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1 Introduction

In this paper, we propose a fully nonparametric procedure to evaluate the effect of a change in

the distribution of some covariates on the unconditional distribution of an outcome variable of

interest. We consider a general nonseparable model of the form

Y = m(X, ε) (1.1)

where Y is the dependent variable of interest, X a vector of regressors and ε an unobserved

error term that will usually represent individual heterogeneity. The question we are interested

in is: How would the unconditional distribution of the dependent variable change if a policy

maker could exogenously shift the values of X to some X∗, i.e what is the difference between

the distribution of Y and the one of the (counterfactual) random variable

Y ∗ = m(X∗, ε).

We will call any difference between the distribution of Y and Y ∗ a distributional policy effect.

There are numerous examples in applied economics that fit into this rather abstract frame-

work: Ichimura and Taber (2002) study the effect of a change in distribution of income induced

by the introduction of a tuition subsidy on college attendance rates and future earnings; Stock

(1991) considers the effects of cleaning up a nearby hazardous waste disposal site on aver-

age house prices; DiNardo, Fortin, and Lemieux (1996) analyse how the distribution of wages

would have evolved in the United States between 1973 and 1992 if the distribution of workers’

characteristics had remained at their 1973 level (see also Donald, Green, and Paarsch (2000),

Gosling, Machin, and Meghir (2000) or Machado and Mata (2005)); and Blau and Kahn (1997)

consider how much of the gender wage gap would persist if women had the same observable

characteristics as men.

The contribution of our paper is to provide a fully nonparametric method to analyse these

kind of questions. In contrast to other methods, we neither impose any parametric restrictions

on the relation between Y and X, nor do we restrict attention to the policy’s effect on the mean.

In particular, our results can be used to conduct inference on the the change of the distribution

function as a whole, its moments and quantiles, inequality measures such as the Lorenz curve or

Gini coefficient, and to test for stochastic dominance. We show that the cumulative distribution

function (CDF) of the counterfactual random variable Y ∗ is identified under some weak restric-

tions, and propose a two-stage estimator, that does not rely on any parametric specification

of the model (1.1) and is easy to implement. In the first stage, we estimate the conditional
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distribution function of Y given X through nonparametric kernel methods. Secondly, we take

a simple average of this estimate evaluated at the observed values of X∗ to obtain an estimate

of the CDF of Y ∗. Too see whether the counterfactual distribution differs from the original

one, this result can be compared to an estimate of the distribution function of Y , such as the

ordinary empirical CDF. Furthermore, any functional of the two CDFs can in turn be estimated

by plugging in the respective estimators. For example, in order to obtain an estimate of the

quantile function of Y ∗, one can simply invert the estimate of the corresponding CDF.

We also provide a complete asymptotic theory for the estimation procedures proposed in

this paper. A key result is that although our method is fully nonparametric, it is not affected

by the curse of dimensionality: using empirical process theory, we show that our estimates of

the functions of interest converge to certain Gaussian processes at the usual parametric rate
√
n irrespective of the dimension of X. We can therefore expect the asymptotics to provide a

rather accurate approximation to the finite sample distribution even for moderate sample sizes.

A further important result is that the ordinary nonparametric bootstrap works in our frame-

work. This allows us to conduct asymptotically valid uniform inference on the entire functions

being estimated, and not just some isolated points. We can thus test a number of important

hypothesis involving the whole distribution of Y ∗ and Y , such as stochastic dominance ordering

for example. The use of our methodology is illustrated through an empirical example and an

extensive simulation study. The latter shows that our estimators and the related inferential

procedures have good finite sample properties, even when the sample size is relatively small.

Our approach should thus be appealing to applied researchers.

To the best of our knowledge, our paper is the first to consider estimation and inference for

general distributional policy effects in a fully nonparametric framework. As such, it complements

and extends an extensive literature on the estimation of policy effects in more restrictive settings.

Stock (1989) and Imbens and Newey (2009) consider estimation of policy effects on the mean

of the outcome variable in a nonparametric framework. DiNardo, Fortin, and Lemieux (1996),

Donald, Green, and Paarsch (2000), Gosling, Machin, and Meghir (2000) and Machado and

Mata (2005) develop policy estimators for more general distributional effects, but rely on various

parametric restrictions of the model in (1.1). Furthermore, these papers generally focus on

estimation rather than inference, and thus do not provide a full asymptotic theory for their

procedures. Chernozhukov, Fernandez-Val, and Melly (2009) derive general limit distribution

results for estimators of distributional policy effects, but again only for the case that model (1.1)

is contained in certain parametric classes. In particular, their arguments critically rely on the
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assumption that the conditional distribution function of Y given X can be be estimated at

a parametric rate, which is clearly not possible in our fully nonparametric framework. While

using a correctly specified parametric model will obviously result in efficiency gains compared

to our fully nonparametric procedure, such estimators will generally be inconsistent when the

respective restrictions are violated. This trade-off is discussed in more detail as part of our

simulation study.

In another related paper, Firpo, Fortin, and Lemieux (2009) propose a method to estimate

the impact of a marginal increase in the covariates on the unconditional distribution of the

outcome variable in a framework similar to ours. This parameter is different from the one being

estimated in this paper, which corresponds to the effect of a general and fixed change in the

distribution of the covariates. Furthermore, they use a very different estimation approach based

on a linearization of the outcome distribution.

The outline of the paper is as follows. In the next section, we give a more formal description

of our problem, define the parameters of interest, show under which conditions they can be

identified, and describe the estimation procedure. Section 3 treats the asymptotic properties of

our estimate of the distribution function, and Section 4 shows how these results can be used

to analyse a wide range of statistics of the CDF. In Section 5 the practical relevance of our

procedure is shown through a simulation study and a small-scale empirical application. Finally,

Section 6 concludes. All proofs are collected in the Appendix.

2 Modelling Framework and Estimation Approach

2.1 Model

The setup we consider is as follows: we observe a dependent variable Y and a d-dimensional

vector of covariates X, with marginal distribution functions FY and FX , respectively. The

dependent variable is assumed to be generated through the nonseparable model

Y = m(X, ε), (2.1)

where ε is an unobserved error term. We assume that (2.1) is either a structural equation

that describes the causal relationship between the right-hand and left-hand side variables, or a

reduced form equation from a bigger structural system, as in Ichimura and Taber (2002). In a

typical microeconometric application, X and ε would correspond to observed and unobserved

characteristics of an individual, respectively, and m would describe the decision rule that, given
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individual characteristics, determines the individual’s choice Y . This flexible formulation allows

the covariates to exert influence on Y in manifold ways. For example, model (2.1) allows

for heteroskedasticity or skewness in the conditional distribution of Y given X. It is fully

nonparametric in the sense that we do not restrict the function m or the distribution of the

random variables involved to belong to some parametric family.

The values of at least some components of X are assumed to be under control of a (hypo-

thetical) policy maker, and can thus be shifted exogenously to another observed random vector

X∗ with associated distribution function F ∗X . Substituting X∗ for X in (2.1), we obtain the

counterfactual random variable

Y ∗ = m(X∗, ε),

whose distribution function we denote by F ∗Y . Our interest is in learning (features of) this

distribution and comparing it to that of Y .

For applications, the random vector X∗ could originate from a number of different sources.

First, X∗ could be drawn from a different subpopulation corresponding to a different demo-

graphic group, geographic region or time period, like workers’ characteristics in a different

country for example. Second, X∗ could be a deterministic transformation of X, i.e. there exists

a known function π : Rd → Rd such that X∗ = π(X). Examples of this case include a public

program that causes smoking pregnant women to reduce their daily cigarette consumption by,

say, half, or a tuition subsidy that is paid out subject to certain eligibility conditions. Third,

X∗ could be a repeated measurement on the same individual at a different point in time, as it

would typically be the case when the data originate from a panel study.

While the specific source of X∗ will not matter for our identification argument or the com-

putation of the estimator, it is useful for the asymptotic development to distinguish those cases

where X∗ and X are stochastically independent, and those where they are not. We will call the

former case an independent policy implementation, in the sense that the realization of X∗ does

not depend on the old value of X. The latter case is then accordingly termed as a dependent

policy implementation.

