29)

= lim
n!1

exp

24 nX
j=1

(un,j  un,j1)

F

un,j , t, x

35 (30)

= exp



Z t

0



Z t

u

f (u, x) ds


du (31)

= exp



Z t

0

 (f (u, x) (t u))

du (32)
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(25) holds since exp (.) is a continuous function, so that:

exp

0@ lim
n!1

nX
j=1

Gj

1A = lim
n!1

exp

0@ nX
j=1

Gj

1A
(26) follows by the Bounded Convergence Theorem since:exp

0@ nX
j=1

F

un,j , t, x


(Z (un,j) Z (un,j1))

1A
  1

(28) follows by the independence of the increments, while (29) follows by the definition of the Laplace

exponent for Levy processes. Since the process has independent increments it holds that:

EZ exp [u (Z (t) Z (s))] = EZ exp [uZ (t s)]

= exp [ (t s) (u)]

which in our problem obtains (29) .

The calculation is finished o§ by switching back to integral notation in (32) .

A.3 Proof of Lemma 1

Let H (t, x) be defined as in (10). As explained in the main text, (10) is a well defined Volterra integral

equation of the first kind since limt!0H (t, x) = 0, which follows by limt!0 S0 (t|x) = 1. By Assumption

ID1:

@2

@t2
H (t, x) = Htt (t, x)

=  (x) f (t)1 (0) +

Z t

0

2 (x) f2 (u)11 ( (x) f (u) (t u)) du (33)

where 1 (0) = k1 is the mean of the distribution of {Z (u)}
t
0 as defined in Appendix A.1. By assumption

ID2, k1 exists and is finite. Solving (33) for f (t) obtains a nonlinear Volterra equation of the second kind

with unknown kernel:

f (t) =
1

k1 (x)


Htt (t, x) 2 (x)

Z t

0

f2 (u)11 ( (x) f (u) (t u)) du

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A.4 Proof of Theorem 2

Consider (11). Let x = 0 and t # 0. Solving the resulting expression for k1 obtains:

k1 = lim
t!0

1

f (t, 0)
Htt (t, 0) = lim

t!0
Htt (t, 0)

A.5 Proof of Theorem 3

Consider (11). Let t # 0. By Theorem 2:

 (x) =
limt!0Htt (t, x)

limt!0Htt (t, 0)

A.6 Example 1 and 2

A.7 The Gamma Process

Let the gamma process have rate t and scale  with 0 <      <1 and 0 <      <1. The first

moment is k1 =

 . Assumption ID2 is satisfied with k1 2

h


 ,



i
.Let the weight function f (x, t) be such

that 0 < f (x, t)  M < 1. The Laplace exponent is  (, k1) =  log

1 + 




, so that assumption ID6 is

verified with  @3@3 (, k1)
  2

3
= B

A.8 The Compound Poisson Process

Let the process have scale parameter , rate parameter t, and expected number of jumps  with 0 <  
   <1, 0 <      <1 and 0 <      <1. The first moment is k1 = 

 so that Assumption

ID2 is satisfied with k1 2
h


 ,



i
. Let the weight function f (x, t) be such that 0 < f (x, t) M <1. The

Laplace exponent is  (, k1) = 

1 

+


, so that assumption ID6 is satisfied with

 @3@3 (, k1)
   (+ 1) (+ 2)

3
 B

A.9 Proof of Theorem 4

First, it is shown the solution exists in C0w. Then it is shown the solution lives in C
s
w by applying an induction

argument on the smoothness parameter, s. The existence and uniqueness of the solution is shown via the

Banach Fixed Point Theorem, for which we prove the operator is an inclusion and a contraction. In what

follows, we use the result of Lemma 2 that k1 = limt!0Htt

t, 0, k01


.
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The operator satisfies the inclusion TC0w  C0w. The operator (Tf) (t) is a continuous map from R+ into
R+ for any f (t) 2 C0w. By ID1,

Htt(t)
k1

2 C0w. Setting x = 0, we have additionally:

1

k1

Z t

0

f2 (u)11 (f (u) (t u) , k1) du 2 Cw

To show this, let v = t u and consider: 1k1
Z t

0

f2 (u)11 (f (u) (t u) , k1) du

w,1

 M2 1

k1
sup
x,t

1

w (t)

Z t

0

 @@11 (v, k1)
 |f (u)| du (34)

= M2 1

k1
sup
x,t


1

w (t)

Z t

0

w (u)

 @@11 (v, k1)
  f (u)w (u)

 du


1

k1
sup
x,t


M2B

1

w (t)

Z t

0

w (u) du


||f ||1,w (35)


1

3



k1
||f ||1,w <1 (36)

where (34) follows by assumption ID4, (35) follows by assumption ID5, (36) follows by assumption ID6 and

by the definition of the weight function w (t).

The second part of the Banach Fixed Point Theorem requires us to show the operator is a contraction.

For f, g 2 C0w such that f 6= g, the following obtains:

||(Tf) (t) (Tg) (t)||1,w

=
w (t)1 [(Tf) (t) (Tg) (t)]


1

k1
sup
t,x


3M2B

w (t)

Z t

0

w (u)

 1

w (u)
(f (u) g (u))

 du (37)


1

k1
sup
t,x


3BM2

w (t)

Z t

0

w (u) du


||f  g||1,w (38)

=


k1
||f  g||1,w (39)

where (37) follows by the calculation below, (38) follows by assumption ID3, and (39) follows by the way

the weight function is defined. First, we present the calculation for (37) and then we present the calculation

of the weight function such that (39) holds.
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Consider first

f2 (u)11 (f (u) v, k1) g2 (u)11 (g (u) v, k1)


f2 (u)11 (f (u) v, k1) g2 (u)11 (f (u) v, k1)
+
g2 (u)11 (f (u) v, k1) g2 (u)11 (g (u) v, k1)

 |f (u) g (u)| |f (u) + g (u)| |11 (f (u) v, k1)|

+
g2 (u) |11 (f (u) v, k1)11 (g (u) v, k1)|

 3M2B |f (u) g (u)|

where the last inequality follows by assumption ID4 and assumption ID5.

