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Abstract

I develop a model of reciprocal altruism which accounts for some ev-

idence in contracting situations, which are paradoxical from the point of

view of neoclassical contract theory with selfish actors. My model predicts

the crowding-out effect, observed in the Trust Game with the possibility

of a fine; for the Control Game the model predicts that an equilibrium can

exhibit ”no effect of control”, ”hidden cost of control”, or ”positive effect

of control”, depending on the characteristics of the actors, as observed in

the experiments. This suggests that reciprocal altruism modeling could

be fruitful more generally in applications of contract theory.
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1 Introduction

Intriguing observations about human response to incentives have recently been
made. For instance, providing additional incentives can, in contrast with stan-
dard models with selfish actors, lead to lower levels of performance and in-
tentions seem to matter, according to Fehr and Rockenbach [2003], Falk and
Kosfeld [2006] and many others1.

In this paper I develop a Principal-Agent model embodying reciprocal al-
truism. The paper shows that a simple formal model of reciprocal altruism is
able to give reliable predictions for some patterns of human behavior, puzzling
when considered within the standard selfish paradigm. While the idea that reci-
procity, altruism and other forms of social preferences shape people’s behavior
is not new, there are only a few models of reciprocal altruism in the literature.

My model is based on the premise that a person cares more about those
who care more about him. In other words, a person is more altruistic towards

∗I’m grateful to Jean Tirole for many insightful discussions. I’m also grateful to Stefanie
Brillon, Andrey Bremzen, Robert Dur, Arjan Non, the participants of the BEE workshop
in Toulouse, and the participants at seminars at ECARES(Brussels), Gothenburg University,
CEFIR(Moscow) for their comments. All errors are mine.

1See below the more detailed discussion of the relevant literature.
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those whom he perceives as being altruistic towards him. This is the essence of
the reciprocal altruism. In a Principal-Agent relationship, an altruistic Agent
is inspired to exert effort even in the absence of monetary incentives, i.e. the
Agent’s altruism works as an intrinsic motivator. If furthermore, the Agent is
reciprocal, the Principal will want to demonstrate his altruism in order to boost
the Agent’s intrinsic motivation. This leads to a signaling game in which the
Principal signals his altruism through offering a ”generous” contract.

I assume that the population of the Principals and the Agents is heteroge-
nous: together with selfish actors there are pro-social ones, who are more altru-
istic and reciprocal.

I consider two variants of the model, closely related to existing lab experi-
ments, and so the model’s equilibrium can be tested by the experiments’ out-
comes.

In the first setting, the Principal can either restrict the Agent’s choice of
effort by imposing minimal effort or give the Agent full flexibility, so that he
can exert zero effort. Such contract resembles the Control Game experiment of
Falk and Kosfeld [2006].

The predictions, based on the selfishness framework, are in striking contrast
with what has been observed in the lab. In fact, if all the actors are selfish,
in equilibrium the Principal restricts the Agent’s effort, who, in turn, chooses
the minimal feasible effort. Were the Agent uncontrolled, he would exert zero
effort.

However, in the experiment the Principals often choose not to control and,
after this, many Agents perform at much higher level than zero. Moreover, the
average effort of the uncontrolled Agents is higher than that of the controlled
ones for some values of the minimum effort cut-off. In other words, the Prin-
cipal’s action is often a deviation from the equilibrium path for selfish players,
and after this deviation, many Agents deviate from the continuation subgame
optimal move. I argue, however, that these ”deviations” fit the equilibrium path
if the actors’s population has a pro-social component and is heterogenous.

Intuitively, the reciprocal (pro-social) Agents’ intrinsic motivation is raised
and so they perform at high level when they’ve learned that the Principal is
pro-social, or generous. The Principal can signal her generosity through not
restricting the Agent, i.e. by offering the generous contract. This explains why
the pro-social Principals don’t control on the equilibrium path and why the
pro-social Agents respond by high performance. However, the selfish Agents’
intrinsic motivation can’t be boosted (because of weak or zero pro-social com-
ponent in preferences) and they perform at zero level if not controlled. So, the
observed performance of the uncontrolled Agents is either high or zero. Fi-
nally, the selfish Principals prefer to control and guarantee from all Agents a
relatively low performance, equal to the controlling threshold, because they are
less confident in the pro-sociality of the Agents’ population than the pro-social
Principals.

In the second setting, the Principal chooses whether to punish the Agent
for low performance, and chooses the threshold below which the performance
is considered to be low. After receiving the contract from the Principal, the
Agent can accept or reject it. The contract resembles the variant of the Trust
Game experiment of Fehr and Rockenbach [2003]. As in the first setting, the
outcome of the experiment is puzzling if the actors are assumed to be selfish.
In fact, within the selfishness framework, in equilibrium the Principal requires
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effort, while satisfying the Agent’s participation constraint, and threatens the
Agent with the punishment, which provides him an extrinsic incentive. If the
Principal chooses not to punish, the Agent should perform at zero level, since
extrinsic incentives aren’t provided. However, in the experiment the Principals
often choose not to punish, and, responding to this, many Agents choose to
perform at the level which is much higher than zero. These behaviors clearly
represent a deviation from the equilibrium path in the game with selfish actors.
By contrast, when threatened with the punishment for low performance, most
of the Agents choose the minimal performance level to avoid punishment, just
as on the equilibrium path of the selfish players case.

As in the first setting, my analysis shows that the ”deviating” actions lie
on the equilibrium path in the signaling game with heterogenous actors and a
pro-social component in the population. The mechanism behind the separating
equilibrium with the same structure, as observed in the experiment, is similar
to the one for the Control Game.

The behavioral patterns, supporting reciprocity and observed in the exper-
iments are not limited to the lab, they are common in human relations, in
the workplace in particular. The evidence from the field is documented in
Gneezy [2002], Falk [2007], Bolton and Ockenfels [2008], Paarsch and Shearer
[2007], Shearer [2004], Bellemare and Shearer [2007], Berry and Kanouse [1987],
Maréchal and Thöni [2007].2

Broadly taken, my study contributes to the literature on behavioral theory
of incentives, and one of its aims is explaining the puzzling behavior observed
in the lab and in the field by taking into account the interaction between ex-
trinsic incentives3 and intrinsic motivation4, which can lead, for instance, to
the motivation crowding-out. I show that reciprocal altruism can account for
many systematically observed behavior patterns given a natural information
structure. Bénabou and Tirole [2003] and Bénabou and Tirole [2006a] argue
that the impact of incentives on intrinsic motivation shapes behavior in many

2However, Kube et al. [2006] found support for negative reciprocity and question positive
reciprocity, especially in the long-run. Gneezy and List [2006] found reciprocity in the short-
run (the first 2 hours of work) and decreasing reciprocity in the long-run: to the end of
the 6-hour job the subjects receiving a more generous wage didn’t work harder than the
others. Some studies question the relevance of the lab experiments - see, e.g. List [2007],
Hennig-Schmidt et al. [2005], List and Levitt [2005]. We should be warned by these studies
but evidence for reciprocity comes from many different sources, so it’s hard to question that
reciprocity is an important psychological characteristic of human beings.

3The list of extrinsic motivators is not limited to the incentive payments (piece-rate wage or
bonus payment) but includes also expectation of future material payoff e.g. reputation building
due to long-term interaction, strategic reciprocity, career concerns, comparative performance
based payment (tournaments), monitoring/control etc.

4The literature provides evidence for many kinds of intrinsic motivation, apart from al-
truism and reciprocity. The Ultimatum Game introduced by Güth et al. [1982] illustrates
that taste for fairness and/or inequality aversion is an important factor determining behavior;
another evidence for fairness comes from different versions of the Gift Exchange Game - see
Fehr et al. [1993], Fehr and Falk [1999]. Social norms (avoiding social disapproval/geting
social approval) influence economic decisions. People can change their behavior under peer
pressure or have a taste for the social embeddedness. The evidence are provided by a variant
of the Gift Exchange Game in Gächter and Falk [2002] and Third Party Punishment Game
by Fehr and Fischbacher [2004]. A person may have taste for the others’ belief about his
motivation (or type) - see Rabin [1993], Falk and Fischbacher [2006] and Bénabou and Tirole
[2006a]. The list of intrinsic motivators can be continued with self-learning, working on inter-
esting/challenging task (in this case effort may not be costly (painful), the job rather gives
fun and higher effort increases utility) etc.
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different contexts.
My paper is also related to the theoretical literature on reciprocity or social

norms. Falk and Fischbacher [2006] develop a theory of reciprocity based on
psychological games, i.e. with utilities of the actors depending not only on
their material payoffs, but also on the perceived intentions of another player,
i.e. on the 1-st and 2-nd order beliefs, following Rabin [1993]. The players’
concern about the equitable outcome plays an important role in the analysis, in
contrast with my model, which is based on reciprocal altruism. The model of
Falk and Fischbacher [2006] can explain behavior in the Ultimatum Game, the
Gift Exchange Game and some other experiments.

The model of Ellingsen and Johannesson [2008] can account for the crowding-
out effect. It is similar to mine in that they consider altruistic actors. One
difference is that they also incorporate the taste for social esteem (pride) in the
utility function, i.e. second-order beliefs. Another difference is that the actors
in their model are unconditionally altruistic.

The model of Sliwka [2007] can also account for crowding-out through a
mechanism based on social norms, which is different from mine. There are
reliable and unreliable Agents in his model. The reliable Agents follow the
contract whereas the unreliable ones can deviate even if a contract is signed. As
a consequence, the incentive scheme has to be high-powered for the unreliable
Agents to perform at a high level. This leads to the fact that observing the
high-powered incentive scheme, the Agent can learn that there is a social norm
to be unreliable which can crowd-out his intrinsic motivation based on inherent
reliability.

In a recent paper Dur [2008] analyzes a model based on reciprocal altruism,
following Levine [1998] and putting it in the context of the workplace relation.
He shows that non-contractible attention can substitute monetary compensation
in a Principal-Agent relationship with reciprocal agent.

The paper proceeds as follows. Section 2 describes the framework for mod-
eling reciprocal altruism and presents its general analysis, leading to the bench-
mark results. Section 3 applies the reciprocal altruism framework to develop
models of interaction in two well-known lab experiments - the Trust Game with
a possibility of a fine by Fehr and Rockenbach [2003] and the ”Control Game” by
Falk and Kosfeld [2006]. Section 4 develops a model of contracting with intrinsic
incentives, based on reciprocal altruism only, without any extrinsic incentives
and considers some applications of such contracting. Section 5 concludes.

2 The Reciprocal Altruism Framework

Consider a Principal-Agent relationship The Principal is altruistic towards the
Agent and the Agent reciprocates the employer’s altruism: if the Agent perceives
the Principal to care about him, he becomes altruistic towards the Principal.
The Principal offers a contract to the Agent.

Output is equal to effort, is observable and verifiable (can be contracted
upon), so that there is no moral hazard.

Producing output is costly for the Agent. The cost function C(q) satisfies
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standard assumptions - convexity and zero cost at zero output:

C′(q) > 0, C′′(q) > 0 for q > 0

C(0) = 0, C′(0) = 0

Let B be the Agent’s exogenous benefit from interacting with the Principal5.
The benefit can be psychological or a monetary payment from a third party6.

For now, assume that the Agent doesn’t respond to monetary incentives,
beyond some subsistence level, that we normalize to zero. The selfish utilities
of the Principal and the Agent are then given by

v = q

u = B − C(q)

Let � be the degree of the Principal’s altruism and �̂ denote the Agent’s
perception of the Principal’s altruism. Let � denote the intensity of the Agent’s
reciprocity (more generally, it can be treated as intensity of intrinsic motiva-
tion of any nature emerging from perceiving the Principal as ”generous”). The
interaction term �̂� represents the Agent’s altruism emerging as a result of
reciprocating altruism of the Principal.

Assume that � ∈ [�1, �2] ⊆ [0, 1] and ��2 ≤ 1. The assumptions mean that
the Principal’s and the Agent’s altruism is less than 1, in other words the actors
care about own material gain more than about the other’s.

The utilities of the Principal and the Agent when the Agent produces output
q are given by

V (q, �) = v + �u = q + �(B − C(q)) (1)

U(q, �̂, �) = u+ �̂�v = B − C(q) + �̂�q (2)

The contract can be a command - ”produce q” or can give the Agent some
flexibility - say, ”produce any quantity q ∈ [q1, q2]”.

Notice the difference with the standard Principal-Agent setup. The Princi-
pal’s valuation of the output is not always increasing, now it has an inverted-U
shape: it increases only for small enough values of output and is maximal at
some q = qP . Similarly, the Agent’s payoff is not always decreasing in output,
and has an inverted-U shape: it decreases only for large enough values and
reaches the maximal value at some qA.

In what follows, I will refer to qP and qA as the Principal’s and the Agent’s
preferred values of output (or performance). In contrast with the standard
Principal-Agent models, qP ∕= +∞, qA ∕= 0. Principal’s and Agent’s payoffs as
functions of output are depicted in Figure 1.

For � = � = 1 the Principal’s and the Agent’s interests are aligned, U(q) ≡
V (q), because there is full internalization, so that the two curves representing
the Principal’s and the Agent’s utilities in Figure 1 coincide.