2.2 Objects of Interest

Depending on the application at hand, a researcher might be interested in learning about

different features of the distribution of Y ∗ and Y . Here we list some useful examples for which

estimation and inference is discussed in detail below. However, our framework is by no means
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limited to these examples, but can be used for any object that can be written as a sufficiently

smooth (in the sense described below) functionals of the distribution functions of Y and Y ∗.

Our primary objects of interest are the distribution functions FY and F ∗Y themselves. As-

suming that the latter is identified, we could give a complete description of the effect of the

policy on the distribution of the outcome variable by evaluating them directly. Furthermore,

we will consider the pointwise difference between the two distribution functions,

∆F (y) = F ∗Y (y)− FY (y), (2.2)

which we call the Distribution Function Policy Effect. This quantity can be of interest in at least

two respects. First, in some empirical contexts it might be sufficient to consider the effect of

the policy on the distribution of the outcome variable at some fixed point only. In development

economics for example, if Y is household income and ȳ is some fixed income level defined as the

poverty line, one might be interested in whether the policy reduces the fraction of households

that live under the poverty line, i.e. whether ∆F (ȳ) is negative. Secondly, it might be interesting

to test whether ∆F ≡ 0, and thus the policy has any kind of impact on the distribution of the

outcome variable at all.

Instead of looking directly at the CDF, it is often more intuitive to consider the unconditional

τ -quantiles Q∗Y and QY of Y ∗ and Y , respectively, where

Q∗Y (τ) = inf{y ∈ R : F ∗Y (y) ≥ τ} (2.3)

and QY is defined analogously. Another convenient summary statistic is the corresponding

Quantile Policy Effect, which is defined as

∆Q(τ) = Q∗Y (τ)−QY (τ). (2.4)

This quantity is analogous to the quantile treatment effect in the literature on program evalu-

ation.

In our framework, it is also possible to analyse the effect of the policy on the Lorenz curve

and the Gini coefficient. These measures play an important role in the analysis of inequality

and poverty. Formally, for a positive random variable with distribution function F ∗Y the Lorenz

curve L∗Y (p) is defined as the integral over the quantile function up to p divided by µ, the mean

of F :

L∗Y (p) =
1

µ∗Y

∫ p

0
Q∗Y (τ)dτ =

1∫ 1
0 F

∗−1
Y (τ)dτ

∫ p

0
F ∗−1
Y (τ)dτ, (2.5)
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The corresponding Gini coefficient is defined as twice the area between the Lorenz curve and

the uniform distribution line, i.e.

G∗Y = 1− 2

∫ 1

0
L∗Y (p)dp, (2.6)

with G = 0 implying perfect equality and G = 1 implying perfect inequality. The quantities

LY and GY are then defined analogously. Again, we can also consider the Lorenz Curve Policy

Effect, given by

∆L(p) = L∗Y (p)− LY (p), (2.7)

and the Gini Policy Effect,

∆G = G∗Y −GY . (2.8)

The final application we consider in this paper is testing for stochastic dominance. This

topic is of great practical importance since the results can be used to evaluate the welfare

implications of a proposed policy without making strong assumptions about social preferences.

In particular, it is well known that if some distributions can be ranked by stochastic dominance,

the same ranking is obtained through the corresponding social welfare over a wide range of utility

functions (Atkinson 1970). To simplify the notation, define the operator Dj(y, φ) that integrates

the function φ up to order j − 1 for j ≥ 1, i.e.

D1(y, φ) = φ(y), D2(y, φ) =

∫ y

0
φ(z)dz, D3(y, φ) =

∫ y

0

∫ t

0
φ(z)dzdt, etc. (2.9)

Then F ∗Y is said to dominate FY in ”j-th order stochastic dominance” sense if Dj(y, F ∗Y −FY ) ≤ 0

for all possible values of y. A Kolmogorov-Smirnov-type test for stochastic dominance can then

be carried out by testing whether supy Dj(y, F ∗Y − FY ) is negative.

2.3 Identification

For the setup considered in this paper, the only issue is whether the distribution functions

of Y and Y ∗ are identified, since identification of the quantities (2.2)–(2.9) discussed in the

previous subsection then follows trivially. While FY is obviously identified by the data, the case

of F ∗Y is less clear. Identification in nonseparable models is a potentially delicate issue, that has

attracted considerable interest in the recent literature (see for example Chesher (2003), Matzkin

(2003), Imbens and Newey (2009) or Hoderlein and Mammen (2007)). However, since we are

not interested in directly identifying features of m, our problem is much less complicated. In
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particular, there is no need to impose anymore structure on the function m, such as monotonicity

in the unobservables. For identification of our quantity of interest, the following assumption

suffices.

Assumption 1 (Identification). (i) The term ε is independent of both X and X∗. (ii) The

support of X∗ is a subset of the support of X.

Proposition 1. Under Assumption 1, F ∗Y (y) = E(FY |X(y,X∗)) and is thus identified.

The first part of Assumption 1 implies that X is exogenous, which is a strong assumption

for many applications. It is straightforward to relax this condition by requiring independence to

hold only conditional on some other random variable V , which is either observed or estimateable.

Such a control variable could be available in a wide range of contexts, as described in Imbens and

Newey (2009) for example. These include treatment effect models with selection on observables,

triangular simultaneous equation models and certain sample selection models. In all cases,

one can extend the result of Proposition 1 to F ∗Y (y) = E(FY |X,V (y,X∗, V )). Our results on

estimation given below then apply immediately when V is observed. The case where V has to

be estimated (nonparametrically) from the data is technically much more involved and beyond

the scope of this paper.

The second part of Assumption 1 restricts the policy experiments that can be considered

to ones for which there is already some experience in the data. This restriction is due to the

inability of nonparametric estimators to extrapolate from range of actual observations. While

it limits the potential fields of application, without imposing some parametric structure on m

this condition seems necessary to obtain point identification of F ∗Y . However, it is possible to

give meaningful bounds on the CDF of Y ∗ when X∗ is allowed to take values outside of the

support of X with moderate probability.

2.4 Estimation

Our estimation approach is to first construct estimates F̂ ∗Y and F̂Y of the distribution functions

F ∗Y and FY , respectively, and then estimate any functional of the form Γ = Γ(F ∗Y , FY ) through

the plug-in method by Γ̂ = Γ(F̂ ∗Y , F̂Y ). For example, an estimate of the Quantile Policy Effect

∆Q can be constructed as

∆̂Q(τ) = Q̂∗Y (τ)− Q̂Y (τ) = inf{y ∈ R : F̂ ∗Y (y) ≥ τ} − inf{y ∈ R : F̂Y (y) ≥ τ}.

Estimates of all objects of interest defined in eq. (2.2)–(2.8) can be defined in an analogous

manner.
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The structure of the data used for the estimation depends on whether we are considering

a dependent or an independent policy implementation. In the former case, the data consist of

a sample {(Yi, Xi, X
∗
i )}ni=1 of size n from the distribution of (Y,X,X∗). For an independent

policy implementation, the data consist of a sample {(Yi, Xi)}ni=1 of size n from the distribution

of (Y,X), and a sample {X∗i }n
∗
i=1 of size n∗ from the distribution of X∗. While we allow the two

samples sizes to be different in this case, we assume for the later asymptotic analysis that they

increase proportionally, so that n∗ = n/λ for some constant λ.

We now turn to the construction of the estimators. Throughout, we will use the notation for

an independent policy implementation without loss of generality, since it covers the dependent

implementation as the special case with n∗ = n. Starting with an estimate for the CDF of Y ,

an obvious candidate is the usual empirical cumulative distribution function (ECDF),

F̂Y (y) =
1

n

n∑
i=1

I{Yi ≤ y},

whose theoretical properties are well-known in the literature. To derive an estimator for F ∗Y ,

we know from the identification argument in the previous subsection that under Assumption 1

F ∗Y (y) = E(FY |X(y,X∗)).