Note that (37) holds whenever the stronger inequality (38) holds. Then, in order to finish o§ the

contraction mapping proof, an appropriate weight function w (t) needs to be defined such that

3BM2 1

w (t)

Z t

0

w (u) du =  (40)

Once the weight function is formulated according to (40), (39) holds. The solution to (40) is given by the

solution to the following di§erential equation:

w (t)

w0 (t)
=
3BM2



which is

w (t) = exp


3BM2


t


Then, given the weight function has the form above, inequality (39) is satisfied.

Therefore, the solution exists and is an element of C0w. Since C
0
w is a complete Banach space, the solution

is unique.

To show the weight function exists in Csw, we apply an induction argument on the smoothness parameter,

s. The argument is presented below:

For s = 0, it was shown that f (t) 2 C0w.
For s  1, let the inductive hypothesis be that f (t) 2 Cs1w where f (t) is defined by (11). By Property

A.1(i), and by the inductive hypothesis:

f2 (u)11 (f (u) v, k1) 2 Cs1w
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Then, by the Fundamental Theorem of Calculus:Z t

0

f2 (u)11 (f (u) v, k1) du 2 Csw

Additionally, by ID6(i), Htt

t, 0, k01


2 Csw, so that f (t) 2 Csw.

A.10 Proof of Theorem 5

Let there be two structures equivalent up to the covariate function,  (x). The two structures obtain the

same survival function so thatZ t

0

[ (1 (x) f (u) (t u) , k1) (2 (x) f (u) (t u) , k1)] du (41)

= (1 (x) 2 (x))
Z t

0

f (u) (t u)1

 (x) f (u) (t u) , k1


du = 0 a.e. (42)

By Property A.1(i), (42) is obtained by a mean value expansion of (41), where  is a mean value between

1 and 2. Since  (, k1) is an increasing function in , (42) holds if and only if, for all x :

1 (x) = 2 (x)

A.11 Proof of Theorem 6

First note the following notation, which will be used only for this proof. For i 2 {1, 2, ..., s} define:

H(i) = lim
t!0

@i

@ti
H (t, 0)

f(i) = lim
t!0

@i

@ti
f (t)

Fix x = 0. Consider (11) and evaluate it in the limit as t ! 0. Solving the resulting expression for k1
obtains

k1 = H(2) (43)

Di§erentiating (11) with respect to t, evaluating the resulting expression in the limit as t! 0, and using

condition (B) obtains:

k2 = H(3)  k1f(1) (44)

Di§erentiating (11) twice with respect to t and evaluating the resulting expression in the limit as t! 0

obtains

k3 = H(4)  k1f(2)  2k2f(1) (45)
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Since by (B)
n
@i

@tiH (t, 0)
o
i1

exist and are well defined for all t > 0, the process of di§erentiation and

evaluation in the limit can be continued to obtain:26666666664

1 0 0 0 ... 0

f(1) 1 0 0 ... 0

f(2) 2f(1) 1 0 ... 0

f(3) 3f(2) 2f(1) 1 ... 0

... ... ... ... ... 0

f(s1) (s 1) f(s2) (s 2) f(s3) (s 3) f(s4) ... 1

37777777775

26666666664

k1

k2

k3

k4

...

ks

37777777775
=

26666666664

H(2)

H(3)

H(4)

H(5)

...

H(s+1)

37777777775
(46)

where s ! 1. The system above has a unique solution since the determinant of the matrix of coe¢cients

equals unity. Then all s!1 cumulants of the process are identified.

Remark 4 An Infinity of Solutions: Consider system (46) above. For both the weight function and

the cumulants unknown, the system has an infinity of solutions. Thus, it is not possible to identify jointly

the weight function and the distribution of the process via the method proposed in this paper.

A.12 Identification with Time Varying Covariates

When observed covariates are time-varying, it is assumed as in the standard MPH literature (see (Honoré

1993), (Heckman & Taber 1994)) that x (t) are jump variables. That is, they are realizations of stochastic

processes with continuous sample paths. When time varying observed covariates enter the hazard function

multiplicatively, the e§ects of time coming in through the observed covariates cannot be separated from

those entering through the unobservables without imposing stronger conditions on the unobserved stochastic

process. Thus, in order to identify the function of covariates, it is assumed the stochastic process is known

entirely.

In order to apply the exponential formula for the survival function, the two processes are assumed to

satisfy the following conditions:

Assumption P (i) The processes {x (u)}t0 and {Z (u)}
t
0 are independent; (ii) There is no contemporaneous

feedback between x (t) and Z (t); and (iii) Future values of the two processes do not a§ect duration.

Under these conditions and under a normalization assumption on the covariate function, assumption ID8’

below, the covariate function  (x (t)) is parametrically identified. The proof follows that of Theorem 5 in

(Heckman & Taber 1994).

