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Abstract

The nature of optimal environmental policies able to induce sufficient tech-
nical progress in pollution abatement technologies has raised a vivid debate
between economics over the last decade. Some emphasize the importance of
learning-by-doing on these technologies, an argument in favor of early action.
Other insisted upon the time needed for R&D to identify the best abatement
options, an incentive to delay action in the future. Either triggering technical
progress from learning effects of research, all analysis conclude to ambiguous
effects of environmental policies on the speed of technical change. One strong
limitation of previous approaches is that they do not endogenize the best ways
to improve the efficiency of abatement technologies, either through learning
on existing techniques or through research to discover new ones. We con-
sider an economy that can trigger some cost breakdown in CCS costs thanks
to both learning and R&D. We first reconsider the results of the literature
about the extreme cases of a pure learning induced technical revolution and a
pure R&D induced cost breakdown in the context of an atmospheric carbon
ceiling framework. We show how this setting helps to clarify the existing
results from the literature and remove some of their ambiguities. In partic-
ular we perform a sensitivity analysis of the optimal policies with respect
to relevant parameters, providing strong intuitions about the various effects
affecting their dynamics. We next examine the case of a combined learning
and R&D policy. We show that the economy may initially perform only re-
search efforts or rely only upon learning to trigger the cost breakdown. A
combined policy may only follow pure R&D or learning policies. Combining
learning and R&D requires to increase both research efforts and the use of
the abatement technology, but the growth rate of pollution abatement must
be higher than the growth rate of the research efforts. Contrarily to what is
commonly observed in models with constant average and marginal costs of
abatement, the use of cleaning technologies may begin before the atmospheric
constraint begins to bind. In such situation, the time constraints upon tech-
nological development outweighs the environmental constraints and result
in early introduction of abatement technologies. But the contrary may also
be optimal and we provide a complete discussion of the relevance of these
various scenarios.
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1 Introduction

Technology plays a prominent role in all reflections about finding ways out of
the global warming problem. This issue has been forcefully raised by Scott
Barret in several occasions (Barret, 2006). For him, instead of seeking for an
almost impossible international agreement on carbon emissions mitigation,
governments should better cooperate over a common target of triggering a
technological revolution in clean energy generation. The help of technical
progress is particularly expected in three domains: the enhancement of the
productive efficiency of fossil fuels, the development of non carbon based
energy production techniques and the improvement of the efficiency of carbon
pollution abatement technologies, the future of carbon capture and storage
(CCS) technologies appearing as an important issue in this respect. If the
economic literature fully agrees to this general statement, it largely diverges
in assessing both the policy implications of technical progress opportunities
in carbon emissions mitigation and the effects of environmental policies upon
technical change in the energy production and consumption sectors. These
issues have provoked a vivid debate among economist during the last decade.

Two main reasons may explain this difficulty to reach an agreement about
the nature of the relationships between environmental policy and technolog-
ical development. First, the topic of technical change, or more precisely of
endogenous technical change, has emerged only recently in the economic liter-
ature. A lot remains to be done on this issue, especially to build a consistent
view of the various advances coming both from the microeconomic approaches
developed in industrial organization economics and the macroeconomic ap-
proaches of the endogenous growth literature. Second, global warming and
technical progress are two dynamical processes with their own drivers and
constraints, and reaching a reasonable understanding of the time links be-
tween these two processes is a modeling challenge, both on the theoretical
and on the empirical side.

A first motive of dissent relies in the desirable speed of action to introduce
pollution abatement technologies. One main set of arguments in favor of
delaying abatement roots in discounting arguments, the abatement options
being today typically costly and thus be favorably delayed in the future
(Wigley et al., 1996). A second set of arguments advances that in their
present sate, existing abatement technologies are too costly, and time should
be given to research to develop new and more affordable technical options.
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This line of thought has been heavily criticized by Van der Zwaan et al.,
(2002), and Kverndokk and Rosendhal (2007), among others, because it does
not take into account the potential of experience and learning-by-doing in
pollution abatement technologies. Taking benefit of such learning opportu-
nities rather requires early action than delay. The argument is reinforced by
a capital accumulation motive, the replacement of old and costly vintages by
new and cheaper one is a costly process requiring a significant time. This
time to build issue appears to be particularly relevant for CCS technologies,
their development being submitted to costly capacity expansion constraints.
The early action these is also endorsed by industrial organization views. By
announcing sufficiently early a credible path of action, in terms of an an-
nounced increasing time schedule of a carbon tax for example, the industry
will react to this incentive scheme by investing today in abatement technolo-
gies, the uncertainty about what the regulator plans to do in the future being
removed.

However, learning-by-doing is not the only way to induce technical ad-
vances. Another main option is R&D. R&D has two main advantages with
respect to learning. First, it does not require to actually use the technology.
With sufficient time and effort, it is possible to achieve in the lab potential
cost cuts without bearing the high initial cost of using non mature technolo-
gies. Second, R&D can span much more potential technical options than
actual use, which requires specific technical choices before beginning the ex-
ploitation of a given technique, the risk being to be trapped into inferior
options or inappropriate initial choices.

It appears immediately that in an R&D induced technical change world,
early development of infant abatement technologies may be counterproduc-
tive. In policy terms, this means that subsidizing non mature abatement
technologies in the hope that learning can reduce their costs in the future
may be suboptimal. It would be better to give more time to research to assert
the economic potential of different technological options. This issue has been
examined carefully by Goulder and Matthai (2000). Comparing a learning
induced technical change model with a R&D induced technical change model,
they conclude that in a R&D world, delaying actual abatement is optimal
while the interest to advance or delay a policy action promoting pollution
abatement is usually ambiguous in a learning world.

Induced technical change in carbon emission mitigation technologies is
only one aspect of a more general problem involving also alternative clean
energy production, like solar energy. These alternative energy sources may
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also benefit from both learning and R&D cost cutting progress. Such tech-
nical advances possibilities should modify the timing of optimal transitions
between energy sources, as shown by Chakravorty, Leach and Moreaux in
a recent paper (Chakravorty et al., 2012) in the case of learning-by-doing.
The same type of conclusions emerges from the study of Henriet for a R&D
induced technical breakthrough in a clean energy source production cost
(Henriet, 2012).

As remarked by Gerlagh et al.(2009), the Goulder-Matthai analysis does
not exhaust the concern expressed by Jaffe, Newell and Stavins (2001) con-
cerning the need of a better understanding of the impact of environmental
policies upon the nature of induced technological change and the feedback
effect of technical change upon the environment itself and thus upon envi-
ronmental policies.

Contributing to this understanding is the main objective of the present
work. Many confusions arise in the previous literature because of the usual
incremental way of modeling technical progress. This is especially true when
comparing learning-by-doing and research induced technical change. In an
incremental model, technical change is a sequence of small improvements
progressively reducing the cost of the abatement technology. But incremental
actual cost cuts achieved through learning and potential cost cuts achieved
by research activity are not really comparable. This is one of the main reason
for the ambiguous effects of an environmental policy in a learning-by-doing
model shown by Goulder and Matthai.

To escape this difficulty, we adopt a drastic view of technical change,
more in line of the Barret initial proposal. Thanks to a combination of R&D
activity and learning-by-doing, it is possible to increase over time some know-
how index. Once the index has reached a given target, it induces an abrupt
revolution in abatement technologies, taking the form of a cost drop from a
high level to a low level. To simplify, we assume only one revolution of this
kind, meaning that future learning or research activity will become worthless
after the revolution.

We make a parallel simplification concerning the dynamics of the envi-
ronment. Most papers model the environmental dynamics as a progressive
accumulation of carbon into the atmosphere, the size of the carbon stock gen-
erating welfare damages at each point of time. These damages are increasing
with the size of the pollution stock. We depart from this approach by using
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an alternative route pioneered by Chakravorty et al. (2006, 2008) . We as-
sume that the atmospheric carbon stock does not harm directly welfare, but
be crossed over some critical threshold level in carbon concentration, earth
climate conditions would become catastrophic. This echoes the current pol-
icy proposals of targeting a temperature rise of no more than 20 C, that is
actually trying to stabilize the carbon concentration to a constant level by
the end of the century. Hence the environmental policy takes the form of a
given mandate over the maximum level of the atmospheric carbon stock.

To simplify farther, we assume in the present paper that fossil fuels are
not exhaustible. Introducing depletion constraints over fossil fuels will result
in complex Hotelling effects blurring both the rate of carbon accumulation
and the timing of technological development.

One drawback of the Goulder-Matthai analysis is that they focus on the
polar cases of learning and R&D induced technical change, but these polar
cases are extreme situations where the economy would be constrained to use
only one device to trigger technological advances. We encompass this lim-
itation by examining a model where both activities contribute to technical
progress. This will allow a much better understanding of the delay problem
raised in the earlier literature. In particular we show how can be endoge-
nously determined time periods during which the economy should perform
only R&D to enhance the technical efficiency of pollution abatement and
time periods during which a combination of learning processes and research
activity is optimal.

The model is laid down in section 2. In order to drive interesting com-
parisons with previous results of the literature, we study in section 3 the case
of a pure learning-by-doing induced technological revolution and in section 4
the case of a pure R&D induced technological break. We improve on earlier
studies by performing rather systematically a sensitivity analysis of the main
variables. Usually, one finds such sensitivity analysis in simulation models,
but their results are typically hard, if not impossible, to interpret. Our sim-
ple setting allows us to derive sensitivity results in the analytical domain,
providing strong intuitions on our findings. In particular, we shall exhibit
the similarities and the differences between the cases of a learning induced or
a R&D induced technical change. In section 5, we examine the general case
of a combined learning and R&D process. We derive the implications of such
a process for an optimal environmental policy. We also describe the optimal
technological development policy which may be of a combined type, a pure
learning or a pure R&D type depending upon the model fundamentals. The
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last section 6 concludes.

2 The model

The economy has access to two primary energy sources. The first one is
a polluting resource (let say coal). We assume an infinite supply of this
resource, meaning that it will never be exhausted, that is we treat coal as a
kind of a renewable polluting resource, or equivalently assume that coal is
abundant. Let x(t) be the rate of coal extraction. The second energy source
is a clean renewable resource (let say solar) and we denote by y(t) the used
flow of solar energy.

Assuming for the sake of simplicity a one to one transformation process
of primary energy sources units into energy services units, the production
of solar energy services bears a cost cyy(t). The processing of coal into the
generation of energy services may take two forms. Coal may be processed
without consideration for the environmental consequences of burning this fos-
sil fuel to produce energy. We call dirty coal processing this energy generation
process and xd(t) denotes the corresponding coal energy services generation
rate. The cost of dirty coal processing is cxxd(t). It results into a pollution
flow ζxd(t) assumed proportional to the dirty coal energy generation. Under
our one to one transformation process assumption, xd is also that fraction of
coal extraction involved into dirty processing and ζ is the polluting content
of coal.

The pollution flow accumulates into the environment and Z(t) is the
pollution stock size at time t. There exists a self-cleaning capacity of the
environment, assumed to simplify proportional to the pollution stock size1 ,
so that the motion of Z(t) over time is given by:

Ż(t) = ζxd(t)− αZ(t) .

The initial pollution stock is Z(0) = Z0.

Coal may be also processed through a clean energy generation process,
1See Toman and Withagen (2000) for more general self-regenerating functions gener-

ating non-convex programs, the solutions of which necessitating global rather than local
comparisons.
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thanks for example to CCS effort, resulting in no carbon emissions into the
atmosphere. xc(t) is the rate of clean coal services generation and (cx +
cs(t))xc is the cost of clean coal energy services. Under our transformation
assumption, xc(t) is also that fraction of coal extraction involved in clean
coal energy production, so that: x(t) = xd(t) + xc(t).

Energy services differ by their primary sources (coal or solar) and by
their type of coal processing (either dirty or clean coal energy generation)
but they are perfect substitutes for the final users once the due costs have
been taken into account. Let q(t) ≡ xd(t) +xc(t) + y(t) be the instantaneous
consumption rate of energy services. This consumption generates a gross
surplus, u(q), assumed increasing and concave and satisfying the first Inada
condition: limq↓0 u

′(q) = +∞.

As in Chakravorty et al. (2006), we assume that pollution does not harm
directly welfare but be crossed over some critical threshold Z̄, earth climate
conditions would become catastrophic. Thus the society decides to maintain
the carbon concentration below this critical level. To give content to the
problem we have to assume that Z0 ≤ Z̄.

Operating clean coal energy production equipments benefits both from
learning-by-doing and dedicated research efforts. The cost reduction that
may be achieved through these two processes may be defined in different
ways. Here we adopt a drastic view of technical progress. The combination
of the accumulation of experience with R&D efforts results into a technolog-
ical revolution in the clean coal energy generation process. To describe this
combined process, we adopt the simplest formulation able to retain the main
aspects of the problem. Both learning-by-doing and R&D contribute to the
accumulation over time of some stock of know-how. Let A(t) be the level
of this stock at time t. A(t) grows over time at a rate depending upon the
production scale of clean coal energy, xc(t), and upon the R&D effort rate,
r(t), through the following relation:

Ȧ(t) = a(xc(t), r(t)) .

a(xc, r) is twice continuously differentiable and both ac ≡ ∂a/∂xc > 0, ar ≡
∂a/∂r > 0. Know-how may be increased through only learning or R&D,
that is: a(0, r) > 0 if r > 0 together with a(xc, 0) > 0 if xc > 0, while
a(0, 0) = 0. Assume that A(0) = 0, that is normalize to zero the initial know-
how index. Once some sufficient level of know-how, Ā, has been attained,
the technological revolution occurs, resulting into a sudden drop down of the
cost of clean coal energy generation, from a high level c̄s, to a low level cs.
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Thus the additional clean coal energy cost is a function of A(t), cs(A(t)),
such that:

cs(A(t)) =


c̄s if A(t) < Ā

cs if A(t) ≥ Ā
.

We assume to simplify only one technological revolution of this kind, meaning
that future learning will be worthless after the revolution and that further
R&D efforts will not allow for future cost breaks.

R&D activity has a cost Cr(r), a cost function we assume twice con-
tinuously differentiable over r ∈ (0,∞), increasing and convex in r while
Cr(0) = 0. So the marginal cost function cr(r) ≡ dCr(r)/dr defined over
(0,∞) verifies: cr(r) ≥ 0, c′r(r) > 0 and in addition limr↓0 cr(r) = c0

r ≥ 0, the
right end limit of the marginal R&D cost at zero is not necessarily zero.

The society has to determine a primary resources policy use, a split be-
tween dirty and clean coal energy generation, together with a R&D policy
maximizing a discounted sum of instantaneous net surpluses, ρ > 0 being
the constant level of the social discount rate, while taking into account the
atmospheric carbon concentration constraint, Z ≤ Z̄.

This problem may be given different formulations depending upon the
model fundamentals. If the cost of the clean solar energy is lower than
the cost of dirty coal generation, then coal is never used and the pollution
problem disappears. So we assume that cx < cy. It may be the case that
clean coal energy generation is so costly even after the revolution that the
society will prefer to produce only dirty coal energy services. In such a case,
there will be no learning about the clean coal technology and R&D efforts
will be worthless and thus no cost breakthrough can occur. This scenario
where x(t) = xd(t) has been already studied by Chakravorty et al.(2006). It
may also be the case that the pollution ceiling is never attained, a scenario
where the more costly clean coal option would never be engaged.

In order to drive an interesting discussion, we assume first that the ceiling
constraint binds eventually along the optimal path and, second, that the
clean cost option is not too costly to be used at least over some time interval,
maybe only after the technological revolution. We shall be more precise
about the relevant assumptions for that to be the case in the sequel. If
clean coal energy generation is profitable it will be used permanently after
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its introduction inside the energy mix. Either as a pure consequence of
learning-by-doing, in case of no R&D efforts, or as a result of the combination
of learning and R&D, the level of know-how will permanently rise, triggering
the revolution at some time, t̄A. Then the optimal program may be designed
as a sequential optimal control problem composed of two phases: a first phase
[0, t̄A) before the break and a second phase [t̄A,∞) after the break.

An optimal policy is hence a solution of the following program OP :

max
xc,xd,y,r,t̄A

∫ t̄A

0

[u(q(t))− cxx(t)− c̄sxc(t)− cyy(t)− Cr(r(t))] e−ρtdt+ e−ρt̄AV̄

s.t. Ż(t) = ζxd(t)− αZ(t) Z(0) = Z0 given
Ȧ(t) = a(xc(t), r(t)) A(0) = 0

xc(t) ≥ 0 , xd(t) ≥ 0 , y(t) ≥ 0 , r(t) ≥ 0

xc(t) + xd(t) ≤ x(t)

Z(t) ≤ Z̄

A(t̄A) ≥ Ā .

V̄ is the continuation value obtained by solving the following continuation
problem after the technological revolution:

max
xc,xd,y

∫ ∞
t̄A

[u(q(t))− cxx(t)− csxc(t)− cyy(t)] e−ρ(t−t̄A)dt

s.t. Ż(t) = ζxd(t)− αZ(t) Z(t̄A) = ZA given
xc(t) ≥ 0 , xd(t) ≥ 0 , y(t) ≥ 0

xc(t) + xd(t) ≤ x(t)

Z(t) ≤ Z̄ .

Before examining the policies solving the program OP , it is useful to
consider as benchmarks two polar cases, the case of a pure learning-by doing
know-how generation and the case of a pure R&D generation of know-how.
We devote the next two sections to these polar cases before turning to the
general case.
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3 Technological revolution induced by learning

Assume no R&D opportunities. The economy has to rely only upon learning-
by-doing, that is on experience accumulation, to trigger the technological
revolution. The simplest way to define experience, and thus here the know-
how index, is to identify it with the cumulated number of clean coal energy
services units generated since the beginning of clean coal energy production.
Let tc be the beginning time of clean coal energy production, then:

A(t) ≡
∫ t

tc

xc(τ)dτ .