For smaller values of � or �, i.e. weaker internalization, there is a conflict of
interest like in the standard Principal-Agent setup but this conflict is softened

5More generally, B can be treated as opportunity cost of interacting with the Principal.
In this case isn’t necessarily positive.

6The latter is the case in the lab experiments which I consider in the paper. The third
party will be an experimenter.
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Figure 1: Principal’s and Agent’s payoffs under reciprocal altruism.

by the partial internalization of utilities. In the graph, the two inverted-U curves
become more distant, and consequently, the distance between the maximizers
of the Principal’s and Agent’s utilities qP and qA becomes larger: the Principal
wants the Agent to exert more effort, whereas the Agent prefers performing less.

For an arbitrary �̂ denote the value of q, making the participation con-
straint binding, by q0(�̂�). I will refer to this value as the Agent’s participation
threshold.

For �̂� close to 1 the Agent’s participation constraint is not binding because
qP is ”close enough” to the maximizer of the Agent’s utility qA, where the
Agent’s utility is positive, and then, the Principal can implement her preferred
output qP . However, as � or �̂� decrease, the participation constraint becomes
binding.

For specific applications of the reciprocal altruism framework, I will make
additional assumption on the distributions of the Principal’s and Agent’s charac-
teristics � and � and on the information structure. The details will be provided
below.

2.1 Benchmark cases

The preferred output value for the Principal is given by

qP (�) = argmax
q

[V (q, �)] = argmax
q

[q − �C(q)]

or

C′(qP ) =
1

�
(3)

If there are no barriers to implementing this output level, such as Agent’s par-
ticipation constraint or limits on contract design, the Principal will induce it.

Lemma 1. The Principal’s preferred output qP (�) is determined by (3) and is

a decreasing function of �: ∂qP

∂�
< 0.

The lemma follows directly from (3).
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The preferred value of output for the Agent is given by

qA(�̂�) = argmax
q

[U(q; �̂, �)] = argmax
q

[�̂�q − C(q)]

or
C′(qA) = �̂� (4)

This output obtains when the Agent is given full flexibility or, more generally,
if this level is available to the Agent despite some restrictions, such as binding
contract, are imposed.

The Agent is willing to perform at an effort level such that his marginal
cost is equal to his marginal benefit �̂�. This means that �̂� is a measure of
the Agent’s intrinsic motivation, similarly to the monetary (extrinsic) incentives
intensity.

Lemma 2. The Agent’s preferred output is determined by an increasing function
qA(�̂�), determined by (4).

The lemma follows directly from (4).
For the case � < 1 and �̂� < 1 it’s easy to see from (3) that C′(qP ) > 1,

whereas (4) leads to C′(qA) < 1, so that qP > qA and there is always a gap
between the Principal’s and the Agent’s preferred output levels. This gap is
larger, the smaller �, �̂ and �.

Lemma 3. The Principal’s preferred output is always larger than the Agent’s
preferred output, except when it is a common knowledge that � = � = 1, in
which case the preferred outputs are the same:

qP (�) > qA(�̂�) unless � = �̂ = 1, � = 1

qP (1) = qA(1)

For the case of symmetric or revealed information, so that �̂ = �, the gap qP−qA

between the Principal’s and the Agent’s preferred outputs is a decreasing function

of �, �:
∂(qP−qA)

∂�
< 0,

∂(qP −qA)
∂�

< 0

The Agent’s participation threshold q0(�̂�) is the unique root of the equation

U(q; �̂, �) = B + �̂�q − C(q) = 0 (5)

This leads to the following Lemma.

Lemma 4. The Agent’s participation threshold is given by an increasing func-
tion q0(�̂, �).

The proof of Lemma 4 is given in the Appendix.

3 Reciprocal Altruism and Contracts

In this section I build variants of the reciprocal altruism framework so as to
account for the behavior observed in the two well-known lab experiments - the
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Trust Game of Fehr and Rockenbach [2003] and the Control Game7 by Falk and
Kosfeld [2006], which are described in detail below.

Under the selfish players assumption, the results of the experiments are
puzzling whereas the reciprocal altruism framework allows to account for the
actually observed behavior, for instance, the motivation crowding out. This
also shows the potential of the modeling approach based on reciprocal altruism
and provides an additional justification for the relevance of contracting models
based on it.

3.1 The Trust Game

Consider the Trust Game (or Investment Game) in its Fehr and Rockenbach
[2003] version. In their experiment, both the Principal and the Agent are en-
dowed with S = 10 units of money. First, the Principal decides on x - how much
money to send to the Agent and also announces q̂ - the desired back-transfer.
The desired back-transfer isn’t binding for the Agent. The experimenter triples
the sum of money sent by the Principal8, so that the Agent receives 3x. The
Agent then decides on the back-transfer q. This setting represents the Baseline
treatment. Notice that q̂ is a ”cheap talk” in this case.

In the Incentive treatment the Principal on top of x and q̂ announces a fine
f which is imposed on the Agent if the back-transfer is lower than the desired
level q̂, so that q̂ is no more ”cheap talk”. The fine isn’t paid to the Principal,
it simply reduces the Agent’s payoff, in other words the fine is a punishment for
the Agent. The fine amount is exogenous (set by the experimenter), so that the
only decision of the Principal is to choose whether to impose the fine or not.
The contract is now (x, q̂, f) where f can take only two values 0 or f .

The paper brings evidence of crowding-out, i.e. the use of the extrinsic
motivator (fine for bad performance) decreases the intrinsic motivation and, as
a result, leads to a lower performance. The study finds that, on average, in the
incentive treatment the back-payment is higher when the fine is set to zero (the
Principal chooses not to punish) than for the case of punishing (f = f). This
means that imposing an extrinsic incentive leads to a lower performance.

The utilities of the Principal and the Agent in the experimental setting are
given, following the reciprocal altruism framework9 by

V = 10− x+ q + �(10 + 3x− C(q) − fIq<q̂)

U = 10 + 3x− C(q)− fIq<q̂ + �̂� (10− x+ q)

Suppose that the decision on x has already been made and focus on the
continuation subgame10 in which the Principal decides on q̂ and f and then the

7I follow Ellingsen and Johannesson [2008] in calling the game of Falk and Kosfeld [2006]
the ”Control Game”.

8This explains why the game can also be called the ”Investment Game”. The transfer x
can be thought of as an investment, 3x - as a return to the investment.

9In the experiment monetary cost of paying back is linear: Cm(q) = q. I assume that there
is also a psychological cost of paying back C (q) which assumed to be convex, so that the
overall cost C(q) = Cm(q) +C (q) is convex. This assumption is admittedly ad hoc, but it is
needed to capture the predominance of non bang-bang behavior.
Alternatively, one can assume that Principal’s utility from money is concave with linear cost.
Then, after rescaling utility to linear, cost become convex.

10Of course, x itself is a signal of the Principal’s altruism, but I assume that the Agent
updates his belief on the Principal’s altruism after observing x, which brings the belief at the
beginning of the subgame.
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Agent decides on q. We can consider x as a constant at this point. Dropping
x and other constants in the payoff functions leads to the following simplified
expressions for the payoffs:

V = q − �(C(q) + fIq<q̂) (6)

U = �̂�q − C(q) − fIq<q̂ (7)

I specify now the distribution of the Principal’ and the Agent’s characteristics
and information structure of the game.

Let the Principals and the Agents be heterogenous - some of them are
pro-social, others are selfish. I denote the type of the Principal by �P , and
the type of the Agent by �A. For both - the Principals and the Agents,
�j ∈ {Social, Selfish}. The type is the private information.

The pro-social actors are characterized by altruism �H and reciprocity in-
tensity �H , the selfish ones - by the pair (�L, �L), where

�H > �L, �H > �L, 0 ≤ �j ≤ 1, �H�H ≤ 1

To simplify the analysis, I assume11 that �L = 0.
Players (Principals and Agents) are drawn from the same population. The

share of the pro-social actors is not known, but the actors have some beliefs
about the population composition. Players rationally believe that the others
in the society (or population) are like themselves, i.e. they exhibit rational
projection bias12 (i.e. consistent with Bayes rule). Loewenstein et al. [2003]
provide evidence for the existence of projection bias and develop a formal model.
Bénabou and Tirole [2006b] discuss the implication of the projection bias for
collective beliefs.

Denote by �H the probability, assigned by the pro-social Principal to being
matched with the pro-social Agent and by �L the probability, assigned to the
same event by the selfish Principal:

�H = Prob(�A = Social∣�P = Social) = Prob(� = �H ∣� = �H) (8)

�L = Prob(�A = Social∣�P = Selfish) = Prob(� = �H ∣� = �L) (9)

According to the rational projection bias, assume that

�L < � < �H

where � is the true share of the pro-social actors.
Notice that the Principal moves first and doesn’t know the type of the Agent

with whom she is matched. The Agent, on the contrary, observes the action of
the Principal, and can use this to learn about the Principal’s type. Because of
this, I suppose that behavior of the Principal is driven by her (unconditional)
altruism13, whereas the behavior of the Agent is driven by his reciprocity, which

11The more general setting with the four possible pairs (�k , �l) and without requiring
�L = 0 can be considered. This, however, leads to more tedious computations but doesn’t
bring additional intuition. So, I restrict attention to the simpler setting.

12The rational projection bias can be determined as ”tendency to look at others (other
people or future selves) from the point of view of one’s current self” - see Tirole [2002].

13Alternatively, one can assume that given the prior belief on the Agent’s altruism, the
Principal’s altruism is equal to the sum of her pure (unconditional) altruism �p and reciprocal
altruism �r = �PE[�A]. This results in the Principal’s altruism towards the Agent at the
level �H = �pH +�HE[�A] or �L = �pL+�LE[�A], depending on the type of the Principal.
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is reflected by the structure of altruism in the utility functions V and U in (6)
and (7): only altruism � affects the Principal’s behavior, and only reciprocity
intensity �, interacted with the belief on the Principal’s type �̂ - affects the
Agent.

This setting brings us to the following signaling game with two-sided asym-
metric information.

The Principal is of type �P ∈ {Social, Selfish}, or, equivalently, � ∈ {�H , �L}.
The Agent is of type �A ∈ {Social, Selfish}, or, equivalently, � ∈ {�H , �L}. Each
player’s type is his/her private information.

To make notation simpler, I will write in what follows that the Principal is
of type i = H (i = L) when �P = Social (�P = Selfisℎ), which is equivalent to
� = �H (� = �L). Similar convention will be used for the type j of the Agent.

The Principal’s strategy is a type-contingent pair (fi, q̂i) ∈ {0, f}× [0,+∞),
i = L,H (where the index L is used for the selfish type, and H indexes for the
pro-social type).

The Agent’s strategy is a type-contingent back-transfer conditional on the
Principal’s action qj(f, q̂) where qj ∈ [0,+∞), j = L,H .

The Principal has belief on the probabilities to be matched with the pro-
social Agent, dependent on the Principal’s type: �H or �L.

The Agent’s ex-post belief � is determined by the Principal’s observed action,
�(f, q̂) = Prob(i = H ∣f, q̂). There is a one-to-one correspondence between belief
� and the ex-post expectation of the Principal’s type �̂: �̂ = ��H + (1− �)�L,
so that �̂ can be considered instead of �. The payoffs are given by (6) and (7).

The solution concept is the Perfect Bayesian equilibrium, in which Agent’s
belief off the equilibrium path are ”reasonable”, in the sense of the intuitive
criterion of Cho and Kreps.

The game described above corresponds to the Incentive Treatment. For the
Baseline Treatment the fine f is exogenously set to zero.

I now proceed backwards in the analysis of the game.
Consider the Agent’s Best Response back-transfer for the different treat-

ments of the experiment. The Agent’s participation threshold isn’t relevant,
since paying back zero is feasible.

Claim 1. In the Trust Game, if the Agent holds beliefs �̂ on the Principal’s
altruism, the Best Response back-transfer q is:

1. in the baseline treatment (fine isn’t possible) and in the incentive treatment
when the Principal chooses not to punish (f = 0): q = qA(�̂�).

2. in the incentive treatment when the Principal chooses to impose a fine
(f = f):

q =

⎧
⎨
⎩

qA(�̂�) if q̂ < qA(�̂�)

q̂ if qA(�̂, �) < q̂ < q̃A(�̂, �)

qA(�̂�) if q̂ > q̃A(�̂�)

where q̃A(�̂�) is determined by (see figure 2)

�̂�qA − C(qA)− f = �̂�q̃A − C(q̃A), and q̃A > qA

and q̃A(�̂, �) is an increasing function of �̂.
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Figure 2: Agent’s payoff
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Figure 3: Back-transfer as a function of threshold

The proof of Claim 1 is given in the Appendix.
The value q̃A(�̂�) can be interpreted as the maximal performance level,

which can be implemented when extrinsic incentives are provided to the in-
trinsically motivated Agent, whereas qA(�̂�) is the maximal value which can
be implemented with intrinsic motivation only. For a given belief �̂ holds
q̃A(�̂�) > qA(�̂�), and so under symmetric (or revealed) information, if an
extrinsic incentive is added to intrinsic motivation, the performance level is
higher. So, the fine serves as a ”positive reinforcer”.