Assumption V (i) There are two di§erent values for x (t) at time t, x1 (t) 6= x2 (t), such that these two

di§erent realizations at time t have the same sample paths up to t:

{x1 (u)}
t

0 = {x2 (u)}
t

0
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(ii)  (x (t)) = 1

Theorem 18 Assume the distribution of the stochastic process is entirely known. Under Property A.1(i),
assumptions P and V, the covariate function  (x (t)) is identified.

Proof. Define Z t

u

 (x (s)) ds =  (t, u)

As before, the survival function is written as

S

t| {x (u)}t0


= EZ exp



Z t

0


 (x (s))

Z s

0

dZ (u)


ds


= EZ exp



Z t

0

 (t, u) dZ (u)


= exp



Z t

0

 ( (t, u)) du


Then

@

@t
S

t| {x (u)}t0


= 


 (x (t))

Z t

0

1 ( (t, u)) du


exp



Z t

0

 ( (t, u)) du


(47)

Evaluating (47) at the same t for two di§erent values x1 (t) and x2 (t) that have the same sample path

up to t, obtains:
@
@tS


t| {x1 (u)}

t
0


@
@tS


t| {x2 (u)}

t
0

 =  (x1 (t))

 (x2 (t))

Using assumption V(ii),  (x (t)) is identified on the support of x (t) for all t 2 R+.

A.13 The Time Deformed Framework 3

When heterogeneity is time deformed, the hazard function is modeled as 3.

A.13.1 Example: Deterioration and Repair Costs

Suppose there is a machine (or plant) that fails with a probability governed by a hazard function given by

(3)31 . While the machine is operating, there is a wear-and-tear process, {Z (u)}t0, undermining its lifetime
32.

31For a similar framework see (K. Ryu 1993).
32 In the engineering literature, it is usually assumed the wear-and-tear process is a gamma process. See (M.D. Pandey, X.X.

Yuan & J. M. Van Noortwijk 2009).
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The wear-and-tear process is assumed to start once the machine starts working. The process is also assumed

to be regenerative, i.e. once the machine is repaired or replaced, the process starts anew.

Rather than taking place in calendar time, the deterioration process happens in operation time. That is,

letting y (t) represent a continuous time measure of usage, g (y (t)) models the rate of usage of the machine.

Then deterioration happens as a function of the rate of usage, i.e. {Z (g (y (u)))}t0.
Let x be some time invariant observables describing the machine, such as size, manufacturer, or geograph-

ical location. If the machine fails before being shut down for preventive repair work, it incurs a cost of being

repaired, cF (x, t). The cost changes in time and it depends on x. If the machine is shut down for preventive

repair work before it fails, it incurs a repair or replacement cost of cP (x, t), where cP (x, t) < cF (x, t) for

all x and t. The manager then needs to decide when to shut down the machine in order to minimize the

expected cost of repair. The discounted expected cost of shut down at time t given x and the manager’s

subjective discount rate, r, is given by:

C (t|x) = ert [P (t  T |x) cP (t, x) + P (t > T |x) cF (t, x)] (48)

where P (t > T |x) represents the probability of failure. The first term on the right hand side of (48) represents
expected cost in case the machine does not fail, while the second term represents expected cost in the case

the machine fails before being shut down for preventive repair work. In this example, the hazard function can

be used to estimate the discounted expected cost. By estimating g (y (t)), the manager can draw conclusions

about how the timing of usage a§ects the lifetime of the machine. Likewise,  (x) can be used to make

inferences about the observables that a§ect the probability of failure.

A.13.2 Identification

Let the hazard function be described by (3). First, when the distribution of {Z (u)}t0 is unknown, it is shown
that both the mean of the distribution of {Z (u)}t0 and  (x) are identified as t ! 0. Then, assuming the

distribution of {Z (u)}t0 to be known up to the mean, the time deformation function, g (y (t)), is identified
up to an additive constant.

Let the following assumptions hold:

Assumption ID9 H (t, x, y (t)) =  logS (t|x, y (t)) is twice di§erentiable in t for all x.

Assumption ID10 (i) y1 (.) exists; (ii) g (y (0)) is well-defined; and (iii) g1 (.) exists.

Assumption ID11 (i) 0 < g (y (t)) M2 <1; (ii) |11 (, k1)|  B,  > 0 where B is a positive constant.

Assumption ID12 Define q (y (t)) = @
@tg (y (t)) and assume that limt!0 q (y (t)) = 1.

Remark 5 Assumption ID10(iii) requires g (.) to be a one-to-one mapping between calendar time and the
data based time scale, while assumption ID12 is a normalization assumption on the first derivative of the

time deformation function.
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Lemma 4 Let the distribution of the subordinator {Z (u)}t0 be unknown. Under assumptions ID2, ID9,
ID10, and ID12, the mean of the distribution of the process is identified and equal to

k1 = lim
t!0

@2

@t2
H (t, 0, y (t)) (49)

Proof. The identification strategy begins with the survival function associated to (3). Consider the following
change of variables:

 = g (y (u)) (50)

Using (50) obtains the following two expressions:

d = dg (y (u)) = g0 (y (u)) y0 (u) du (51)

y (u) = g1 ()) u = y1

g1 ()


(52)

Additionally, let @
@ug (y (u)) = g0 (y (u)) y

0 (u). The survival function is given by:

S (t|x, y (t)) = EZ exp



Z t

0

h (s|x, y (s) , {Z (u)}s0) ds


= EZ exp



Z t

0

Z s

0

 (x) dZ (g (y (u)))


ds


= EZ exp



Z t

0

Z t

u

 (x) ds


dZ (g (y (u)))


= EZ exp



Z t

0

 (x) (t u) dZ (g (y (u)))


= EZ exp

"

Z g(y(t))

g(y(0))

 (x)

t y1


g1 ()


dZ ()

#
(53)

= exp

"

Z g(y(t))

g(y(0))



 (x)


t y1


g1 ()


d

#
(54)

= exp



Z t

0

 ( (x) (t u)) g0 (y (u)) y0 (u) du


(55)

where (53) follows from (50) , (51) , and (52). Equality (54) follows from the independence and stationarity

of the increments of the stochastic process, as well as from the definition of the Laplace exponent (the

arguments are similar to those made previously, for the time homogeneous framework). Finally equality (55)

follows by switching back to the original notation using (50) .