Denote by λA(t) and λZ(t) respectively the costate variables associated to
the state variables A(t) and Z(t). Denote also by νxc, νxd, νy, the Lagrange
multipliers associated to the positivity constraints over xc, xd, y, respectively,
and by νZ , the Lagrange multiplier associated to the constraint Z(t) ≤ Z̄;
The optimality conditions over the time interval [0, t̄A) are:

u′(q) = cx + c̄s − λA − νxc (3.1)
u′(q) = cx + ζλZ − νxd (3.2)
u′(q) = cy − νy (3.3)
λ̇Z = (ρ+ α)λZ − νZ (3.4)
λ̇A = ρλA . (3.5)

Let us first sketch as a benchmark the optimal policy absent any learning
abilities, the extra cost of producing clean coal energy with respect to dirty
coal energy being cs . A relevant scenario involves hitting the ceiling at some
finite time tZ . We have to consider two possibilities. Either cy > cx + cs, the
high solar cost case, either cy < cx + cs, the low solar cost case.

In the high solar cost case, solar energy is never introduced inside the
energy mix. When at the ceiling, dirty coal energy generation is constrained
by the natural regeneration capacity, so that the production of dirty coal
energy is given by x̄d ≡ αZ̄/ζ. Let p̄ ≡ u′(x̄d). If p̄ < cx + cs < cy,
then the economy prefers to rely only upon dirty coal energy generation and
never uses either clean coal energy generation or solar energy generation.
The optimal path is a two phases path. During the first phase [0, tZ), the
economy produces only dirty coal energy, pollution accumulates and xd(t)
is the solution of u′(x) = cx + ζλZ0e

(ρ+α)t, where λZ0 = λZ(0). This phase
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ends when the pollution stock reaches the ceiling Z̄. Then begins a phase of
infinite duration, [tZ ,∞) of dirty coal generation at the level x̄d.

If cx + cs < p̄, clean coal energy is never introduced before the beginning
of the ceiling phase. Identifying (3.2) and (3.1), we get during any time
interval below the ceiling where dirty and clean coal generation would be
simultaneously operated: ζλZ(t) = cs, which is incompatible with λZ(t)
growing at the rate ρ + α. But since solar energy is even more costly than
clean coal energy, solar energy is also never used before the ceiling. Thus, the
economy produces only dirty energy until the ceiling constraint begins to be
binding. During this first phase [0, tZ), the implicit energy price p(t) ≡ u′(q(t)
is defined through (3.2) and (3.4) by: p(t) = cx + λZ0e

(ρ+α)t. Thus, the
implicit energy price increases over time while dirty coal energy generation
is progressively reduced. When at the ceiling, the economy starts to produce
clean coal energy. The energy implicit price p(t) is now constant and equal to
the marginal cost of clean coal energy production cx + cs. Since solar energy
is more expensive than clean coal energy, it is also never used during this
time phase. The optimal policy when at the ceiling combines the production
of dirty coal energy at the constant rate x̄d with the production of clean coal
energy at the constant rate x̄c, solution of u′(x̄d+xc) = cx+cs. Note that the
energy price continuity at tZ requires that the dirty coal energy production
path jumps down at tZ from the level x̄d + x̄c to the level x̄d while the clean
coal energy production rate jumps up from 0 to x̄c.

Last, in the low solar cost case, we have to distinguish the possibilities
cy < p̄ and p̄ < cy. If cy < p̄, solar energy is introduced when the ceiling
constraint becomes to be binding and clean coal energy generation is never
put in operation. Thus after tZ , energy production combines dirty coal energy
generation at the rate x̄d and solar energy generation at the rate ȳ, solution
of u′(x̄d + y) = cy. If p̄ < cy, the economy prefers to rely only upon dirty
coal energy generation and never uses clean energy in any form: clean coal
energy or solar energy.

We turn now to a sensitivity analysis of the optimal policy with respect
to some relevant parameters. Consider the optimal scenario in the high solar
cost case with cx+cs < p̄. To completely characterize the optimal policy, one
has to identify two variables, λZ0, the initial level of the pollution opportunity
cost, and tZ , the time at which the ceiling is attained. Let xd(t, λZ0) be
implicitly defined as the solution of u′(x) = cx + ζλZ0e

(ρ+α)t. (λZ0, tZ) are
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solutions of the following system of conditions:

ζλZ0e
(ρ+α)t = cs

Z̄eαtZ = Z0 + ζ

∫ tZ

0

xd(t, λZ0)eαtdt .

We concentrate upon the parameters cs, Z0 and Z̄.

Let IZZ ≡ −
∫ tZ

0
(1/u′′(q(t))e(ρ+2α)tdt and ∆0 ≡ ζ

[
ζ(ρ+ α)λZ0I

Z
Z + xc(tZ)eαtZ

]
.

Then it is easily verified that:

dλZ0

dcs
=
xc(tZ)e−ρtZ

∆0

> 0 ;
dtZ
dcs

=
ζIZZ e

−(ρ+α)tZ

∆0

> 0

dλZ0

dZ0
=

(ρ+ α)λZ0

∆0

> 0 ;
dtZ
dZ0

= − 1

∆0

< 0

dλZ0

dZ̄
= −(ρ+ α)λZ0e

αtZ

∆0

< 0 ;
dtZ
dZ̄

=
eαtZ

∆0

> 0 .

As expected, a higher clean coal energy cost translates into a larger op-
portunity cost of pollution. This is an immediate consequence of the fact
that a higher clean coal cost means a lower clean coal energy production and
thus a lower energy consumption rate when at the ceiling. Since the energy
price level at the ceiling (equal to the clean coal marginal cost) is increased
while the rise of the opportunity cost of pollution makes increase the energy
price also before the ceiling, the overall effect over the time length before
the ceiling could be ambiguous. However, the analysis shows that it must
increase, the direct effect over the energy price at the ceiling being larger
than the indirect effect over the energy price before the ceiling. The effects
of either a larger initial pollution stock or a stricter ceiling constraint are
straightforward. Both result in an increased opportunity cost of pollution
and a faster attainment of the ceiling.

Next, we examine the changes introduced by learning abilities to this
benchmark scenario. Learning abilities do not modify our original result
that clean coal energy is never introduced before the ceiling phase. They do
not change either our conclusion that solar energy is never introduced inside
the energy mix if cx + c̄s < cy and eliminates the clean coal energy option in
the reverse case. Let us thus assume that solar energy is more costly than
clean coal energy and that cx + c̄s < p̄.
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The optimal path is composed of three phases. During a first phase [0, tZ),
the economy produces only dirty coal energy at a declining rate, the energy
price growing at the rate (ρ + α). The pollution threshold Z̄ is attained
at tZ , the end of this phase. Then begins a second phase [tZ , t̄A) during
which the environmental constraint binds, the economy combines dirty coal
energy generation constrained by the constant rate x̄d = αZ̄/ζ and clean
coal energy generation. (3.5) defines λA(t) = λA0e

ρt, λA0 = λA(0), t ≤ t̄A.
Then, u′(x̄d + xc(t)) = cx + c̄s − λA0e

ρt defines implicitly xc(t, λA0) during
the time interval [tZ , t̄A) and ẋc(t) = −ρλA0e

ρt/u′′(x̄d + xc) > 0. Clean coal
energy generation increases before the cost break while the implicit energy
price decreases. The use of the pollution abatement technology results in
experience accumulation up to the level Ā, attained at time t̄A, at which the
technological revolution occurs and the pollution abatement cost falls from
the level c̄s down to cs. Last, the economy enters an infinite duration phase
[t̄A,∞) combining dirty and clean coal energy generation, the energy price
being constant and equal to the post-revolution clean coal energy marginal
cost cx + cs.

After the cost breakdown, the economy produces clean coal energy at the
constant rate xc solution of: u′(x̄d+xc) = cs. Thus, V̄ the continuation value
after the cost break in current terms at t̄A is given by:

V̄ =
1

ρ
[u(x̄d + xc)− cx(x̄d + xc)− csxc] .

t̄A must verify the following transversality condition:

H(t̄A) = − ∂

∂t̄A
V̄ e−ρt̄A .

Since the economy is blockaded at the ceiling during the first phase of clean
coal energy generation [tZ , t̄A), Ż(t̄A) = 0. Denote by limt↑t̄A xc(t) = x−c , the
above condition is equivalent to:

u(x̄d + x−c )− cx(x̄d + x−c )− c̄sx−c + λA(t̄A)x−c = u(x̄d + xc)− cx(x̄d + xc)

−csxc .

Simplifying the cxx̄d term on both sides and taking into account (3.1): u′(x̄d+
x−c ) = cx + c̄s − λA(t̄A) while u′(x̄d + xc) = cx + cs, we get:

u(x̄d + x−c )− u′(x̄d + x−c )x−c = u(x̄d + xc)− u′(x̄d + xc)xc .

Let Γ(x) ≡ u(x̄d+x)−u′(x̄d+x)x. Then dΓ(x)/dx = −u′′(x̄d+x)x > 0 shows
that Γ(x) is a monotonously increasing function of x, hence is bijective, show-
ing that x−c = xc. The clean coal energy generation rate is a continuous time
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Figure 1: Price Dynamics in the Pure Learning Case

function at t̄A. The Figure 1 illustrates the dynamics of the corresponding
energy price path.

During the first phase [0, tZ) before the ceiling constraint begins to be
binding, only dirty coal energy is produced and the energy price rises at the
rate ρ + α, just as in the no learning abilities benchmark. But because of
the learning process, the energy price at the beginning of the ceiling phase,
p(tZ) ≡ p̄Z is now lower than cx + c̄s. The energy price next decreases
before the cost breakthrough until the break occurs and the price stabilizes
forever at the level cx + cs. The energy production rates experience the same
kind of jumps described in the benchmark scenario without learning abilities.
The use of clean coal energy jumps from 0 up to xc(tZ) ≡ xZc , solution of
u′(x̄d + xc) = p̄Z . The production of dirty coal energy makes a parallel jump
down, from the level x̄d + xZc to the level x̄d.

In terms of policy tools implementation, an optimal account of learning
abilities requires two instruments. The first one is a carbon tax (or a carbon
price in a cap and trade system) upon dirty coal energy generation. The tax
must be rising at the rate ρ + α before the ceiling begins to be binding and
clean energy generation is introduced inside the energy mix. Then the carbon
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tax should decline over time before stabilizing at the level cs after the cost
breakdown occurs. The use of clean energy must be subsidized at the con-
sumption stage during the first phase of clean coal energy generation [tZ , t̄A).
The clean energy production sector supplies clean energy at its marginal cost
cx+ c̄s during this phase, resulting into a clean energy production price equal
to this marginal cost. The subsidy is given by λA0e

ρt and allows for an energy
price reduction at the consumption stage. Since the carbon tax is equal to
(c̄s − λA0e

ρt)/ζ, the dirty coal consumption is maintained to its mandated
level x̄d. The subsidy increases over time, allowing for a permanent increase
of clean coal energy consumption until the cost breakdown occurs. After t̄A,
the subsidy is removed and the production and consumption prices of clean
energy are identical and equal to cx + cs. The maximum level of the subsidy,
attained at time t̄A is the cost gap c̄s − cs. The current value level of the
subsidy is thus (c̄s − cs)e−ρ(t̄A−t) at time t, tZ ≤ t ≤ t̄A.

We have shown previously that without learning abilities, the economy
prefers to rely only upon dirty coal generation if p̄ < cx + cs. The same hap-
pens with learning abilities if p̄ < cx + cs. In this situation, the technological
breakthrough is unable to induce a sufficiently low level of the pollution
abatement marginal cost to justify beginning clean coal energy generation.
In the intermediate case: cx + cs < p̄ < cx + c̄s, a new possible scenario
emerges. In this scenario, clean coal energy use is delayed after the attain-
ment of the ceiling until some time tc. Then clean coal energy generation
expands until the cost breakdown occurs. Remark that there should be no
quantity discontinuity in this scenario. The use of dirty coal energy is main-
tained to the level x̄d while the use of clean coal energy is initially nill at tc.
However, Appendix A.1 shows that the economy cannot improve over a pol-
icy based upon the sole use of dirty coal energy by adopting such a combined
policy.

Let us retain the case cx + c̄s < p̄. To characterize the optimal policy
with learning abilities, we have to identify four variables, the initial values
of λZ and λA together with the optimal time to attain the ceiling tZ and the
optimal time to trigger the technological revolution, t̄A. Let xd(t, λZ0) be
implicitly defined by u′(x) = cx + ζλZ0e

(ρ+α)t over the time interval [0, tZ)
and xc(t, λA0) be implicitly defined by u′(x̄d + xc) = cx + c̄s−λA0e

ρt over the
time interval [tZ , t̄A). (λZ0, λA0, tZ , t̄A) are solutions of the following system
of four conditions:
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• The ceiling attainment condition, Z(tZ) = Z̄:

Z̄eαtZ = Z0 + ζ

∫ tZ

0

xd(t, λZ0)eαtdt

• The critical experience level attainment condition at the revolution
time, A(t̄A) = Ā:

Ā =

∫ t̄A

tZ

xc(t, λA0)dt

• The price continuity requirement at tZ :

ζλZ0e
(ρ+α)tZ = c̄s − λA0e

ρtZ

• The price continuity requirement at the cost break time:

λA0e
ρt̄A = c̄s − cs

Denote by:

IZZ ≡ −
∫ tZ

0

e(ρ+2α)t

u′′(q(t))
dt > 0 ; IA ≡ −

∫ t̄A

tZ

eρt

u′′(q(t))
dt > 0

J cA ≡ −
∫ t̄A

tZ

dt

u′′(q(t))
> 0 ; xZc ≡ xc(tZ) ; xAc ≡ xc(t̄A)

TA ≡ t̄A − tZ ; πZ ≡ ζ(ρ+ α)λZ0e
αtZ + ρλA0

∆0 ≡ ζ
[
ζ(ρ+ α)λZ0I

Z
Z + xZc e

αtZ
]
.

We refer to Appendix A.2 for calculation details. We show the following
effects of a higher initial pollution stock over the optimal path features:

dλZ0

dZ0
=

(ρ+ α)λZ0

∆0

> 0 ;
dtZ
dZ0

=
dt̄A
dZ0

= − 1

∆0

< 0

dλA0

dZ0
=
ρλA0

∆0

> 0

The impact of a higher Z0 is qualitatively the same as in the case without
learning abilities: the pollution opportunity cost is higher and the attainment
of the ceiling is accelerated. We remark that even if the levels of the variables
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are of course different, the qualitative expressions of the partial derivatives
are the same with and without learning abilities. This is a consequence of
the fact that a higher initial pollution stock mainly affects the optimal path
before the ceiling phase. Computing the effect of a higher Z0 over the price
level at the beginning of the ceiling phase, p̄Z , confirms this result:

dp̄Z
dZ0

=

[
dλZ0

dZ0
+ (ρ+ α)λZ0

dtZ
dZ0

]
e(ρ+α)tZ

= [(ρ+ α)λZ0 − (ρ+ α)λZ0]
e(ρ+α)tZ

∆0

= 0

A higher initial pollution stock has no effect over the energy price at the
beginning of the ceiling phase, and thus no effect over the production rate
of clean coal energy at tZ . Furthermore, dtZ/dZ0 = dt̄A/dZ

0 < 0 shows
that the first phase at the ceiling keeps the same length, thus the production
plan of clean coal energy is just translated sooner in time by a higher initial
pollution level. This property induces an upper shift of the initial level of the
learning rent λA completely neutral in terms of current value subsidy levels
throughout the phase [tZ , t̄A).

One could be tempted to think that a stricter ceiling constraint would
have the same qualitative effects than a higher initial pollution stock. But the
induced change over dirty coal energy production modifies the comparative
advantage of dirty coal versus clean coal energy generation and thus the value
of experience acquisition. More precisely:

dλZ0

dZ̄
= −(ρ+ α)λZ0e

αtZ

∆0

+
αρλA0TA
ζ∆0

?

dtZ
dZ̄

=
eαtZ

∆0

+
αρλA0TAI

Z
Z

xZc ∆0eαtZ
> 0

dλA0

dZ̄
= −ρλA0e

αtZ

∆0

− αρλA0TA(πZI
Z
Z + xZc e

2αtZ )

xZc ∆0eαtZ
< 0

dt̄A
dZ̄

=
eαtZ

∆0

+
αTA(πZI

Z
Z + xZc e

2αtZ )

xZc ∆0eαtZ
> 0

A stricter ceiling constraint (dZ̄ < 0) has an ambiguous effect over the initial
pollution opportunity cost. This translates into an ambiguous consequence
over the energy implicit price path before the beginning of the ceiling phase.
However the analysis shows a faster attainment of the ceiling, a higher learn-
ing rent together with a sooner technological revolution time. The effect of
a stricter environmental standard combines two components shown in the
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above expressions. The first component is the effect of a change of Z̄ for a
given clean energy production path. As expected, this component works in
the same direction as the effect of higher initial Z0. It increases the pollu-
tion opportunity cost, fastens the ceiling attainment, increases the value of
learning and fastens the revolution. The second component expresses the in-
duced effect of a stricter ceiling upon xc(t), the clean coal energy production
rate, during the pre-revolution phase at the ceiling, [tZ , t̄A). This effect is
depending upon TA, the length of this time phase. This effect has a negative
impact over the pollution opportunity cost, it reduces tZ , makes increase the
value of learning and fastens the revolution. Thus these two effects work in
the same direction for tZ , λA0 and t̄A but in an opposite direction for λZ0.

This does not mean that the effect of a ceiling modification over the
energy price at the beginning of the ceiling phase, p̄Z , and upon TA, the time
length of the first phase of clean coal production, is indeterminate. More
precisely:

dp̄Z
dZ̄

=
αρλA0TA
ζxZc

eρtZ > 0

dTA
dZ̄

=
αTA
ζxZc

> 0 .

Thus a stricter ceiling constraint results into a lower energy price at the be-
ginning of the ceiling phase together with a shorter time period before the
revolution once clean coal production begins. This implies that the produc-
tion of clean coal energy is increased by a stricter ceiling constraint and hence
that the energy implicit price is lower during the time phase [tZ , t̄A). To this
lower price level correspond both a higher subsidy level to clean coal energy
and a lower carbon price. Note that a lower p̄Z and a lower tZ are compatible
with either a higher or a lower level of ζλZ0, the initial level of the carbon
price. Note also that learning abilities reverses the usual result that a stricter
environmental constraint should translate into a higher optimal carbon tax.
The analysis shows to the contrary that, in between the beginning of the ceil-
ing period and the technological revolution, the carbon tax level is lowered
by a stricter ceiling constraint.