When the threat of the fine is imposed, the Agent has to give up some utility
and faces a trade-off between complying and departing from his preferred back-
payment qA by selecting the desired back-payment q̂ and paying a fine and
sticking with his preferred back-payment qA. The value q̃A determines the
Agent’s preferred option: if the desired back-payment is below this value, the
Agent prefers to diverge from qA to q̂, if the desired back-transfer is higher
than q̃A, the Agent prefers to disobey and pay the fine. So, q > q̃A can’t be
implemented with a threat of fine.

It follows from the Claim that, contrary to the standard contract theory,
when extrinsic incentives are used for the intrinsically motivated Agent, the
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actual back transfer can be higher, equal or lower than the desirable back-
transfer, as illustrated by Figure 3.

If q̂ < qA, the required performance is low compared to the intrinsic motiva-
tion, so the Agent is willing to perform better than he is asked for. For q̂ = qA

the intrinsic motivation is just enough to motivate the Agent for the required
level of performance. Finally, q̂ > qA corresponds to the case when intrinsic
motivation isn’t enough to inspire the Agent for high enough performance.

Before starting the analysis of the Principal’s move, I introduce some nota-
tion.

Denote by
qij = qA(�i, �j)

the maximal back-transfer which can be implemented by using intrinsic mo-
tivation only, given that the Agent with � = �j holds belief �̂ = �i. These
back-transfers are determined by C′(qij) = �i�j . Since �L = 0,

qHL = qLL = 0

Denote by
q̃ij = q̃A(�i, �j)

the maximal back-transfer which can be implemented by using both intrinsic
and extrinsic motivation, i.e. by imposing the (threat of) fine, given that the
Agent with � = �j holds belief �̂ = �i. It follows from Claim 1 that

C(q̃LL) = f (10)

I now show that under some restrictions on the parameters, the game has
the separating equilibrium with crowding-out.

Proposition 1. Assume that qLH ≤ q̃LL.
If

q̃LH ≤ qHH , �H ≥ �̂H , �L ≤ �̂L (11)

where

�̂H =
q̃LL − �HC(q̃LL)

qHH − �HC(qHH )
≤ 1 (12)

�̂L =
q̃LL − �LC(q̃LL)

qHH − �LC(qHH )
≥ 0 (13)

then there exists unique equilibrium satisfying the Cho-Kreps intuitive crite-
rion. The equilibrium is separating and has the crowding-out property.

The conditions (11) are also necessary for the existence of the crowding-out
equilibrium.

In this equilibrium the �H-type imposes no (threat of a) fine, the �L-type
threatens a fine:

f∗
L = f, f∗

H = 0

The desired back-transfers are: q̂∗L = q̃LL, any q̂∗H ≤ qHH .
In particular, it is possible to have

q̂∗L > q̂∗H
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The actual back-transfers are

q∗LL = q̃LL, q∗LH = q̃LL, q∗HL = 0, q∗HH = qHH

where q∗ij is the equilibrium back-transfer to the �i-Principal from the �j-Agent.
The average back-transfer to the pro-social Principal is higher than that to

the selfish one:
�q∗HH ≥ q∗LL

The Proof of Proposition 1 is given in the Appendix.
The assumption qLH ≤ q̃LL means that when the selfish Principal controls,

revealing his type in this way, both types of Agents exert the minimal effort
q̃LL. Were the inequality qLH ≤ q̃LL to be reversed, the pro-social Agent would
exert effort qLH when controlled. In this case the proposition still holds with
the thresholds �̂j determined by other (more complicated) formulae.

The condition q̃LH ≤ qHH is crucial to guarantee crowding-out. In fact, were
it be violated, the separating equilibrium could still emerge, in which case14 the
selfish Principal controls at level q̃LH and obtains this effort from the pro-social
Agent. Since the pro-social Principal obtains the lower effort qHH from the pro-
social Agent, the average performance for her is lower compared to the selfish
Principal (the selfish Agents exert zero effort in both cases - whether they are
controlled or not). Finally, the conditions on beliefs �j are equivalent to the
incentive compatibility constraints for a separating equilibrium.

To guarantee that (12) and (13) in Proposition 1 hold, the sorting condition
is required. For a given setting it can be written as

�HVH(qT )− VH(qP ) ≥ �LVL(qT )− VL(qP ) (14)

for all qP ≤ qT ≤ Q, where Vi(q) = V (q, �i), qP stands for performance,
realized when the Principal chooses to ”punish”, i.e. f = f , qT stands for
performance, realized when the Principal chooses to ”trust”, i.e. f = 0. The
cut-off Q = max{qHH , q̃LH} is needed because the utility function V is non-
monotone.

The sorting condition says that when the pro-social Principal prefers to
punish, the selfish one prefers to punish even stronger. Whereas, if the selfish
Principal prefers to trust, the pro-social one prefers to trust to a larger degree.

The proposition makes it clear that the emerging separating equilibrium in
the signaling game accounts for the behavioral patterns observed in the exper-
iment. Intuitively, the pro-social Principal chooses not to impose the fine, i.e.
not to use the extrinsic incentive, signaling in this way her generosity and in-
spiring high intrinsic motivation of the pro-social Agent, which perform at a
comparatively high level qHH . If the pro-social Principal is matched with a self-
ish Agent, who is not intrinsically motivated, the performance is zero: qLL = 0,
since there are no extrinsic incentives.

Imposing the threat of fine (negative ”bonus for bad performance”), i.e. us-
ing the extrinsic incentive, crowds out the intrinsic motivation of the pro-social
Agent because this signals low altruism of the Principal. However, provision
of the extrinsic incentive guarantees performance of all Agents15 at a compara-
tively low level q̃LL. This can lead to the observed crowding out in the Agent’s

14For some values of parameters there can be pooling equilibria.
15The pro-social Agents could perform at the level qLH , if qLH > q̃LL. This, however, ruled

out by the Proposition assumption.
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performance: the average for the lottery between qHH and qLL = 0 is higher
than q̃LL for some values of the parameters.

The rational projection bias is crucial to guarantee the no-mimicking (in-
centive compatibility) condition. The Principals have different beliefs on the
Agent’s type, for instance, the pro-social Principal is more optimistic. Because
of this, the pro-social Principal prefers the lottery between high qHH and zero,
whereas the selfish Principal prefers the comparatively low but sure outcome16

q̃LL.
I now turn to a more structured discussion of the conditions for the separat-

ing crowding out equilibrium to emerge. The condition qLH ≤ q̃LL is equivalent
to C(qLH) ≤ C(q̃LL). Since C(q̃LL) = f - see (10), this means that f should be
high enough:

f ≥ f1 ≡ C(qLH)

The back-transfer q̃LH is determined, according to Claim 1 by

�L�HqLH − C(qLH)− f = �L�H q̃LH − C(q̃LH)

where q̃LH is chosen on the decreasing part of the graph of the function
F (q) = �L�Hq − C(q) (see Figure 2). Consequently, q̃LH ≤ qHH is equivalent
to

�L�HqLH − C(qLH)− f ≥ �L�HqHH − C(qHH)

which can be rewritten as

f ≤ f2 ≡ (�L�HqLH − C(qLH))− (�L�HqHH − C(qHH ))

The conditions �H ≥ �̂H and �L ≤ �̂L with the thresholds given by (12) and
(13), show that the projection bias should be large enough to ensure incentive
compatibility.

The following corollary gives the more structured description of the crowding-
out separating equilibrium.

Corollary 1. For a generic triple (�L, �H , �H) and quadratic cost function
C(q) = c

2q
2 there always exists a non-empty set of the parameters (�L, �H , f)

such that there exists a separating equilibrium with crowding-out.
These parameters satisfy to (12) and (13) and the inequality f1 ≤ f ≤ f2.

If cost isn’t quadratic, the additional condition for a triple (�L, �H , �H)

�L�H�2
H

(
qLH

�L�H

−
qHH

�H�H

)
≤ C(qLH)

is required to obtain a non-empty of the parameters (�L, �H , f), leading to a
separating equilibrium with crowding-out.

16This reasoning can also be applied if the Principals and the Agents are drawn from two
independent distributions, so that there is no projection bias, but the Principals are risk-averse.
In this case, for the lottery between V (qHH) and V (0) the �L-type has a higher spread, since
VL(qHH ) > VH (qHH) and VL(0) < VH (0) (in the separating equilibrium VL(0) = −�Lf ,
VH (0) = 0). Because of this, for some range of parameters, the certain outcome VL(q̃LL) is
better than the certainty equivalent of the lottery for the �L-type, but below the certainty
equivalent for the �H -type. So, the separating equilibrium with crowding-out can also emerge
in such setting.
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The Proof of Corollary 1 is given in the Appendix.
The Corollary describes a set of parameters, under which the sorting con-

dition (14) holds. It stays, for instance, that the available extrinsic incentive f

should not be neither too weak neither too strong for the separating equilibrium
with crowding-out to appear. Intuitively, if the available extrinsic motivator is
too weak and its use reveals the selfish type, the Agent’s intrinsic motivation
is crowded-out, whereas extrinsic incentives is weak, which leads to a low per-
formance. Because of this, such outcome can’t be an equilibrium, as selfish
Principal prefers not to reveal her type. On the other hand, if the available
extrinsic motivator is too strong, the pro-social Principal prefers to use it, since
it overcomes the decrease in intrinsic motivation, and pooling with threat of
punishment becomes an equilibrium outcome.

3.2 The Control Game

In the experiment conducted in Falk and Kosfeld [2006] the Principal chooses
whether to restrict the set of Agent’s effort from below. Output is again equal
to effort.

Put formally, the Principal offers a contract q which can take two values -
0 or qc, where the latter is exogenously set by the experimenter. The Agent
then chooses effort q ∈ [q,∞). Effort is costly for the Agent. The Agent has an
initial endowment of 120.

The experiment has a number of findings which can not be explained within
the selfishness framework. For instance, the Agents, when offered a contract
q > 0, exert, on average, less effort, than when offered q = 0, which means
that extrinsic incentive (control) has a negative impact on Agents’ performance.
This demonstrates a hidden cost of control effect. The observed behavior of the
Agents is heterogenous: there is observed positive, negative and neutral reaction
to control. Finally, many Principals choose not to control.

The reciprocal altruism framework accounts for these experimental findings.
As for the Trust Game, I use the reciprocal altruism framework and build a

model matching the experiment design.
The selfish utilities of the Principal and the Agent are given by17

v = q

u = 120− C(q)

The reciprocal altruism framework leads to the (social) utilities

V = q + �(120− C(q))

U = 120− C(q) + �̂�q

The initial endowment of the Agent allows to disregard the Agent’s par-
ticipation constraint. By dropping the constants, the Principal’s and Agent’s
utilities can be simplified to

V = q − �C(q) (15)

U = �̂�q − C(q) (16)

17The experiment sets C(q) = q/2. As for the Trust Game, I assume that C(q) is convex.
See footnote 9 for the justification of the assumption.
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Denote by qA(�̂�) the Agent’s preferred effort level as in the benchmark case
- see (4).

Consider the setting with heterogenous Principals and Agents, adopted in
the analysis of the Trust Game in subsection 3.1.

The Principal’s strategy is a type-contingent choice of control q
i
∈ {0, qc},

i = L,H . The Agent’s strategy is a type-contingent effort, conditional on the
Principal’s action qj(q) ∈ [q,+∞), j = L,H .

The Principal’s belief on the probabilities to be matched with the pro-social
Agent depends on the Principal’s type and are given by (8) and (9). The
Agent’s ex-post beliefs are determined by the Principal’s observed action, �(q) =
Prob(� = �H ∣q). There is a one-to-one correspondence between belief � and
the ex-post expectation of the Principal’s type �̂: �̂ = ��H +(1−�)�L, so that
�̂ can be considered instead of �. The payoffs are given by (15) and (16).

As in the analysis of the Trust game, I look for a Perfect Bayesian equilibrium
in which Agent’s beliefs off the equilibrium path are ”reasonable” in the sense
of the intuitive criterion of Cho and Kreps.

I proceed backwards in the analysis of the game.
Consider first the Agent’s Best Response choice of effort.

Claim 2. If qA(�̂, �) ≥ q then the Agent’s Best Response is q = qA(�̂, �);
otherwise it is q = q.

The Claim is evident as it simply says that the Agent chooses the global
maximizer of his utility whenever it’s feasible. Otherwise, he chooses the closest
feasible effort which is equal to q - the lower bound of the set of feasible efforts.

Denote by qij the effort, voluntarily exerted by the Agent with �j which
beliefs that the Principal’s type is �i, i.e. qij = qA(�i, �j) and C′(qij) = �i�j .

Consider now the Principal’s decision. If the Principal with altruism �i holds
beliefs �i to be matched with a pro-social Agent, who, in turn, holds the true
beliefs about the Principal’s type, then under no-control, the Principal’s utility
is18

V = �i(qiH − �iC(qiH)) (17)

Under control, if effort qiH is available, i.e. qiH ≥ qc, and the Principal’s
utility is still given by (17). If qiH < qc, then the effort q = qc is implemented
and the Principal’s utility is

V = (qc − �iC(qc)) (18)

Denote by qC1
i < qC2

i the two roots of the equation (see Figure 4)

�i(qiH − �iC(qiH)) = (qc − �iC(qc))

Comparing the Principal’s utility for the case when the Agent holds the true
beliefs on the Principal’s type, given by (17) and (18), leads to the following
characterization of the Principal’s Best Response in this case:

Claim 3. Under symmetric information about the Principal’s type, the type �i

-Principal’s optimal strategy is:

q =

{
qc if qc ≤ qC2

i

0 if qc ≥ qC2
i

18qiL = 0 since �L = 0.
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qqiH qC2
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i

πiVi(qiH)

Vi(qiH)

Figure 4: Principal’s utility

Consider now the case when the Principal’s type is her private information.

