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Abstract

There is a debate about whether risk aversion is the main source of
overbidding in a first-price independent private values auction. As an
alternative, we adopt a non-expected utility framework, and identify
an interpretable property on the probability weighting function which
always induces overbidding.
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1 Introduction

It has been repeatedly observed in experiments that subjects participating
in first-price independent private values (FIPV) auctions tend to bid above
the risk neutral Bayesian Nash equilibrium. This tendency to “overbid” has
often been rationalized by risk aversion within the expected utility frame-
work (Milgrom and Weber, 1982; Cox, Smith and Walker, 1985, 1988). This
explanation, however, has been widely criticized.1 In particular, risk aversion
is often viewed with skepticism due to the low financial incentives typically
involved in laboratory experiments. Moreover, numerous individual decision-
making experiments have suggested that subjects weight non-linearly prob-
abilities when making risky choices (Camerer, 1995). It appears therefore
natural to expect that agents may use a non-linear probability weighting
function (PWF) in games, such as auctions, where probabilities are involved.
In this note, we identify a simple property on the PWF, the so-called

“star-shaped” PWF, that always induces overbidding in FIPV auctions. As
we shall see, this property is weaker than the convexity of the PWF, but
stronger than a mere underweighting of probabilities. Interestingly, the “star-
shaped” property is relevant to characterize the notion of risk aversion in
Rank-dependent expected utility (RDEU) models.

2 The Model

Risk preferences are characterized by the RDEU model, which is one of the
best-known non-expected utility model involving a non-linear PWF.2 In the

1Among those criticisms, risk aversion cannot explain the observed persistent overbid-
ding in second-price or third-price auctions. See the December 1992 issue of the American
Economic Review for a sample of the debates around the causes of overbidding, and Kagel
(1995) for an excellent literature survey.

2An early reference is Quiggin (1982). There exist several versions of the RDEU model
(Chew, 1983; Luce and Fishburn, 1991; Tversky and Kahneman, 1992; Wakker and Tver-
sky, 1993; Schmidt and Zank, 2001; Safra and Segal, 2001). The RDEU model is the only
possible generalization of expected utility that is separable in probabilities and outcomes
consistent with first-order stochastic dominance (Quiggin, 1993, p. 72). It can explain
experimental puzzles such as the Allais paradox and the common ratio effect. The most
common PWF consistent with choice data is such that small probabilities are inflated and
large probabilities are deflated, giving rise to the common inverse S-shaped PWF (Tversky
and Fox, 1995; Prelec, 1998; Gonzalez and Wu, 1999).
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case of a binary lottery, the RDEU model reduces to

Φ(p)u(w2) + (1− Φ(p))u(w1)

where p is the probability of the best of the two monetary outcomes w2 ≥ w1,
and Φ is the PWF. As usual, we assume that Φ is differentiable and strictly
increasing with Φ(0) = 0 and Φ(1) = 1. Note that when u(w) = w, the model
essentially reduces to the dual theory of Yaari (1987). When Φ(p) = p, we
are back to the standard expected utility model.
The RDEU model enables one to distinguish between the notions of weak

and strong risk aversion. An individual is weakly risk averse if and only if
he always declines a random variable in favor of its expected value. An
individual is strongly risk averse if and only if he always dislikes any mean-
preserving spread of risk. Under expected utility, weak and strong risk aver-
sion are equivalent to the concavity of u. Under RDEU, strong risk aversion
is equivalent to u concave and Φ convex (Chew, Karni and Safra, 1987), and
weak risk aversion is equivalent to u concave and Φ(p) ≤ p for every p ∈ [0, 1]
(Quiggin, 1993; Cohen, 1995).
We now introduce the FIPV auction model. N ≥ 2 agents with identical

risk preferences (i.e. identical u and Φ, as well as identical initial wealth
w) participate in an auction in which they each submit a sealed bid for an
indivisible object. Agent i = 1, ..., N has a private value vi for the object.
This private value is drawn independently from a distribution with cumula-
tive F (.), density f(.) and support [v, v] where v ≥ 0. The highest bidder
gets the object. His payoff is equal to his own valuation of the object minus
his bid, vi − bi. The other bidders receive no payoffs.
We denote p (bi, B) ≡ P [bi > B(vj),∀j 6= i] the probability that bidder

i wins the auction when she selects a bid bi, while each of her opponents
uses the bid function B. A strategy B∗ is then a symmetric Bayesian Nash
equilibrium of this game if it satisfies the following optimization and fixed
point problems,