We have shown also that a stricter ceiling means an increased use of clean
coal energy and thus a faster technological revolution. This is reminiscent
of the Porter, Van der Linde hypothesis (1995). Following Michael Porter,
imposing ’tight’ environmental regulation (that is ’more’ than Pigouvian)
should spur more R&D efforts from the energy industry. In the present
context, improving the efficiency of pollution abatement requires an increased
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use of the clean coal energy generation technology. A stricter environmental
standard, though perfectly ’Pigouvian’, achieves this outcome quite naturally,
by reducing the comparative advantage of dirty energy with respect to clean
energy. However, this does not mean that before the beginning of clean coal
energy use, a stricter environmental standard should translate into a higher
carbon tax.

Turn to the consequences of a higher experience threshold triggering the
technological revolution in clean coal energy generation. After computations,
we get:

dλZ0

dĀ
=
ρλA0

∆0

> 0 ;
dλA0

dĀ
= −ρλA0

xZc

[
1 +

ζρλA0I
Z
Z

xZc ∆0eαtZ

]
< 0

dtZ
dĀ

=
ζρλA0I

Z
Z

xZc ∆0eαtZ
> 0 ;

dt̄A
dĀ

=
1

xZc

[
1 +

ζρλA0I
Z
Z

∆0eαtZ

]
> 0

dp̄Z
dĀ

=
ρλA0e

ρtZ

xZc
> 0 ;

dTA
dĀ

=
1

xZc
> 0 .

As expected, a higher experience requirement to trigger the cost break results
into a lower level of the learning rent and a longer time before the cost break.
The opportunity cost of pollution is increased together with the energy price
at the beginning of the ceiling phase but because the learning rent is decreased
in a higher proportion than λZ is increased, the attainment of the ceiling is
delayed.

The sensitivity analysis of a small increase of the clean energy cost before
the break is more intricate since it affects simultaneously the price conver-
gence condition towards the ceiling, the relative profitability of clean coal
energy before the break and the value of learning in getting an increased cost
cut. Denote by:

Ic ≡
∫ t̄A

tZ

xc(t)e
−ρtdt > 0 .

Then we get first:

dλZ0

dc̄s
=

ρIc
∆0

> 0 ;

dtZ
dc̄s

=
ζρIZZ Ic
xZc ∆0eαtZ

> 0 ;

dp̄Z
dc̄s

= ζe(ρ+α)tZ

[
dλZ0

dc̄s
+ (ρ+ α)λZ0

dtZ
dc̄s

]
> 0 .
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Hence a higher clean energy cost induces a higher pollution opportunity cost
together with a delayed attainment of the ceiling. The energy price at the
beginning of the ceiling is also increased. These results are expected, note
that the direct effect of the cost increase dominates the indirect effect over
the energy price before the ceiling phase, resulting into a slower move towards
the ceiling.

The effect of a higher initial clean coal energy cost over the learning rent
is indeterminate but it is possible to show that:

dt̄A
dc̄s

=
ζ

xZc ∆0eαtZ

[
(πZI

Z
Z + xZc e

2αtZ )(J cA − IAe−ρt̄A) + xZc I
Z
Z (e−ρtZ − e−ρt̄A)

]
> 0

dTA
dc̄s

=
J cA − IAe−ρt̄A

xZc
> 0

Hence a higher initial clean coal energy cost means a longer period before the
cost breakdown. Since the energy price is shifted upward at the beginning of
the ceiling phase, the exploitation of clean coal energy is reduced, implying
a slower learning process and thus a delayed, although more significant, cost
cut.

Last, considering the consequences of a lower clean energy cost after the
break, we find that:

dλZ0

dcs
> 0 ;

dλA0

dcs
< 0

dtZ
dcs

> 0 ;
dt̄A
dcs

> 0

dp̄Z
dcs

> 0 ;
dTA
dcs

> 0

These effects fit the intuition. A higher clean energy cost level after the break,
that is a lower cost cut thanks to learning, results into a higher pollution
opportunity cost together with a delayed attainment of the ceiling. On the
other hand, the learning rent is reduced and the time length before the cost
break to occur is enlarged.

The following propositions summarize our findings:

Proposition 1 (i) With only learning abilities, clean coal energy genera-
tion is never introduced before the atmospheric ceiling constraint begins
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to be binding. If solar energy production is cheaper than clean coal
energy, it eliminates this option and is itself eliminated in the reverse
case. The optimal energy policy is a three phases path composed of a
first phase of only dirty energy generation at a declining rate until the
carbon ceiling level is attained. Then clean coal energy generation begins
at an increasing rate while the production of dirty energy is constrained
by the ceiling. This second phase ends at the technological revolution
time. After the revolution, the economy stays permanently at the ceiling
and produces a constant rate of clean coal energy at the post-revolution
low marginal cost.

(ii) The possibility of a learning induced technological revolution in CCS
lowers the carbon opportunity cost before the attainment of the ceiling,
this cost being rising exponentially at the rate (ρ+ α). During the pre-
revolution phase at the ceiling, the energy implicit price decreases over
time. There is no price cut at the technological breakthrough. After
the break, the energy price remains constant and equal to the clean coal
energy marginal production cost.

(iii) The implementation of the optimal policy requires to combine a carbon
tax (or a carbon price in a cap and trade system) and a subsidy at
the consumption stage to clean energy use. The carbon tax increases
before the atmospheric ceiling constraint begins to be binding , decreases
during the second phase and stays constant after the cost revolution.
The subsidy is introduced whence the ceiling is attained, it increases
exponentially at the rate ρ before the revolution and is suppressed after
the cost breakthrough. Its current value level at time t is given by (c̄s−
cs)e

−ρ(t̄A−t), the cost gap in present value from t.

Concerning the sensitivity analysis with respect to some relevant parameters,
we show that:

Proposition 2 (i) The pollution opportunity cost, or the optimal carbon
tax, is increased by a higher initial pollution stock, a higher know-how
requirement to trigger the technological revolution or a higher CCS cost
before the revolution. A stricter environment standard, that is a lower
Z̄, has an ambiguous effect over the carbon price before the ceiling
constraint begins to be binding and lowers this price whence the ceiling
is binding.

(ii) The learning rent, or equivalently the subsidy needed to induce the op-
timal level of clean coal energy generation, is reduced by a higher initial
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pollution stock or a higher required know-how level to trigger the techno-
logical revolution. It is increased by a stricter environmental standard
while a higher pre-revolution CCS cost has ambiguous effects over the
learning rent.

(iii) The ceiling constraint binds earlier if the initial pollution stock is higher,
the ceiling constraint more stringent, the know-how requirement to trig-
ger the cost cut in CCS operation less stringent or the abatement cost
before the revolution less expensive.

(iv) The length of the learning phase between the beginning of the ceiling
phase and the revolution time is independent from the initial pollution
stock. It decreases with a stricter ceiling constraint, a less stringent
know-how target and a lower pre-revolution CCS abatement cost.

4 The R&D induced technical revolution in abate-
ment

Consider the reverse case of no learning abilities. The technical revolution
only results from sufficient efforts in R&D. Take the simplest form for the
consequences of such efforts over the accumulation of know-how, that is as-
sume that Ȧ = r. Then the optimality conditions before the revolution
become:

u′(q) = cx + c̄s − νxc (4.1)
u′(q) = cx + ζλZ − νxd (4.2)
u′(q) = cy − νy (4.3)
λA = cr(r)− νr (4.4)
λ̇Z = (ρ+ α)λZ − νZ (4.5)
λ̇A = ρλA . (4.6)

Assume that cy > p̄ > cx + c̄s, hence solar energy never enters the energy
mix. As in the preceding case, clean coal energy generation should not be
introduced before the beginning of the ceiling phase. Since R&D only affects
the time of the revolution, whatever be the cost level, the pre-revolution high
cost level or the post-revolution low cost level, the constancy of unit costs
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is incompatible with the rise of the pollution opportunity cost before the
ceiling.

This in turn implies that the revolution should not occur strictly before
the beginning of the ceiling phase. Assume to the contrary that t̄A < tZ .
Then clean coal energy production begins at tZ with the best technology
of cost cs. Since there are no learning abilities, we are in the benchmark
case exposed at the beginning of section 3. After reaching the ceiling, the
energy price is constant and given by cx + cs. Before tZ , the energy price
is given by: p(t) = cx + ζλZ0e

(ρ+α)t until p̄Z = cx + cs is attained at time
tZ . Consider a small decrease of the research effort dr < 0 at each time
during the time interval [0, t̄A). The revolution time t̄A would be slightly
delayed but for a sufficiently low dr, the revolution occurs before tZ . Thus
nothing would be changed to the resource use policy before and after tZ , the
only consequence being a reduction in the R&D cost. Thus such a reduction
would be beneficial, resulting in an optimal time of the revolution happening
at least whence the ceiling has been attained, that is tZ ≤ t̄A in any optimal
scenario.

Next let us assume that the know-how requirement is sufficiently stringent
to have tZ < t̄A. We shall be more precise later over the conditions for the
revolution to occur only strictly after the beginning of the ceiling phase. After
the revolution, the economy remains blockaded at the ceiling, the energy
price is given by cx + cs, the production of dirty coal energy by x̄d and the
production of clean coal energy by xc, thus, V̄ , the continuation value after
the revolution is the same as before and given by:

V̄ =
1

ρ
[u(x̄d + xc)− cx(x̄d + xc)− csxc] .

Denote h− ≡ limt↑t̄A h(t) for any time function h(t). The transversality
condition at t̄A is now expressed as:

u(x̄d + x−c )− cx(x̄d + x−c )− c̄sx−c − Cr(r−) + λ−Ar
− = u(x̄d + xc)− cx(x̄d + xc)− csxc .

Taking (4.1) and (4.4) into account, this is equivalent to:

u(q−)− u′(q−)x−c − Cr(r−) + cr(r
−)r− = u(x̄d + xc)− u′(x̄d + xc)xc

Denote by: Γr(r) ≡ cr(r)r − Cr(r). Since Cr(0) = 0, Γr(0) = 0 and Γ′r =
c′r(r)r > 0 under our cost convexity assumption. Thus Γr(r) > 0 if r > 0.
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Denote by Γ(xc) ≡ u(x̄d + xc) − u′(x̄d + xc)xc, an increasing function of xc,
as shown before. Then the transversality condition is equivalent to:

Γ(xc)− Γ(x−c ) = Γr(r
−) > 0

At the revolution time, t̄A, the energy price jumps down from the level cx+ c̄s
to the level cx+cs. This corresponds to an upward jump of clean coal energy
generation from the level x−c , solution of u′(x̄d +xc) = cx + c̄s, up to the level
xc, itself solution of: u′(x̄d+xc) = cx+cs. The transversality condition shows
that to this quantity jump corresponds a unique level of r−, the research effort
just before the revolution. Since λ−A(t̄A) = cr(r

−), the terminal level of the
R&D knowledge rent is thus also determined. Let λ̄A be this level, then:
λA0e

ρt̄A = λ̄A, taking (4.6) into account.

This shows a first difference between the R&D strategy to trigger the
technological revolution and the learning strategy. Inducing the right level
of experience acquisition, and thus the right level of clean coal energy pro-
duction, required a specific subsidy in the preceding case. Such a subsidy
device is no more needed to induce the optimal level of R&D investments, the
carbon tax being a sufficient tool to implement the optimal scenario. The
optimal time profile of the subsidy also resulted into a continuous energy
price trajectory despite the cost revolution. This is no more the case under a
R&D induced technological revolution and one obtains the usual conclusion
that energy services are permanently priced at their marginal cost, the cost
break resulting into a price breakdown at the revolution time.

A second difference appears in the computation of the R&D rent. While
the learning rent simply identified with the cost gap in the preceding section,
the R&D rent at the revolution time is defined through the transversality
condition by a complex relation depending upon not only the shape of the
R&D cost function but also upon the energy gross surplus function.

Third, the relative independency between the dynamics of energy use and
the dynamics of know-how induced by the R&D policy widens the space of
possible energy scenarios. Assume that the solar energy cost, cy, is such
that: cs < cy < c̄s. In the learning induced revolution framework, solar en-
ergy would eliminate the use of clean coal energy and thus the possibility of a
revolution. In the R&D induced revolution framework, the corresponding op-
timal scenario is the following. During a first phase [0, tZ), the economy only
relies upon the use of dirty coal energy until the ceiling is attained. Then so-
lar energy is introduced in combination with dirty coal energy generation up
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to a level ȳ solution of: u′(x̄d + y) = cy. Thus, before the technological revo-
lution, that is during the time interval [tZ , t̄A), the economy is constrained by
the ceiling but never produces clean coal energy, this one being more costly
than solar energy. After the revolution, solar energy is eliminated from the
energy mix and the economy combines the production of dirty energy at the
rate x̄d and of clean coal energy at the rate xc. Thus the energy transition
scenario is composed of a first phase using only coal, a second phase using
both coal and solar energy and a third phase using only coal but with a
positive amount of clean coal energy.

Next, let us turn to the description of the optimal R&D policy. If cr(0) =
c0
r > 0, R&D investment may be delayed. Taking (4.4) into account, λA(t) ≥
c0
r appears as a necessary condition for strictly positive R&D efforts, r(t) > 0.
Since λA0 = λA(0) is determined by the whole model structure, this may or
not be the case at time t = 0. If λA0 > c0

r, R&D effort is set immediately at
a positive level. Since c′r(r) > 0, the optimal R&D effort is implicitly defined
by λA(t) = cr(r(t)) as an increasing function of λA and thus an increasing
function of time since λA(t) is growing exponentially. Let r(t) = rA(λA(t))
be that function. Then r(t) grows permanently over time. If λA0 < c0

r, R&D
investments are delayed until tA solution of λA(t) = c0

r. At tA, R&D activity
shows a smooth start from a zero level and then increases permanently over
time as in the preceding case. One may observe that this feature goes in the
opposite direction of many endogenous growth models where R&D efforts
should be set initially at a high level and then be decreased. This is because
these models usually assume the existence of increasing returns to scale in the
knowledge generation process, returns to scale resulting from an inheritance
effect of previously accumulated knowledge. Such effects are absent in the
present model and we obtain the usual conclusion that because of discounting,
R&D costs should be delayed in time. The result is an increasing R&D effort
path, maybe from a zero initial level after some time period without research
activity.

Let us first consider the optimal scenario in a situation where λA0 > c0
r.

If c0
r = 0, this is the only optimal solution. It is identified by computing the

vector of variables (λZ0, λA0, tZ , t̄A), a vector solution of the following set of
conditions:

• The ceiling attainment condition, Z(tZ) = Z̄:

Z̄eαtZ = Z0 + ζ

∫ tZ

0

xd(t)e
αtdt .
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• The know-how requirement condition, A(t̄A) = Ā:

Ā =

∫ t̄A

0

rA(λA0e
ρt)dt .

• The price continuity requirement at tZ :

ζλZ0e
(ρ+α)tZ = c̄s

• The R&D rent condition at t̄A:

Γ(xc)− Γ(x−c ) = Γr(rA(λA0e
ρt̄A)) .

It is worth contrasting the pure learning and pure R&D induced techno-
logical breakthrough models through a parallel comparative dynamics exer-
cise to the one performed in Section 3. The computations details are pre-
sented in Appendix A.3. The main conclusions are the following.

Denote as before ∆0 = ζ
[
ζ(ρ+ α)λZ0 + xZc e

αtZ
]
and by: r̄ = limt↑t̄A r(t)

and r0 ≡ r(0).

The effects of a larger initial pollution stock Z0 or a stricter ceiling con-
straint are the following:

dλZ0

dZ0
= −dλZ0

dZ̄
e−αtZ =

(ρ+ α)λZ0

∆0

> 0 ;
dtZ
dZ0

= −dtZ
dZ̄

e−αtZ = − 1

∆0

dλA0

dZ0
=
dt̄A
dZ0

= 0

dλA0

dZ̄
= − r̄ρλA0

r̄ − r0

dt̄A
dZ̄

= −α(c̄s − cs)e−ρt̄A
ζr0

< 0

The decoupling of the know-how dynamics from the economic arbitrages
driving the energy policy removes the indeterminacy problem identified in
the learning model. It appears clearly that a larger initial pollution stock or
a stricter ceiling constraint have the same qualitative effects over the energy
implicit price trajectory. Both make rise the pollution opportunity cost, and
thus the energy price before the ceiling, and fasten the attainment of the
ceiling.

The differences between a stricter ceiling an a higher initial pollution
stock appear when considering the R&D optimal policy. There is no effect
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of the initial pollution stock over the R&D policy. Since the economy is
permanently constrained by the ceiling after tZ , a stricter ceiling results
into a higher R&D effort and thus in earlier technological revolution. We
observed a similar accelerating effect in the learning model. Imposing a
stricter environmental standard makes rise the R&D effort to trigger the
cost revolution.

The consequences of a higher know-how requirement, Ā, to trigger the
technical revolution offer another illustration of the relative independency
between the R&D policy and the energy policy. After computations, we get:

dλZ0

dĀ
=
dtZ
dĀ

= 0

dλA0

dĀ
= −ρλA0

dt̄A
dĀ

= −ρλA0

r0

< 0

A higher knowledge target induces a slow down of the research efforts and
thus a delayed technical revolution. A larger know-how requirement has no
effect over the energy consumption policy, the ceiling being attained at the
same time and the pollution opportunity cost being unaffected by a higher
Ā.

The independency feature disappears when considering the additional
cost of clean coal energy production before the revolution, since this cost
both affects the convergence condition of the energy price towards its ceiling
level and the size of the cost breakdown. The calculus shows that:

dλZ0

dc̄s
=
xzc
∆0

e−ρtZ > 0 ;
dtZ
dc̄s

=
ζIZZ
∆0

e−(ρ+α)tZ > 0

dλA0

dc̄s
=
x−c
r0

e−ρt̄A > 0 ;
dt̄A
dc̄s

= −x
−
c (r̄ − r0)

r0r̄ρλA0

e−ρt̄A < 0

As in the pure learning model, a higher initial clean coal energy cost means
a higher pollution opportunity cost together with a delayed arrival at the
ceiling. As before, the direct effect over the energy price after tZ resulting
from a higher c̄s dominates the indirect effect over the energy price of a higher
pollution opportunity cost resulting in a longer time before the beginning of
the ceiling phase. Contrarily to the learning model where the time length
between the beginning of the learning process and the revolution time was
enlarged by a higher c̄s, R&D is accelerated by the perspective of a larger
cost breakthrough and the revolution comes earlier.