Proposition 2. For each qc < qHH , (�L, �H , �H) there exists a range of pa-
rameters (�L, �H) such that there exists a unique separating equilibrium of the
Control Game satisfying the intuitive criterion. There is crowding-out in effort
in equilibrium.

The parameters should be such that

�L ≤ �̂L, �H ≥ �̂H

where for the case qc ≥ qLH

�̂L =
qc − �LC(qc)

qHH − �LC(qHH )
> 0

�̂H =
qc − �HC(qc)

qHH − �HC(qHH )
< 1

for the case qc < qLH

�̂L =
qc − �LC(qc)

[qHH − �LC(qHH)] + [qc − �LC(qc)]− [qLH − �LC(qLH)]
> 0

�̂H =
qc − �HC(qc)

[qHH − �HC(qHH)] + [qc − �HC(qc)]− [qLH − �HC(qLH)]
< 1

In equilibrium, the pro-social Principal doesn’t control, whereas the selfish
Principal does:

q∗
H

= 0, q∗
L
= qc

The Agent’s performance

q∗HH = qHH , q∗HL = 0, q∗LH = max{qLH , qc}, q∗LL = qc
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where q∗ij is the equilibrium back-transfer to the �i-Principal from the �j-Agent.
The average effort to the pro-social Principal is higher than that to the selfish

one.

The Proof of Proposition 2 is given in the Appendix.
As for the Trust Game, the sorting condition, similar to (14) is required. It

is written as
�HVH(qT )− VH(qc) > �LVL(qT )− VL(qc) (19)

for the case of qc ≥ qLH , and

�HVH(qT )−[�HVH(qc)+(1−�H)VH(qLH)] > �LVL(qT )−[�LVL(qc)+(1−�L)VH(qLH)]
(20)

for the case of qc < qLH .
Since the Principal has only binary choice - to control or to trust, the sorting

condition should be verified only for qT = qHH (an outcome qc or a lottery
between qc and qLH correspond to a (variable) outcome qP in (14)).

The mechanism of emerging of the separating equilibrium with crowding-out
is similar to that of the Trust Game. By choosing not to control, the pro-social
Principal signals her kindness, and this inspires high intrinsic motivation for the
pro-social Agent. Because of this, when matched with the pro-social Principal,
the pro-social Agent exerts high effort qHH . However, the selfish Agent doesn’t
react to the signal of the Principal’s generosity and, once not controlled, exerts
zero effort.

The selfish Principal chooses to control and guarantees the (comparatively
low) output qc. However, even selfish Principal inspires the pro-social Agent’s
intrinsic motivation, so effort from the pro-social Agent can be qLH , if it’s higher
than the controlling threshold qc.

The lottery between qHH and 0 effort is differently treated by the two Prin-
cipals. The pro-social one is more optimistic, and beliefs that the chance to get
qHH is higher, compared to the beliefs of the selfish Principal. Because of this,
no-mimicking holds - the pro-social Principal prefers the lottery, whereas the
selfish Principal prefers the sure outcome.

As in the Trust Game, the separating crowding-out equilibrium emerges
when the available extrinsic incentive is neither too weak nor too strong.

I now turn to the more detailed description of other equilibrium structures
of the Control Game.

Proposition 3. For given �L, �H , �H , �L, �H , there exist the threshold values
qi, qi < qj for i < j, such that the equilibrium in the Control Game is:

1. No-control pooling for qc ∈ [0, q1], which represents no effect of control;

2. Separating equilibrium with crowding-out for qc ∈ [q2, q3] (hidden cost of
control);

3. Control pooling for qc ∈ [q3, q4] (positive effect of control);

4. Separating with no crowding-out in effort qc ∈ [q4, q5] (positive effect of
control);

5. No-control pooling qc ∈ [q6,+∞).

For qc ∈ [q1, q2] and qc ∈ [q5, q6] an equilibrium involves mixed strategies.
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The Proof of Proposition 3 is given in the Appendix.
Figure 5 illustrates the proposition.

V

q

q − αLC(q)

q − αHC(q)

πL(qEH − αLC(qEH))

πL([qHH−αLC(qHH)]−[qLH−αLC(qLH)])
1−πL

πH(qHH − αHC(qHH ))

q1q2 q3 q4 q5q6

Figure 5: Equilibrium structure in the Control Game

Falk and Kosfeld [2006] found in the experiment that for small qc the hidden
cost of control effect is stronger compared to large qc. The model is in line with
this result. In fact, the hidden cost of control is obtained for qc ∈ [q2, q3]; for
larger qc, the pooling equilibrium with control emerges which means that the
increase in qc will lead to the increase in average performance (which is equal
to qc). For even larger qc the separating equilibrium in which the controlling
Principal gets larger output than the non-controlling one, so there is also the
positive effect of control rather than the hidden cost.

The experiment finds strong heterogeneity between the Agents and that
there are Agents which react positively, neutrally or negatively to control. The
heterogeneity of the Agents is assumed in the model, and the reaction of the
Agents is predicted. Controlling the pro-social Agents can lead to the decrease
in his performance. For instance, for qc ∈ [q2, q3] when the crowding-out equilib-
rium emerges, the controlled pro-social Agent performs at q = qc, whereas the
uncontrolled at q = qHH > qc. Controlling the selfish Agent leads to the increase
in performance for qc ∈ [q2, q5]. Controlling the pro-social Agents also leads to
the increase in their performance for the control pooling equilibria. Finally, the
neutral effect of control can emerge in the game but out of equilibrium path.
According to Claim 2, if Agent’s preferred output qA is higher than control,
the Agent will perform at level qA independently on whether he is controlled or
not. In particular, for the case of weak control (qc is small enough), even if the
pro-social Agent is controlled, he can choose to perform at a higher level.

The experiment finds that for larger qc, the larger share of the Principals
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chooses to control. This is also the prediction of the model: for small qc none of
the Principals controls which results in the no-control pooling equilibrium; for
larger values of qc the hidden cost of control equilibrium emerges in which only
the selfish Principals control; for even larger values of qc the control pooling
equilibrium emerges in which both types of Principal choose to control.

4 Contracts without Extrinsic Incentives

In this section I consider the case when extrinsic incentives are not available
at all. In this case the Agent is motivated to exert effort either through his
intrinsic motivation either because he’s ”forced” to perform by the contract.
In the former case the Agent is happy (gets positive utility), in the latter case
the Agent doesn’t enjoy the interaction with the Principal (i.e. performs at his
participation constraint).

Let the Principal’s altruism parameter � be her private information and the
rest be symmetrically known.

The timing is as follows:

1. Principal learns �.

2. Principal offers a contract19: a command, i.e. specifies the output q.

3. Agent accepts or rejects the contract.

4. Contract is implemented and payoffs are realized.

So, we have a signaling game with common values.
To simplify the exposition even further, I consider the two-type case and

then generalize the result to the continuum of types case.
Even though the formal setting of the signaling game should be clear for

most of the readers, I provide its formal description in the next subsection and
proceed then to the analysis of Perfect Bayesian Equilibria and refinement.

Readers who are not interested in the technical details can skip the technical
subsection 4.1 and jump to 4.2 where the outcome of the signaling game as
predicted by the refined equilibrium is described.

4.1 Signaling with 2 types

There are 2 players - Principal (sender) and Agent (receiver).
The Principal’s type is her private information. Denote by A the set of the

possible types, A = {�H , �L}. The prior distribution is given by

� =

{
�H with prob. Π

�L with prob. 1−Π
(21)

The set of actions for the Principal20 is Q = [0,+∞). The set of actions for
the Agent is A = [0, 1] with a ∈ A be the probability of acceptance of an offer
made by the Principal.

19The contract is the take-it-or-leave-it offer.
20Actually, this set of actions can be reduced to [0, q0H ].
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A pure strategy of the Principal is a type-contingent q ∈ Q, i.e. qH for �H

type and qL for �L-type.
A pure strategy of the Agent is an acceptance rule a(⋅). The value a(q) ∈

[0, 1] is the probability of accepting the offer q. The set of Agent’s pure strategies
ℱ is the set of all mappings from Q to [0, 1].

A mixed strategy of the Principal is a probability distribution over Q con-
ditional on type, �(⋅∣�). Clearly her mixed strategy can be represented by the
two probability distributions over Q: (�H(⋅),�L(⋅)).

A mixed strategy of the Agent is a probability distribution21 � over ℱ . The
resulting mapping is still a mapping from Q to [0, 1]. So, the mixed strategy of
the Agent, denoted by a� (⋅), is still an element of ℱ . I will will restrict attention
to the pure strategies of the Agent.

The Agent’s ex-post beliefs on the Principal’s type distribution �(⋅) is

�(q) = Prob(� = �H ∣q)

There is one-to-one correspondence between Agent’s beliefs �(q) and Agent’s
ex-post expectation on the Principal’s altruism

�̂(q) = �(q)�H + (1− �(q))�L (22)

which is paralleled in the Agent’s ex-post expected payoff22

U�(q, a;�) = U(q, a, �̂;�)

The pure-strategy profile is thus ((qH , qL), a(⋅), �(⋅)). The mixed strategies-
beliefs profile is ((�H(⋅), �L(⋅)), a(⋅), �(⋅)).

The payoffs in the game for the pure-strategy profile ((qL, qH), a(⋅)) are

V (q, a(⋅), �) = V (q, �)a(q) = (q − �C(q) + �B)a(q)

U(q, a(⋅), �;�) = U(q, �;�)a(q) = (B − C(q) + ��q)a(q)

which parallel (1) and (2).
The payoffs for the mixed strategies can be determined in a standard way.
Denote by qPH and qPL the preferred output of the high and low altruism

Principals, respectively. Formally, qPH = qP (�H), qPL = qP (�L). From lemma 1
we have

qPH < qPL (23)

Intuitively, the Principal who cares more about the Agent wants him to
work less. Intuitively, since the marginal cost of effort is increasing and the
Principal partially internalizes this cost, the one with stronger internalization
prefers to have a lower marginal cost C′(q) because marginal benefit from output
is constant (equal to 1).

Denote by q0H and q0L the Agent participation thresholds when he learns that
the Principal type is �H and �L correspondingly. Formally, q0H = q0(�H , �),
q0L = q0(�L, �).

Denote the participation threshold when there is no update on the Principal’s
type by q0E :

q0E = q0(E�, �)

21There is an issue of measurability over the space of functions.
22It is easy to see that U�(q, a(⋅); �) = �(q)(B−C(q)+�H�q))a(q)+(1−�(q))(B −C(q)+

�L�q))a(q) = (B + �̂�q − C(q))a(q).
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where
E� = Π�H + (1−Π)�L

According to Lemma 4,
q0L < q0E < q0H . (24)

Intuitively, if the Principal’s type is revealed to the Agent, then he is willing
to exert more effort for a Principal who cares more about him. This is natu-
ral since the worker internalizes the benefits from output and intensity of the
internalization is higher for the worker connected with more altruistic Principal.

4.1.1 The Perfect Bayesian Equilibrium

As is standard in signaling games, the set of the Perfect Bayesian Equilibria
(PBE) is large. In this part of the paper I characterize the structure of the PBE
set and proceed to refinement in section 4.1.2.

Consider a PBE of the signaling game. Denote the equilibrium (pure) offers
of the Principal of type �H (�L) by q∗H (q∗L), the equilibrium acceptance rule
of the Agent by a∗(⋅). The beliefs supporting the equilibrium is �∗(⋅). So, the
pure-strategy equilibrium profile is ((q∗H , q∗L), a

∗(⋅);�∗(⋅)). Similarly, the mixed-
strategy equilibrium profile is ((�∗

H(⋅), �∗
L(⋅)), a

∗(⋅);�∗(⋅)).
Denote by BR�(q) the best response acceptance rule for the Agent with

ex-post beliefs �(⋅):
BR�(q) = argmax

a∈[0,1]

U�(q, a;�) (25)

Lemma 5. For any beliefs �(⋅), the Best Response acceptance rule is a threshold
with the threshold value

q̂(q) = q0(�̂(q), �) (26)

BR�(q) =

⎧
⎨
⎩

1 if q < q̂(q)

0 if q > q̂(q)

any a ∈ [0, 1] if q = q̂(q)

where �̂(q) is given by (22)
For any beliefs �(⋅) and any offer q

q0L ≤ q̂(q) ≤ q0H (27)

so that for any Best Response acceptance rule, the Agent accepts at least offers
q < q0L and rejects any offer q > q0H .

Corollary 2. The equilibrium acceptance rule a∗(⋅) is a threshold with threshold
value given by (26)

The Proof of Corollary 2 is given in the Appendix.
I now proceed to the analysis of the Principal’s equilibrium offer. First, I

prove the monotonicity Lemma, which is based on a standard revealed prefer-
ences argument.