Following the analogy principle and replacing unknown quantities with suitable sample coun-

terparts, it appears intuitive to use an estimator F̂ ∗Y of the form

F̂ ∗Y (y) =
1

n∗

n∗∑
i=1

F̂Y |X(y,X∗i ),

where F̂Y |X is a first-stage nonparametric estimate of the distribution function of Y conditional

on X. If all covariates are continuously distributed, we propose to estimate this function by a

Nadaraya-Watson-type estimator, i.e.

F̂Y |X(y, x) =
ĝY X(y, x)

f̂X(x)

where

ĝY X(y, x) =
1

n

∑
j

I{Yj ≤ y}Kx,h(Xj − x),

f̂X(x) =
1

n

∑
j

Kx,h(Xj − x).

Here I{A} is an indicator function that equals one if A is true and zero otherwise, h = hn is a

bandwidth sequence that tends to zero as n → ∞, Kx,h(·) = h−dKx(·/h), and Kx is a higher-

order boundary kernel, i.e. a kernel function whose moments up to a certain order are zero,
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and whose shape adapts when the point of evaluation x is in the vicinity of the boundary of

the support of X (see for example Gasser, Müller, and Mammitzsch (1985)). These properties

are needed to derive a uniform rate of convergence for our first-step estimator later, uniformly

over the entire support of Y and X. We will be more precise about the specifics below.

The estimator F̂Y |X can easily be generalized to admit discrete regressors using the con-

ventional frequency method. This entails splitting the sample into subsets, or cells, and then

calculating the Nadaraya-Watson estimator within each such subset separately. This procedure

is well known to have no effect on the rate of convergence. For notational convenience, we will

therefore maintain the assumption that all covariates are continuously distributed.

A computational advantage of our estimator is that it admits a representation as a reweighted

version of the usual empirical distribution function. To see this, note that F̂ ∗Y (y) can be written

as

F̂ ∗Y (y) =
1

n∗

n∗∑
i=1

∑n
j=1 I{Yj ≤ y}KX∗

i ,h
(Xj −X∗i )∑n

l=1KX∗
i ,h

(Xl −X∗i )

=
1

n

n∑
j=1

I{Yj ≤ y}wj

where the weights wj are given by

wj = λ
n∗∑
i=1

KX∗
i ,h

(Xj −X∗i )∑n
l=1KX∗

i ,h
(Xl −X∗i )

.

Since the weights do not depend on y, they have to be calculated only once even when F̂ ∗Y is

evaluated at multiple locations, making the estimator extremely cheap to compute in practice.

A potential caveat when using higher-order kernels is that they are not restricted to be

positive, and hence can lead to estimates of F ∗Y which are non-monotone or take values ouside the

unit interval in finite samples, which is of course undesirable. This problem can be circumvented

by a slight modification of the estimator: if we replace the weights wj by w̃j = wjI{wj ≥

0}/
∑

i(wiI{wi ≥ 0}), we obtain a modified estimator

F̃ ∗Y (y) =
1

n

n∑
j=1

I{Yj ≤ y}w̃j

which is constrained to be monotonically increasing and bounded between 0 and 1. We show

in the following section that this estimator asymptotically equivalent to F̂ ∗Y under standard

conditions. For the further analysis, we will therefore assume without loss of generality that

there are no issues with non-monotonicity of F̂ ∗Y .
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3 Asymptotic Properties

In order to conduct inference on the CDFs and related functionals as a whole, we have to derive

the joint asymptotic properties of the two estimators not only at some fixed value, but as a

random function. To do so, we first state the assumptions and give some useful preliminary

results in the following subsection, before proving the main weak convergence theorem in the

next but one. Finally, we discuss inference and the validity of the bootstrap.

3.1 Assumptions and Preliminaries

To present our framework, we first have to introduce some notation. For µ a k-vector of

nonnegative integers, we define (i) |µ| =
∑k

i=1 µi, (ii) for any function φ(x) on Rk, ∂µxφ(x) =

∂|µ|/(∂µ1x1, . . . , ∂
µkxk)φ(x) and (iii) xµ =

∏k
i=1 x

µi
i . We write ”

d→” to denote convergence

in distribution of a sequence of random variables, and ”⇒”to denote weak convergence of a

sequence of random functions.

To prove our main results, we need the following assumptions.

Assumption 2. The data {(Yi, Xi)}, i = 1, . . . , n and {X∗j }, j = 1, . . . , n∗ are i.i.d., respectively.

Assumption 3. (i) The support of X and X∗ are the compact sets J = ⊗di=1[xi, xi] and

J∗ = ⊗di=1[x∗i , x
∗
i ] ⊂ J , respectively. (ii) X has a probability density function fX(x), which

is bounded away from zero on J . (iii) X∗ has a probability density function f∗X(x), which is

bounded away from zero on J∗. (iv) The functions fX(x) and g(y, x) = FY |X(y, x)fX(x) are

r-times differentiable with respect to x on the interior of J , and the derivatives are uniformly

continuous and bounded. (v) The function f∗X(x) is r-times differentiable with respect to x on

the interior of J∗, and the derivatives are uniformly continuous and bounded.

Assumption 4. Let D(c) = {z : x − c ≤ z ≤ c − x}. Then the kernel function Kc :

Rd → R satisfies (i)
∫
D(c)Kc(z)dz = 1, (ii)

∫
D(c)Kc(z)z

µdz = 0 for all |µ| = 1, . . . , r, (iii)∫
D(c) |Kc(z)z

µ|dz < ∞ for |µ| = r, (iv) Kc(z) = 0 if |z| > 1 (v) Kc(z) is r-times differentiable

with respect to both z and c, and the derivatives are uniformly continuous and bounded.

Assumption 5. The bandwidth sequence h = hn satisfies (i) h → 0, (ii) n1/2hd/ log(n) → ∞

and (iii) n1/2hr → 0.

Assumption 2 is standard in microeconometric applications. Assumptions 3 collects conven-

tional smoothness restrictions on the functions being estimated through nonparametric methods
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at some point in this paper. Note that it implicitly restricts the policies that can be considered

to those where both X and X∗ are continuously distributed. It is straightforward to show that

this condition can be replaced by the assumption that both random vectors have a probability

density function with respect to the same dominating measure. This would allow their com-

ponents to be discrete or even continuous with some mass points, as long as the policy does

not affect the location of the mass point. However, all policies for which X∗ has a probability

density function with respect to a different dominating measure than X are excluded in this

framework. The fourth assumption prescribes the use of a higher-order boundary kernel, which

is required to remove asymptotic bias from our first-step estimator. Note that the boundary

correction is not necessary when J∗ is a compact subset of the interior of J . Finally, the last

assumption determines the rate at which the bandwidth sequence converges to zero. If h is of

the form h = cn−δ for some constants c, δ > 0, then in order for Assumption 6 to hold we need

that δ ∈ (1/2r, 1/2d) which in turn requires that the order of the kernel exceeds the dimension

of X, so that the interval is not empty.

These assumptions are convenient, because they allow us to prove the following proposition,

which is an important ingredient for the further arguments. Similar results have been obtained

by Härdle, Janssen, and Serfling (1988) and Newey (1994a), to mention a few.

Proposition 2. Under Assumption 1-5, we have that

i) sup
y∈R

sup
x∈J
|ĝY X(y, x)− gY X(y, x)| = Op

((
log n

nhd

)1/2

+ hr

)

ii) sup
x∈J
|f̂X(x)− fX(x)| = Op

((
log n

nhd

)1/2

+ hr

)

iii) sup
y∈R

sup
x∈J
|F̂Y |X(y, x)− FY |X(y, x)| = Op

((
log n

nhd

)1/2

+ hr

)

The proposition provides an explicit uniform rate of convergence for the first-step estimates.

In particular, under Assumption 5 the proposition implies that the difference between F̂Y |X and

FY |X vanishes at a rate faster than n−1/4, whereas the corresponding bias disappears faster than

n−1/2, both uniformly over the two arguments. Thus our first-stage nonparametric estimator

satisfies the well-known minimal convergence rates given by Newey (1994b).