Let

H (t, x, y (t)) =  logS (t|x, y (t)) =
Z t

0

 ( (x) (t u)) g0 (y (u)) y0 (u) du (56)
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Let x = 0, di§erentiate (56) twice with respect to t, and evaluate the resulting expression in the limit as

t # 0 to obtain (49).
Consider now the identification of  (x).

Theorem 19 Let the distribution of the subordinator {Z (u)}t0 be unknown and let ID2, ID9, and ID12 hold.
The function  (x) is identified and equal to

 (x) =
limt!0

@2

@t2H (t, x, y (t))

limt!0
@2

@t2H (t, 0, y (t))
(57)

Proof. Di§erentiate (56) twice with respect to t and solve (58) for  (x). Evaluate the resulting expression
as t # 0 to obtain (57).
Lastly, consider the identification of the time-deformation function g (y (t)).

Theorem 20 Let the distribution of the subordinator {Z (u)}t0 be known up to its mean, k1, and assume
ID2, ID5, ID6, ID8, and ID9 to ID11 hold. Then the function g (y (t)) 2 Cs2w (R+) is identified up to an
additive constant C. The weight function w (t) on Cs2w (R+) is given by

w (t) = exp


2BM2


t


Let

R
q (y (t)) dt = g (y (t)) + C. The function q (y (t)) is given by the successive approximation method,

n  1:

q0 (y (t)) =
@2

@t2H

t, 0, y (t) , k01


limt!0

@2

@t2H (t, 0, y (t) , k
0
1)

qn (y (t)) =
@2

@t2H

t, 0, y (t) , k01


limt!0

@2

@t2H (t, 0, y (t) , k
0
1)


1

limt!0
@2

@t2H (t, 0, y (t) , k
0
1)

Z t

0

q2n1 (y (u))11 ((t u) , k1) du

such that limn!1 qn (y (t)) = q (y (t)).

Proof. Define the following function:

q (y (u)) =
d

du
g (y (u)) = g0 (y (u)) y0 (u)

and note that once the distribution of the process is parametrized up to its mean, the true survival function
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becomes a function of the true mean, i.e.

H

t, x, y (t) , k01


=  logS


t|x, y (t) , k01


=

Z t

0

 ( (x) (t u) , k1) q (y (u)) du

Di§erentiating H

t, x, y (t) , k01


twice with respect to t obtains the following integral equation of the

second kind:

@2

@t2
H

t, x, y (t) , k01


=

@2

@t2
H

t, x, y (t) , k01


= k1 (x) q (y (t)) (58)

+

Z t

0

2 (x) q2 (y (u))11 ( (x) (t u) , k1) du

By ID9, expression (58) becomes

@2

@t2
H

t, 0, y (t) , k01


= k1q (y (t)) +

Z t

0

q2 (y (u))11 ((t u) , k1) du

which is an integral equation of the second kind in q (y (t)) :

q (y (t)) =
1

limt!0
@2

@t2H (t, y (t) , 0, k
0
1)



@2

@t2
H

t, 0, y (t) , k01



Z t

0

q2 (y (u))11 ((t u) , k1) du


This integral equation can be shown to have a unique solution, q (y (t)), by the Banach Fixed Point

Theorem. The identification strategy is as that employed for Theorem 4. Then the function g (y (t)) is

identified up to an additive constant sinceZ
q (y (u)) du = g (y (u)) + C

As before, for each of the two processes, gamma and compound Poisson, the rate parameter is identified

by imposing normalization assumptions on the other elements entering the nonlinear expression for k1. For

the gamma process with  = 1, and for the compound Poisson process with (, ) = (1, 1), the rate of the

process obtains:

 = lim
t!0

@2

@t2
H

t, 0, y (t) , k01


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A.14 Proof of Theorem 7

To show the consistency of the estimators we verify the conditions of Lemma B.1 of (X. Chen & D. Pouzo

2008). First, we present Lemma B.1 adapted to our model. Then we verify its conditions.

Lemma 5 (B.1) Let bn = bn, bfn,bn be such that bQn (bn)  sup2An
bQn ()Op (n) with n = op (1) .

Suppose the following conditions hold:

B.1.1 (i) Q (0) <1;
(ii) lim infn!1 sup2An:||0||"Q () < Q (0) uniformly in " > 0.

B.1.2 (i) A A and (A, ||.||) is a metric space;
(ii) An  An+1  ...  A for all n  1, and there exists a sequence n0 2 An such that

||n0  0||! 0 as n!1.

B.1.3 (i) bQn () is a measurable function of the data {xi, ti}ni=1 for all  2 An;
(ii) bn is well defined and measurable.

B.1.4 (i) Let c (m (n)) = sup2An

 bQn ()Q () = op (1);
(ii) Uniformly over " > 0

max {c (m (n)) , n, |Q (n0)Q (0)|} = o (1)

Then d (bn,0) = op (1).
Note that since there is no penalty term, Qn (.) = Q (.) = Q (.) in the original Lemma B1.