Lemma 6. For any q∗L ∈ supp �∗
L, q

∗
H ∈ supp �∗

H holds

C(q∗H)a∗(q∗H) ≤ C(q∗L)a
∗(q∗L)

q∗H ≤ q∗L
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The Proof of Lemma 6 is given in the Appendix.
Next, I show that if an equilibrium has a pooling part, it can consist of only

one offer.

Lemma 7. If supp �∗
H ∩ supp �∗

L ∕= ∅ then there is only one common point in
the supports of the equilibrium mixed strategies for the two types:

supp �∗
H ∩ supp �∗

L =
{
q∗p
}

The Proof of Lemma 7 is given in the Appendix.
The two Lemmas 6 and 7 show that any PBE has a very particular structure:

there can be a pooling part - an offer q∗p made by both types of the Principal,
and a separating part - the offers made only by �H -type lying to the left of q∗p,
and the offers made only by �L-type to the right of q∗p. Put formally,

q∗H < q∗p < q∗L (28)

for any q∗H ∈ supp �∗
H ∖ supp �∗

L, q
∗
L ∈ supp �∗

L ∖ supp �∗
H if the corresponding

elements of an equilibrium exist and given that a∗(q∗H) = 1.
I will distinguish between

∙ pooling equilibria - equilibria with supp �∗
H = supp �∗

L,

∙ semi-separating equilibria23 - equilibria with supp �∗
H ∕= supp �∗

L and
supp �∗

H ∩ supp �∗
L ∕= ∅

∙ separating equilibria, for which supp �∗
H ∩ supp �∗

L = ∅.

For the further analysis the relative position of qPH , qPL , q
0
L, q

0
E is important.

It is partially described by (23) and (24). More precise characterization can be
obtained by inspecting Figure 6. The formal statement is as follows.

q

ββ3 β2 β1 1

qP
H

qP
L

q0
E

q0
L

Figure 6: The relative position of qPH , qPL , q
0
L, q

0
E

23Semi-separating equilibria are often called ”hybrid” in the literature.
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Proposition 4. There exist thresholds �3 < �2 < �1 determined by

�1 is solution to q0(�L, �) = qPL

�2 is solution to q0(�L, �) = qPH

�3 is solution to q0(E�, �) = qPH

such that

q0L < qPH for � < �2

qPH < q0L for � > �2

The thresholds �j are important to describe the equilibria structure and
properties.

For the analysis of the separating and semi-separating equilibria the crucial
is the relative position of qPH and q0L, i.e. whether � > �2 or � < �2.

The following lemma characterizes the set of the PBE in the signaling game.

Lemma 8. 1. For � ≤ �2 the signaling game has multiple pooling and semi-
separating PBE.

In any pooling equilibria there is only one offer q∗p made by both Principal
types: supp �∗

H = supp �∗
L = {q∗p}.

The offer q∗p is a pooling equilibrium offer iff q0L ≤ q∗p ≤ min{q0E, q
00
L } where

q00L > q0L is the solution to V (q00L , �H) = V (q0L, �H).
In any semi-separating equilibrium there can be one or two offers q∗H(q∗∗H ) ∈

supp �∗
H ∖ supp �∗

L, made by �H-type only, and one pooling offer q∗p, with the
acceptance probabilities a∗(q∗H) = 1, a∗(q∗p) ≤ 1; for � ≤ �3 there is only one
offer q∗H ∈ supp �∗

H ∖ supp �∗
L.

2. For � > �2 the signaling game has only unique separating PBE. In this
equilibrium q∗H = qPH , q∗L = min{q0L, q

P
L } and q∗L > q∗H .

The Proof of Lemma 8 is given in the Appendix.
Now we have obtained the structure of the set of PBE of the signaling game

in great details.
The multiplicity of equilibria is the consequence of no restrictions on the

acceptance rule for the out-of-equilibrium offers. Equilibrium refinement is a
standard procedure for the signaling games which allows to eliminate ”unrea-
sonable” equilibria.

4.1.2 Equilibrium Refinement

I will now focus on the case � ≤ �2, since there are multiple PBE in this
case, whereas for � > �2 there is unique PBE24. I use the intuitive criterion25

proposed by Cho and Kreps [1987]. I’ll show that it eliminates some equilibria
for the case � ≤ �2, though there is still a continuum of equilibria satisfying
it. I will argue then that one of them is ”the most reasonable” by applying a
stronger refinement.

Some notation is needed to implement the intuitive criterion, following Cho
and Kreps [1987]. Let �(A′∣q) be the ex-post probability which the Agent assigns

24It’s easy to show that the separating equilibrium satisfies the intuitive criterion.
25A survey of the refinements procedures and approaches can be found in Fudenberg and

Tirole [1991].
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to the (sub)set A′ of the Principal’s type after observing an offer q. For the two-
type case A′ can be {�H}, {�L} or A = {�H , �L}.

Formally,

�(A′∣q) = �(q)I{�H∈A′} + (1− �(q))I{�L∈A′}

Let
BR(A′, q) =

∪

�: �(A′∣q)=1

BR�(q)

be the set of all reasonable acceptance rules for beliefs concentrated on the
(sub)set A′ applied to the offer q would it be proposed. The acceptance rule is
”reasonable” if it is a Best Response corresponding to some beliefs concentrated
on the (sub)set A′.

Fix an equilibrium profile ((�∗
H(⋅), �∗

L(⋅)), a
∗(⋅);�∗(⋅)). Denote the equilib-

rium payoff of �j-type Principal by V
∗
j = V (q∗j , a

∗(q∗j ), �j) for some26 q∗j ∈ supp �∗
j .

Let J(q) be the set of types which for sure don’t want to deviate to q for
any reasonable acceptance rule:

J(q) =

{
�j : V ∗

j > max
a∈BR(A,q)

V (q, a, �j)

}

The set A ∖ J(q) then is the set of Principal’s types which for sure want to
deviate from an equilibrium and make an offer q, provided that some reasonable
acceptance rule will be applied.

The equilibrium satisfies the intuitive criterion if

V ∗
j ≥ min

a∈BR(A∖J(q),q)
V (q, a, �j) for all j, q (29)

The following Proposition states the main result of the equilibrium refine-
ment of the signaling game.

Proposition 5. For � ≤ �2

(
⇔ q0L ≤ qPH

)
only the pooling equilibria with

q0L ≤ q∗p ≤ q0E

satisfy the intuitive criterion.

The Proof of Proposition 5 is given in the Appendix.
For the case of � ≤ �2

(
⇔ q0L ≤ qPH

)
there are still many pooling equilibria,

satisfying the intuitive criterion, though fewer than in the set of PBE and none
of the semiseparating equilibria don’t pass the intuitive criterion. It can be
shown that the pooling equilibria, satisfying the intuitive criterion, can’t be
eliminated by applying Criterion D1 (a version of the divinity equilibrium in
the sense of Fudenberg and Tirole [1991], ch.11) or NWBR criteria.

The reason for the multiplicity of the pooling equilibria, satisfying the in-
tuitive criterion is that the equilibrium payoff for the Principal is compared in
(29) with the worst (for the Principal) reasonable acceptance rule, based on
Agent’s beliefs, concentrated on the set A = {�H , �L}. In the worst case, after
observing a deviation to q > q∗p , the Agent believes that this deviation is done

26Clearly, for any q∗j ∈ supp �∗

j , V (q∗j , a
∗(q∗j ), �j) takes the same value, so the definition of

V ∗

j is correct.
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by �L-type. Then, any offer q > q0L is reasonably rejected and the intuitive
criterion (29) is satisfied for PBE offers q∗p > q0L, since any upward deviation
from q∗p is reasonably rejected.

However, once such upward deviation is profitable for both types, the intu-
itive criterion can be strengthened by comparing the equilibrium payoff in (29)
with payoff obtained under ”more reasonable” acceptance rule which is based
on the ex-ante beliefs instead of the worst beliefs. Then, in the right-hand side
of (29) the acceptance rule applied to deviations q > q∗HL is the Best Response
acceptance rule based on beliefs �(q) = Π, so that any q < q0E (not only q < q0L)
is accepted. This rules out all the PBE with q < q0E .

For an equilibrium offer q∗p = q0E the Agent is indifferent between accepting
and rejecting (and between any probability of accepting), but for the acceptance
rule satisfying the strengthened intuitive criterion, all the offers just below q0E
are accepted with probability 1, so if a∗(q0E) < 1, then there will be profitable
deviation for any Principal to q0E − ". Consequently, only a∗(q0E) = 1 is possible
in a (refined) equilibrium.

The strengthening of the intuitive criterion in this way is equivalent to re-
quiring the acceptance rule to be sequentially rational on the out-of-equilibrium
path. It is also equivalent to eliminating the weakly dominated acceptance rules.

Finally, the ”non-worth beliefs” intuitive criterion selects in the considered
game the Pareto-dominant pooling equilibrium, which is the equilibrium with
the highest effort.

As a result, only equilibrium with the offer q∗p = q0E for � ≤ �3 satisfies the
strengthened intuitive criterion. For �3 < � < �2 the strengthened criterion
also leads to the unique prediction for the game outcome q∗p = qPH . Indeed, this
offer is feasible, and �H -type prefers to make it. By deviating to a higher offer,
�L-type would be revealed and then the deviating offer would be rejected, so
�L-type has to pool on qPH .

It’s easy to check that the unique separating equilibrium for � > �2 which
satisfies the intuitive criterion satisfies the strengthened criterion as well.

4.2 The 2-type Signaling Game Outcome

For the rest of the discussion I call �L-type the ”tough” Principal and �H -type
- the ”generous” Principal. Consider an intuitive explanation for the signaling
game outcome.

When the Agent is highly reciprocal, � ∈ (�1, 1], he can be easily intrinsically
motivated even by the tough Principal and agrees to perform at her preferred
level qPL , which is quite high, because the Agent’s participation constraint isn’t
very tight. In this case, the tough Principal will reveal her type by requiring
performance at this high level.

However, as the Agent’s reciprocity declines, his intrinsic motivation de-
creases, and the tough Principal can’t inspire the Agent to perform at the level
qPL and has to follow the Agent participation constraint by offering contract
with q < qPL , still revealing her type for � ∈ (�2, �1). The Agent gets zero social
utility in this case.

For even lower reciprocity intensity, the Agent’s intrinsic motivation is not
enough to make him exert effort higher than qPH if he would learn that the
Principal is tough. In this case, the tough Principal follows the offer of the
generous Principal, in other words, she has to mimic the generous Principal.
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Figure 7: Equilibrium in the signaling game

The Agent can’t distinguish the two types of the Principal and his participation
threshold becomes being based on the expected value of the Principal altruism
E� > �L so that q = qPH breaks even. The generous Principal doesn’t want to
separate since she gets her preferred output qPH . The Agent’s expected utility
is positive. This is the case for � ∈ (�3, �2).

Finally, when the Agent’s reciprocity intensity is very low so that the Agent
doesn’t have enough intrinsic motivation to exert effort qPH , both types of Prin-
cipal follow the Agent’s participation threshold for the expected value of the
Principal’s altruism E�, not revealing the type. Neither type of the Principal
has an incentive to deviate and reveal his type. This is the case for � ∈ (0, �3).

To conclude the description of the outcome, I stress that in the 2-type sig-
naling game the tough Principal doesn’t want to mimic the generous one unless
she has to, because mimicking will result in lower output which is not desirable
for the tough Principal. However, the Agent is (intrinsically) motivated to ac-
cept an offer if it isn’t too high. As a result, if the Agent’s intrinsic motivation
isn’t high enough - due to low intensity of reciprocity or due to revealed low
altruism of the tough Principal, the tough Principal has to follow the Agent’s
participation threshold or the generous Principal’s offer.

4.3 Signaling with Continuum of Types

The analysis for 2 types can be generalized to the case of a continuum of types.
I don’t present the complete analysis, as for the 2-type case and rather focus
on the ”most reasonable” equilibrium27, which leads to the unique prediction of
the signaling game outcome.

Let the Principal’s altruism parameter � be distributed on the interval
[�1, �2] ⊂ [0, 1] with continuous CDF F (�).

The interval’s bounds �1 and �2 are the exact bounds of the distribution:

27See the refinement section for the 2-type case for the discussion of the ”most reasonable”
equilibrium.
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�1 = inf{�∣F (�) > 0}, �2 = sup{�∣F (�) < 1}.
Let �× be the solution to

q0
(
�×, �

)
= qP

(
�×

)

which always exists28 and is unique since the left-hand side is increasing and
the right-hand side is decreasing function of � - see Figure 8.

The next property follows directly from the definition of �×.

Claim 4. The Principal’s preferred output qP is feasible, i.e. satisfies the
Agent’s participation constraint iff � ≥ �×.

So, the population of the Principals can be separated into two sub-populations.
One consists of comparatively generous ones with � ≥ �×, which can inspire the
Agent’s intrinsic motivation high enough to implement their preferred output
qP , would their altruism be revealed. Another subpopulation consists of com-
paratively tough Principals with � < �×, which can not inspire high enough
Agent’s intrinsic motivation.

Denote by
E�̃[�] = E[�∣� < �̃]

the expected value of the truncated distribution of Principal’s altruism param-
eter, bounded at the top by �̃.

The signaling game outcome in the ”most reasonable” equilibrium is char-
acterized by the following Proposition.