Another important preliminary result is the asymptotic equivalence of the estimator F̂ ∗Y

and its modified version F̃ ∗Y introduced in Section 2.4. The following proposition implies that

the limit results derived for F̂ ∗Y in the following section will also apply to F̃ ∗Y , which has the

practical advantage of being a proper distribution function.
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Proposition 3. Under Assumption 1-5, we have that

sup
y∈R
|F̂ ∗Y (y)− F̃ ∗Y (y)| = op(n

−1/2).

3.2 Main Result

In this section, we derive the limit behaviour of our estimates of the distribution functions of

Y ∗ and Y . In particular, we show that the bivariate random function

y 7→
√
n
(
F̂(y)− F(y)

)
(3.1)

converges weakly to some Gaussian process, where we use the notation that F̂ = (F̂ ∗Y , F̂Y )T ,

F = (F ∗Y , FY )T and y = (y1, y2)T .

The main complication for deriving this result originates from the process’ first component,

the normalized estimate of the CDF of Y ∗, which is given by

√
n(F̂ ∗Y (y1)− F ∗Y (y1)) =

√
n

(
1

n∗

n∗∑
i=1

F̂Y |X(y1, X
∗
i )− F ∗Y (y1)

)
.

The properties of this expression are not straightforward to derive, since our estimator F̂ ∗Y (y1)

is not a sum of independent terms: F̂Y |X(y1, X
∗
i ) does not only depend on the ith but on all

observations. In the appendix, we therefore construct an asymptotic representation for our

estimate, which decomposes F̂ ∗Y into the following three parts:

√
n(F̂ ∗Y (y1)− F ∗Y (y1)) =

1√
n∗

n∗∑
i=1

√
λ
(
FY |X(y1, X

∗
i )− F ∗Y (y1)

)
+

1√
n

n∑
i=1

f∗X(Xi)

fX(Xi)
(I{Yi ≤ y1} − FY |X(y1, Xi)) + op(1).

The first term on the right hand side is the one we would obtain if the function FY |X was

known and did not have to be estimated from the data.1 It accounts for the uncertainty in our

estimate that is induced by replacing the expectation with a sample average. The second term

is an adjustment term that accounts for the uncertainty in our estimate of FY |X . The last term

is op(1) uniformly in y and thus asymptotically negligible.2 Using this decomposition and the

definition of the ECDF, we arrive at the following Theorem:

1The factor
√
λ is an artefact of scaling the estimator by

√
n instead of

√
n∗.

2For the case of a fixed y, a similar decomposition for averages of nonparametrically estimated functions is

shown by Newey (1994a).
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Theorem 1. If Assumtions 1-5 hold, then

√
n
(
F̂(·)− F(·)

)
⇒ Fo(·)

where Fo is a two dimensional Gaussian process with mean zero and covariance function

ΨF (y, y′) = E(ψF (y, Z)ψF (y′, Z)T ),

where Z = (Y,X,X∗) and ψF (y, Z) =
(
ψF1 (y1, Z), ψF2 (y2, Z)

)T
is given by

ψF1 (y1, Z) =
√
λ(FY |X(y1, X

∗)− F ∗Y (y1)) +
f∗X(X)

fX(X)
(I{Y ≤ y1} − FY |X(y1, X)),

ψF2 (y2, Z) = I{Y ≤ y2} − FY (y2),

and the convergence is in D(−∞,∞)×D(−∞,∞).

The theorem shows that in large samples the behaviour of our random function (3.1) can

be approximated by a bivariate correlated Gaussian process, whose second component is easily

seen to be an ordinary FY -Brownian Bridge. The explicit form of the covariance function ΨF

depends on whether we consider a dependent or independent policy implementation, but the

influence function is the same in both cases. Although our estimator depends in part on high-

dimensional nonparametric components, we obtain the
√
n-rate of convergence that one would

typically obtain for standard parametric estimators, irrespective of the dimension of X. Our

estimates are thus not affected by the curse of dimensionality, and hence we can expect the

asymptotics to be a rather accurate approximation even when the sample size is only moderate

relative to the dimension of X.

An immediate implication of Theorem 1 is that our estimator of the Distribution Function

Policy Effect converges to a Gaussian process as well. That is, we obtain that

√
n(∆̂F (·)−∆F (·))⇒ (1,−1)Fo(·, ·).

by simply applying the continuous mapping theorem (CMT). In order to analyse the properties

of estimates of more general functionals of the form Γ(F̂), one can use the following Theorem,

which is an application of the Functional Delta Method (van der Vaart 2000, Theorem 20.8):

Theorem 2. Suppose that the conditions of Theorem 1 hold, and let Γ be a Hadamard dif-

ferentiable functional mapping from D(−∞,∞) × D(−∞,∞) to some normed space S, with

derivative Γ′F. Then

√
n
(

Γ(F̂)(·)− Γ(F)(·)
)
⇒ Γ′F(Fo)(·) ≡ Go(·),
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where Go is a Gaussian process with mean zero and covariance function

ΨΓ(y, y′) = E(ψΓ(y, Z)ψΓ(y′, Z)T )

with ψΓ(y, Z) = Γ′F(ψF )(y, Z), and the convergence is in S × S.

The Hadamard differentiability condition in Theorem 2 requires the functional of interest

to be sufficiently smooth around the true value F. Roughly speaking, this means that Γ can

locally be well approximated by some continuous linear functional Γ′F, in the sense that

Γ(F + tst)− Γ(F)

t
→ Γ′F(s) as t→ 0

for all functions st → s (see van der Vaart (2000, p. 296) for a precise definition). As we will see

below, this condition can be verified for all our applications of interest under mild additional

conditions. Also note that the theorem allows for functionals Γ that map into Rk instead of some

function space. In this case Go is simply a k-variate normal distribution, and ΨΓ(y, y′) ≡ ΨΓ is

its covariance matrix.

3.3 Inference

The results in Theorem 1 and 2 immediately provide the basis for conducting pointwise inference

on certain features of the counterfactual distribution, by using the standard normal approxima-

tion. This might already be sufficient in some empirical contexts. In development economics

for example, if Y is household income and ȳ is some fixed income level defined as the poverty

line, one could simply be interested in whether the policy reduces the fraction of households

that live under the poverty line, i.e. whether ∆F (ȳ) is negative. Then it follows from the above

results that the corresponding estimate ∆̂F (ȳ) is asymptotically normal with mean zero and

standard error
√

(1,−1)ΨF (ȳ, ȳ)(1,−1)T /n, where ȳ = (ȳ, ȳ). Given a consistent estimate of

the covariance function, one could thus test a null hypothesis such as H0: ”The policy does

not change the proportion of people that earn below ȳ” through an ordinary t-statistic using

standard normal critical values.

Many important hypotheses, however, cannot adequately be tested by considering only a

fixed number of isolated points. This includes the hypothesis that the policy has no effect what-

soever, or that it leads to an improvement in a stochastic dominance sense. A related problem

that involves the entire functions being estimated is the construction of uniform confidence

bands, that cover the true function with some prespecified probability.
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One possibility to address these problems would be to simulate the limiting processes in The-

orem 1 and 2 by so-called multiplier methods (see e.g. van der Vaart and Wellner (1996, Section

2.9)). A disadvantage of this approach is that it requires explicit calculation and consistent es-

timation of the covariance function, which can be a cumbersome task for some applications.

A natural alternative to using simulation methods is to conduct inference using a form of the

bootstrap, for which one does not necessarily need to be able to give an explicit characterization

of the limiting distribution of the process of interest. In particular, by using the bootstrap one

can circumvent explicit specification of the covariance function.