Let us now check the conditions of Lemma B.1 above.

Condition B.1.1(i) is satisfied by assumptions C1 and C2. In order for the criterion function Q (0) =

Et,x log p (t|x,0) <1 and in anticipation of the information inequality, we show that

Et,xp (t|x,0) <1

where p (t|x,0) > 0. The joint probability distribution of T and X is denoted as P (t, x), while the marginal

densities of X|T and of T are denoted as µt (x) and  (t), respectively. Then

Et,xp (t|x,0) =

Z
XT

p (s|w,0) dP (s, w) (59)

=

Z
T

Z
X
p (s|w,0)µt (w) dw


 (s) ds (60)

 MMfM1

Z
T

Z
X
µt (w) dw


 (s) ds (61)

= MMfM1

Z
T
µ (s) ds <1 (62)
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where (61) follows since

p (t|x,0) = S (t|x;0, f0, 0)
Z t

0

0 (x) f0 (u)1 (0 (x) f0 (u) (t u) , 0) du


Z t

0

0 (x) f0 (u)1 (0 (x) f0 (u) (t u) , 0) du

 MMfM1

where we used that supx 0 (x)  M, supt f (t)  Mf , and sup,1 (, )  M1. Equality (62) follows

since
R
X µt (w) dw = 1 a.s. in w. Since Et,xp (t|x,0) <1, the stronger condition that Et,x log p (t|x,0) <

1 is satisfied. Thus Q (0) <1 so that Condition B.1.1 (i) is satisfied.

Condition B.1.1(ii) is implied by assumptions C1 and C2. Since 0 is identified and Et,xp (t|x,0) <1,
by the information inequality, Q ()Q (0) < 0 for  2 An with  6= 0.
Define:

 (m (n) , ")  sup
2An:||0||1"

Q ()Q (0)

Since An is compact, there exists a n 2 An with ||n  0||1  " > 0 such that

n = arg max
2An:||n0||1"

Q ()

Then, for some constant C > 0,

 (m (n) , ") = Q (n)Q (0)

= Q (n)Q (n0) +Q (n0)Q (0)

 C ||n n0||
2
1 + o (1)

Suppose Q (n)Q (0)! 0, then ||n n0||
2
1 ! 0. However, since

||n  0||
2
1  ||n n0||

2
1 + ||n0  0||

2
1

then ||n  0||
2
1 ! 0, which is a contradiction to ||n  0||

2
1  " > 0. Therefore

lim inf
n!1

 (m (n) , ") > 0

Condition B.1.2 is implied by the way the parameter and the sieve spaces are defined in (17a)  (17b)
and (18a) (18b).
Condition B.1.3 is implied by assumptions C1, C2, and C3. In order to check B.1.3 we apply Remark

B.1(1)(a) in (Chen & Pouzo 2008). First note that by construction, An is a compact subset of A for each n
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under the norm defined in (19). Before showing the continuity of the criterion function in the consistency

norm, let  = (, ) and define the following terms:

 (u, x) =  (x) f (u)

 (, t, ) =

Z t

0

 (x, u)1 ( (t u) , ) du

1 ( (t u) , ) = f (u) (1 (t u) (, t, ))1 ( (t u) , )

+ (x) f2 (u) (t u)11 ( (t u) , )

2 ( (t u) , ) =  (x) (1 (t u) (, t, ))1 ( (t u) , )

+2 (x) f (u) (t u)11 ( (t u) , )

3 ( (t u) , ) =  (x) f (u)12 ( (t u) , )

 (, t, )2 ( (t u) , )

By assumption C2 and by letting Mf  supt f (t) and M  supx  (x), we have that

sup1 ( (t u) , )  MfM1

sup2 ( (t u) , )  MM1

sup3 ( (t u) , )  MMfM12

and by assumption C1(i) and Property 1(iii), we have that for all  and x and almost all t :

 (, t, )   6= 0

By a mean value expansion of bQn (1) about  = (, f, ) , with e the mean value between 1, 2 A
obtains:  bQn (1) bQn () (63)


1

n

X
i

 1

 (i, ti,e)

26666664
|(1  ) (xi)|

R ti
0
|1 (ei (ti  u) ,e)| du

+


sup
0<ut

|2 (ei (ti  u) ,e)|

R ti

0
|(f1  f) (u)| du


+ |1  |

R ti
0
|3 (ei (ti  u) ,e)| du

37777775 (64)



1


(|(Mf + c1M)M1|+ |MMfM12|)


||1  ||1
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Condition B.1.4(i) is implied by assumptions C1 through C3. To show the uniform convergence of the

criterion function over the sieve space, we have to show that:

sup
2Am(n)

 bQn ()Q () = op (1)
which holds if the class of functions indexing the criterion is Glivenko-Cantelli. That is, we need to show

that the class of functions (65) is Glivenko-Cantelli

L = {l (t|x,) = log p (t|x,) :  2 An} (65)

By Theorem 2.4.1 of van der Vaart and Wellner (1998) if the bracketing number N[] (",L, L1) is finite for
all " > 0, then L is Glivenko-Cantelli. We proceed now to calculate the bracketing number of the class L.
Define

v = t u

Lj = Lj (x) f
L
j (u)