Since the clean coal cost level affects only the post-revolution phase, one
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should expect that a higher cs has no effect upon the energy use before
the revolution. Furthermore, the perspective of a smaller cost breakthrough
should discourage research and delay the revolution time. The calculus con-
firms these straightforward intuitions.

Up to now we considered only scenarios where λA0 > c0
r, but we need to

make precise the domain of validity of such policies. Let us consider an R&D
policy starting at time 0 from r(0) = 0, that is λA0 = c0

r. Then the cost
breakthrough occurs at a time T̄A solution of:

Ā =

∫ T

0

rA(c0
re
ρt)dt

T̄A is the maximum time delay to get the breakthrough since the economy
starts from the lowest possible level of research efforts. Let (λ0

Z0, t
0
Z) be

defined as the solutions of:

Z̄eαtZ = Z0 + ζ

∫ tZ

0

xd(t)e
αtdt

ζλZ0e
(ρ+α)tZ = cs .

(λ0
Z0, t

0
Z) are the optimal initial levels of the pollution opportunity cost and

time delay before the ceiling in a situation where the cost breakthrough would
occur just when the ceiling constraint begins to be binding. If t0Z > T̄A, the
active R&D phase has to be delayed until tA = t0Z − T̄A as noticed before.
In this scenario, clean energy production is introduced at t0Z with the best
technology, the cost breakthrough occurring at t0Z .

In the contrary case, triggering the technological revolution when at-
taining the ceiling requires to set λA0 above c0

r and thus r(0) > 0. To t0Z
corresponds a unique value of λA0, we denote by λ0

A0 solution of:

Ā =

∫ t0Z

0

rA(λA0e
ρt)dt .

Let λ̄0
A ≡ λ0

A0e
ρt0Z .

We have to consider the transversality condition while taking explicitly
into account the constraint: tZ ≤ t̄A, which requires to modify this condition
as such. Denote by µZ , the Lagrange multiplier associated to the constraint
tZ ≤ t̄A. Then optimality requires that:

H(t̄A) + µZ = − ∂

∂t̄A
V̄ e−ρt̄A
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with µZ ≥ 0 and µZ(t̄A − tZ) = 0. This is equivalent to:

Γ̄ ≡ Γ(xc)− Γ(x−c ) = Γr(r
−) + µZ ≥ Γr(r

−)

Note that Γ̄ is given by the cost parameters and the energy demand shape,
and is independent from either the R&D policy or the ceiling attainment
condition. Let r̄ be the solution of Γ̄ = Γr(r) and λ̄A = cr(r̄) ≡ λ̄A(Γ̄).
Then, Γr(r) being an increasing function of r, r̄ is an increasing function
of Γ̄ and hence λ̄A(Γ̄) is an increasing function of Γ̄. This implies that if
λ̄A(Γ̄) < λ̄0

A, the constraint tZ ≤ t̄A does not bind, while it is binding in the
reverse case.

Consider the case of a binding constraint, that is λ̄A(Γ̄) ≥ λ̄0
A. Let r0(t) ≡

rA(λ0
A0e

ρt), the optimal R&D policy may be of two types. If t0Z < T̄a, it is
defined by r0(t) over the time interval [0, t0Z). The research effort is initially
strictly positive (r0(0) > 0) and the cost break occurs at t0Z . If t0Z > T̄a, then
the active research phase is delayed until some time tA = t0Z − T̄A.

Turn now to the case of a non binding constraint: λ̄A(Γ̄) < λ̄0
A. Then

λ̄A(Γ̄) < λ̄0
A is equivalent to r(t̄A) < r(t0Z), implying that t̄A > t0Z to satisfy

the knowledge accumulation constraint. Hence, λA0 < λ0
A0. The economy

follows a less active R&D policy. To lower levels of Γ̄ correspond lower levels
of λ̄A(Γ̄) and thus lower paths of R&D efforts. If Γ̄ is such that λ̄A(Γ̄) < c0

r,
R&D efforts become unprofitable and there is no cost breakthrough. We
conclude that the optimal policy is one of the four possible types described
in the following Proposition:

Proposition 3 1. If λ̄A(Γ̄) < c0
r, there is no R&D activity and trivially

the cost break never occurs, the society prefers to use clean coal energy
when at the ceiling at the high cost level.

2. If c0
r < λ̄A(Γ̄) < λ̄0

A, the active R&D policy starts immediately at time 0.
R&D efforts increase over time and the cost breakthrough occurs strictly
after the beginning of the ceiling phase, resulting in a time phase [tZ , t̄A)
where the economy uses the clean coal energy technology at its highest
cost c̄s.

3. If λ̄0
A < λ̄A and t0Z < T̄A, then the economy starts to perform R&D

efforts right from t = 0, the optimal R&D effort is given by r0(t) re-
sulting in a cost breakthrough occurring just at the time t0Z when the
ceiling constraint begins to bind.
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4. If λ̄0
A < λ̄A and t0Z > T̄A, then the active R&D phase is delayed until

some time tA such that tA = t0Z − T̄A, also triggering the technological
revolution just at the arrival at the ceiling.

Concerning the sensitivity of the optimal path to some relevant parameters
in the case c0

r < λ̄A(Γ̄) < λ̄0
A, we have shown that:

Proposition 4 (i) The pollution opportunity cost before the ceiling con-
straint begins to bind, or equivalently the optimal carbon tax, is in-
creased by a larger initial pollution stock, a stricter ceiling constraint
or a higher CCS cost before the technological revolution. It is unaffected
by the know-how target to trigger the revolution.

(ii) The ceiling constraint binds earlier with a higher initial pollution stock,
a stricter ceiling constraint, a higher CCS cost before the revolution and
is unaffected by the revolution know-how target.

(iii) The R&D rent, or equivalently the intensity of R&D efforts, is unaf-
fected by the initial pollution stock. It is increased by a stricter ceiling
constraint, a less stringent know-how requirement or a higher CCS cost
before the revolution.

(iv) The technological breakthrough is delayed by a less stringent ceiling con-
straint, a more stringent know-how requirement to trigger the cost break
or a lower initial CCS cost. The revolution time is independent from
the initial pollution stock.

It is interesting to contrast the sensitivity analysis of the learning induced
and the R&D induced technological revolution. The following Table 1 sum-
marizes our main findings, the pure R&D case qualitative effects appearing
between parenthesis in the table.

The table shows that the two technological breakthrough triggering de-
vices, learning-by-doing or R&D, behave more or less the same in qualitative
terms. A part from the independency property of the R&D way to trigger
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dλZ0 dtZ dλA0 dt̄A
dZ0 + (+) − (−) + (0) − (0)
dZ̄ ? (−) + (+) − (−) + (+)
dĀ + (0) + (0) − (−) + (+)
dc̄s + (+) + (+) ? (−) + (−)

Table 1: Comparing the learning and R&D sensitivity analysis

the revolution with respect to the energy policy we already noticed, we re-
mark that one important difference lies in the effect of the initial CCS cost.
A higher initial cost delays the revolution in a learning model while it ac-
celerates it in a R&D model. This is a fairly straightforward consequence of
the fact that a learning-by-doing process is dependent upon the profitability
conditions over the use of clean coal energy, a higher CCS cost reducing the
use of clean energy and thus delaying the revolution, while a higher initial
CCS cost widens the cost gap that may be achieved thanks to R&D, thus
creating an incentive to trigger the revolution sooner in time.

5 Combining learning and R&D to trigger the
technological revolution

To characterize the optimal policy, we put more structure upon the know-how
accumulation process. Assume that:

Assumption 1 1. a(xc, r) is a concave function of (xc, r), that is:

acc ≡ ∂2a/∂x2
c < 0 ; arr ≡ ∂2a/∂r2 < 0

accarr − (acr)
2 > 0 where acr ≡ ∂2a/∂xc∂r

2. xc and r are weak complements: acr ≥ 0.

3. a(xc, r) exhibits non increasing returns to scale, that is:

a(cx, r) ≥ ac(xc, r)xc + ar(xc, r)r
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The current value Lagrangian of the first phase problem OP defined in
section 2 (dropping the time index for the ease of reading) is:

L = u(xc + xd + y)− cx(xc + xd)− c̄sxc − cyy − Cr(r)− λZ(ζxd − αZ)

+λAa(xc, r) + νxcxc + νxdxd + νyy + νrr + νZ(Z̄ − Z) .

The optimal policy must be a solution of the following set of conditions:

u′(q) = cx + c̄s − λAac(xc, r)− νxc (5.1)
u′(q) = cx + ζλZ − νxd (5.2)
u′(q) = cy − νy (5.3)

λAar(xc, r) = cr(r)− νr (5.4)
λ̇Z = (ρ+ α)λZ − νZ (5.5)
λ̇A = ρλA . (5.6)

To these conditions must be added the usual complementary slackness con-
ditions and a transversality condition at t̄A that we discuss later.

The main difference with the preceding sections is that it is now possible
to begin the production of clean coal energy before the ceiling constraint
begins to bind. This is a consequence of the non linear link between knowl-
edge accumulation and the intensity of learning or R&D efforts triggering
the revolution together with the complementarity effects between learning
and R&D. Let us concentrate upon the high solar cost case: cy > cx + c̄s,
so that coal is the only exploited primary energy source. First, we prove the
following important result.

Proposition 5 Along an optimal energy and know-how accumulation policy,
the cost breakthrough happens either strictly after the ceiling has been attained
or either at the time when the ceiling begins to bind, that is tZ ≤ t̄A in all
optimal scenarios.

Proof: Assume to the contrary that t̄A < tZ . Over a time interval [t0, t̄A)
we may be in three possible situations: either the cost break is triggered
only by research, either it is triggered only through learning, or either it is
triggered by a combination of research and learning. In the first case, slowing
down slightly the research effort is beneficial, as noticed in section 3. In the
second and third cases, λA will be zero after the cost break and since the
production of clean coal energy is positive in these two cases, ζλZ = cs is
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incompatible with λZ growing exponentially during the time interval [t̄A, tZ).
Hence clean coal exploitation should be interrupted after the cost break,
meaning that delaying the revolution by reducing the use of clean coal energy
before the revolution is beneficial.

5.1 Know-how accumulation scenarios

An optimal policy of knowledge accumulation is a sequence of time phases
composed of the three following types of transitory tails:

(i) A Combined tail during which both research and learning are used to
accumulate know-how. Let T C be such a time phase, then xc(t) > 0
and r(t) > 0, t ∈ T C .

(ii) A Pure R&D tail during which there is no exploitation of clean coal
energy and the economy performs only research activity. Let T R be
such a time phase, then xc(t) = 0 and r(t) > 0, t ∈ T R.

(iii) A Pure learning tail during which there is no research activity and
know-how accumulates only because of learning. Let T L be such a
time phase, xc(t) > 0 and r(t) = 0, t ∈ T R.

Such transitory phases can happen indifferently before or during the ceiling
phase. The main complexity now is that there is no more a simple link
between the energy production path, and thus the timing of the pre-ceiling
and ceiling phases, and the structure of the combined learning and R&D
know-how accumulation path.

We thus have to describe the main features of the possible transitory tails
in the two cases of a pre-ceiling phase and a ceiling phase.

Combined tails

Assume first that T C ⊂ [0, tZ). During this time phase, (xc(t), xd(t), r(t))
are defined as functions of (λZ(t), λA(t)) by (5.1), (5.2) and (5.4) with νxd =
νxc = νr = 0. Let xc(λZ , λA), xd(λZ , λA), r(λZ , λA) be the corresponding
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implicit functions. Let δ ≡ accarr − (acr)
2. δ > 0 through the concavity as-

sumption over a(xc, r) and let ∆1 ≡ −u′′(q(t))λA(t) [λA(t)δ − accc′r] > 0. Dif-
ferentiating the relevant optimality conditions and dropping the arguments
of the functions for the ease of reading gets:

∂xd
∂λZ

= − ζ

∆1

[
u′′(λAarr − c′r) + λ2

Aδ − λAaccc′r
]
< 0 ; (5.7)

∂xd
∂λA

= − u
′′

∆1

[ac(λAarr − c′r)− λAaracr] < 0 ; (5.8)

∂xc
∂λZ

=
ζu′′

∆1

(λAarr − c′r) > 0 ; (5.9)

∂xc
∂λA

= − ∂xd
∂λA

> 0 ; (5.10)

∂r

∂λZ
= −ζu

′′

∆1

λAacr > 0 ; (5.11)

∂r

∂λA
= −u

′′λA
∆1

[acacr − aracc] > 0 . (5.12)

Since λZ(t) = λZ0e
(ρ+α)t and λA(t) = λA0e

ρt during the time phase [0, tZ),
we conclude that both λZ(t) and λA(t) are time increasing and thus:

dxd
dt

< 0 ;
dxc
dt

> 0 ;
dr

dt
> 0 .

Before the ceiling phase, the use of dirty coal energy should decline while the
use of clean coal energy should expand, together with an ever increasing level
of R&D efforts. Note however that λZ being increasing, q(t) has to decrease.
The increased use of clean energy does not compensate for the declining rate
of use of dirty energy, the aggregate use of energy being strictly decreasing
with time before the ceiling is attained.

Next, assume that T C ⊂ [tZ , t̄A). Now xd(t) = x̄d and (xc(t), r(t)) are
implicitly defined by (5.1) and (5.4) as functions of λA only. Let xc(λA),
r(λA) be these functions. Denote:

∆2 ≡ u′′(q)(λAarr − c′r)− λAaccc′r + λ2
Aδ > 0 .

Differentiating (5.1) and (5.4), we get:

dxc(λ)

dλA
=

1

∆2

[λAacrar − ac(λAarr − c′r)] > 0 ; (5.13)

dr(λA)

dλA
=

1

∆2

[λAacacr − (u′′(q) + λAacc)ar] > 0 . (5.14)
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This shows that xc(λA) and r(λA) are increasing functions of λA, and thus
of time, also during the ceiling phase. This implies in turn that a(λA) ≡
a(xc(λA), r(λA)) is also an increasing function of λA. Since λA increases
over time, a(λA) increases over time, the accumulation of know-how through
the combined effect of learning and R&D accelerates over time. Last, we
conclude that xc(t) being increasing through time, the energy implicit price
should permanently decrease during such a T C time phase.

Let us denote by σ ≡ ac/ar the marginal rate of substitution (MRS)
between learning and R&D. We are going to show that during a combined
tail, σ is declining over time. Consider first the case T C ⊂ [0, tZ). The MRS
is defined implicitly as a function of (λZ , λA) during Tc. Let σ(λZ , λA) be
this implicit function:

σ(λZ , λA) =
ac(xc(λZ , λA), r(λZ , λA))

ar(xc(λZ , λA), r(λZ , λA))
.

Making use of (5.9)-(5.12), we get the following expressions of the partial
derivatives of the function σ(λZ , λA) with respect to (λZ , λA):

∂σ(λZ , λA)

∂λZ
=

ζu′′

ar∆1

[λAδ + c′r(σarc − acc)] < 0 (5.15)

∂σ(λZ , λA)

∂λA
=

σc′ru
′′

∆1

[σarc − acc] < 0 . (5.16)

Hence we conclude from λ̇Z(t) > 0 and λ̇A(t) > 0, t ∈ [0, tZ), that:

σ̇(t) =
∂σ

∂λZ
λ̇Z(t) +

∂σ

∂λA
λ̇A(t) < 0 .

In the case T C ⊂ [tZ , t̄A), Appendix A.4 shows that σ̇ < 0. This property
of combined tails does not translate to the other types of phases, a point
we check below. The dynamics of σ(t) has important implications over the
dynamics of xc(t) and r(t) during a combined phase.

Proposition 6 During any time phase accumulating know-how through both
learning and R&D, either before the ceiling phase or either during the ceiling
phase, the learning effort increases at a higher rate than the R&D effort.

Proof: Since σ̇(t) < 0, t ∈ T C :

σ̇(t) < 0 ⇐⇒ ȧc
ac
<
ȧr
ar

.

36



This implies that in the (xc, r) plane, the optimal trajectory cuts lower an
lower isoclines. Under our assumptions concerning the a(xc, r) function, the
isoclines in the plane (xc, r) are increasing functions of xc, describing lower
and lower levels of σ when moving in the east direction. Thus, the combined
path cuts lower an lower rays r/xc, the path bending more and more in the
direction of experience with respect to R&D. In other words, while both r
and xc increase over time, ṙ/r < ẋc/xc during a combined learning and R&D
phase. This phenomenon applies indifferently during the pre-ceiling phase or
the ceiling phase.

The Figure 2 illustrates the corresponding dynamics in the (xc, r) plane.

Figure 2: Learning and R&D Dynamics in the (xc, r) Plane

The difference between the respective dynamics of xc and r may be ex-
plained by the fact that triggering the revolution through R&D relies upon
costly efforts that will be recovered only when the revolution occurs. To
the contrary, even if being more costly to use than dirty energy, clean coal
energy generation generates a positive surplus when in use. This is the case
before the ceiling constraint begins to be binding, the use of clean coal en-
ergy helping to alleviate the environmental burden upon the use of dirty
energy. This is also the case during the ceiling phase, clean coal energy use
allowing for an energy consumption increase above the constrained level x̄d.
The consequence is that the economy should rely more and more over time
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upon learning with respect to research activity to trigger the technological
revolution. The interesting aspect of this result is its degree of generality. It
does not involve any kind of specific experience capital in learning or partic-
ular assumptions upon the relative productiveness of learning and R&D in
boosting the acquisition of know-how.

Pure R&D tails

Let us now consider a time phase T R involving only R&D activity without
clean energy production and hence no learning on the CCS technology. Then
(5.4) defines r(t) as an implicit function of λA and:

dr(λA)

dλA
=

ar
c′r − λAarr

> 0 .