Proposition 6. 1. If � is distributed inside the interval [�×, 1], then all
the Principals implement their preferred output in the ”most reasonable”
equilibrium, i.e. the equilibrium contract is

q = qP (�)

2. If �1 < �× and
q0 (E�, �) > qP (�2) (30)

then there exists �̃ ∈ [�×, �2] determined as solution to

q̃0 ≡ q0 (E�̃[�], �) = qP (E�̃[�]) (31)

such that the ”most reasonable” equilibrium contract is given by

q =

{
qP (�, �) for � > �̃

q̃0 for � ≤ �̃

where q̃0 is determined by (31).

3. If the inequality (30) doesn’t hold29, then the ”most reasonable” equilib-
rium contract is full pooling with

q = q0 (E�, �)
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Figure 8: Equilibrium in signaling game. Case 1

The Proof of Claim Proposition 6 is given in the Appendix.
Figure 8 illustrates the equilibrium contract for the case when ex-ante all the

Principals in the population are highly-altruistic, i.e. � ≥ �× and can inspire
the Agent to perform at their preferred level (point 1 of the Proposition).

Figure 9 illustrates the case when there are both generous and tough Prin-
cipals, i.e. with altruism greater and smaller than �×, but there are enough
Principals with high altruism (point 2 of the proposition). In this case only
a part of the Principals’ subpopulation with � > �×, for instance those with
� ≥ �̂ implement their preferred performance level qP .

The first case from Proposition 6 emerges for high �. As � decreases, the
equilibrium structure switches to the one described at point 2 of the Proposition
and then to the one of point 3.

Similarly to the 2-type case, when the Agent is highly reciprocal, the sepa-
rating equilibrium in which all the Principals implement their preferred output
emerges. For lower levels of reciprocity, the equilibrium structure shifts to pool-
ing and a larger share of Principals can’t implement their preferred performance
level.

4.4 Application to the Organization Design

For the 2-type framework, the generous Principal implements her preferred out-
put for � ∈ [�3, 1]. In this case she cares neither about the altruism level of
the tough Principals �L, nor about the structure of the Principals’ population
characterized by Π.

28The fact that it can be that �× > 1 is not a problem.
29This implies �1 < �×.
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Figure 9: Equilibrium in signaling game. Case 2

However, if � ∈ [0, �3), the generous Principal can’t implement her preferred
output in the emerging pooling equilibrium. In this case she is affected by the
adverse effect which emerges due to the very existence of the tough Principals
in the population.

Such adverse effect is present for the continuum-type framework as well. In
particular, for the case illustrated by Figure 9, the Principals with � ∈ [�×, �̃)
are affected. For the case, described in point 3 of Proposition 6, the whole
generous subpopulation with � ∈ [�×, �2] is affected.

Even a part of the ”tough” Principals with � < �× is affected as they get
output lower than the Agent’s participation threshold would the Principals’ type
be revealed. For the case depicted by Figure 9, these have � ∈ (E�̂[�], �

×]; for
the case of point 3 of Proposition 6 these have � ∈ (E�, �×].

In both frameworks - the 2-type and the continuum-type,

∙ the most altruistic Principals (among the generous ones) are less likely to
be affected,

∙ if Agent’s reciprocity is high, then all the concerned Principals are less
likely to be affected,

∙ if tough Principals are not too tough or if they represent a smaller share in
the population (so that the expected altruism level in the whole population
is high enough), then all the concerned Principals are less likely to be
affected.

This means that the most generous Principals care to a lesser extent about
the environment in which they operate. For the Principals which are generous
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but not the most generous ones, the environment can play an important role
for their ability to elicit a high performance level and they prefer to be in the
environment of the generous Principals and highly reciprocal Agents.

The counterpart of the adverse effect is an advantageous effect for the tough
Principals which emerges due to the very existence of the generous Principals
in the population. In the 2-type framework, for the case of � ∈ [0, �2) the
tough Principal gets an output which exceeds the Agent’s participation thresh-
old would the type of the tough Principals be revealed. In the continuum-type
framework, some Principals benefit from the same advantage: for the case de-
picted by Figure 9, these are ones with � ∈ [�1, E�̃[�]). The advantageous effect
appears when the tough Principal can mimic to be the generous ones (or when
these more generous can’t separate from the tougher ones).

As a result, the tough Principals prefer having highly reciprocal Agents and
if this is not the case - then to be in the environment of the generous Principals
to benefit from the advantageous effect in the pooling equilibrium.

Now let us take a point of view of an organization designer. Assume that
he has a choice - whether to create an organizations of type A in which the
Principals’ population is mixed, or create an organization of type B in which
the generous and tough Principals are separated. The organization designer
informs in this way the Agents about the Principal’s altruism (the information
can still be imprecise).

For instance, in the 2-type framework, the organization designer can separate
the two types, in the continuum-type framework, the designer can separate the
Principals with � > �× from those below the threshold �×.

An interesting question is how the choice of organization type influences the
overall performance in the organization?

Clearly, in the organizations of type A, the generous Principals will imple-
ment a lower output, whereas in the organizations of type B the generous Prin-
cipals will get a higher output. This shows that if separation emerges as a result
of signaling (endogenously), the tough Principals implement a higher output;
if separation is exogenous, then the relation between the outputs, implemented
by the tough and generous Principals, is reversed.

Figure 10 illustrates exogenous Principals’ separation compared to the en-
dogenous Principals’ population for the continuum-type framework.

4.5 A ”Unifying” framework

The three models considered above - the model without extrinsic incentives and
the two models related to the experiments have a lot in common and can be
unified in the following way.

At stage 1, the Principal sends a message - fixes Q̂ - the set of feasible
performance levels for the Agent. Performance is costly for the Agent. At stage
2, the Agent decides whether to comply or disobey. In case of compliance, the
Agent chooses an element q ∈ Q̂ - the implemented performance level. In case
of disobeying, the Agent chooses a disobedience option in a set of disobedience

options30
∘

Q:
∘
q ∈

∘

Q.

30The set of performance levels can be considered as a subset of the disobedience options:

Q̂ ⊂

∘

Q. Alternatively, the set of disobedience options can be considered as a set of all possible
Agent’s actions.
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Figure 10: Application to the organization design. The effect of exogenous
separation of the Principals’ population

For the model without extrinsic incentives Q̂ = {q} - the required output
level, compliance corresponds to agreement to perform at level q (a(q) = 1),

disobeying corresponds to
∘
q = 0 or, equivalently, to a(q) = 0. For the Trust

Game the performance set is Q̂ = [q̂,+∞), compliance corresponds to the choice

of some back-transfer q ∈ [q̂,+∞), disobeying corresponds to the choice of
∘
q < q̂,

in the equilibrium with disobedience
∘
q = qA. Finally, for the Control game

Q̂ = (qc,+∞), compliance means the choice of effort higher than the minimal

requirement, disobeying is the choice of effort at the minimal level:
∘
q = qc.

All the three models are based on the reciprocal altruism framework. This
means that the Agent is intrinsically motivated but there is a gap between the
Principal’s preferred performance level and that of the Agent. The Agent prefers
the lower performance.

The weaker the Principal’s altruism (i.e. the less generous she is), the larger
is the gap, the more the Principal suffers from leaving the Agent too much
flexibility, i.e. not restricting at all or imposing only slight restrictions on the
performance set Q̂. Consequently, it’s in the Principal’s interest (especially, the
tough Principal) to make a strict offer - i.e. to restrict the Agent’s performance

set Q̂ to avoid a large deviation from her preferred performance level. On the

other hand, offering a slightly restricted or non restricted at all, compared to
∘

Q,
performance set Q̂ is a generous offer, which is likely to be made by the highly
altruistic Principal.

By offering a generous performance set Q̂, the Principal can signal her gen-
erosity. By learning the Principal’s generosity, the Agent becomes inspired for

32



better performance, i.e. intrinsically motivated. An extrinsic motivator, added
to the intrinsic motivation, leads to even better performance for the symmetric
information on the Principal’s generosity. However, for the case of asymmetric
information, the use of an extrinsic motivator signals the non-generosity of the
Principal (for the case of separating equilibrium) and crowds out the Agent’s
intrinsic motivation.

Such a crowding mechanism influences the Agent’s performance for the Trust
Game and for the Control game - performance for the tough Principal can be
lower than for the generous one, despite the low performance is feasible for the
performance set, proposed by the highly altruistic Principal.

The motivation crowding out is presented in the model without extrinsic
incentives as well, though it doesn’t result in the crowding-out of performance,
because the signaling of generosity goes through offering the performance level
itself, not the (non-trivial) set of the performance levels, as in the Trust and
Control games.

In the model without extrinsic incentives, the Agent attached to the generous
Principal gets higher utility from an interaction. Indeed, he is intrinsically moti-
vated for high performance (the participation threshold is high) but is asked for
lower performance, and, consequently, gets positive utility. The Agent attached
to the tough Principal gets positive utility only for the separating equilibria
with � ∈ (�1, 1] - see Figure 7. For � ∈ (�2, �1] the Agent performs at his
participation threshold and gets zero utility, for � ≤ �2 the Agent gets negative
utility in the pooling equilibria.

Another common feature of the Trust and the Control games is the effect of
the strength of an extrinsic motivator. If it is weak, not using it can not signal
the Principal’s generosity. In fact, in the Control Game if the threshold qc is
small, it is not used by both types31 and has no effect at the performance level.
In the Trust Game, if the fine f is small, it is used by both types (the two lines
qA and q̂A are close to each other so that pooling with both types imposing the
fine emerges).32

If the available extrinsic motivator is strong enough but not too strong and
Agent’s reciprocity intensity is high enough, the generous Principal can signal
her generosity by not using the extrinsic motivator. The tough Principal prefers
to reveal her type and to crowd out the Agent’s intrinsic motivation in this
way because she gets better performance by using the extrinsic motivator and
compensating in this way the crowding out of the intrinsic motivation.

Finally, if the available extrinsic motivator is very strong, both types can
benefit form using it. The generous Principal crowds out the intrinsic motivation
to the pooling level but gets compensated through high additional extrinsic
motivation of the Agent.

5 Conclusion

My paper contributes both to the relatively new field of behavioral economics
and to the theory of incentives. More specifically, I develop a model which goes

31Alternatively, it can be used by both types - see case I of proposition 2.
32Only the Control game experiment provides an evidence supporting the reciprocal altruism

model. There were no variation of the size of the extrinsic incentive, i.e. the fine, in the Trust
Game experiment.
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beyond the neoclassical framework and takes into account the social components
of preferences. I build a simple and intuitive model of reciprocal altruism and
show its relevance for the contract theory and theory of incentives as it accounts
for the behavioral patterns, systematically observed both in the lab and in the
field.

The relevance of altruism and reciprocity as parts of human nature is sup-
ported by compelling evidence. The Dictator Game introduced in Kahneman
et al. [1986] provides evidence for pure altruism33. The survey of Andreoni
[2006] demonstrates that impure altruism - taste for ”warm glow” shapes peo-
ple’s decisions in many circumstances. The evidence for reciprocity34 is provided
by Berg et al. [1995] who introduced the Trust Game, which was repeated with
modifications in Fehr and Rockenbach [2003], Fehr and List [2004] and others.
The evidence also comes from variants of the Gift Exchange Game by Fehr et al.
[1997]; Lost Wallet Game by Dufwenberg and Gneezy [2000] and Charness et al.
[2007]; Moonlighting Game by Abbink et al. [2000].

The model of the paper predicts that crowding-out in performance can
emerge as the equilibrium outcome for some values of parameters of the model.
The crowding-out in performance is the situation in which imposing an extrinsic
incentive decreases the intrinsic motivation and leads to a lower performance
- the phenomena, well-known in human resources management. It can also be
the case (for some other values of parameters) that crowding-out in incentives
doesn’t result in crowding-out in performance.

I show that for the crowding-out equilibrium to emerge, the sorting condition
is required, which, in turn is guaranteed when the available extrinsic incentives
is neither too weak neither too strong.

This paper is among a few others studies aimed at enriching the theory of
incentives by taking into account intrinsic motivation. Further research can
be devoted to considering other information structures - Agents can differ in
productivity, the organization can have more complicated structure than only
one Principal and only one Agent. Considering other social components of
preferences, supported by the evidence from lab and field (negative reciprocity,
concerns for equity etc.) can also be relevant in building the theory of incentives.

Finally, I don’t claim that monetary incentives are not important. On the
contrary, it is well-known that the incentive payments play an important role
in creating incentives - see e.g. Bolton and Dewatripont [2005] or Prendergast
[1999]. However, there is growing evidence that workers are motivated to exert
effort not only by the incentive payment or other extrinsic motivators but also
by the intrinsic motivation. On top of this, the interaction between intrinsic
and extrinsic motivation can play an important role. The result of such inter-
action can be motivation crowding-out (or -in). Therefore, taking into account
the intrinsic motivation in the labor contract models should give better under-
standing of the workplace relation. Intrinsic motivation and extrinsic incentives
should be considered as complements rather than substitutes in the modeling.

33In the various Dictator Game experiments, the subjects are endowed with a sum of money.
They decide then on how much of this windfall endowment to give to a stranger. More than
half of the subjects give between 20% and 50% of the endowment.