Uj = Uj (x) f
U
j (u)

where Lj < 
U
j for some j = 1, ...,m (n) and i = 1, ..., k, where it is known that the minimum value of k is

of order O (1/") , " > 0. For L    U such that
Ui  Li   ", i = 1, ..., c" , define:

lUij (x, t, , ) = log

Z t

0

Uj 1

Uj v, 

U
i


du

Z t

0



Lj v, 

L
i


du

lLij (x, t, , ) = log

Z t

0

Lj 1

Lj v, 

L
i


du

Z t

0



Uj v, 

U
i


du

By Property 1(iii) and by assumption C3,  (, ) is increasing in both  and , so for each  2 An and
for some j = 1, ...,m (n) and i = 1, ..., k :

lLij (x, t, , )  l (x, t, , )  l
U
ij (x, t, , )
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Furthermore, letting j and i be mean values between

Lj , 

U
j


and


Li , 

U
i


respectively, by assump-

tions C1 and C3 obtains:Z t

0



Uj v, 

U
i


du

Z t

0



Lj v, 

L
i


du

 (66)

=

Z t

0

v1

jv, i

 
Uj  

L
j


du+


Ui  

L
i

 Z t

0

2

jv, i


du


 t sup

0<ut

v1 jv, i Z t

0

Uj  Lj  du
+
Ui  Li  Z t

0

2 jv, i du
By a mean value expansion and by assumptions C1 and C3 obtainslog Z t

0

Uj 1

Uj v, 

U
i


du log

Z t

0

Lj 1

Lj v, 

L
i


du





R t
0


1

jv, i


+ jv11


jv, i

 
Uj  Lj


duR t

0
j1


jv, i


du


+


R t
0
j12


jv, i


duR t

0
j1


jv, i


du

 Ui  Li 


t sup0<ut
1 jv, i+ jv11 jv, iR t
0

j1 jv, i du
Z t

0

Uj  Lj  du (67)

+


R t
0
j12


jv, i


duR t

0
j1


jv, i


du

 Ui  Li 
Combining (66) and (67) obtains

lUij (t, , ) lLij (t, , )
 t

"
sup0<ut

1 jv, i+ jv11 jv, iR t
0

j1 jv, i du + sup
0<ut

v1 jv, i
#


R t
0

Uj  Lj  du
+


Z t

0

2

jv, i


du+

R t
0
j12


jv, i


duR t

0
j1


jv, i


du

 Ui  Li 
Let

C =
p
c2


M1


+M1


+
MMf |M12|


+M2

for all x and almost all t.
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By using a result of (Shen & Wong 1994) (page 597) and by using a bracketing entropy preservation

result of Kosorok (2008, Lemma 9.25) we show below that

lUij (t, , ) lLij (t, , )1  C"

First, notice that
Ui  Li   "/2 holds as  is a finite dimensional parameter and the covering number

of  is of order O

1
"


. Then we show that

R t
0

Uj  Lj  du  "/2 holds. According to a result on page 597
of (Shen & Wong 1994), the bracketing entropy of n is bounded by

logN[]


"

2M
,n, ||.||1


 C

0
mn log


2M

"


where the envelope of the class of functions indexing n is M and where we used that if F is a class of

functions with envelope equal to 1, then MF , where M is a constant, has N[] ("M,F , ||.||) = N

"
M ,F , ||.||


.

Also, F intn , the space of functions indexed by
R t
0
fn (u) du is a finite dimensional linear space with envelopeR t

0
fn (u) du  Mf . Applying the same result in (Shen & Wong 1994), we have that the bracketing entropy

of F intn is bounded by

logN[]


"

2Mf
,F intn , ||.||1


 C

00
m (n) log


2Mf

"


By bracketing entropy preservation results33 , since both n(x)

M
and 1

Mf

R t
0
fn (u) du are uniformly bounded

by 1, letting K = max

C

0
, C

00

and defining the class of functions indexed by  (x)

R t
0
fn (u) du as , we

have that the class  is bounded by

logN[] (",, ||.||1)  Kmn log


4MMf

"



which means there exists a set of functions
n
Lj f

L
j , 

U
j f

U
j

o(4MMf/")
Kmn

j=1
such that the following two ex-

pressions hold for some j = 1, ...,

4MMf

"

Kmn

Lj f
L
j    

U
j f

U
jLj fLj  Uj fUj 

1
 "/2

33Let F and G be classes of measurable functions. Then for any probability measure P and any 1  r  1, provided
f 2 F : |f |  L and g 2 G : |g|  K

N[] (",F · G, Lr (P ))  N[]
 "

2L
,F , Lr (P )


N[]

 "

2K
,G, Lr (P )


(68)
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Then, the class of functions L is bounded by

logN[] (",L, ||.||1)  logN[] (",, ||.||1) + logN[] (",, ||.||E)

= Kmn log


4MMf

"


+ log


2

"



so that the class L is Glivenko-Cantelli. Moreover, L is Donsker. Then we can find c bQ (mn) explicitly by

calculating the integral below

Z 1

0

s
Kmn log


4MMf

"


+ log


2

"


d"

which obtains a result of order O
p
1 +mn


. Therefore:

c
bQ (mn) =


1 +mn

n

1/2
(ii) The second part of condition B.1.4 states that

c
bQ (mn) = o (1) (69a)

|Q (n0)Q (0)| = o (1) (69b)

n = o (1) (69c)

(69a) holds since d is fixed and by construction mn ! 1 at a rate slower than n. (69b) is satisfied by the

continuity of Q () and by n0 ! 0 from Condition B.1.2(ii). (69c) holds with n small enough by the

uniform convergence of the criterion function.