In this paper, we propose using a simple nonparametric (or empirical) bootstrap scheme,

which is based on resampling the original observations. For the implementation, we again

have to take possible dependencies between X and X∗ into account. For a dependent policy

implementation, the bootstrap data is given by a sample {(Yb,i, Xb,i, X
∗
b,i)}ni=1 drawn with re-

placement from {(Yi, Xi, X
∗
i )}ni=1, whereas for an independent policy implementation it consists

of two samples {(Yb,i, Xb,i)}ni=1 and {X∗b,i}n
∗
i=1 drawn with replacement from {(Yi, Xi)}ni=1 and

{X∗i }n
∗
i=1, respectively. In both cases, the resampled data is then used to calculate the bootstrap

estimates of F ∗Y and FY , which are denoted by F̂b = (F̂ ∗Y,b, F̂Y,b), using the estimator described

in Section 2.4. The distribution of F̂b can then be determined through the usual repeated

resampling of the data, and used as an approximation of the distribution of F̂. The following

Theorem gives a theoretical justification for this approach.

Theorem 3. Suppose that the conditions of Theorem 1 hold. Then

√
n
(
F̂b(·)− F̂(·)

)
⇒ Fo(·),

conditional on the data, in probability, and the convergence is in D(−∞,∞) × D(−∞,∞).

Furthermore, under the conditions of Theorem 2,

√
n
(

Γ(F̂b)(·)− Γ(F̂(·))
)
⇒ Γ′F(Fo)(·),

conditional on the data, in probability3, and the convergence is in S × S.

Theorem 3 states that the nonparametric bootstrap is not only valid for the original problem

of conducting inference on the estimates of the CDFs directly, but that it can also be used to

analyse the properties of general functionals of the CDFs as well. As a simple example, consider

3See van der Vaart and Wellner (1996, Section 3.9.3) for a precise definition of conditional weak convergence

in probability.
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the problem of forming a uniform 1 − α confidence band for the Distribution Function Policy

Effect ∆F (·). To this end, let ∆̂F,b(y) = F̂ ∗Y,b(y)−F̂Y,b(y) the bootstrapped Distribution Function

Policy Effect, and define the pointwise variance of ∆̂F,b with respect to bootstrap sampling as

σ2(y) = Varb(∆̂F,b(y)). It then follows directly from Theorem 3 that a uniform 1−α confidence

band for ∆F is given by

CB1−α(y) = [∆̂F (y)− cσ(y), ∆̂F (y) + cσ(y)],

where c is the smallest positive constant that satisfies

Pb

(
sup
y

∣∣∣(∆̂F,b(y)− ∆̂F (y))
∣∣∣ /σ(y) ≤ c

)
≥ 1− α (3.2)

and Pb is the probability with respect to bootstrap sampling. In practice, the unknown quan-

tities c and σ2(·) can be approximated with the usual resampling techniques.

4 Application to Objects of Interest

In this section, we use results from Theorem 1 – 3 do discuss the remaining applications of

interest from Section 2.2. We show that in each case plug-in type estimators converge to a

Gaussian limit, and that the nonparametric bootstrap can be used to conduct asymptotically

valid inference, under appropriate additional regularity conditions.

4.1 Quantiles

To analyse the properties of the estimators of quantiles and Quantile Policy Effect, we use the

fact that inversion operator that transforms a CDF into its corresponding quantile function is

a Hadamard differentiable functional, which gives us the following proposition:

Proposition 4. Assume that (i) F ∗Y and FY are both continuously differentiable with strictly

positive derivative f∗Y and fY , and (ii) Y ∗ and Y have compact support, then

√
n(Q̂(·)−Q(·))⇒ −

(
Fo1
f∗Y

,
Fo2
fY

)
◦Q ≡ Qo

and

√
n(Q̂b(·)− Q̂(·))⇒ Qo(·)

conditional on the data, in probability. Here Qo is a Gaussian process with mean zero and

covariance function

ΨQ(τ, τ ′) = E(ψQ(τ, Z)ψQ(τ, Z)T )
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where

ψQ(τ, Z) =

(
ψF1 (Q∗Y (τ1), Z)

f∗Y (Q∗Y (τ1))
,
ψF2 (QY (τ2), Z)

fY (QY (τ2))

)T
.

and the convergence is in `∞(0, 1)× `∞(0, 1).

We thus have the familiar result that the influence function of the quantile process is just

the influence function of the corresponding distribution function divided by the density of the

variable of interest, and evaluated at the respective quantile. The assumption that Y ∗ and Y

have compact support can be relaxed at the cost of restricting convergence to subsets of the

unit interval. Furthermore, it follows directly from the proposition and the continuous mapping

theorem that our estimator of the Quantile Policy Effect satisfies

√
n(∆̂Q(·)−∆Q(·))⇒ (1,−1)Qo(·),

and that the nonparametric bootstrap is valid in this case as well. Thus, one can construct

uniform confidence bands on the Quantile Policy Effect in exactly the same manner as for the

Distribution Function Policy Effect.

4.2 Inequality measures

In this section, we apply Theorem 1–3 to analyse the effect of a proposed policy on the Lorenz

curve and the Gini coefficient. Our approach is similar to that of Barrett and Donald (2009) and

Bhattacharya (2007), who in different contexts also obtained weak convergence results using the

functional delta method. Many other inequality measures such as the Theil index for example

can be treated by analogous arguments. We start by deriving the asymptotic properties of the

estimated Lorenz curves.

Proposition 5. Assume that (i) F ∗Y and FY are both continuously differentiable with derivatives

f∗Y and fY , respectively, (ii) these derivatives are strictly positive on any compact subset of

(0,∞), (iii) Y ∗ and Y have finite second moments, and (iv) it holds that

lim
y→∞

(1− FY (y))1+c

fY (y)
= lim

y→0

FY (y)1+c

fY (y)
= 0

for some 0 < c < 1, and similarly for Y ∗. Furthermore, define the process Ho as

Ho(p) =

∫ p

0
Qo(τ)dτ
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for p = (p1, p2)T , and the integral is understood to be taken componentwise. Then

√
n
(
L̂(·)− L(·)

)
⇒
(
Ho1(·)
µ∗Y

−
L∗Y (·)
µ∗Y

Ho1(1),
Ho2(·)
µY

− LY (·)
µY

Ho2(1)

)
≡ Lo(·),

and

√
n
(
L̂b(·)− L̂(·)

)
⇒ Lo(·),

conditional on the data, in probability. Here Lo is a Gaussian process with mean zero and

covariance function

ΨL(p, p′) = E(ψL(p, Z)ψL(p′, Z)T )

where ψL(p, Z) = (ψL1 (p1, Z), ψL2 (p2, Z))T is given in Appendix B, and the convergence is in

`∞(0, 1)× `∞(0, 1).

The additional assumptions we make are used by Bhattacharya (2007) in order to establish

Hadamard-differentiability of the functional that translates a CDF into its Lorenz curve. Note

that in contrast to the quantile process, one does not have to assume that the support of Y and

Y ∗ is compact, and thus that their density functions are bounded away from zero, to obtain weak

convergence in `∞(0, 1) × `∞(0, 1). Instead, the tail condition (iv), which is fulfilled by many

distributions commonly used to describe income distributions such as log-normal or Pareto,

suffices.

Proposition 4 could again be used to conduct inference on the Lorenz curve as a whole.

Also, as in the case of the quantiles considered above, it follows from the continuous mapping

theorem that our estimator of the Lorenz Policy Effect satisfies

√
n(∆̂L(·)−∆L(·))⇒ (1,−1)Lo(·),

and that the nonparametric bootstrap is valid in this case as well. Here the bootstrap could

be used for example to construct a one-sided confidence band ∆̂L, which could be used to test

the hypothesis of Lorenz dominance, i.e. that ∆L(p) ≤ 0 for all p ∈ (0, 1). Another direct

consequence of the proposition is the distribution of the Gini coefficient, which again follows

simply from the continuous mapping theorem.

Proposition 6. Under the same conditions as Proposition 4,

√
n(Ĝ−G)

d→ N(0,ΨG) and
√
n(Ĝb − Ĝ)

d→ N(0,ΨG),
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conditional on the sample, in probability, where the limiting distribution is bivariate normal with

mean zero and covariance matrix

ΨG = 4E
(∫ 1

0
ψL(p, Z)dp

∫ 1

0
ψL(p, Z)Tdp

)
.