34Precisely, ”intrinsic reciprocity”, not ”consequentialism” or ”strategic reciprocity”.
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6 Appendix

Proof of Lemma 4

Proof. The root exists and is unique since U(0) = B > 0, U(q) increases for
q ∈ (0, qA), so that U(qA) > 0, then decreases for q ∈ (qA,∞) and U(q) → −∞
as q → ∞. Because of continuity of U(q), there exists a unique q0 ∈ (qA,∞)
such that U(q0) = 0.

Proof of Claim 1

Proof. Statements 1 is trivial since the Agent has full flexibility and hence
chooses his preferred back-transfer.

For the 2-nd point, notice that if the desired back-transfer q̂ ≤ qA, then
paying back qA will not impose fine and will maximize the Agent’s utility (qA

is the global maximizer).
Consider the case q̂ > qA.
Notice that q̃A(�̂) is constructed in such way that

∘

U(q) >
∘

U(qA)− f for qA(�̂, �) < q̂ < q̃A(�̂, �) (32)
∘

U(q) <
∘

U(qA)− f for q̂ > q̃A(�̂, �) (33)

where
∘

U(q) is the Agent’s utility without taking into account the possibility of

fine: U(q) =
∘

U(q)− fIq<q̂.
In (32) the Agent prefers to diverge from qA to q > qA as such divergence

isn’t too high whereas in (33) the Agents prefers to pay fine.

Proof of the Proposition 1

Proof. The optimality of the Principal’s decision given the Agents’s beliefs is
evident from Claim 1. We should check the incentives compatibility conditions
and the crowding-out condition.

Consider the case qLH ≤ q̃LL.
The Principal’s incentive compatibility constraints are

�H(qHH − �HC(qHH )) + (1− �H) ⋅ 0 ≥ q̃LL − �HC(q̃LL)

q̃LL − �LC(q̃LL) ≥ �L(qHH − �LC(qHH)) + (1 − �L) ⋅ 0

which are equivalent to (12) and (13), correspondingly.
The inequality �̂H ≤ 1 holds since the denominator in (12) is positive and

the inequality is then equivalent to

C(qHH)− C(q̃LL)

qHH − q̃LL

≤
1

�H

The left-hand side 1
�H

≥ 1. The right-hand side is the slope of the secant
line to the graph of the convex function C(q) between the points with q = q̃LL

and q = qHH , which is smaller than the slope of the tangent line at the point
with q = qHH which is equal to C′(qHH) = �H�H < 1. So, the inequality holds.
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The inequality �̂L > 0 holds since both the numerator and the denominator
of the fraction are positive.

Finally, we need to check the crowding-out condition �qHH ≥ q̃LL, where �

is the objective probability of the selfish Agents. Since the selfish Principal has
beliefs �L which is biased downward, it is sufficient to prove that �̂LqHH ≥ q̃LL.
Substituting �̂L into the inequality, we get

q̃LL − �LC(q̃LL)

qHH − �LC(qHH )
qHH ≥ q̃LL

Since the denominator is positive, this inequality is equivalent to

�Lq̃LLqHH

(
C(qHH)

qHH

−
C(q̃LL)

q̃LL

)
≥ 0

which holds since qHH > q̃LL, q̃LL < q̃LH and it’s assumed that q̃LH < qHH .

Proof of the Corollary 1

Proof. The condition qLH ≤ q̃LL is equivalent to C(qLH) ≤ C(q̃LL). Since
C(q̃LL) = f , it leads to C(qLH) ≤ f , so that f1 = C(qLH).

Now check the condition q̃LH ≤ qHH .
The back-transfer q̃LH is determined, according to Claim 1 by

�L�HqLH − C(qLH)− f = �L�H q̃LH − C(q̃LH)

where q̃LH is chosen on the decreasing part of the graph of the function
F (q) = �L�Hq − C(q) (see Figure 2). Consequently, q̃LH ≤ qHH is equivalent
to

�L�HqLH − C(qLH)− f ≥ �L�HqHH − C(qHH)

which can be rewritten as

f2 ≡ (�L�HqLH − C(qLH))− (�L�HqHH − C(qHH)) = f2 ≥ f

Finally, to make sure that the interval [f1, f2] is non-empty, we should check
that f1 ≤ f2. This leads to

�L�H�2
H

(
qLH

�L�H

−
qHH

�H�H

)
≤ C(qLH)

for a generic cost function.
For the quadratic cost function C(q) = c

2q
2, taking into account that qij are

determined by C′(qij) = �i�j , and substituting this into the last inequality, one
can check that the left-hand side is equal to zero, so that the inequality always
holds.

Finally, for given �L, �H , �H , and f ∈ [f1, f2], one can obtain the threshold
values �̂L ≥ 0, �̂H ≤ 1 from (12) and (13), and take the values �L and �H ,
satisfying �H ≥ �̂H , �L ≤ �̂L. For these parameters, according to Proposition 1,
the equilibrium of the signaling game is the separating crowding-out equilibrium.
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Proof of Proposition 2

Proof. For the case qc ≥ qLH , the incentives compatibility constraints for the
Principal are:

�H(qHH − �HC(qHH )) ≥ qc − �HC(qc)

qc − �LC(qc) ≥ �L(qHH − �LC(qHH ))

These constraints are equivalent to the conditions �L ≤ �̂L and �H ≥ �̂H ,
which are assumed to hold.

Check the crowding-out condition �qHH ≥ qc. Since � > �L, the inequality
�LqHH ≥ qc is stronger. I check the latter inequality for �L = �̂L.

Substituting the formulae for �̂L, we get

q̃ − �LC(q̃)

qHH − �LC(qHH)
qHH ≥ q̃

after rearranging it leads to

C(q̃)

q̃
≤

C(qHH)

qHH

which is equivalent to q̃ ≤ qHH since the function C(q) is convex. The latter
inequality is assumed to hold.

So, at least for �L close to �̂L the crowding-out condition holds.
For the case of qc < qLH , the incentives compatibility constraints for the

Principal are:

�H(qHH − �HC(qHH)) ≥ �H(qLH − �HC(qLH)) + (1− �H)(qc − �HC(qc))

�L(qLH − �LC(qLH)) + (1− �L)(qc − �LC(qc)) ≥ �L(qHH − �LC(qHH))

As in the previous case, the crowding-out condition will hold at least for �L

close to q̃L if �̂LqHH ≥ qc. Substituting the expression for �̂L gives

qc − �LC(qc)

[qHH − �LC(qHH)] + [qc − �LC(qc)]− [qLH − �LC(qLH)]
qHH ≥ qc

which can be rearranged to

�LqHH

[
C(qHH)

qHH

−
C(qc)

qc

]
≥ (qLH − qc)

[
�L

C(qLH)− C(qc)

qLH − qc
− 1

]
(34)

The left-hand side term C(qHH )
qHH

− C(qc)
qc

> 0 because qHH > qLH > qc.

The right-hand side term C(qLH)−C(qc)
qLH−qc

< 1, because it’s a slope of the secant

line to the graph of the increasing convex function C(q), which is lower than
the slope of the tangent line at the right edge of the interval [qc, qLH ], C′(qLH),
for which we have C′(qLH) = �L�H < 1.

So, the right-hand side in (34) is positive, the left-hand side is negative, and,
consequently, the inequality (34) holds.
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Proof of Proposition 3

Proof. The proposition is established by checking the equilibrium conditions
case by case.

Consider the no-control pooling equilibrium candidate. Each of the Princi-
pals shouldn’t have an incentive to deviate to control, in which case the output
qc will be obtained. For the pooling equilibrium the Agent’s beliefs on the
Principal’s type on the equilibrium path is E�, and the pro-social Agent will
perform at the level qEH , determined by C′(qEH) = E��H , the selfish Agent
will perform at level q = 0. So, the two Best Response conditions for the two
types of Principal are

VH = �H(qEH − �HC(qEH)) ≥ qc − �HC(qc)

VL = �L(qEH − �LC(qEH)) ≥ qc − �LC(qc)

The two inequalities hold for small qc, since the right-hand sides are equal to
0 for qc = 0. The first condition which becomes binding for small qc determines
the threshold q1.

For the large qc, the right-hand sides of the two inequalities are negative.
By decreasing qc, the inequality for VL becomes bonding and determines the
threshold q6.

Consider the control pooling equilibrium. The Principals’ Best Response
conditions are (the Agent will reasonable believe that the Principal deviating
to no-control should be the selfish one)

VH = qc − �HC(qc) ≥ �H(qHH − �HC(qHH ))

VL = qc − �LC(qc) ≥ �L(qHH − �LC(qHH))

The inequality for the VH is stronger and determines the lower and upper
bounds for the values of qc ∈ [q3, q4] for which the control pooling equilibrium
emerges.

The case of the separating equilibrium is partially considered in Proposition
2. The conditions for the separating equilibrium to the right of the control
pooling region are the same, and the ”right-hand side” separating equilibrium
emerges due to non-monotonicity of the payoff functions. The regions for qc are
[q2, q3] on the left and [q4, q5] on the right.

So, all the possible pure strategies equilibria are considered. The regions of
the values of qc not covered by the pure strategies equilibria, should bring the
mixed strategies equilibria.

Proof of Lemma 5

According to (25), for any Best Response acceptance rule a(⋅) holds

a(q) ∈ argmax
a∈[0,1]

(B − C(q) + �̂(q)�q) a

The solution to this program is easy to find. If, for some q, B − C(q) + �̂(q)�q > 0
then a(q) = 1, if B − C(q) + �̂(q)�q < 0, then a(q) = 0 for the corresponding
values of q, finally, if B − C(q) + �̂(q)�q = 0, then any a is a solution .

38



According to lemma 4, the participation constraint B − C(q) + �̂(q)�q > 0
is equivalent to the threshold q < q0(�̂(q), �). This gives the characterization
of the Best Response rule.

Since �(q) ∈ [0, 1], then �L ≤ �̂(q) ≤ �H , consequently, according to mono-
tonicity of the function q0(�, �) with respect to its first argument (see lemma
4) we obtain

q0(�L, �) ≤ q0(�̂(q), �) ≤ q0(�H , �)

which can be rewritten as q0L ≤ q0(�̂(q), �) ≤ q0H . This proofs (27).

Proof of Lemma 6

Proof. Since q∗j (j = L,H) are the elements of the Best Response of the Prin-
cipal, the two inequalities hold:

(q∗L − �LC(q∗L))a
∗(q∗L) ≥ (q∗H − �LC(q∗H))a∗(q∗H)

(q∗H − �HC(q∗H))a∗(q∗H) ≥ (q∗L − �HC(q∗L))a
∗(q∗L)

Summing them up gives

(�H − �L)(C(q∗L)a
∗(q∗L)− C(q∗H)a∗(q∗H)) ≥ 0

which proves the first statement in the Lemma.
For the second claim of the Lemma, notice that if a∗(q∗H) = 1, then

C(q∗L) ≥ C(q∗L)a
∗(q∗L) ≥ C(q∗H)

which gives q∗L ≥ q∗H .

Proof of Lemma 7

Proof. Let q′, q′′ ∈ supp �∗
H and q′, q′′ ∈ supp �∗

L are the two offers made by
both types in an equilibrium. Then, the two types should be indifferent between
the two offers:

(q′ − �HC(q′))a∗(q′) = (q′′ − �HC(q′′))a∗(q′′)

(q′ − �LC(q′))a∗(q′) = (q′′ − �LC(q′′))a∗(q′′)

This gives

�H(C(q′′)a∗(q′′)− C(q′)a∗(q′)) = �L(C(q′′)a∗(q′′)− C(q′)a∗(q′)) =

= q′′a∗(q′′)− q′a∗(q′) (35)

The first equality gives C(q′′)a∗(q′′)− C(q′)a∗(q′) = 0. This, in turn, gives

a∗(q′′)

a∗(q′)
=

q′

q′′
=

C(q′)

C(q′′)

But the second part of this equality can’t hold for a convex function C(q) if
q′ ∕= q′′. This finishes the proof.

39



Proof of Lemma 8

Proof. Consider the case � > �2, then qPH < q0L and, consequently the offer qPH
has to be accepted with probability 1 on the equilibrium path. By definition, the
offer qPH maximizes the �H -type utility. This means that �H -type will offer only
q = qPH . Moreover, some offers, higher than qPH , are accepted with probability
1, and consequently, �L-type will never be interested to pool at qPH . So, there
can’t be any equilibrium with a pooling part (i.e. pooling or semi-separating)
for � > �2.

Consider the case � ≤ �2 and the pooling equilibria.

According to Lemma 7, the pooling equilibrium offer q∗p is unique.
First, prove the necessity of the three conditions:

q∗p ≤ q0E , q∗p ≤ q00L , q∗p ≥ q0L (36)

1. The beliefs should be consistent on the equilibrium path, which means
that �∗(q∗p) = Π. This gives �̂(q∗p) = Π and the corresponding acceptance
threshold q̂(q∗p) = q0E , according to (22) and Lemma 5. So, to have the offer q∗p
accepted, it is necessary to have q∗p ≤ q0E .

2. If the inequality q∗p ≤ q00L is violated, then �H -type has a profitable
deviation to q̃ = q0L − " for small enough ". In fact, since the function V (q, �H)
is decreasing in q for q > q00L > qHP and according to the definition of q00L ,
we have V (q∗p , �H) < V (q00L , �H) = V (q0L, �H). Consequently, since V (q, �H)

is increasing in q for q < q0L < qPH , we have V (q∗p, �H) < V (q0L − ", �H) for
small enough ". Since a∗(q0L − ") = 1, we have then V (q∗p , �H)a∗(q∗p) < V (q0L −
", �H)a∗(q0L − ").