B Monte Carlo

B.1 DH DGP Estimated by DH

This subsection presents simulation exercise 1. For the Monte Carlo simulations, {Xi}
n=1000
i=1 is generated

from the uniform distribution on [0, 1]. The duration Ti associated to each Xi is calculated by solving (15)

for {Ti}
n=1000
i=1 . For estimation, the stochastic process has  = 1. Three simulation studies are presented,

where the true functions and the true  are summarized in table 1 below:
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Table 1: Simulation Studies

True Parameters Study 1 Study 2 Study 3

(x) exp(2x 3x2) exp(2x 3x2) 1 +
p
x x3

f(t) 1 t+ 2
3 t
3 1 t+ 2

3 t
3 1 t+ 2

3 t
3

 1 2 1

For all cases, the functions are approximated by polynomial splines of the second degree:

log n (x) =

2X
j=0

ajx
j + b1max {x qx1 , 0}

2
, a0 = 0

log fn (t) =

2X
j=0

cjx
j +

3X
j=1

dj max

t qtj , 0

2
, c0 = 0

where qx1 = 0.5 quantile for x and the q
t
1 = 0.2, q

t
2 = 0.5, and q

t
3 = 0.8 are the quantiles for t. The simulation

results for the two functions of interest are included in figures 2, 3, and 4, where the green lines are the

functions from each simulation, the blue lines are the averages over the simulations, and the red lines are

the true function. The average of the rate parameters are shown in table 2 below.

Table 2: Rate Estimators

True  Estimated  Standard Deviation Simulations

Study 1 1 1.09 0.156 300
Study 2 2 2.16 0.24 300
Study 3 1 1.157 0.239 250

B.2 DH DGP Estimated by MPH

For simulation exercise 2, the data were generated as in study 1 presented above.

The estimating model is the MPH model with gamma heterogeneity, with scale parameter 1 and the rate

to be estimated. There are two di§erent studies: in the first one both functions  and  are estimated by

second degree polynomial splines:

log n (x) =

2X
j=0

ajx
j + b1max {x qx1 , 0}

2
, a0 = 0

log n (t) =

2X
j=0

cjx
j +

3X
j=1

dj max

t qtj , 0

2
, c0 = 0
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where qx1 = 0.5 quantile for x and the q
t
1 = 0.2, q

t
2 = 0.5, and q

t
3 = 0.8 are the quantiles for t.

For the second study, both functions are parametrized according to forms that are used in practice:

 (x) = exp

ax+ bx2


 (t) = 12 (3 + t)

21 , i > 0 (70)

where the baseline hazard is the generalized Weibull function.

The results of the simulations are included in figures 5 and 6 where, as before, the green lines are the

functions from each simulation, the blue lines are the averages over the simulations, and the red lines are

the true function.

B.3 MPH DGP Estimated by DH

For the third simulation exercise (see figure 7), the data were generated by the MPH with gamma unobserved

heterogeneity with scale and shape parameters equal to 1. The baseline hazard is the Weibull function,

12t
21, with 1 = 1, 2 = 2, and  (x) = exp


ax+ bx2


, with a = 2, b = 3. {Xi}

n=1000
i=1 is generated

from the uniform distribution on [0, 1]. The duration Ti associated to each Xi is calculated by solving the

MPH for {Ti}
n=1000
i=1 . The DH is fitted as in study 1.

(a) Function f(t) (b) Function phi(x)

Figure 2: Study 1 Simulations
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(a) Estimate of phi(x): True (red), Average of
estimators (blue), Estimators (green)

(b) Estimate of survival function: Average esti-
mator (blue)

Figure 7: True GDP is MPH with Gamma Heterogeneity

B.4 Data Description and Summary Statistics

The empirical analysis uses data from the NLSY79, on the first spell of unemployment for both men and

women. The NLSY79 is a national probability sample of 12, 686 men (6, 403) and women (6, 283) who

were between 14 and 22 years old when they were first surveyed in 1979. Information on demographic

characteristics and labor force participation of the individuals has been collected annually from 1979 to

1993, and biennially from 1994 to the present.

Using the NLSY79 data set, it is possible to construct complete work histories since information for

the non-interview period will be recovered in the next interview period. That is, for an individual last

interviewed in 1980, and not interviewed until 1982, the information between 1980 1982 will be recovered
in the 1982 interview. The individual’s labor force history is constructed by having the individual fill in

the weeks between reported start and end dates for di§erent activities with the appropriate labor status

code. The codes range from: no information provided, unemployed, out of the labor force, associated with

an employer but not currently working, being in active military service, and employed34. Note that a job

held for any day of the week is considered as the job for the whole week.

The analysis sample is composed of 1240 individuals, out of which 616 are men. The original sample is

restricted to completed first unemployment spells ranging from 1979 to 2002. Completed spells are defined

as transitions out of employment to unemployment and then back to employment. Unemployed workers are

those who did not work at all during the survey week but have searched for a job in the four weeks prior

to the survey and during the survey week. The gaps during the unemployment spell, when individuals are

34 It is noted in Appendix 18 of the NLSY documentation files that the quality or completeness of the work history files are
not compromised by the possible inconsistencies generated by having the respondent fill in the gaps between start and end
dates of jobs.
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unemployed for part of the spell and out of the labor force for the other part of the spell, are problematic.

Such situations are not considered in the analysis, as they do not respect the definition of a completed spell.

Additionally, situations for which no information was provided for part of the time that individuals were

unemployed are also not considered. Out-of-labor force and no-information provided categories are easy to

drop as the NLSY has a special code for such situations.

The duration of a spell is the di§erence in weeks between the start and the end of the spell. Considering

completed spells eliminates censoring issues as well as issues concerning missing data, occurrence dependence,

and lagged dependence35 .