4.3 Testing for Stochastic Dominance

The limit results from Section 3 can also be used for various testing problems. Here we adapt

the methods of Barrett and Donald (2003) and consider Kolmogorov-Smirnov-type statistics to

test stochastic dominance of F ∗Y over FY for any prespecified order, with critical values obtained

via the bootstrap. Other approaches are discussed, for example, by McFadden (1989), Anderson

(1996), Davidson and Duclos (2000), Abadie (2002) and Linton, Maasoumi, and Whang (2005).

The test statistics we consider are based on pointwise comparisons of appropriate measures

of distance between F̂ ∗Y and F̂Y over their entire common support, which we assume to be the

compact interval [0, ȳ]4. Using the operator Dj(y, φ) defined in (2.9), the hypothesis of ”j-th

order stochastic dominance” of F ∗Y over FY can then be formulated as

Hj
0 : Dj(y, F ∗Y − FY ) ≤ 0 ∀y ∈ [0, ȳ],

Hj
1 : Dj(y, F ∗Y − FY ) > 0 ∃y ∈ [0, ȳ],

for j = 1, 2, . . .. The corresponding test statistics are given by

KSj =
√
n sup
y∈[0,ȳ]

Dj(y, F̂ ∗Y − F̂Y ) =
√
n max
y∈Y1,...Yn

Dj(y, F̂ ∗Y − F̂Y ),

where the last equality follows from the fact that by construction both F̂ ∗Y and F̂Y are piecewise

constant functions that jump at observed values of Y only.

Our aim is to reject Hj
0 whenever KSj exceeds some critical value. Note that there can be

many different combinations of distribution functions F ∗Y and FY such that Hj
0 is true, and we

are thus testing a composite null hypothesis. However, it is easy to see that the least favourable

case in this context corresponds to F ∗Y = FY . An asymptotically valid test procedure can thus

be based on bootstrapping the test statistic under the least favourable null. In particular, one

can calculate the bootstrap p-value as

p̂j = B−1
B∑
b=1

I{K̂Sj,b > KSj},

4Focussing on random variables that take only positive values seems natural, since stochastic dominance tests

are usually applied to income or wealth distributions. The upper limit on the support is needed for the proofs

and is usually not restrictive for empirical applications.
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where

K̂Sj,b =
√
n max
y∈Y1,...Yn

(
Dj(y, F̂ ∗Y,b − F̂Y,b)−Dj(y, F̂ ∗Y − F̂Y ))

)
is the realisation of the test statistic when calculated from the bootstrap sample. Our test

decision can then be based on the following rule:

Reject Hj
0 if p̂j < α for some prespecified significance level α. (4.1)

The following proposition delivers a theoretical justification for this approach.

Proposition 7. For any j = 0, 1, 2, . . . and α < 1/2, the decision rule (4.1) is a test of Hj
0 vs.

Hj
1 that has (i) asymptotic size of at most α and (ii) is consistent against any fixed alternative.

5 Numerical Examples

5.1 Simulation Study

5.1.1 Setup

In order to demonstrate the usefulness of our proposed estimation procedures, we conduct

a number of simulation experiments to assess their finite sample properties. Specifically, we

simulate a vector X = (X1, X2, X3) of conditioning variables, where the three components

are i.i.d. standard exponentially distributed and truncated at 3, and generate the dependent

variable of interest Y through a linear model with conditional heteroskedasticity as

Y = 6− 2X1 +X2 + σ(X)ε, σ2(X) = X1 +X2, (5.1)

and ε follows a standard exponential distribution. Note that Y is restricted to be positive in

this setup, and that X3 is an irrelevant regressor. We consider two dependent policy implemen-

tations, where X∗ is a determininistic transformation of the orginal X-values:

• Policy 1: X3 is reduced by 50%: π1(x1, x2, x3) = (x1, x2, .5x3).

• Policy 2: All regressors are reduced by 50%: π2(x1, x2, x3) = .5(x1, x2, x3).

Since X3 does not appear in the data generating process of Y , the first policy has no effect on

the distribution of Y . In contrast, Policy 2 highly affects the dependent variable, leading to

a distribution of Y ∗ that second-order stochastically dominates that of Y . The corresponding

distribution functions FY and F ∗Y are plotted in Figure 5.1.
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Figure 5.1: Plot of FY (solid line) and F ∗Y (dashed line) for Policy 2.

For both policies, we consider the applications of interest described in Section 2.2. Here

the CDFs of Y ∗ and Y , and the Distribution Function Policy Effect ∆F are estimated over the

equidistant grid {3, 3.05, 3.1, . . . , 8.95, 9}, whereas for the quantiles of Y ∗ and Y , the Quantile

Policy Effect, the Lorenz curve of Y ∗ and Y and the Lorenz Curve Policy Effect the grid

{.1, .11, .12, . . . , .89, .9} is used. Moreover, we consider tests for first- and second-order stochastic

dominance of F ∗Y over FY . That is, in each simulation run we test the hypothesis Hj
0 : Dj(y, F ∗Y −

FY ) ≤ 0 for j = 1, 2. We use the sample sizes n = 100 and n = 400, and set the number of

Monte Carlo replications to 1000. In each replication, we use the nonparametric bootstrap with

B = 1000 repetitions to obtain uniform 90% confidence bands for the functionals of interest

(and approximate p-values in case of the stochastic dominance tests).

In order to implement our estimators, we have to specify a kernel function and a bandwidth

sequence h that are compatible with the assumptions made in Section 3. A kernel function that
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satisfies both the higher-order and the boundary correction property is given by

Kc(z) =

d∏
i=1

eT1 S
−1
ci (1, zi, . . . , z

p
i )Tκ(zi),

where Sc = (µj+l,c)0≤j,l≤p is a matrix of kernel constants µj,c =
∫
D(c) z

jκ(z)dz, e1 = (1, 0, . . . , 0)T

is the unity vector, p = r− 3 and κ(z) is a standard univariate kernel function that satisfies the

remaining regularity conditions of Assumption 4. This is the product of univariate equivalent

kernels of a local polynomial regression estimator (see Fan and Gijbels (1996) for more details).

For our simulations, we let κ(z) be the usual Epanechnikov kernel and choose p = 1, which

implies that Kc(z) is a fourth order kernel.

Regarding the bandwidth, our asymptotic results only prescribe a rate at which h tends to

zero, but are silent about its optimal size in finite samples. Here we use a bandwidth of the

form h = cn−δ, which requires that δ ∈ (1/2r, 1/2d) = (1/8, 1/6) in order for Assumption 5 to

be fulfilled. Absent further guidelines, we choose h = 1.5σxn
−1/7 for our simulations, where σx

is the standard deviation of the respective covariates. Informal robustness checks suggest that

the results are not too sensitive with respect to this choice.

5.1.2 Results

In Table 1, we present the result of our simulation study regarding the properties of our estimates

of the CDFs of Y ∗ and Y , the Distribution Function Policy Effect, the quantiles of Y ∗ and Y ,

the Quantile Policy Effect, the Lorenz curve of Y ∗ and Y , the Lorenz curve policy effect, the

Gini coefficients of Y ∗ and Y and the Gini Policy effect. In each case, we report Monte Carlo

estimates of the integrated bias (IBias), the root integrated mean squared error (RIMSE), and

the coverage rate of a uniform confidence band with nominal coverage level of 90% (Cov. Rate).

Although the sample sizes we consider are relatively small, our estimators exhibit reasonable

finite sample properties. Finite sample biases are generally small and decrease rapidly with the

sample size. Also note that increasing the sample size from n = 100 to n = 400, i.e. by a factor

of four, roughly halves the magnitude of the RIMSE for all quantities under consideration, which

indicates that convergence to the true values indeed takes places at rate
√
n. The empirical

coverage rate of the uniform 90% bootstrap confidence bands is generally close to the nominal

level. This procedure should thus be able to provide reliable inference even in small samples.