λA(t) being increasing over time, r(t) grows also over time. Since acr > 0,
this implies that ȧc(0, r) = acrṙ > 0 and hence that λAac(0, r) is an increasing
function of time. Assume first that T R ⊂ [0, tZ). Then over the time interval
T R:

νxc(t) = c̄s − [λA(t)ac(0, r(t)) + ζλZ(t)] .

It appears that νxc(t) is a strictly decreasing time function during a time
interval T R. This implies that a corner path where xc = 0 and r > 0 cannot
follow an interior path where both xc > 0 and r > 0. Furthermore we remark
that r(t) being increasing over time, ac(0, r) increases over time, since acr > 0,
while ar(0, r) decreases over time, since arr < 0. Hence σ = ac/ar increases
over time during the time interval T R. Last, note that the border condition:

ζλZ = c̄s − λAac(0, r(λA))

defines an implicit relation between λZ and λA such that:

dλA
dλZ

∣∣∣∣
xc=0

= − ζ(c′r − λAarr)
aracrλA + ac(c′r − λAarr)

< 0 .

Assume now that Tr ⊂ [tZ , t̄A). Since xc = 0, u′(x̄d) = p̄ then νxc =
c̄s − λA(t)ac(0, r(λA)) − p̄, also a decreasing time function. Note that, as in
the case Tr ⊂ [0, tZ), σ(t) increases over time. The border condition is now:

p̄ = c̄s − λAac(0, r(λA)) .
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This condition defines a unique level of λA, we denote by λ̄RA. λA(t) > λ̄RA is
incompatible with a policy performing only research activity without clean
coal energy production.

Pure learning tails

Next, consider the case of a time phase T L. Note that this requires c0
r > 0.

Assume first that T L ⊂ [0, tZ). Then (5.1), (5.2) define implicitly xc and xd
as functions of (λZ , λA). Let xc(λZ , λA) and xd(λZ , λA) be the corresponding
implicit functions. Denote by ∆3 ≡ λAu

′′(q)acc(xc, 0) > 0. Then it is easily
checked that:

∂xc
∂λZ

= −ζu
′′(q)

∆3

> 0 ;
∂xc
∂λA

= −acu
′′(q)

∆x

> 0 ;

∂xd
∂λZ

=
ζ(u′′(q) + λAacc)

∆3

< 0 ;
∂xd
∂λA

=
u′′(q)ac

∆x

< 0 .

Since λZ(t) and λA(t) are increasing time functions before tZ , this shows
that xd(t) declines over time while xc(t) increases over time. Hence ac(xc, 0)
decreases over time, since acc < 0 and ar(xc, 0) increases over time, since
acr > 0. We conclude that σ(t) = ac(t)/ar(t) decreases during a T L type
time interval. Furthermore νr(t) is given by:

νr(t) = c0
r − λA(t)ar(xc(λZ(t), λA(t)), 0) .

ar(xc, 0) being increasing over time, νr(t) decreases, implying that a time
phase where xc > 0 and r = 0 cannot follow a time phase where both xc > 0
and r > 0. Next consider the border condition:

λAar(xc(λZ , λA), 0) = c0
r .

This condition defines an implicit relationship between λZ and λA such that:

dλA
dλZ

∣∣∣∣
r=0

= − ζarc
acarc − aracc

< 0 .

Next, assume that T L ⊂ [tZ , t̄A). Then xd = x̄d and (5.1) defines an implicit
function xc(λA) such that:

dxc
dλA

= − ac
u′′ + λAacc

> 0 .

We thus conclude that λA being an increasing time function, xc(t) should also
grow over time. Hence λA(t)ar(xc(λA(t)), 0) increases over time, implying
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that νr(t) should decrease over time. Once again, we have verified that a
time phase during which xc(t) > 0 and r(t) = 0 cannot follow a time phase
where both xc > 0 and r > 0. The border condition:

λAar(xc(λA), 0) = c0
r ,

now defines a unique value of λA we denote by λ̄LA. If λA > λ̄LA a pure learning
policy is no more optimal.

Taking stock, we can now describe the optimal know-how acquisition
policies. Denote by PR (Pure R&D) a time phase of the T R type, where
the know-how index increases thanks to only research efforts, by PL (Pure
Learning) a time phase of the T L type and by C (Combined) a time phase
combining the use of research efforts and the clean coal energy technology.
We have shown that xc, xd and r are defined as continuous functions of either
both λZ and λA during the pre-ceiling phase, and that xc and r are defined
as continuous functions of λA during the ceiling phase if tZ < t̄A. Since λZ(t)
and λA(t) are continuous time functions over the time interval [0, t̄A), that
is to the exception of the revolution time t̄A, we conclude that xc, xd and r
must be continuous time functions. This implies in turn that νxc and νr are
also continuous time functions. A transition from a PR phase to a LR phase
requires an upward jump down of νxc from zero to some strictly positive level
since νxc will have to decrease strictly during the LR phase. This cannot be
optimal. The same argument applies to a transition from a LR phase to a
PR phase, such a transition requiring an upward jump of νr at the transition
time. It applies also to transitions from a C phase to either a PR phase
or a LR phase, the first transition requiring an upward jump of νr and the
second one an upward jump of νxc. Hence we conclude that a PR phase or
a PL phase can only precede a combined C phase. Of course, it remains
possible that the optimal path begins with an inactive phase, during which
the economy makes no efforts at all to trigger the technological revolution.

Let us first consider the case tZ < t̄A, that is the revolution occurs only
strictly after the beginning of the ceiling phase. Then the optimal know-how
active acquisition policy is one of the following scenarios:

(i) A PR phase followed until t̄A, the revolution time;

(ii) A PL phase followed until t̄A;

(iii) A PR phase followed by a C phase until t̄A;
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(iv) A PL phase followed by a C phase until t̄A;

(v) A C phase followed until t̄A.

The relevance of the preceding scenarios depends upon the models fun-
damentals, in particular the knowledge generation function. Let us briefly
sketch the main features of these different scenarios.

Scenario 1 : Pure R&D policies

In this scenario, the research efforts are constantly increasing until the
cost breakthrough. The energy implicit price is given by cx + ζλZ0e

(ρ+α)t

before tZ , growing exponentially while the use of dirty energy declines. Then
the price stabilizes at p̄ until the cost break occurs and clean energy is intro-
duced inside the energy mix in combination with dirty energy.

Scenario 2 : Pure learning policies

Such a scenario requires a sufficiently high level of c0
r > 0 to prevent

R&D to be profitable. The use of clean energy starts at time 0 and increases
permanently until the technological revolution occurs. Before the ceiling
phase, the aggregate energy production declines, the expansion in the use of
clean energy does not compensate for the sharper decline of the use of dirty
energy. After tZ , the continuous expansion of the use of clean energy makes
decrease the energy price until the revolution occurs and the price stabilizes
at the level cx + cs.

Scenario 3 : Pure research then combined policies

These policies may be of two kinds, depending upon the ceiling beginning
to bind during the pure R&D phase or during the combined phase. In the
first case, the energy price increases up to p̄, a level attained at the beginning
of the ceiling phase. Then begins a first phase at the ceiling [tZ , t̄r) during
which only dirty coal energy is exploited. At t̄r, the economy begins to
produce clean coal energy and the energy price decreases until t̄A, when the
cost break occurs and the energy price stabilizes forever at the level cx + cs.
The research efforts increase over time until the technological revolution time.
Thus the MRS between learning intensity and research first increases until
t̄r before decreasing during the time phase [t̄r, t̄A).
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In the second case, the clean coal energy option is introduced before
the ceiling constraint begins to be binding, thus during a time phase where
the energy price grows at the rate (ρ + α). During a first phase [0, t̄r),
only dirty energy is produced at a declining rate and the economy performs
increasing R&D efforts. At t̄r, clean coal energy is introduced from a null
level. Then clean coal energy production expands while the use of dirty
energy decreases, the aggregate trend being a decreasing energy use until the
ceiling is attained. During this second time phase [t̄r, tZ), the research effort
continues to increase while the MRS between learning and R&D decreases,
implying a higher rate of growth of clean coal production than the research
efforts growth rate. Then begins a first phase at the ceiling [tZ , t̄A) until the
cost revolution. Know-how accumulation accelerates also during this phase,
learning expansion remaining higher than research efforts increases.

Scenario 4 : Pure learning then combined policies

As in the preceding scenario, the ceiling constraint may bind before or
after the beginning of the combined phase of knowledge accumulation. In
the first case, the learning process relies on a continuous expansion of the
use of clean coal energy until tZ . The energy price increases exponentially
during the time phase [0, tZ), implying a declining energy consumption, the
use of dirty energy being decreasing at a higher rate than the growth rate of
use of clean energy. The MRS between learning and R&D declines during
this time interval. Then begins a second phase [tZ , t̄c), during which the
economy does not perform R&D efforts, clean coal energy use continues to
increase, the use of dirty energy is constrained at the level x̄d and the energy
price decreases. After this phase, the economy enter a combined regime of
know-how accumulation based upon the use of clean coal energy and research
activities. Such a scenario supposes that cr(0) = c0

r be strictly positive and
sufficiently high to prevent research activities before the ceiling has been
attained. During the combined phase [t̄c, t̄A) the energy price continues to
decrease, the know-how accumulation accelerates, the MRS between learning
and R&D decreases, the rate of growth of xc being larger than the rate of
growth of r(t). At the end of this phase, the cost revolution occurs and the
energy use stabilizes to its optimal post-revolution level.

In the second case, the optimal path is composed of a first phase be-
low the ceiling [0, t̄c) without research activity but with a combined use of
clean energy at an increasing rate and dirty energy at a declining rate. The
aggregate energy use decreases while the energy price increases. Then be-
gins a second phase below the ceiling [t̄c, tZ) where the economy accumulates
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know-how both from learning and R&D activity. The energy price continues
to increase and the MRS between learning and R&D being decreasing, r(t)
increases at a lower rate than xc(t). This phase is followed by a phase at
the ceiling until the cost breakdown occurs, [tZ , t̄A). The energy price now
decreases during this phase, clean coal energy use and R&D activity continue
to grow until t̄A and the MRS being also decreasing, clean coal use grows at
a higher rate than the research effort level.

Scenario 5 : Combined Policies

In this scenario, the economy accumulates know-how by using clean coal
energy and an active R&D policy right from the beginning of time. During
a first phase [0, tZ), the energy price increases, the energy supply decreases
but the use of dirty energy declines while the use of clean energy increases,
together with the intensity of R&D efforts. Then the ceiling is reached and
the economy enters a second phase of combined learning and R&D know-how
accumulation, [tZ , t̄A) until the technological revolution occurs. The energy
price now decreases. Clean coal energy use continues to grow together with
intensity of research activity. The MRS between learning and R&D being
decreasing, the growth rate of xc(t) is higher than the growth rate of r(t).

Figure 3 illustrates the shape of the energy price path if tZ < t̄A for
all scenarios expected a pure R&D policy followed until the cost break. In
this last case, the energy price grows up to p̄, attained at tZ . Then it stays
constant at this level until the cost break occurs. At t̄A, the energy price
jumps down from the level p̄ to the level cx + cs, last it stays permanently
at this level, clean coal energy generation beginning after t̄A. The proof that
the energy price should jump down at t̄A is presented in the next subsection.

Figure 3 shows that the energy implicit price path combines in a straight-
forward way the features of the energy use dynamics exposed in the preceding
sections. Before the ceiling constraint begins to bind, the energy price rises
exponentially at the rate (ρ + α), and thus the aggregate supply of energy
decreases. This means that even if clean coal energy is used during the pre-
ceiling phase, its expansion over time does not compensate for the reduction
of the use of dirty coal energy. During the first phase at the ceiling preceding
the revolution, the use of dirty energy is constrained at the constant level
x̄d while the use of clean coal energy continues to expand. The result is a
decreasing energy price until the revolution occurs. At the revolution time,
as in the pure R&D case, the price jumps down while the use of clean energy
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Figure 3: Price Dynamics with Combined Learning and R&D Know-
how Accumulation

jumps up. But because of the learning effect before the revolution, the price
jump is no more equal to the cost gap c̄s − cs, as was the case in the pure
R&D model. The jump is reduced thanks to learning.

As in the pure learning model, the implementation of the optimal policy
requires to combine a carbon tax, its rate being given by ζλZ(t), together with
a subsidy to clean energy consumption, its rate being given by λA(t)ac(t).
During the pre-ceiling phase, the tax rate must increase exponentially. The
subsidy level must decrease over time if clean energy generation is put in
operation. During the ceiling phase preceding the revolution, [tZ , t̄A), the
carbon tax must decrease while the subsidy must increase to sustain an in-
creased use of clean energy during this time phase.

In the case of a technological revolution triggered just when the economy
reaches the ceiling, that is tZ = t̄A, the already mentioned possible sequences
of phase may be optimal. The only difference of course is that the sequence
happens during the pre-ceiling phase.
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To make progress in the determination of the optimal scenario, we need
to describe the terminal conditions at t̄A. This discussion will alow to set
conditions for the revolution to be triggered just when attaining the ceiling
and for the reverse case tZ < t̄A.

5.2 Terminal condition at the revolution time t̄A

Thanks to Proposition 5, we know that two cases have to be considered, the
case of a revolution happening during a ceiling phase, tZ = t̄A, and the case
of a revolution happening just at the time at which the ceiling is attained,
tZ = t̄A.

Let us compute the transversality condition at t̄A, the revolution time.
The continuation value after the break, V̄ , keeps the same expression as be-
fore, being independent from the device triggering the breakthrough. Denote
by h− ≡ limt↑t̄A h(t) and by h+ ≡ limt↓t̄A h(t) for any time function h(t). De-
note also by µZ the multiplier associated to the constraint t̄A ≥ tZ . Then
the condition reads:

u(q−)− cxq− − c̄sx−c − Cr(r−) + λ−Aa(x−c , r
−) + µZ = u(q+)− cxq+ − csx+

c .

Simplifying on both sides the cxx̄d term while taking into account (5.1) and
u′(q+) = cx + cs, we obtain:

Γ(x−c )− Cr(r−) + λ−Aa(x−c , r
−)− λ−Aac(x

−
c , r

−)x−c + µZ = Γ(x+
c ) .

Since x+
c is independent from the devices used to trigger the revolution, the

r.h.s is independent from what happens before t̄A. Denote it by Γ̄ ≡ Γ(x+
c ).

Then adding and subtracting cr(r
−)r−, remembering the expression of Γr

and taking (5.4) into account:

Γ̄− Γ(x−c )− µZ = cr(r
−)r− − Cr(r−)

+λA
[
a(x−c , r

−)− ac(x−c , r−)x−c
]
− cr(r−)r−

= Γr(r
−) + λ−A

[
a(x−c , r

−)− ac(x−c , r−)x−c − ar(x−c , r−)r−
]
.

Assume tZ < t̄A, then µZ = 0. The r.h.s. is positive under our assumptions,
showing that x+

c > x−c and thus that the energy price should jump down
at the revolution time. Figure 3 illustrates this feature of the energy price
path. Furthermore, the transversality condition when tZ < t̄A appears as an
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equation linking together (x−c , r
−, λ−A) of the form:

Φ(x−c , r
−, λ−A) ≡ u(x̄d + x−c )− cx(x̄d + x−c )− c̄xx−c − Cr(r−) + λ−Aa(x−c , r

−)

= ρV̄ .

Differentiating we obtain:

dΦ =
[
u′(q−)− cx − c̄s − λAac

]
dxc + [λAar − cr] dr − dλ−Aa(x−c , r

−) .

Taking (5.1) and (5.4) into account, dΦ = dλ−Aa(x−c , r
−) > 0 if x−c > 0 and

r− > 0. The same applies if either x−c > 0, r− = 0 or either x−c = 0, r− > 0.
Hence Φ = ρV̄ defines a unique value of λ̄A at t̄A, a value we denote by
λ̄A. Furthermore, since dΦ/dλA > 0, λ̄A is an increasing function of V̄ , the
continuation value. Let λ̄A(V̄ ) be the corresponding implicit function.

Next, consider the case tZ = t̄A. As noticed before, the technological
revolution may be triggered through any of the possible sequence of phases
already described. It results that the revolution may occur from five possible
paths before tZ . To these five possible paths correspond five possible termi-
nal levels of λA, a vector (λRA, λ

L
A, λ

C
A, λ

RC
A , λLCA ). The conditions allowing to

determine this vector are presented in Appendix A.5.

Under the constraint tZ = t̄A, only one of these scenarios is an opti-
mum. To identify the optimal path, remark that the Hamilton-Bellman-
Jacobi equation defines the value function from time 0 as W = ρH∗(0),
where H∗(0) is the optimized hamiltonian function at time 0. Differentiating
and remembering that ∂H∗/∂xd = ∂H∗/∂xc = ∂H∗/∂r = 0 we obtain:

dW

ρ
= −dλZ0Ż(0) + dλA0Ȧ(0) .

This shows that the value function is a decreasing function of λZ and an
increasing function of λA. Since λZ(t) and λA(t) are defined as exponen-
tially increasing time functions at two different rates (ρ + α) and ρ, the
{λZ(t), λA(t) trajectories never cross themselves during a pre-ceiling phase.
From the fact that λZ(tZ) = (cs − cx)/ζ in all scenarios, we conclude that
the optimal scenario is the scenario giving the higher value of λA at tZ . Let
λA ≡ max((λRA, λ

L
A, λ

C
A, λ

RC
A , λLCA ).

Since λ̄A(V̄ ) is an increasing function of V̄ , it appears that the constraint
tZ ≤ t̄A does not bind if λ̄A ≤ λA while it is binding in the reverse case
λA < λ̄A.
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We are now in position of examining the relevance of the previously
sketched scenarios. We proceed by considering the dual space (λZ0, λA0).
In the next section we describe the optimal policy in the case λ̄A < λA,
that is we consider the optimal scenario in a situation where tZ < t̄A, the
technological revolution occurs only after the beginning of the ceiling phase.
Then we study the case of a technological revolution occurring just when the
ceiling is attained.

5.3 Optimal policies triggering the revolution during
the ceiling phase

To the terminal value λ̄A corresponds a unique value of λZ , defined implicitly
by: ζλZ = c̄s−ac(xc(λ̄A), r(λ̄A)). Let λZ be this value. Remark that because
of the price jump at t̄A, λZ will also jump down from λZ to the level (cs−cx)/ζ
after the break. In a situation where the cost breakthrough occurs only after
the ceiling has been attained, we have shown previously that λ̄A < λA.