B∗(vi) = ArgMax
v≤bi≤vi

Φ(p (bi, B
∗))u(w + vi − bi) + (1− Φ(p (bi, B

∗)))u(w)

∀vi ∈ [v, v] and ∀i = 1, ..., N. (1)

In words, B∗ (vi) is the bidder i’s best-reply to other bidders’ equilibrium
strategy B∗(.), given that all bidders have the same preferences. The only
difference compared to the standard FIPV auction model is that the PWF Φ
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may be non-linear. If we restrict our attention to monotonic strategies, then
the maximization in (1) is equivalent to maximizing over bi

Φ(F (B∗−1(bi))
N−1)U(vi − bi)

where B∗−1(.) stands for the inverse of B∗(.), and U is an indirect utility
function defined by U(x) = u(w+x)−u(w). Notice that U is concave if and
only if u concave.
Differentiating with respect to bi and setting the obtained expression equal

to zero gives the following differential equation

B∗
0
(vi) = (N − 1)f(vi)

Φ0(F (vi)
N−1)F (vi)

N−2

Φ(F (vi)N−1)

U(vi −B∗(vi))

U 0(vi −B∗(vi))
∀vi ∈ [v, v].

(2)
Together with the boundary condition B∗(v) = v, this differential equation
characterizes a Bayesian symmetric Nash equilibrium bidding behavior in an
auction where bidders have a PWF Φ(.).

3 The Effect of a Non-linear PWF

3.1 The Star-shaped PWF and the Main Result

We introduce a specific class of PWF that will permit to sign the effect of
a non-linear PWF on the equilibrium bidding strategy compared to a linear
PWF. We coin this class the star-shaped PWF.

Definition Let a PWF Φ(p) with Φ(0) = 0 and Φ(1) = 1; then Φ(p) is
star-shaped if and only if Φ(p)/p is increasing in p.

The term star-shaped is taken from Chateauneuf, Cohen and Meilijson
(2004).3 A star-shaped PWF is useful to capture risk aversion toward one of
their four specific types of increase in risk, that is, a right-monotone increase
in risk.4 A star-shaped PWF implies that the chord to the PWF drawn

3A function Φ is star-shaped at µ if (Φ(x)−Φ(µ))/(x−µ) is non-decreasing in x. The
exact term is that Φ is star-shaped at 0. See also Landsberger and Meilijson (1990) where
the term is applied to utility functions.

4The four types are respectively i) a mean-preserving increase in risk, ii) a monotone
increase in risk, iii) a left-monotone increase in risk and iv) a right-monotone increase
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from 0 to p must lay above Φ(p) for every p. This property is equivalent to
assuming that the slope of the chord is lower than the slope of the tangent
to Φ(p) at p, namely

Φ(p)/p ≤ Φ0(p) for every p ∈ [0, 1]. (3)

It is immediate that any convex PWF is star-shaped. Hence the notion
of strong risk aversion as defined by Chew, Karni and Safra (1987) implies
that, together with u concave, the PWF is star-shaped in the RDEU model.
Furthermore, observe that Φ star-shaped implies underweighting everywhere,
i.e. Φ(p) ≤ p. Hence, assuming that u is concave, a star-shaped PWF implies
weak risk aversion.
We now compare B∗(v), the symmetric equilibrium bidding strategy un-

der a PWF Φ as given by the general condition (2), to the corresponding
equilibrium condition in the expected utility case (Φ(p) = p) denoted B∗0(x).
Assume that Φ is star-shaped, or equivalently that Φ0(p) ≥ Φ(p)/p for every
p ∈ [0, 1]. Then, we get

B∗
0
(v)−B∗

0
0 (v) = (N − 1)f(v)F (v)N−2[Φ

0(F (v)N−1)

Φ(F (v)N−1)

U(v −B∗(v))

U 0(v −B∗(v))

− 1

F (v)N−1
U(v −B∗0(v))

U 0(v −B∗0(v))
]

≥ (N − 1) f(v)
F (v)

[
U(v −B∗(v))

U 0(v −B∗(v))
− U(v −B∗0(v))

U 0(v −B∗0(v))
],

by assumption and since U, U 0, Φ and Φ0 are positive.
From the last inequality, we have that, for any v, B∗(v) = B∗0(v) implies

B∗
0
(v) ≥ B∗

0
0 (v). We thus have a single crossing property. This property

means that the function B∗(.) can only cross the function B∗0(.) from below.
Since B∗(v) = B∗0(v) = v, the function B∗(v) is always be larger than B∗0(v)
for any v such that v ≥ v. This yields the following proposition.