3. If q∗p < q0L, then there is a profitable deviation for both Principal’s types
to q∗p + ", since the latter offer is still accepted with probability 1.

The necessity of the condition a∗(q∗p) = 1 for q∗p < q0E is evident.
Second, prove the sufficiency of (36).
Consider a profile (q∗p, a

∗(⋅);�∗(⋅)) with offer q∗p satisfying (36), acceptance
rule a∗(q∗p) = 1, a∗(q) = 0 for (q ∕= q∗p , q > q0L), supported by beliefs �∗(q∗p) = Π,
�∗(q) = 0 for q ∕= q∗p.

Then, any downward deviation for both Principal’s type isn’t profitable,
since it’s either rejected or is too large (below q0L). Any upward deviation is
rejected, so isn’t profitable, too. Accepting of q∗p is the Best Response for the
Agent, and beliefs are consistent.

Finally, the relation between q0L, qPL , q0E , determined by the thresholds �j

in Proposition 4, leads to the statement of the lemma for the pooling equilibria.
Consider the case � ≤ �2 and the semi-separating equilibria.

In any semi-separating equilibrium there is a unique (according to lemma 7)
pooling offer q∗p. Denote by a∗p = a∗(q∗p) the probability of acceptance of this
offer.

Assume that there exists an equilibrium offer q∗L ∈ supp �∗
L ∖ �∗

H (not neces-
sarily unique), made by �L-type only. Let a∗L = a∗(q∗L). Then, �L-type should
be independent between the offers q∗p and q∗L:

(
q∗p − �LC(q∗p)

)
a∗p = (q∗L − �LC(q∗L)) a

∗
L (37)

On top of this, since the offer q∗p is made by �H -type, according to the
monotonicity lemma 6,

C(q∗p)a
∗
p ≤ C(q∗L)a

∗
L (38)

40



Taking (37) and (38) together, we obtain
C(q∗L)
q∗
L

≥
C(q∗p)

q∗p
which, in turn, leads

to q∗L ≥ q∗p.
At the same time, the offer q∗L lies in the separating part of the semi-

separating equilibrium, so �∗(q∗L) = 0 and to be accepted, there should be
q∗L ≤ q0L. On the other hand, q∗p ≥ q0L, because otherwise there will be profitable
deviation to q∗p + " for both types. So, we have q0L ≥ q∗L ≥ q∗p ≥ q0L, which is
impossible for q∗L ∕= q∗p.

So, it’s impossible to have an offer q∗L in the separating part of the semi-
separating equilibrium.

Consider now the possibility of having the separating part for �H -type. Let
q∗H ∈ supp �∗

H ∖ supp �∗
L be (one of) offers, made by the �H -type only, and let

a∗H = a∗(q∗H).
As in the previous case, the indifference for �H -type and the monotonicity

condition from lemma 6 should hold:

(q∗H − �HC(q∗H)) a∗H =
(
q∗p − �HC(q∗p)

)
a∗p (39)

C(q∗H)a∗H ≤ C(q∗p)a
∗
p (40)

Taken together, these conditions lead to
C(q∗H)
q∗
H

≤
C(q∗p)

q∗p
which means that

q∗H ≤ q∗p.
Clearly, both q∗H and q∗p can’t be less than q0L, otherwise there will be a

profitable deviation for both types to the offer, greater by ", which has to be
accepted with probability 1.

Since q∗p < q0E (to be accepted with non-zero probability), then q∗H < q0E <

q0H for all equilibrium offers q∗H . This means that they are accepted with proba-
bility 1, a∗(q∗H) = 1. Any equilibrium offer q∗H should solve maxq∈Q V (q, �j) a

∗(q),
and, since a∗(q∗H) = 1, they should solve maxq∈Q V (q, �j). However, a solution
of this program can consist of at most two points because of inverted-U shape
of V (q). Moreover, for � ≤ �3 the function V (q, �H) is an increasing function
in q ∈ [0, q0E ], so the solution of the program is unique, and consequently, there
can be only one equilibrium offer q∗H in the separating part for �H -type.

This finishes the proof for the semi-separating equilibrium.
Separating equilibria For the case � > �2 the offer qPH is accepted with

probability 1, since qPH < q0L, so �H -type will offer qPH and get V (qPH , �H) = maxq V (q, �H).
Consider now the optimal offer for �L-type. For � > �1 the offer qPL is ac-
cepted with probability 1, since qPL < q0L, so �L-type will offer qPL and get
V (qPL , �L) = maxq V (q, �L). For the case �2 < � ≤ �1, �L-type will make the
maximal acceptable offer, which is q0L. It has to be accepted with probability 1
on the equilibrium path, because otherwise there will be profitable deviation for
�L-type to an offer q̃ = q0L−" with small enough " (in fact, the offer q̃ has to be
accepted with probability 1, since q̃ < q)L0, and V (q̃, �L) > V (q0L, �L)a

∗(q0L) if
a∗(q0L) < 1).

When � ≤ �2, in a separating equilibrium there should be at least two
different offers q∗L ∈ supp �∗

L and q∗H ∈ supp �∗
H , accepted with probabilities a∗L

and a∗H respectively. The incentive compatibilities constraints for them are

(q∗H − �HC(q∗H))a∗H ≥ (q∗L − �HC(q∗L))a
∗
L

(q∗L − �LC(q∗L))a
∗
L ≥ (q∗H − �LC(q∗H))a∗H
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which gives
q∗L − �LC(q∗L)

q∗H − �LC(q∗H)
≥

a∗H
a∗L

≥
q∗L − �HC(q∗L)

q∗H − �HC(q∗H)

and, after rearrangements,
C(q∗L)
q∗
L

≥
C(q∗H)
q∗
H

, which means that q∗L ≥ q∗H . In a

separating equilibrium there should be q∗L > q∗H for any equilibrium offers.
Any equilibrium offer q∗L needs to be accepted with non-zero probability,

which means that q∗L ≤ q0L. All the offers q
∗
L < q0L are accepted with probability

1. If q∗L = q0L and a∗(q0L) < 1, then there is a profitable deviation for �L-type
to q0L − ". So, any equilibrium offer q∗L should be accepted with probability 1.

However, since all the equilibrium offers q∗H are below all the offers q∗L and
the function V (q, �H) is increasing for q ∈ [q, q0L], then there is a profitable
deviation for �H -type to one of the offers q∗L ∈ supp �∗

L.
This means that there can’t be any separating equilibrium for � ≤ �2.

Proof of Proposition 5

Proof. Since q0L ≤ qPL , both functions V (q, �H) and V (q, �L) are increasing in
q ∈ [0, q0L].

Consider pooling equilibria. According to Lemma 8, q∗p ≤ q0E holds for any
pooling PBE.

Check the intuitive criterion. Let q be a deviation such that q < q0E . Then

max
a∈BR(A,q)

V (q, a, �j) = V (q, �j) ⋅ 1

because, at least for the beliefs �(q) = Π the offer q should be accepted for any
reasonable acceptance rule - see Lemma 5.

Notice also that

min
a∈BR(A′,q)

V (q, a, �j) = 0 for A′ = {�L} or A′ = A

min
a∈BR(A′,q)

V (q, a, �j) = V (q, �j) for A
′ = {�H}

because if beliefs are concentrated on the subset which contains �L, then beliefs
�(q) = 0 are possible and any offer q > q0L (which is the case here) is rejected
for any reasonable acceptance rule, so the minimal value of V is zero. On the
other hand, if beliefs are concentrated on �H , i.e. �(q) = 1, the offer q < q0H
(which is the case since q < q0E < q0H) is accepted.

So, the only possibility to have the intuitive criterion (29) violated is to have
A ∖ J(q) = {�H} and V ∗

H < V (q, �H). In other words, �H -type should be
”reasonably” revealed by deviation to q (see the definition of the set J(q)) and
this deviation should be profitable, i.e. q should be closer to qPH , compared to
the distance between q∗p and qPH .

Three cases are possible as illustrated by figure 11: 1) q∗p ≤ qPH ; 2) qPH <

q∗p ≤ qPL ; 3) q
∗
p > qPL .

For the case 1 the deviations to q < q∗p are not profitable; the deviations to

q > q∗p are profitable (at least for q < qPL ) but they are profitable for both types

or only for �L-type. The deviations to q > qPL can be profitable for �L-type
only. Consequently, any deviation to q > q∗p can’t reasonably reveal �H -type.
So, all the equilibrium from area 1 pass the intuitive criterion.
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Figure 11:

For the case 2 the deviation to q = qPH is profitable for �H -type and isn’t
profitable for the �L-type, so �H -type is revealed by such deviation and the
equilibria from area 2 don’t satisfy the intuitive criterion.

Finally, for the case 3, the revealing profitable deviation for the �H -type is
constructed in the following way. Since q∗p > qPL there exists q′L < qPL (and then
q′L < q∗p) such that V (q′L, �L) = V (q∗p, �L). Notice that q′L is on the increasing
part of V (q, �L), so any q < q′L is not a profitable deviation for �L. However,
the deviation to q′L is profitable for �H -type (the proof is below), and then the
deviation to q = q′L − " is the revealing profitable deviation for �H type.

Now I proof that the deviation to q′L is profitable for �H -type. Notice that
the offers q = q′L, q

∗
p are accepted for any Best Response acceptance rule. So,

V (q, a, �j) = V (q, �j) ⋅ 1 = q − �jC(q) + �jB

Since V (q′L, �L) = V (q∗p, �L), we have

q∗p − �LC(q∗p) = q′L − �LC(q′L)

By using this, we get

q′L − �HC(q′L) = q′L − �LC(q′L) + (�H − �L)C(q′L) =

= q∗p − �LC(q∗p) + (�H − �L)C(q′L) =

= q∗p − �HC(q∗p) + (�H − �L)C(q∗p) + (�H − �L)C(q′L) =

= q∗p − �HC(q∗p) + (�H − �L)(C(q∗p)− C(q′L))

The second term is positive, so

q′L − �HC(q′L) > q∗p − �HC(q∗p)

which gives the required inequality:

V (q′L, �H) > V (q∗p, �H)
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This finishes the analysis of case 3 and the pooling equilibrium case. We’ve
got that only the equilibria from area 1 satisfy the intuitive criterion.

If an equilibrium is semi-separating, it can have one of the two structures:
q∗H < q∗p or q∗H < q∗∗H < q∗p. Consider a deviation of the separating part of the

equilibrium to q, which is closer to qPH : q = q∗H + " if q∗H < qPH , q = q∗H − "

if q∗H > qPH (it’s impossible to have q∗H = qPH because then �H -type strongly
prefers qPH to the pooling part of the equilibrium candidate q∗p , which can’t be
the case in equilibrium). First, J(q) = {�L} because �L-type is concentrated on
the pooling part of the equilibrium q∗p; since q < q∗p and V (q, �L) is increasing,
the deviation to q is unprofitable for �L-type. Second, in the intuitive criterion
(29) a ∈ BR({�H}, q), which means that the offer q is accepted with prob-
ability 1: a(q) = 1 and then V ∗

H = V (q∗H , �H) < min
a∈BR({�H},q)

V (q, a, �H) with

V (q, a, �H) ≡ V (q, �H)).
So, the semiseparating equilibria fails to satisfy the intuitive criterion be-

cause of deviation to q, described above for �H -type.

Proof of Proposition 6

Proof. For the case 1 all the Principals have � > �×, then, according to Claim
4, the preferred output for all types is feasible. So, accepting all offers qP (�) is
reasonable Best Response for the Agent and gives to all types of the Principal
their unconstrained maximal utility.

For the case 2, first proof that there exists unique solution to (31).
For � = �× we have E�× [�] < �×, and, consequently q0 (E�× [�]) <

q0 (�×) = qP (�×) < qP (E�× [�]), so the left-hand side of (31) is smaller than
than the right-hand side.

For � = �2 holds E�× [�] = E�. So, (30) means that the left-hand side of
(31) is more than the right-hand side.

Since both sides of (31) are continuous, there exists unique solution to this
equation.

Second, consider the Agent’s acceptance rule given the Principal’s offer.
Clearly, all offers q > q̃0 should be reasonable rejected, offers q < q̃0 should be
reasonably accepted with probability 1. The offer q = q̃0 should be accepted
with probability 1 on the equilibrium path because accepting it with probability
a < 1 will make Principal’s deviation to q̃0 − " profitable.

Finally, ant type of the Principal can’t do better since those with � > �̃

implement their preferred output, and those with � < �̃ could do better only
by implementing q > q̃0 which are rejected.

Case 3 is considered in the same way as the pooling part (� < �̃) in case
2.
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Simon Gächter and Armin Falk. Reputation and Reciprocity: Consequences for
the Labour Relation. Scandinavian Journal of Economics, 104(1):1–26, 2002.

Uri Gneezy. Does high wage lead to high profits? An experimental study
of reciprocity using real effort. Graduate School of Business, University of
Chicago, 2002.

Uri Gneezy and John A. List. Putting Behavioral Economics to Work: Testing
for Gift Exchange in Labor Markets Using Field Experiments. Econometrica,
74(5):1365–1384, 2006.
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