To identify the domain of validity of the different scenarios in the (λZ , λA)
plane, we now take into account the definitions of the xc = 0 and r = 0
borders. The border xc = 0 defines an implicit relation between λZ and λA
we denote by λ̂xA(λZ). Furthermore:

dλ̂xA
dλZ

= − ζ(c′r − λAarr)
aracrλA + ac(c′r − λAarr)

< 0

On the other hand, the border r = 0 defines another implicit relation between
λZ and λA, a relation we denote by λ̂rA(λZ) and:

dλ̂rA
dλZ

= − ζacr
aracc − acacr

< 0

The curves λ̂xA(λZ) and λ̂rA(λZ) cross themselves at (λ̂0
Z , λ̂

0
A) solution of:

ζλZ = c̄s − λAac(0, 0)

λAar(0, 0) = c0
r

Note that is cx + c̄s < p̄, λ̂0
Z < c̄s/ζ implies that λ̂0

Z < (p̄ − cx)/ζ ≡ λ̄Z .
Differentiating around the point (λ̂0

Z , λ̂
0
A), it is easily verified that:∣∣∣∣∣dλ̂xAdλZ

∣∣∣∣∣
(λ̂0

Z ,λ̂
0
A)

>

∣∣∣∣∣dλ̂rAdλZ

∣∣∣∣∣
(λ̂0

Z ,λ̂
0
A)

.
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Three possibilities have to be considered:

(i) Either λ̂0
Z < (cs − cx)/ζ and the point (λ̂0

Z , λ̂
0
A) is located to the left of

the vertical λZ = (cs − cx)/ζ.

(ii) Either (cs − cx)/ζ < λZ < (p̄− cx)/ζ and the point (λ̂0
Z , λ

0
A) is located

in between the vertical borders λZ = (cs−cx)/ζ and the vertical border
(p̄− cx)/ζ.

(iii) Either λ̂0
Z > (p̄− cx)/ζ and the point (λ̂0

Z , λ̂
0
A) is located to the right of

the border (p̄− cx)/ζ.

Note that the implicit energy price is at most equal to p̄ in any optimal
scenario. This means that λZ(t) < (p̄ − cx)/ζ ≡ λ̄Z . The vertical λZ = λ̄Z
defines the upper border of possible value of λZ in all optimal scenario. The
Figure 4 illustrates the three possible cases.

Figure 4: Activity Constraints in the (λZ , λA) Plane

Optimal combined policies
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Let us first consider the combined policies. The condition x̄d = xd(λZ , λA)
defines an implicit relation between λZ and λA we denote by λ̄cA(λZ). Taking
(5.7), (5.8) into account, it is immediately verified that: dλ̄cA(λZ)/dλZ < 0.
In the case tZ < t̄A, λZ ∈ [λZ , λ̄Z ] defines the relevant domain of possible
values of λZ . On one hand, λ̄cA(λZ) = λ̄A in a combined scenario and on the
other hand we denote by λ̄cA ≡ λ̄cA(λ̄Z).

To a combined policy corresponds a {λZ(t), λA(t)} trajectory initiating
below the curve λ̄cA(λZ) at some point (λZ0, λA0). Before tZ , the trajectory
is defined by (λZ0e

(ρ+α)t, λA0e
ρt). hence {λZ(t), λA(t)} moves in the north

east direction in the dual plane. At tZ , the trajectory hits the border λ̄cA(λZ).
Then it follows this curve until t̄A is reached, that is at the point λZ(t̄A) = λZ ,
λA(t̄A) = λ̄A. The following Figure 5 illustrates this construction.

Figure 5: Combined Policies

The combined scenario is optimal from any point (λZ0, λA0) located above
the border max(λ̂xA(λZ), λ̂rA(λZ)), that is the region where both xc > 0 and
r > 0.

Initial R&D optimal policies

Turn to the scenarios involving at least initially pure R&D policies. We
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call these policies Initial R&D Policies. Within a pure R&D tail, the ceiling
constraint is defined by: ζλZ = p̄ − cx, that is the vertical line λZ = λ̄Z .
λ̄cA(λZ), the curve defining the ceiling constraint in a combined policy cuts
the vertical λZ = λ̄Z at a point where xc = 0. Thus the curves λ̄cA(λZ) and
λ̂xA(λZ) intersect themselves at λZ = λ̄Z , that is along the vertical λZ = λ̄Z
at the point (λ̄cA, λ̄Z). Furthermore, computing the derivatives dλ̄cA/dλZ and
dλ̂xA/dλZ around the point (λ̄Z , λ̄

c
A) we observe that the ceiling border for a

combined path is located above the xc = 0 locus.

Next consider the situation (i) depicted in Figure 4. The curve λ̄rA(λZ)
is located above the curve λ̄cA(λZ) inside the whole domain λZ < λZ < λ̄Z .
Hence the curve λ̄rA(λZ) intersects the vertical λZ = λ̄Z above (λ̄Z , λ̄

c
A). It

results that it is impossible to follow an initial R&D policy in the relevant
domain. In the situation (ii), an initial R&D policy is the only optimal
scenario from any point (λZ0, λA0) located above the curve λ̄xA and to the
left of the vertical λZ = λ̂0

Z . In the situation (iii), the border xc = 0, that
is the curve λ̄xA(λZ), is located above the r = 0 border, that is the curve
λ̄rA(λZ) in the relevant domain [λZ , λ̄Z ]. Hence an initial R&D policy is the
only optimal scenario in this situation.

Let us begin by describing the optimal scenario in the situation (iii).
Consider the {λZ , λA} trajectory where λZ(t) = λZ0e

(ρ+α)t, λA(t) = λA0e
ρt

going through the point (λ̄Z , λ̄
c
A). Denote by (Sr) this separating curve.

To complete the discussion we need to take into account the terminal
condition. If λ̄A < λ̄cA, the optimal scenario is a type 1 scenario. The optimal
{λZ(t), λA(t)} trajectory is located below the separatrix (Sr). During the
pre-ceiling phase, the trajectory moves in the north east direction until the
ceiling is attained. At tZ , the trajectory hits the vertical λZ = λ̄Z . Then it
moves upward along this vertical until λ̄A is reached at t̄A.

If λ̄A > λ̄cA, the optimal policy is a type 3 scenario. If (λZ0, λA0) is located
below the separating curve (Sr), then the economy hits the ceiling constraint
while performing only R&D activity, that is tZ < t̄r. Then the trajectory
follows the vertical λ̄Z up to λ̄cA. Next the optimal trajectory follows the curve
corresponding to the ceiling constraint in a combined path, performing both
research activity and clean coal energy production. If (λZ0, λA0) is located
above the separating curve (Sr), then the economy moves from a pure R&D
regime to a combined regime before attaining the ceiling, that is t̄r < tZ .
After crossing the xc = 0 border, the optimal trajectory enters the combined

50



regime zone until the ceiling border is reached. This border is then followed
up to (tZ , λ̄A). The Figure 6 illustrates this construction.

Figure 6: Initial R&D Policies

In the situation (ii) the initial research optimal policies correspond to a
type 3 scenario. The economy starts performing only R&D before introducing
the exploitation of clean coal before the ceiling is attained. Then the economy
performs both R&D and clean coal energy production until the technological
revolution. In the situation (i), as noticed before, an initial R&D policy is
not optimal.

Initial learning policies

The scenarios involving pure learning tails follow the same principle of
construction. We call these policies Initial Learning Policies. The ceiling
constraint along a pure learning tail defines an implicit relation between λZ
and λA, we denote by λ̄LA(λZ) and such that:

dλ̄LA
dλZ

= −ζ(u′′ + λAacc)

u′′ac
< 0

It is easily checked that the curve λ̄LA(λZ) and the curve λ̄cA(λZ), correspond-
ing respectively to the ceiling constraint in a pure learning regime and to
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the ceiling constraint in a combined R&D and learning regime, cross them-
selves along the locus r = 0, that is the curve λ̂rA(λZ). Let (λ̄LZ , λ̄

L
A) be the

intersection point of these three curves. It may also be verified that:∣∣∣∣∣dλ̂rAdλZ

∣∣∣∣∣
(λ̄L

Z ,λ̄
L
A)

<

∣∣∣∣dλ̄cAdλZ

∣∣∣∣
(λ̄L

Z ,λ̄
L
A)

<

∣∣∣∣dλ̄LAdλZ

∣∣∣∣
(λ̄L

Z ,λ̄
L
A)

In the situation (i), an initial learning policy is the only optimal policy.
In the situation (ii), it is the optimal policy for λZ0 > λ̂0

Z and λA0 > λ̂rA(λZ0).
In the situation (iii), it cannot be an optimal policy.

Let us begin by the situation (i). We have to consider the implications
of the terminal condition. If λ̄A < λ̄LA, then the optimal policy is a type
2 scenario. In the reverse case, it is a type 4 scenario. One can define a
separating curve (Sc) corresponding to the {λZ , λA} trajectory going through
(λ̄LZ , λ̄

L
A), the intersection point between the three curves. Initiated below

the separating curve (Sc), the optimal path hits the ceiling border for a pure
learning tail λ̄LA whence the ceiling is attained. Then it follows this curve
until the point (λ̄LZ , λ̄

L
A) is attained, a point at which a combined phase at

the ceiling begins. This combined phase identifies in the (λZ , λA) plane to
a motion of the {λZ(t), λA(t)} trajectory along the curve λ̄cA(λZ) until the
cost breakthrough. Hence when starting from below the separatrix (Sc), the
economy begins to perform research activity only strictly after the ceiling
has been attained, that is tZ < t̄c in this scenario.

Initiated above (Sc), the optimal path crosses the r = 0 border, that is
the curve λ̂rA(λZ), before the ceiling constraint begins to be binding. Then
it enters a region of combined learning and R&D accumulation of know-
how policies until it hits the ceiling curve for such combined policies. Hence
t̄c < tZ in this scenario. Last the optimal {λZ(t), λA(t)} trajectory follows
the curve λ̄cA(λZ) until (λZ , λ̄A) is attained at t̄A. The Figure 7 illustrates
the construction.

In the situation (ii) only the type 4 scenario may be valid in a case where
the combined process of know-how accumulation through both learning and
R&D begins before the ceiling constraint is binding, that is t̄c < tZ . Last,
as noticed before, an initial learning policy is never optimal in the situation
(iii).
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Figure 7: Initial Learning Policies

5.4 Optimal policies triggering the revolution when the
ceiling is attained

In the situation (i), a pure research policy is not optimal. The optimal policy
is the scenario of the possible type 2-5 giving the highest level of λA when
the vertical λz = (cs − cx)/ζ is attained. In the situations (ii) and (iii), a
pure learning policy is excluded, the optimal scenario among the types 1,
3,4, 5 is the one giving the highest level of λA at tZ . Note that these active
policies may be preceded by a time phase without any effort to trigger the
technological revolution. The same applies to scenarios where tZ < t̄A.

5.5 Identification of the optimal policies

The previous description shows how to build the optimal policies in the dual
space from some given (λZ0, λA0). The initial level of the costate variables
are themselves endogenously determined by the models fundamentals and the
initial conditions. We thus modify slightly the original approach by assuming
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that the initial know-how is some A0 ≥ 0 and we proceed to the identification
of the optimal policies in the (Z0, A0) plane. Four main variables have to be
determined, the initial levels of the costate variables, λZ0 and λA0, together
with the ceiling attainment time tZ and the revolution time t̄A. Appendix
A.6 shows that in the case tZ < t̄A, these variables are uniquely determined
by a system of four conditions: the ceiling attainment condition Z(tZ) = Z̄,
the know-how target attainment condition A(t̄A) = Ā − A0, the continuity
condition at tZ , ζλZ(tZ) = c̄s − ac(tZ)λA(tZ) and the terminal condition
λA(t̄A) = λ̄A(V̄ ).

It results that for some initial pair (Z0, A0) it is possible to determine
an optimal policy starting from (λZ0, λA0 in the dual space. Next we build
the equivalent of the border conditions in the primal space (Z0, A0). The
xc = 0 border is equivalent to xc(λZ(Z0, A0), λA(Z0, A0)) = 0. Denote this
condition as xc(A0, Z0) = 0. It is easily checked that:

∂λZ0

∂Z0
> 0 ;

∂λZ0

∂A0
< 0

∂λA0

∂Z0
> 0 ;

∂λA0

∂A0
> 0

It is next possible to show that the condition xc(Z
0, A0) = 0 defines an

implicit decreasing relation between Z0 and A0, a relation we denote by
AL(Z). Above this curve, the optimal scenario is a combined policy while
below it, the learning process is delayed in time.

The constraint tZ ≤ t̄A defines another frontier in the (A,Z) plane.
This frontier intersects the point (Ā, Z̄) and separates initial (A0, Z0) pairs
whose corresponding optimal scenarios trigger the technological revolution
just when the ceiling is attained or strictly after the ceiling phase. Let Z0(A)
be the corresponding curve, describing an increasing relation between A and
Z.

The border r = 0 defines another decreasing relation between A and
Z implicitly defined as: λA(A,Z)ar(xc(A,Z)) = c0

r. Denote by AR(Z) the
corresponding curve. Initial pairs (A0, Z0) located below this curve result in
initial learning policies without R&D. The curves AL(Z) and AR(Z) cross
themselves at (Â0, Ẑ0). The construction is first illustrated at the Figure 8
for scenarios where tZ < t̄A.

The Figure illustrate two possible scenarios. The trajectory pictured at
the left of the graph, the trajectory (I) is an initial R&D policy. Starting
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Figure 8: Optimal Policies in the (A,Z) Plane

from a given (A0, Z0) the trajectory hits the Z̄ ceiling constraint at a level
A < AL(Z̄). Hence the economy encounters the ceiling constraint while
performing only R&D efforts. Then the system moves along the horizontal
Z̄. The xc = 0 border is attained and then begins a phase at the ceiling
combining both learning and R&D to trigger the revolution. The process
ends when the point Ā, Z̄) is attained.

The second trajectory, the trajectory (II), starts with an initial phase
without research or learning efforts. Thus it moves as a vertical, A being
constant and Z being increasing. Then it enters a phase during which the
economy performs R&D activity without using clean coal energy and thus
without learning. The third phase is a combined phase below the ceiling.
Then the ceiling Z̄ is attained and the economy continues to accumulate
know-how in a combined way until the technological revolution occurs.

55



6 Conclusion

Since Goulder, Matthai (2000), it is frequently advanced in the economic
literature that carbon pricing policies should not be too stringent in order
for R&D to have sufficient time to select and develop better abatement tech-
nological options. The present analysis invites to reconsider seriously such
statements. Instead of an incremental process of technical improvement, we
have modeled technical change as a drastic process able to trigger a techno-
logical revolution in the form of an abrupt cost break in pollution abatement,
provided that a sufficiently high level of know-how has been previously ac-
cumulated. This framework allows for a much clearer view of the effects of
an environmental policy upon the trend of efforts to trigger a technologi-
cal improvement in abatement technologies. The Goulder-Matthai analysis
proceeded by contrasting situations where technical progress resulted from
learning-by-doing in pollution abatement techniques from situations where
technical advances could be obtained only through dedicated R&D efforts.
We have first followed this approach by studying the polar cases of a pure
learning induced technological revolution and a pure R&D induced break-
through.

When the revolution is triggered by learning-by-doing, the optimal pol-
icy implementation requires to combine a price upon carbon emissions and
a subsidy to clean energy generation. This subsidy must grow over time
during the learning period preceding the technological revolution, inducing
a permanent rise of the use of clean energy. The optimal carbon tax should
increase before the beginning of the learning process and decrease afterwards.
We show also that a stricter environmental standard, here modeled in terms
of a critical atmospheric carbon concentration not to be crossed over, has
the effect of increasing the use of abatement technologies before the techni-
cal breakthrough, resulting in an earlier revolution. However, this does not
mean that the optimal carbon tax corresponding to a stricter atmospheric
concentration mandate needs to be increased. A stricter mandate has an
ambiguous effect over the carbon tax level before the beginning of the clean
energy generation phase and reduces this level during the learning phase.

In a R&D induced technological revolution framework, the optimal policy
implementation no more requires specific subsidies, an optimal carbon price
being a sufficient tool to induce the optimal level of R&D efforts. Under the
reasonable assumption of increasing and convex costs of research, discount-
ing favors delaying the R&D efforts, resulting in an increasing time pattern
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for such efforts until the technological breakthrough occurs. In all cases, it
is not optimal to trigger the revolution strictly before the atmospheric con-
centration constraint begins to be binding. The optimal carbon tax should
rise until the carbon concentration ceiling has been attained and then should
be maintained at a constant level before jumping down at the technological
revolution time. As for the learning induced technical revolution, a stricter
environmental standard spurs more R&D efforts from the carbon abatement
industry and reduces the time delay before the cost breakthrough. This is
reminiscent of the Porter hypothesis.

However the initial cost level of the abatement technology has ambigu-
ous effects upon the intensity of R&D efforts. This was not the case in
the learning induced technical break. A higher initial pollution abatement
cost reduces the use of clean energy before the revolution, slowing down the
learning process and delaying the breakthrough. In a R&D induced technical
break context, a higher initial pollution abatement cost widens the cost gap
that can be achieved thanks to R&D, an incentive to increase R&D efforts.
On the other hand, it also increases the cost of using clean energy before the
break, an incentive to reduce the research efforts, in order to diminish the
total costs of the energy policy.

A main drawback of the Goulder-Matthai analysis is that the pure R&D
and the pure learning-by-doing technical change models are not really com-
parable. These extreme cases describe situations where the economy is con-
strained to rely upon only one of these devices to achieve a technological
improvement of the pollution abatement technologies. A correct account of
the effects of an environmental policy upon induced technical progress in
abatement technologies requires a framework where both R&D and learning
can contribute to technology advances. We thus turn to the study of such
a combined process. We show that the R&D efforts should permanently in-
crease before the technical revolution. This is a straightforward consequence
of discounting and our increasing marginal cost of research assumption. The
use of clean energy should also increase over time, meaning an accelerating
learning process.