Table 2 presents the simulation results on the stochastic dominance tests. For each test,

we report the empirical rejection rates for the nominal levels α = .05 and α = .1. Recall that

for the first policy F ∗Y ≡ FY so that Hj
0 is true for j = 1, 2, whereas under Policy 2 F ∗Y is
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Table 1: Simulation Results: Properties of Nonparametric Policy Estimators

Policy 1
n = 100 n = 400

IBias RIMSE CR IBias RIMSE CR
F ∗Y 0.879 9.469 0.855 0.414 5.358 0.894
FY 0.654 7.926 0.813 0.349 3.975 0.862
∆F 0.367 5.059 0.952 0.277 3.553 0.964
Q∗Y 4.495 30.421 0.900 1.000 16.063 0.898
QY 2.143 22.777 0.843 0.626 11.611 0.861
∆Q 3.557 21.288 0.973 0.453 11.185 0.941
L∗Y 0.150 1.008 0.833 0.066 0.542 0.877
LY 0.135 0.842 0.805 0.049 0.435 0.846
∆L 0.015 0.566 0.972 0.016 0.340 0.964
G∗Y 0.353 1.770 0.885 0.154 0.950 0.901
GY 0.310 1.493 0.860 0.115 0.769 0.871
∆G 0.042 0.954 0.955 0.039 0.596 0.947

Policy 2
n = 100 n = 400

IBias RIMSE CR IBias RIMSE CR
F ∗Y 2.169 10.531 0.862 0.899 5.211 0.857
FY 0.266 7.698 0.847 0.326 3.978 0.865
∆F 2.109 7.513 0.859 0.699 3.717 0.876
Q∗Y 2.698 20.428 0.868 1.098 9.877 0.861
QY 0.580 22.265 0.875 0.591 11.466 0.853
∆Q 2.833 21.669 0.948 0.811 10.731 0.920
L∗Y 0.063 0.668 0.825 0.016 0.337 0.856
LY 0.014 0.843 0.812 0.012 0.429 0.865
∆L 0.059 0.780 0.855 0.012 0.379 0.878
G∗Y 0.098 1.150 0.877 0.007 0.586 0.873
GY 0.028 1.483 0.879 0.026 0.762 0.870
∆G 0.126 1.361 0.864 0.019 0.664 0.885

Note: Integrated Bias and RIMSE figures have been multiplied by 100 to improve readability.
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Table 2: Simulation Results: Rejection rates of KS-type tests for stochastic dominance

Policy 1 Policy 2

KS1 KS2 KS1 KS2

α = .05 n = 100 .036 .040 .345 .011

n = 400 .048 .041 .917 .012

α = .1 n = 100 .074 .083 .538 .025

n = 400 .098 .089 .983 .011

dominating FY in a second-order stochastic dominance sense, but not in a first-order one, so

that only H2
0 holds in this case. For Policy 1, both tests are conservative, but their empirical

size gets closer to the respective nominal level as the sample size increases. Under Policy 2, the

KS1 test has non-trivial power for n = 100 and rejects the null in almost all simulation runs

for n = 400. The rejection rates of the KS2 test are substantially below their nominal values,

which comes as no surprise as the test can only be expected to have correct size under the least

favourable null hypothesis.

5.1.3 Comparison with Approach based on Quantile Regression

Without any point of reference, it is admittedly difficult to judge whether the finite sample

properties of our estimators are ”good”. In this section, we therefore briefly compare them with

those of an estimator based on a first-step linear quantile regression (LQR), as discussed in

Machado and Mata (2005), Melly (2005) and Chernozhukov, Fernandez-Val, and Melly (2009).

Instead of using a kernel estimator, this method obtains an estimate of the conditional dis-

tribution function FY |X by inverting an estimate of the conditional quantile function QY |X ,

which is assumed to be linear in the regressors at every quantile, i.e. it imposes the restriction

that QY |X(τ |x) = xβ(τ) for all τ ∈ (0, 1). Since this estimator imposes additional parametric

restrictions on the relationship between the dependent variable and the covariates, the result

will generally exhibit less finite sample variation than our nonparametric procedure. On the

other hand, such an estimator is also more prone to misspecification bias. The purpose of this

section is to illustrate this tradeoff.

We compare the properties of the LQR-based estimator to our nonparametric procedure via

simulation. For brevity, we restrict attention on the Quantile Policy Effect, and consider only

the effect of Policy 2 for n = 400. The setup we use is the same as described above, with the
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Table 3: Simulation results: Comparisson of estimators.

a = 0 a = .5 a = 1

IBias RIMSE CR IBias RIMSE CR IBias RIMSE CR

NP 1.197 10.623 .920 2.202 13.972 .940 3.363 18.249 .934

LQR 1.883 9.319 .917 8.051 15.082 .702 16.743 26.074 .294

Note: Integrated Bias and RIMSE figures have been multiplied by 100 to improve readability.

exception that the dependent variable is now generated as

Y = 6− 2X1 +X2 + aX2
2 + σ(X)ε, σ2(X) = X1 +X2. (5.2)

The parameter a governs the complexity of the relationship. For a = 0, (5.2) is the same as

(5.1) considered above. In this case, a LQR model would be correctly specified. To illustrate

the effect of misspecification, we also consider a = .5 and a = 1.

The result of the simulations, given in Table 3, show that our nonparametric estimator

compares favourably with its competitor and performs well uniformly over the different values

of a we considered. It has the lowest RIMSE under all designs except for a = 0, where it

exceeds the RIMSE of the correctly specified LQR-based estimator by about 15%. When the

underlying model is not correctly specified, the LQR-based estimator can exhibit a substantial

bias, with its magnitude depending on the degree of misspecification. The coverage rates of

uniform confidence bands can also deviate significantly from their nominal levels in this case.

5.2 Empirical Illustration: The Effect of an Anti-Smoking Campaign on In-

fant Birthweights

In this section, we illustrate the application of our estimators through an example form public

health. We consider a (hypothetical) public policy that successfully induces women who smoke

during their pregnancy to cut their average daily cigarette consumption by 75%. Our interest

is in the effect of this policy on the distribution of infant birthweight in general, and whether

it helps to reduce the incidence of low-birthweight infants, which is usually defined by infants

weight at birth falling below 2500 grams (about 5 pounds, 8 ounces). These issues should be

of concern to policy makers since low birthweight is known to be associated with a wide range

of subsequent health problems, and has even been linked to later educational attainment and

labor market outcomes (see for example Almond, Chay, and Lee (2005) or Black, Devereux,

and Salvanes (2007)).

The data we use is a subsample of the Detailed Natality Data (June 1997) published by the
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Table 4: Descriptive Statistics

Mean Std. Dev Min Q25 Median Q75 Max

Birthweight 3176 560.36 457 2889 3204 3515 5245

Cigarettes per day 11.98 7.51 1 6.5 10 20 60

Mother’s age 25.15 5.56 18 21 24 29 45

Mother’s Weight Gain 30.19 14.07 0 20 30 40 98

Married 0.52 0.49 0 – – – 1

Note:N = 4439. Married is an indicator variable for the mother being married.

National Center for Health Statistics. A more extensive analysis of the full data set is given by

Abrevaya (2001) and Koenker and Hallock (2001). The subsample we employ comprises 4439

white mothers between age 18 and 45 without any college education, who gave birth to a live,

single infant and smoked during their pregnancy. For each woman in this particular subgroup,

we record the infant’s birthweight (in grams) and the average daily number of cigarettes the

mother smoked during the pregnancy, together with other variables that could possibly confound

the relationship between birthweight and the level of cigarette consumption. These include the

mother’s age, mother’s weight gain during the pregnancy (in pounds) and whether the mother

is married. Table 4 presents some descriptive statistics for our full data set. The identifying

assumption is that conditional on these variables unobserved factors that influence birthweight

are independent of the average amount of cigarettes consumed, given that the mother chooses

to smoke during the pregnancy in the first place.