The application uses net wealth at the beginning of the unemployment spell. Net wealth is calculated

as the sum of the market value of residential property, farm or business property, vehicles, money assets

(savings), other assets each worth more than $500, IRS, tax deferred plans, CDs, loans, stocks, bonds,

mutual funds, and investment trust to be received, minus the amount of mortgage debt and back taxes,

other debt on property, debt on farm/business property, amount of money owned on vehicles, and other

debts over $500.

The sample is divided first in two groups based on education level: low education and high education.

Low-education are those who either have less than twelve years of schooling, where we do not di§erentiate

between high-school drop-outs and successful high-school graduates. The high-education group is formed of

those who have more than twelve years of schooling, where again, we do not di§erentiate between those who

have and those who have not successfully graduated college. The sample is also divided by marital status.

Individuals who are not married can be either single, separated, divorced, or widowed. For a table containing

descriptive statistics for the data, see Tables 3 and 4.

35Occurrence (lagged) dependence takes place when the probability of leaving unemployment depends on the number (dura-
tion) of previous unemployment spells.
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Table 3: Descriptive Statistics by Education Level

College
Men Total 223

min max mean std
Duration (weeks) 1 116 13.06 15.23
Net wealth (dollars) -31,401 499,000 27,715 68,912
Age 20 41 26.87 4.42
Children 0 5 0.37 0.85

High School
Total 391

min max mean std
Duration (weeks) 1 128 16.23 18.75
Net wealth (dollars) -147,000 193,700 11,912 29,682
Age 20 41 27.26 4.27
Children 0 7 0.73 1.1

College
Women Total 335

min max mean std
Duration (weeks) 1 100 12.83 17.44
Net wealth (dollars) -249,000 487,067 20,717 49,897
Age 20 43 27.75 4.47
Children 0 5 0.7 1.05

High School
Total 281

min max mean std
Duration (weeks) 1 142 15.88 20.53
Net wealth (dollars) -86,400 310,680 11,734 11,894
Age 20 42 27.16 4.80
Children 0 6 1.26 1.24
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Table 4: Descriptive Statistics by Marital Status

Married
Men Total 209

min max mean std
Duration (weeks) 1 116 13.66 17.05
Net wealth (dollars) -31,401 499,000 36,883 73,739
Age 20 41 28.73 4.19
Children 0 5 1.42 1.14

Not Married
Total 415

min max mean std
Duration (weeks) 1 128 15.5 17.61
Net wealth (dollars) -147,000 221,500 8,209 23,898
Age 20 41 26.3 4.17
Children 0 7 0.18 0.65

Married
Women Total 236

min max mean std
Duration (weeks) 1 100 13.71 18.04
Net wealth (dollars) -86,400 487,067 30,282 60,595
Age 20 42 27.92 4.6
Children 0 5 1.4 1.2

Not Married
Total 380

min max mean std
Duration (weeks) 1 142 15.1 20.06
Net wealth (dollars) -33,000 219,075 8,134 25,562
Age 20 43 26.32 4.53
Children 0 6 0.67 1.05
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B.5 Application Results

Table 5: DH Estimators

Men Women
College High School College High School

rate 1.577 0.807 0.864 0.056
age -0.1489 -0.1268 -0.0645 -0.005
age2 -0.009 0.0006 -0.003 0.0005
kids 0.0003 0.3703 -0.0103 -0.0006
marital -0.009 0.2439 0.0361 0.00014

Married Not Married Married Not Married
rate 1.853 0.875 0.566 1.655
age -0.1557 -0.0996 -0.1319 -0.1998
age2 -0.0062 0.0037 0.0164 -0.0172
kids 0.1721 0.00997 -0.4636 -0.2461
education -0.0844 0.0062 0.9198 0.2915

Table 6: MPH Estimators

Men Women
College High School College High School

rate 8665.835 0.4394 118.0114 77.0892
age -0.3871 0.0391 -0.0211 -0.0036
age2 -0.0805 -0.0088 -0.005 -0.0126
kids 0.0048 0.0395 -0.043 -0.0744
marital -0.0144 0.2348 0.1384 -0.0842
wealth 0.1166 0.3767 -0.5682 0.4498

Married Not Married Married Not Married
rate 138.5528 0.2553 108.8406 48.6275
age -0.0492 0.0671 -0.0271 -0.0001
age2 -0.0056 -0.0026 -0.002 -0.0039
kids 0.0448 -0.0338 -0.0009 -0.0694
education -0.0232 0.2925 0.1681 0.0891
wealth 0.2176 -2.9242 -0.0672 -0.6894
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Figure 8: Estimators by Education for Men (blue) and Women (red)

Figure 9: Estimators for College (green) and Highschool (magenta)
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Figure 10: Hazards for College (green) and Highschool (magenta)

Figure 11: Estimators by Marital Status for Men (blue) and Women (red)
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Figure 12: Hazard Functions by Marital Status for Men (blue) and Women (red)
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(a) Case S Survival Functions

(b) Case P Survival Functions

Figure 13: Survival Function for Men: DH (red), MPH (green), Nonparametric (blue)
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(a) Case S Survival Functions

(b) Case P Survival Functions

Figure 14: Survival Function for Women: DH (red), MPH (green), Nonparametric (blue)
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Figure 15: Counterfactual (dotted line) vs original estimators (continuous line)

Figure 16: Women’s counterfactual (dotted red) vs men’s (blue) and women’s original estimators (red
continuous)
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