Even under the assumption of constant average and marginal costs of
producing clean energy, it may now be the case that clean coal production
starts before the atmospheric carbon concentration constraint begins to bind.
But this has no qualitative consequences over the optimal time profile of
the carbon price. The carbon price must increase before the atmospheric
ceiling constraint is attained and decrease afterwards until the technological
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revolution occurs. As in the pure learning case, the carbon price tool has to
be completed by a subsidy to the consumption of clean energy. The subsidy
level rises all along the pre-revolution phase of clean energy production.

Concerning the priority that may be given to research with respect to
learning in generating technical advances, we show that the growth rate of
use of clean energy should be higher than the growth rate of research efforts.
In a drastic technical progress framework, research activity bears only costs
before the revolution, the prize in terms of cost cut being ripped only at
the end of the research process. This is not the case for learning, since
the use of the abatement technology, even at the high pre-revolution cost
level, allows to generate some positive surplus. The consequence is that
the economy gives more an more weight to learning with respect to R&D
in achieving the technological breakthrough, independently of the respective
marginal contributions of learning and research to the accumulation of know-
how.

Technical progress paths combining research and learning are not the only
optimal ones. We show also that an optimal policy may involve an initial
period of only R&D activity before launching the use of the pollution abate-
ment technology or an initial period based only upon learning, research being
too costly to be justified until the time before the revolution be sufficiently
short.

This work may be extended in several directions. The first one is to
take explicitly into account the scarcity of fossil fuels. We assume an infinite
supply of such resources, an assumption frequently made in the relevant liter-
ature. However fuel scarcity should result in Hotelling effects, affecting both
the timing of the environmental policy and the timing of the technological
investment policy before the breakthrough. The drastic technical progress
framework is useful to obtain clear cut results concerning the relationships
between an environmental policy and a technical development policy. It ap-
pears interesting to compare its conclusions with the results derived from
incremental technical progress models. This should allow to shed some light
on the various puzzles which have been identified in this literature. We fo-
cus primarily upon technical progress in pollution abatement technologies,
but the analysis could be extended to technological competition between
abatement techniques and clean energy generation process, like solar energy
production for example.
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APPENDIX

A.1 Appendix 1: Proof that pure dirty and
combined dirty and clean energy scenarios
may be welfare equivalent

In the scenario under consideration, p(tZ) = p̄. By a standard markovian
argument nothing is changed in the scenarios comparison by assuming that
Z(0) = Z̄ and tZ = 0. Then the present value at time 0 of a policy using
only dirty coal energy generation over [0,∞) is given by:

Vd =
1

ρ
[u(x̄d)− cxx̄d]

The present value at 0 of a policy using both dirty and clean coal energy
from some time tc ≥ 0 is given by:

Vc = [u(x̄d)− cxx̄d]
(

1− e−ρtc
ρ

)
+

∫ t̄A

tc

[u(x̄d + xc(t))− cx(x̄d + xc(t))− c̄sxc(t)] e−ρtdt+ V̄ e−ρt̄A .

Let:∫ t̄A

tc

[u(x̄d + xc(t))− cx(x̄d + xc(t))− c̄sxc(t)] e−ρtdt ≡
∫ t̄A

tc

Φ(t)e−ρtdt ≡ I .

Integrating by parts:

I = − Φ(t)e−ρt

ρ

∣∣∣∣t̄A
tc

+
1

ρ

∫ t̄A

tc

Φ̇(t)e−ρtdt .

Taking (3.1) into account, it is easily checked that:

Φ̇(t) = [u′(q(t))− cx − c̄s] ẋc(t) = −λA0ẋc(t)e
ρt .

Remembering that xc(tc) = 0 while xc(t̄A) = xc and making use of the
previously computed expression of Φ̇(t):

I = [u(x̄d)− cxx̄d]
e−ρtc

ρ
− [u(x̄d + xc)− cx(x̄d + xc)− c̄sxc]

e−ρt̄A

ρ
− λA0xc

ρ
.
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Remembering the expression of V̄ , Vc simplifies to:

Vc =
1

ρ
[u(x̄d)− cxx̄d] +

1

ρ

[
(c̄s − cs)e−ρt̄A − λA0

]
xc .

Since λA0e
ρt̄A = c̄s−cs through the transversality condition at t̄A, we conclude

that:

Vc =
1

ρ
[u(x̄d)− cxx̄d] = Vd

The society is indifferent between sticking to the sole use of dirty coal energy
once the ceiling constraint begins to be binding or follow some combined
policy of dirty and clean coal energy generation started at any moment after
the beginning of the ceiling phase.

A.2 Appendix 2: Comparative dynamics in
the pure learning case

Denote by:

IZZ ≡ −
∫ tZ

0

e(ρ+2α)t

u′′(q(t))
dt > 0

IA ≡ −
∫ t̄A

tZ

eρt

u′′(q(t))
dt > 0

J cA ≡ −
∫ t̄A

tZ

dt

u′′(q(t))
> 0

xZc ≡ xc(tZ) ; xAc ≡ xc(t̄A)

TA ≡ t̄A − tZ ; πZ ≡ ζ(ρ+ α)λZ0e
αtZ + ρλA0
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Then after linearizing the set of conditions defining (λZ0, λA0, tZ , t̄A), we get
the following system in matrix form:

−ζ2IZZ 0 ζxZc e
αtZ 0

0 IA −xZc xAc

ζeαtZ 1 πZ 0

0 1 0 ρλA0





dλZ0

dλA0

dtZ

dt̄A


=



−1

0

0

0


dZ0 +



eαtZ

αTA/ζ

0

0


dZ̄

+



0

J cA

e−ρtZ

e−ρt̄A


dc̄s +



0

0

0

−e−ρt̄A


dcs +



0

1

0

0


dĀ .

The determinant of the system, we denote by ∆ is:

∆ = xAc ζ
2
[
IZZ πZ + e2αtZxZc

]
− ρλA0ζ

2
[
IZZ (IAπZ + xZc ) + IAx

Z
c e

2αtZ
]
.

(A.2.1)

Note that q̇ = ẋc = −ρλA0e
ρt/u′′(q). Thus:

IA = −
∫ t̄A

tZ

eρt

u′′(q)
dt = − 1

ρλA0

∫ t̄A

tZ

ρλA0e
ρt

u′′(q)
dt

=
1

ρλA0

∫ t̄A

tZ

ẋc(t)dt =
xAc − xZc
ρλA0

. (A.2.2)

Substituting for IA its expression (A.2.2) into (A.2.1) we obtain:

∆/ζ2 = (xAc − ρλA0IA)
[
IZZ πZ + e2αtZxZc

]
− ρλA0I

Z
Z x

Z
c

= xZc
[
IZZ (ζ(ρ+ α)λZ0 + ρλA0) + xZc e

2αtZ − ρλA0I
Z
Z

]
= xZc

[
ζ(ρ+ α)λZ0I

Z
Z e

αtZ + xZc e
2αtZ

]
> 0 .

Denote by ∆0 = ζ
[
ζ(ρ+ α)λZ0I

Z
Z + xZc e

αtZ
]
, so that ∆ = ζxZc ∆0e

αtZ . Next,
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applying Cramer rule, we get first:

dλZ0

dZ0
= − 1

∆

[
−xAc πZ + ρλA0IAπZ + ρλA0x

Z
c

]
= − 1

∆

[
−xAc πZ + (xAc − xZc )πZ + ρλA0x

Z
c

]
= −x

Z
c

∆

[
−ζ(ρ+ α)λZ0I

Z
Z e

αtZ − ρλA0 + ρλA0

]
=

ζ(ρ+ α)xZc λA0e
αtZ

ζxZc ∆0eαtZ

=
(ρ+ α)λZ0

∆0

> 0 .

dtZ
dZ0

=
ζeαtZ

∆

[
ρλA0IA − xAc

]
= − ζxZc e

αtZ

ζxZc ∆0eαtZ
= − 1

∆0

< 0 .

dλA0

dZ0
=

ζxZc ρλA0e
αtZ

ζxZc ∆0eαtZ
=
ρλA0

∆0

> 0 .

dt̄A
dZ0

= − ζxZc e
αtZ

ζxZc ∆0eαtZ
= − 1

∆0

.

The computation shows that dtZ/dZ0 = dt̄Z/dZ
0 and thus that dTA/dZ0 = 0.

Furthermore:
dp̄Z
dZ0

= −eρtZ
[
dλA0

dZ0
+ ρλA0

dtZ
dZ0

]
= −e

ρtZ

∆0

[ρλA0 − ρλA0] = 0 .

Turning to the effects of a higher Z̄, we find:

dλZ0

dZ̄
=

1

∆

{
eαtZ

[
ρλA0x

Z
c + πZ(ρλA0IA − xAc )

]
− αTA

ζ

[
−ζρλA0x

Z
c e

αtZ
]}

=
xZc
∆

{
eαtZ [ρλA0 − πZ ] + αTAρλA0e

αtZ
}

= −ζ(ρ+ α)λZ0e
2αtZ

ζxZc ∆0eαtZ
+ αTA

ρλA0x
Z
c e

αtZ

ζxZc ∆0eαtZ

= −(ρ+ α)λZ0e
αtZ

∆0

+
αTA
ζ

ρλA0

∆0

(?) .
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dtZ
dZ̄

=
1

∆

{
−ζe2αtZ

(
ρλA0IA − xAc

)
− αTA

ζ
ρλA0(−ζ2IZZ )

}
=

ζxZc e
2αtZ

ζxZc ∆0eαtZ
+
ζ2αρλA0TAI

Z
Z

ζ2xZc ∆0eαtZ

=
eαtZ

∆0

+
αρλA0TAI

Z
Z

xZc ∆0eαtZ
> 0 .

dλA0

dZ̄
=

1

∆

{
ζe2αtZ (−ρλA0x

Z
c ) +

αTA
ζ

[
−ζ2IZZ πZ − ζ2xZc e

2αtZ
]}

= −ζx
Z
c ρλA0e

2αtZ

ζxZc ∆0eαtZ
−
ζαρλA0TA

[
πZI

Z
Z + xZc e

2αtZ
]

ζxZc ∆0eαtZ

= −ρλA0e
αtZ

∆0

−
αρλA0TA

[
πZI

Z
Z + xZc e

αtZ
]

xZc ∆0eαtZ
< 0 .

dt̄A
dZ̄

=
1

∆

{
ζxZc e

2αtZ + αζTA
[
πZI

Z
Z + xZc e

2αtZ
]}

=
eαtZ

∆0

+ αTA
πZI

Z
Z + xZc e

2αtZ

xZc ∆0eαtZ

dp̄Z
dZ̄

= ζe(ρ+α)tZ

[
dλZ0

dZ̄
+ (ρ+ α)λZ0

dtZ
dZ̄

]
= ζe(ρ+α)tZ

[
αρλA0TA
ζ∆0

+ (ρ+ α)λZ0
αρλA0TAI

Z
Z

xZc ∆0eαtZ

]
=

αρλA0TAe
(ρ+α)tZ

xZc ∆0eαtZ

[
xZc e

αtZ + ζ(ρ+ α)λZ0I
Z
Z

]
=

αρλA0TA
ζxZc

eρtZ > 0 .

dT̄A
dZ̄

=
dt̄A
dZ̄
− dtZ
dZ̄

=
αTA

xZc ∆0eαtZ

[
(πZ − ρλA0)IZZ + xZc e

2αtZ
]

=
αTA
xZc ∆0

[
ζ(ρ+ α)λZ0I

Z
Z + xZc e

αtZ
]

=
αTA
ζxZc

> 0 .
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Next turning to the effects of a higher initial clean coal energy cost, we
obtain:

dλZ0

dc̄s
=

ζxZc e
αtZ

∆

[
xAc (e−ρtZ − e−ρt̄A) + ρλA0(J cA − IAe−ρtZ )

]
=

1

∆0

[
(xAc − ρλA0IA)e−ρtZ − xAc e−ρt̄A + ρλA0J

c
A

]
=

1

∆0

[
xZc e

−ρtZ − xAc e−ρt̄A + ρλA0J
c
A

]
(A.2.3)

This expression is of indeterminate sign. However taking into account the
expression of ẋc:

ρλA0J
c
A = −

∫ t̄A

tZ

ρλA0e
ρt

u′′(q(t))
e−ρtdt =

∫ t̄A

tZ

ẋc(t)e
−ρtdt

Integrating by parts:

ρλA0J
c
A = xc(t)e

−ρt∣∣t̄A
tZ

+ ρ

∫ t̄A

tZ

xc(t)e
−ρtdt

= xAc e
−ρt̄A − xZc e−ρtZ + ρ

∫ t̄A

tZ

xc(t)e
−ρtdt . (A.2.4)

Inserting the expression (A.2.4) of ρλA0J
c
A into (A.2.3), we obtain:

dλZ0

dc̄s
=

ρ

∆0

∫ t̄A

tZ

xc(t)e
−ρtdt ≡ ρIc

∆0

> 0

The effect of a higher c̄s over λA0 is indeterminate. Next turning upon the
impact over tZ and t̄A, we obtain:

dtZ
dc̄s

= −ζ
2IZZ
∆

{
xAc (e−ρt̄A − e−ρtZ ) + ρλA0(IAe

−ρtZ − J cA)
}

= −ζ
2IZZ
∆

{
xAc e

−ρt̄A + (ρλA0IA − xAc )e−ρtZ − ρλA0J
c
A

}
= −ζ

2IZZ
∆

{
xAc e

−ρt̄A − xZc e−ρtZ −
[
xAc e

−ρt̄A − xZc e−ρtZ + ρIc

]}
=

ζ2ρIZZ Ic
∆

> 0
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Then:

dt̄A
dc̄s

=
1

∆

{
−ζ2IZZ

[
xZc (e−ρt̄A − e−ρtZ ) + πZ(IAe

−ρt̄A − J cA)
]

−ζ2xZc e
2αtZ

[
IAe

−ρt̄A − J cA
]}

=
1

∆

{
−ζ2IZZ x

Z
c (e−ρt̄A − e−ρtZ )− (IAe

−ρt̄A − J cA)ζ2
[
πZI

Z
Z + xZc e

2αtZ
]}

=
ζ2

∆

{
IZZ x

Z
c (e−ρtZ − e−ρt̄A) + (J cA − IAe−ρt̄A)

[
πZI

Z
Z + xZc e

2αtZ
]}

.

Since:

J cA − IAe−ρt̄A = −
∫ t̄A

tZ

1

u′′(q(t))

[
1− e−ρ(t̄A−t)

]
dt > 0 ,

while tZ < t̄A implies that e−ρtZ − e−ρt̄A > 0, we conclude that dt̄A/dc̄s > 0.

This gives the following effects over p̄Z and TA:

dp̄Z
dc̄s

= ζe(ρ+α)tZ

[
ρIc
∆0

+ (ρ+ α)λZ0
ρζ2IcI

Z
Z

∆

]
=

ζ2ρIce
(ρ+α)tZ

∆

[
xZc e

αtZ + ζ(ρ+ α)λZ0I
Z
Z

]
=

ζρIce
(ρ+α)tZ ∆0

ζxZc ∆0eαtZ

=
ρIc
xZc

eρtZ > 0 .

dTA
dc̄s

=
ζ2

∆

{
IZZ x

Z
c (e−ρtZ − e−ρt̄A) + (J cA − e−ρt̄AIA)(πZI

Z
Z + xZc e

2αtZ )− ρIcIZZ
}
.

Since ρIc = ρλA0J
A
c − xAc e

−ρt̄A + xZc e
−ρtZ , the expression into brackets is

equivalent to:

{} = IZZ

[
xZc (e−ρtZ − e−ρt̄A) + πZ(J cA − e−ρt̄AIA)− ρλA0J

c
A + xAc e

−ρt̄A − xZc e−ρtZ
]

+xZc (J cA − IAe−ρt̄A)e2αtZ

= IZZ

[
(xAc − xZc )e−ρt̄A + J cA(πZ − ρλA0)− πZIAe−ρt̄A

]
+ xZc (J cA − IAe−ρt̄A)

= IZZ

[
(xAc − xZc )e−ρt̄A + ζ(ρ+ α)λZ0e

αtZ (J cA − IAe−ρt̄A)− ρλA0IAe
−ρt̄A

]
+ xZc (J cA − IAe−ρt̄A) .
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Since ρλA0IA = xAc − xZc , we obtain after simplification:

dT̄A
dc̄s

=
ζ2eαtZ

δ

[
ζ(ρ+ α)λZ0I

Z
Z + xZc e

αtZ
]

(J cA − IAe−ρt̄A)

=
ζeαtZ ∆0(J cA − IAe−ρt̄A)

ζxZc ∆0eαtZ

=
J cA − IAe−ρt̄AIA

xZc
> 0 .

The effects of a higher cs are the following.

dλZ0

dcs
=

ζxZc e
αtZxAc e

−ρt̄A

ζxZc ∆0eαtZ
=
xAc
∆0

e−ρt̄A > 0 .

dλA0

dcs
= −ζ(πZI

Z
Z + xZc e

2αtZ )xAc e
−ρt̄A

xZc ∆0eαtZ
< 0 .

dtZ
dcs

=
ζ2IZZ x

A
c e
−ρt̄A

∆
=

ζxAc I
Z
Z

xZc ∆0eαtZ
e−ρt̄A > 0 .

dt̄A
dcs

=
ζ2e−ρt̄A

∆

[
IA(πZI

Z
Z + xZc e

2αtZ ) + IZZ x
Z
c

]
> 0 .

dp̄Z
dcs

= ζe(ρ+α)tZ

[
dλZ0

dcs
+ (ρ+ α)λZ0

dtZ
dcs

]
> 0 .

dTA
dcs

=
ζ2e−ρt̄A

δ

[
IA(πZI

Z
Z + xZc e

2αtZ ) + IZZ x
Z
c − xAc IZZ

]
=

ζ2e−ρt̄A

δ

[
IZZ (πZIA + xZc − xAc ) + xZc IAe

2αtZ
]

=
ζ2e−ρt̄A

δ

[
IZZ (ζ(ρ+ α)λZ0IAe

αtZ + ρλA0IA + xZc − xAc ) + xZc IAe
2αtZ

]
=

ζ2IAe
−ρt̄AeαtZ

δ

[
ζ(ρ+ α)λZ0I

Z
Z + xZc e

αtZ
]

=
ζIAe

αtZe−ρt̄A∆0

xZc ∆0eαtZ
=
IA
xZc
e−ρt̄A > 0 .