in risk. In short, a right-monotone increase in risk corresponds to a risk spread in the
domain of gains. To have an intuition for this, consider a lottery which yields either
x/p with probability p > 0, or 0 otherwise. The expectation of this lottery is x. Notice
that a decrease in p corresponds to a specific mean-preserving spread in the domain of
gains. Denote C(p) the risk premium toward this lottery, defined by u(w + x − C(p)) =
Φ(p)u(w+x/p)+(1−Φ(p))u(w); for a u linear we thus have C(p) = x(1−Φ(p)/p). Hence,
assuming a linear utility function, the risk premium increases in this particular type of
mean-preserving spread in the domain of gains if and only if Φ is star-shaped.
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Proposition 1 Assume that participants in a first-price independent pri-
vate values auction have identical risk preferences characterized by a Rank-
dependent expected utility model with a probability weighting function Φ. The
equilibrium bid is higher in an auction in which participants have a star-
shaped Φ compared to an auction in which they have a linear Φ (i.e., they
are expected utility maximizers).

3.2 AClosed-form Solution and Estimates of Risk Pref-
erences Parameters

Assume a power utility function and a zero initial wealth, so that U(x) =
x1−r/(1 − r) with r ∈ [0, 1[. Moreover, assume Φ(p) = pβ, with β ≥
1. Therefore, Φ is star-shaped since it is convex. Also assume a uniform
distribution F (v) = v over the support [0, 1]. Under these assumptions, we
derive a closed-form solution to the differential equation (2), which reduces
to

B∗(v) = βv (1 + β − r)−1 (4)

for the two-bidder case. Observe that, compared to a linear PWF (i.e.
β = 1), a star-shaped PWF (i.e. β ≥ 1) yields a higher equilibrium bid,
consistent with Proposition 1. Note also that the equilibrium bid can in-
crease indifferently with either β the curvature of the PWF, or r the constant
relative risk aversion parameter.
This example also illustrates how our theoretical model captures recent

empirical results. In particular, using experimental data, Goeree, Holt and
Palfrey (2002) as well as Armantier and Treich (2007) obtain an estimated
value for r around 0.6 when they impose a linear PWF (i.e. β = 1),5 while
they obtain a quadratic PWF (i.e. β ≈ 2) when assuming a linear utility
(i.e. r = 0 as in Yaari, 1987). When they estimate a model combining a

5The estimate of r = 0.6 is consistent with results obtained under risk aversion with
other experimental and non-experimental auction data (Harrison 1990; Cox and Oaxaca
1996; Chen and Plott 1998; Campo, Perrigne and Vuong 2001). This value for r may be
considered low compared to values obtained in the risky choice literature (e.g., in finance
or insurance), usually larger than 1, and often in the vicinity of 3 or 4. This comparison to
other risk aversion estimates is, however, somewhat misleading. Indeed, auction models
have been typically estimated under the assumption that wealth w is equal to 0. This
assumption is, obviously, not realistic and leads to a bias in favor of a low level of risk
aversion. In fact, constant relative risk aversion estimates increase dramatically when
positive levels of wealth are introduced.
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non-linear utility and a PWF, Armantier and Treich (2007) find a convex
PWF and a concave utility function. However, when estimated on data from
experienced subjects, both kinds of nonlinearities decline significantly. More-
over, Armantier and Treich (2007) find that their subjects are heterogeneous
with respect to risk preferences and to the PWF.

4 Conclusion

We have shown in this note that a star-shaped PWF could rationalize over-
bidding in FIPV auctions. We conclude with three observations. First, this
paper is one of the first attempts at explaining a puzzle in a strategic game
using the RDEU model. Second, our result is not inconsistent with the gen-
eral idea that “risk aversion” is still the main determinant of overbidding;
indeed the star-shaped PWF property is relevant to characterize a broader
notion of risk aversion that has been proposed in RDEU models (Chew,
Karni and Safra, 1987; Quiggin, 1993; Chateauneuf, Cohen and Meilijson,
2004). Third, our result is consistent with the recent PWF estimates from
the FIPV auction experiments of Goeree, Holt and Palfrey (2002) and of Ar-
mantier and Treich (2007). Nevertheless, our result only applies to the case
where bidders are identical, and therefore cannot fully account for possible
heterogeneity in risk preferences and in the PWF.
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