68



Last, the effects of a higher know-how target Ā are:

dλZ0

dĀ
=

ζxZc e
αtZ

∆
ρλA0 =

ρλA0

∆0

> 0 .

dλA0

dĀ
= −ζρλA0

∆

[
πZI

Z
Z + xZc e

2cαtZ
]
< 0 .

dtZ
dĀ

=
ζ2ρλA0I

Z
Z

∆
> 0 .

dt̄A
dĀ

=
ζ2

∆

[
πZI

Z
Z + xZc e

2αtZ
]
> 0 .

dp̄Z
dĀ

= ζe(ρ+α)tZ

[
dλZ0

dĀ
+ (ρ+ α)λZ0

dtZ
dĀ

]
=

ζρλA0e
(ρ+α)tZ

∆0

[
1 +

ζ(ρ+ α)λZ0I
Z
Z

xZc e
αtZ

]
=

ζρλA0e
(ρ+α)tZ

xZc ∆0eαtZ
∆0

=
ρλA0

xZc
eρtZ > 0 .

dTA
dbarA

=
ζ2

∆

[
IZZ (πZ − ρλA0) + xZc e

2αtZ
]

=
ζ2

∆

[
ζ(ρ+ α)λZ0I

Z
Z e

αtZ + xZc e
2cαtZ

]
=

ζδ0e
αtZ

ζxZc ∆0eαtZ
=

1

xZc
> 0 .

A.3 Appendix 3: Comparative dynamics in
the pure R&D model

The relative independency of the R&D policy with respect to the energy
policy results in a pair of two dimensional linearized systems, the first one
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describing the effects over (λZ0, tZ) while the second one describes the effects
over (λA0, t̄A). Denote by:

IZZ ≡
∫ tZ

0

e(ρ+2α)t

u′′(q(t))
dt > 0 ; IA ≡

∫ t̄A

0

eρt

c′r(r(t))
dt > 0

r̄ = r(t̄A) ; r(0) = r0

Then the systems are expressed as: −ζ2IZZ ζxZc e
αtZ

1 (ρ+ α)λZ0

 dλZ0

dtZ

 =

 −1

0

 dZ0 +

 −eαtZ
0

 dZ̄ +

 0

e−(ρ+α)tZ/ζ

 dc̄s

 IA r̄

1 ρλA0

 dλA0

dt̄A

 =

 1

0

 dĀ+

 0

−α(c̄s−cs)

ζr̄
e−ρt̄A

 dZ̄
+

 0

x−c
r̄
e−ρt̄A

 dc̄s −
 0

xc

r̄
e−ρt̄A

 dcs
The determinant of the first system is −ζ(ζ(ρ+α)λZ0I

Z
Z +xZc e

αtZ ) ≡ −∆0 <
0. Applying Cramer rule, we obtain:

dλZ0

dZ0
=

(ρ+ α)λZ0

∆0

;
dλZ0

dZ̄
=

(ρ+ α)λZ0e
αtZ

∆0

;
dλZ0

dc̄s
=
xZc e

−ρtZ

∆0

dtZ
dZ0

= − 1

∆0

;
dtZ
dZ̄

= −e
αtZ

∆0

;
dtZ
dc̄s

=
ζIZZ e

−(ρ+α)tZ

∆0

By construction: dλZ0/dĀ = dtZ/dĀ = 0 and dλZ0/dcs = dtZ/dcs = 0. The
features of the energy policy before the cost breakthrough do not depend
of the know-how requirement to trigger the break or of the clean energy
additional cost after the break.

Next turn to the second system. The determinant of this system is:
ρλA0IA − r̄. Since ṙ(t) = ρλA0e

ρt/c′r(r), we obtain:

ρλA0IA = ρλA0

∫ t̄A

0

eρt

c′r(r(t))
dt =

∫ t̄A

0

ṙ(t)dt = r̄ − r0
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Hence: ρλA0IA − r̄ = −r0 < 0. Remember that the strict negativity of the
determinant is a consequence of the assumption λ!A0 > cr(0), which implies
that r0 > 0. Applying Cramer rule, we then get:

dλA0

dĀ
= −ρλA0

r0

;
dλA0

dZ̄
= −α(c̄s − cs)e−ρt̄A

ζr0

dλA0

dc̄s
=
x−c e

−ρt̄A

r0

;
dλA0

dcs
= −xce

−ρtA

r0

dt̄A
dĀ

=
1

r0

;
dt̄A
dZ̄

=
α(c̄s − cs)IAe−ρtA

ζr0r̄

dt̄A
dc̄s

= −x
−
c IAe

−ρt̄A

r0r̄
;
dt̄A
dcs

=
xcIAe

−ρt̄A

r0r̄

A.4 Appendix 4. Proof that σ̇ < 0

We get from (5.4): λA = cr/ar. Denote σ = ac/ar, then (5.1) becomes:
u′(q) = cx + c̄s − σcr during the time interval [tZ , t̄A). Time differentiating,
we obtain:

σ̇cr = − [σc′rṙ + u′′(q)ẋc]

Taking (5.13) and (5.14) into account, this is equivalent to:

σ̇cr = − λ̇A
∆1

{u′′ [λA(acrar − acarr) + acc
′
r]

+σc′r [λA(acrac − aracc)− u′′ar]}

= − λ̇A
∆1

{λA [u′′(acrar − acarr) + σc′r(acrac − aracc)]

+u′′acc
′
r − u′′

ac
ar
arc
′
r

}
= −ρλ

2
Aar

∆1

[u′′(acr − σarr) + σc′r(acrσ − acc)]

Let: P (σ) ≡ c′racrσ
2 − σ(u′′arr + c′racc) + u′′acr, then:

σ̇ = −ρλ
2
Aar

∆1cr
P (σ)
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c′racr > 0 and u′′acr < 0 imply that P (σ) has two real roots of opposite signs.
Denote by σ̂ the positive root. Then:

σ̇ T 0 ⇐⇒ P (σ) S 0 ⇐⇒ σ S σ̂

We conclude that during the time interval [tZ , t̄A), σ(t) must be a monotonous
time function, either constantly increasing or either constantly decreasing.
Then denoting by p̄Z = u′(q(tZ)) and by p̄A = u′(q−(t̄A)), σZ ≡ σ(tZ) and
σA ≡ σ−(t̄A) may be expressed as:

σZ =
p̄Z − cx − c̄s
cr(r(tZ))

and σA =
p̄A − cx − c̄s
cr(r−(t̄A))

And p̄A < p̄Z together with r(tZ) < r−(t̄A), that is cr(r(tZ)) < cr(r
−(t̄A))

imply that σA < σZ . We thus conclude that σ(t) having to be monotonous,
σ(t) is a decreasing time function over the interval [tZ , t̄A).

A.5 Appendix 5.

Pure research paths

Let tR be the date of both the arrival at the ceiling and the revolution:
tZ = t̄A = tR in a scenario where the revolution is triggered only through
R&D efforts. Assume that initially r(0) > 0. Then (λZ0, λA0, t

R) are solution
of the following system of conditions:

Z̄eαt
R

= Z0 +

∫ tR

0

xd(λZ0e
(ρ+α)t)eαtdt

Ā =

∫ tR

0

a(0, r(λA0e
ρt))dt

cs = cx + ζλZ0e
(ρ+α)tR

Let λRA ≡ λA0e
ρtR .

Pure learning phases

Let tL be the common date of arrival at the ceiling and the revolution

72



when the policy scenario involves only learning-by-doing. Assume that ini-
tially xc(0) > 0, then (λZ0, λA0, t

L) are solution of:

Z̄eαt
L

= Z0 +

∫ tL

0

xd(λZ0e
(ρ+α)t, λA0e

ρt)eαtdt

Ā =

∫ tL

0

a(xc(λZ0e
(ρ+α)t, λA0e

ρt), 0)dt

cs = cx + ζλZ0e
(ρ+α)tL

Let λLA ≡ λA0e
ρtL .

Combined phases

Let tC be given by tC = tZ = t̄A in a scenario involving both learning
and R&D to trigger the technological breakthrough. In a case where initially
xc(0) > 0 and r(0) > 0, (λZ0, λA0, t

C are solution of:

Z̄eαt
C

= Z0 +

∫ tC

0

xd(λZ0e
(ρ+α)t, λA0e

ρt)eαtdt

Ā =

∫ tC

0

a(xc(λZ0e
(ρ+α)t, λA0e

ρt), r(λZ0e
(ρ+α)t, λA0e

ρt))dt

cs = cx + ζλZ0e
(ρ+α)tC

Let λCA ≡ λA0e
ρtC .

Pure R&D then combined phases

Let tRC = tZ = t̄A in a two phases scenario during which the economy
performs only research during a time interval [0, t̄r) and next both clean coal
production and research during a time phase [t̄r, t

RC). Assume that initially
r(0) > 0, then (λZ0, λA0, t̄r, t

RC) are defined by the following set of conditions:

Z̄eαt
LC

= Z0 +

∫ t̄r

0

xd(λZ0e
(ρ+α)tdt+

∫ tRC

t̄r

xd(λZ0e
(ρ+α)t, λA0e

ρt)eαtdt

Ā =

∫ t̄r

0

a(0, r(λA0e
ρt)dt+

∫ tC

t̄r

a(xc(λZ0e
(ρ+α)t, λA0e

ρt), r(λZ0e
(ρ+α)t, λA0e

ρt))dt

c̄s = λA0ac(0, r(λA0e
ρt̄t)eρt̄r + ζλZ0e

(ρ+α)t̄r

cs = cx + ζλZ0e
(ρ+α)tC
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Let λRCA ≡ λA0e
ρtRC .

Pure learning then combined phases

Let tLC = tZ = t̄A in a two phases scenario where the economy increases
the know-how level only through learning during a first time phase [0, t̄l) and
then through a combination of learning and R&D during the phase [t̄l, t

LC).
Assume that initially xc(0) = 0, then (λZ0, λA0, t̄l, t

LC) are solutions of the
following system of conditions:

Z̄eαt
LC

= Z0 +

∫ t̄l

0

xd(λZ0e
(ρ+α)t, λA0e

ρt))dt+

∫ tLC

t̄l

xd(λZ0e
(ρ+α)t, λA0e

ρt)eαtdt

Ā =

∫ t̄l

0

a(xc(λZ0e
(ρ+α)t, λA0e

ρt, 0)dt+

∫ tLC

t̄l

a(xc(λZ0e
(ρ+α)t, λA0e

ρt), r(λZ0e
(ρ+α)t, λA0e

ρt))dt

c̄s = λA0ac(xc(λZ0e
(ρ+α)t̄l , λA0e

ρt̄l), 0)eρt̄l + ζλZ0e
(ρ+α)t̄l

cs = cx + ζλZ0e
(ρ+α)tC

Let λLCA ≡ λA0e
ρtLC .

A.6 Appendix 6.

The optimal vector (λZ0, λA0, tZ , t̄A) in a combined policy where tZ < t̄A is
the solution of the following system of conditions:

Z̄eαtZ = Z0 + ζ

∫ tZ

0

xd(λZ(t), λA(t))eαtdt ; (A.6.1)

Ā =

∫ tZ

0

a(λZ(t), λA(t))dt+

∫ t̄A

tZ

a(λA(t))dt ; (A.6.2)

ζλZ0e
(ρ+α)tZ = c̄s − λA0ac(tZ)eρtZ ; (A.6.3)
λA0e

ρt̄A = λ̄A(V̄ ) . (A.6.4)

Differentiating the ceiling attainment condition (A.6.1) for a given Z0, we
obtain:

dZ̄eαtZ =

∫ tZ

0

∂xd(t)

∂λZ(t)
e(ρ+2α)tdtdλZ0 +

∫ tZ

0

∂xd(t)

∂λA(t)
e(ρ+α)tdtdλA0 .
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Denote by:

IZZ = −
∫ tZ

0

∂xd(t)

∂λZ(t)
e(ρ+2α)tdt > 0 ;

IAZ = −
∫ tZ

0

∂xd(t)

∂λA(t)
e(ρ+α)tdt > 0 .

The signs of the integrals result from ∂xd/∂λZ < 0 and ∂xd/∂λA < 0.

Let a1(λZ(t), λA(t)) ≡ a(xc(λA(t), λZ(t)), r(λA(t), λZ(t))) over the first
time interval [0, tZ). Denote similarly: a2(λA(t)) ≡ a(xc(λA(t)), r(λA(t)))
over the second time interval [tZ , t̄A). Then differentiating the technological
breakthrough condition, we get:

dĀ = a(t̄−A)dt̄A +

∫ tZ

0

∂a1(λZ(t), λA(t))

∂λZ(t)
e(ρ+α)tdtdλZ0

+

{∫ tZ

0

∂a1(λZ(t), λA(t))

∂λA(t)
eρtdt+

∫ t̄A

tZ

da2(λA(t))

dλA(t)
eρtdt

}
dλA0 .

Denote by:

IZA =

∫ tZ

0

∂a1(λZ(t), λA(t))

∂λZ(t)
e(ρ+α)tdt > 0 ;

I1
A =

∫ tZ

0

∂a1(λZ(t), λA(t))

∂λA(t)
eρtdt > 0 ;

I2
A =

∫ t̄A

tZ

da2(λA(t))

dλA(t)
eρtdt > 0 .

The signs of the integrals result from ac > 0, ar > 0, and ∂xc/∂λZ > 0,
∂xc/∂λA > 0, ∂r/∂λZ > 0, ∂r/∂λA during the time interval [0, tZ), together
with dxc/dλA > 0 and dr/dλA > 0 during the second time interval [tZ , t̄A).
Now remark that during the first time interval [0, tZ):

ȧ1(t) = (ρ+ α)λZ0
∂a1(t)

∂λZ(t)
e(ρ+α)t + ρλA0

∂a1(t)

∂λA(t)
eρt

Denote by a0 ≡ a1(0) and aZ ≡ a(xc(tZ), r(tZ)). Integrating over [0, tZ) we
obtain:

aZ − a0 = (ρ+ α)λZ0

∫ tZ

0

∂a1(t)

∂λZ(t)
e(ρ+α)tdt+ ρλA0

∫ tZ

0

∂a1(t)

∂λZ(t)
eρtdt

= (ρ+ α)λZ0I
Z
A + ρλA0I

1
A . (A.6.5)
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During the second time interval [tZ , t̄A):

ȧ2(t) = ρλA0
da2(t)

dλA(t)
eρt

Denote by aA ≡ a(xc(t̄A), r(t̄A)). Integrating over [tZ , t̄A), we get:

aA − aZ = ρλA0

∫ t̄A

tZ

da2(t)

dλA(t)
eρtdt = ρλA0I

2
A . (A.6.6)

Next differentiating the continuity condition at the ceiling beginning time
for a given c̄s, we obtain:[

ζe(ρ+α)tZaccλA0e
(2ρ+α)tZ

∂xc
∂λZ

+ acrλA0e
(2ρ+α)tZ

∂r

∂λA

]
dλZ0

+

[
ace

ρtZ + accλA0e
2ρtZ

∂xc
∂λA

+ acrλA0e
2ρtZ

∂r

∂λA

]
dλA0

+
[
ζ(ρ+ α)λZ0e

(ρ+α)tZ + ρacλA0e
ρtZ
]
dtZ

= 0

Making use of (5.9)-(5.12), this simplifies to:[
ζ(ρ+ α)λZ0e

αtZ + ρacλA0

]
dtZ ≡ πZdtZ = 0 .

Last the differentiation of the terminal condition results in:

dλA0 + ρλA0dt̄A =
dλ̄A
dV̄

e−ρt̄AdV̄ .

Taking stock, we get the following linearized system in matrix form:

−IZZ −IAZ xZc 0

IZA I1
A + I2

A 0 aA

0 0 πZ 0

0 1 0 ρλA0





dλZ0

dλA0

dtZ

dt̄A


=



eαtZ

Φ0

0

Φ1


dZ̄ +



0

1

0

0


dĀ .

Φ0 and Φ1 will be computed later. Denote by ∆ the determinant of the
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linearized system.

∆ = πZ

∣∣∣∣∣∣∣∣∣∣
−IZZ −IAZ 0

IZA I1
A + I2

A aA

0 1 ρλA0

∣∣∣∣∣∣∣∣∣∣
= πz

{
−IZZ

[
ρλA0(I1

A + I2
A)− aA

]
+ ρλA0I

Z
AI

A
Z

}
= πZ

[
−ρλA0I

Z
Z I

1
A + IZZ (aA − ρλA0I

Z
A ) + ρλA0I

Z
AI

A
Z

]
.

Taking (A.6.6) into account: aZ = aA − ρλA0I
2
A, thus:

∆ = πz
[
−ρλA0I

Z
Z I

1
A + IZZ a

Z + ρλA0I
Z
AI

A
Z

]
.

Taking (A.6.5) into account:

ρλA0I
1
A = aZ − a0 − (ρ+ α)λZ0I

Z
A .

Thus:

∆ = πZ
[
−aZIZZ +

(
a0 + (ρ+ α)λZ0I

Z
A

)
IZZ + IZZ a

Z + ρλA0I
Z
AI

A
Z

]
= πZ

[(
a0 + (ρ+ α)λZ0I

Z
A

)
IZZ + ρλA0I

Z
AI

A
Z

]
≡ πZ∆0 > 0 .

Now, we compute the expressions of Φ0 and Φ1. It is easily checked that
during the time interval [tZ , t̄A):

∂xc
∂Z̄

= −αu
′′

ζ∆2

(λAarr − c′r) < 0 ;

∂r

∂Z̄
=

αu′′

ζ∆2

λAacr < 0 .

Hence:

Φ0 = −
∫ t̄A

tZ

[
ac
∂xc
∂Z̄

+ ar
∂r

∂Z̄

]
dt > 0 .

Secondly:

∂V̄

∂Z̄
=

αcs
ζ

.

Hence:

Φ1 =
αcs
ζ

dλ̄A
dV̄

> 0
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