Using the same specifications as for our simulation study in Section 5.1, we estimate the effect

of reducing every woman’s cigarette consumption by 75% on the distribution of birthweights by

our nonparametric procedure. The discrete regressor is accommodated using the conventional

frequency method. Figure 5.2 presents the estimate of the Quantile Policy Effect ∆Q(·), together

with 90% confidence intervals for every point, and a 90% uniform confidence band, both obtained

via the bootstrap with B = 1000 replications. The graph suggest that the policy increases

infant birthweights over almost the entire range of quantiles considered. Moreover, the point

estimate suggests that particularly the low quantiles would benefit by such a campaign, with an

estimated increase in the 10% quantile of about 140 grams compared to only 70 grams at the

90% quantile. However, since the associated confidence band is relatively wide, one cannot reject

the hypothesis that ∆Q(·) is constant, and thus there is no significant evidence of heterogeneous

policy effects.

As mentioned above, another quantity of interest is the proportion of low-weight birth
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Figure 5.2: Estimated Quantile Policy Effect on Infant Birthweight (solid line), with pointwise 90%

confidence bands (dark-grey area) and uniform 90% confidence bands (light-grey area) based on 1000

bootstrap replications.

incidents, which amounts to 9.28% in the subpopulation under consideration. The see how a

change in smoking habit would affect this share, we simply estimate the Distribution Function

Policy Effect ∆F (·) and evaluate it 2500 grams. As a result, we obtain that

∆̂F (2500) = −0.0290 with s.e.(∆̂F (2500)) = 0.0092.

The corresponding 90% confidence interval is given by CI.9 = (−0.0429,−0.0140). This im-

plies that the policy would reduce low-weight birth incidents by roughly one third, which is a

substantial amount. While the confidence interval is again relatively wide, it is substantially to

the left of zero, which indicates that the policy should be effective for reducing low-birthweight

incidents.
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6 Conclusions

In this paper, we have proposed a fully nonparametric way to assess the effect of an exogenous

change in the distribution of the covariates on the unconditional distribution of a dependent

variable of interest. The method can be used to conduct asymptotically valid inference on

various kinds of statistics that can be written as a sufficiently smooth functional of the CDF. It

is straightforward to implement and performs surprisingly well in simulations when the sample

size is relatively small, even compared to correctly specified parametric estimators. This is in

sharp contrast to classical nonparametric methods, whose use is prohibitive due to the curse of

dimensionality in situations with many regressors and few observations.

A Proofs of Theorems and Propositions

A.1 Proof of Proposition 1

From the definition of a distribution function, the law of iterated expectations, and that ε is independent

of both X and X∗, we obtain that

F ∗Y (y) = P (m(X∗, ε) ≤ y)

=

∫
P (m(X∗, ε) ≤ y|X∗ = x)dF ∗X(x)

=

∫
P (m(x, ε) ≤ y)dF ∗X(x)

=

∫
P (m(X, ε) ≤ y|X = x)dF ∗X(x)

= E(FY |X(y,X∗)),

where FY |X is the conditional distribution function of Y given X. Since the data (Y,X) certainly identify

this function at any point (y, x) in their support, and X∗ only takes values in a subset of the support of

X with probability 1, this implies that F ∗Y is identified.

A.2 Proof of Proposition 2

The statement can be shown using standard kernel smoothing theory. First, one can show that the rate

of the bias of each estimator is uniformly of the order O(hr) by standard Taylor expansion arguments.

The fact that the rate is the same in both the interior and the vicinity of the boundary of the support of

X is a consequence of the use of a boundary kernel. Second, the rate of the stochastic part can be shown

to be Op(log(n)/(nhd)) by using the arguments from, say, Newey (1994a) for (ii), and Härdle, Janssen,

and Serfling (1988) or Akritas and Van Keilegom (2001) for (i) and (iii). Taken together, these results

imply the rates given in the proposition.
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A.3 Proof of Proposition 3

Consider for notational simplicity the case that λ = 1, and definde the function w through

w(x) =
1

n

n∗∑
i=1

KX∗i ,h
(x−X∗i )

f̂X(X∗i )
,

so that wj = w(Xj). Noting that F̂ ∗Y ≡ F̃ ∗Y when w(x) is positive for every value of x, we obtain that

P (F̂ ∗Y = F̃ ∗Y ) ≥ P ( inf
x∈J

w(x) ≥ 0)

≥ P ( inf
x∈J

f̂X(x) ≥ c ∩ inf
x∈J

f̂∗X(x) ≥ 0)

≥ P ( inf
x∈J

f̂X(x) ≥ c) + P ( inf
x∈J

f̂∗X(x) ≥ 0)− 1 (A.1)

for some constant c > 0, uniformly in y. We now show that both probabilities in (A.1) are of the order

1 + op(n
−1/2) if c is chosen sufficiently small, which gives the desired result.

To see this for the first term in (A.1), note that the density of X is bounded away from zero on J ,

i.e. there exists some δ > 0 such that infx∈J fX(x) > δ. Now, set c = δ/2. It is a well-known result that

E(f̂X(x)) = fX(x)+O(hr) uniformly in x, and we thus know that infx E(f̂X(x)) > 3
4δ for some sufficiently

large n. This also means that for sufficiently large n the event {infx f̂X(x) ≥ c} is implied by the event

{infx(f̂X(x)−E(f̂X(x))) ≥ −c/2}, which is in turn implied by the event {supx |f̂X(x)−E(f̂X(x))| < c/2}.

That is, it holds that

P ( inf
x∈J

f̂X(x) ≥ c) ≥ P (sup
x∈J
|f̂X(x)− E(f̂X(x))| < c/2).

Now, since J is compact, it can be covered by vn ≤ γ1n
d open balls with radius n−1, for some γ1 > 0.

The kth of these balls, with midpoint xn,k, is denoted by

Jn,k = {x ∈ Rd : ‖x− xn,k‖ ≤ n−1}.

Then we have that

sup
x∈J
|f̂X(x)− E(f̂X(x))| ≤ max

1≤k≤vn
sup
x∈Jn,k

|f̂X(x)− E(f̂X(x))|.

For x ∈ Jn,k, it follows from the triangle inequality that

|f̂X(x)− E(f̂X(x))| ≤ |f̂X(x)− f̂X(xn,k)|+ |f̂X(xn,k)− E(f̂X(xn,k))|+ |E(f̂X(xn,k))− E(f̂X(x))|.

Since the kernel function K has bounded partial derivatives, the first and third term on the right-hand

side of the last equation can be bounded as follows:

|f̂X(x)− f̂X(xn,k)| ≤ C |x− xn,k|
hd+1

≤ Cn−1h−d−1,

|E(f̂X(xn,k))− E(f̂X(x))| ≤ C |x− xn,k|
hd+1

≤ Cn−1h−d−1
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for some C > 0. Thus

sup
x∈J
|f̂X(x)− E(f̂X(x))| ≤ max

1≤k≤vn
|f̂X(xn,k)− E(f̂X(xn,k))|+ 2Cn−1h−d−1. (A.2)

Using a result from Bosq (1998, p.47–48), we also have that

P ( max
1≤k≤vn

|f̂X(xn,k)− E(f̂X(xn,k))| > c/4) ≤
vn∑
k=1

P (|f̂X(xn,k)− E(f̂X(xn,k))| > c/4)

≤ vnC exp(−γ2
√
nhd)

≤ C exp(−γ2
√
nhd + γ1 log(n)) (A.3)

for some γ2 > 0. Since n−1h−d−1 → 0 by Assumption 5, (A.2) and (A.3) together imply that for n

sufficiently large

P (sup
x∈J
|f̂X(x)− E(f̂X(x))| < c/2) ≥ P ( max

1≤k≤vn
|f̂X(xn,k)− E(f̂X(xn,k))| < c/4)

≥ 1− C exp(−γ2
√
nhd + γ1 log(n))

= 1 + op(n
−1/2)

if nhd/ log(n)2 →∞, which is again ensured through Assumption 5. An analogous argument then applies

to the second term in (A.1). This completes our proof.

A.4 Proof of Theorem 1

In this section, we will briefly switch to the operator notation typically used in the empirical process

literature. In particular, for A1, . . . , An an i.i.d. sequence of random variables taking values in (A,B)

with distribution P and for some measureable function φ : X → R we will write

Pφ =

∫
φdP, Pnφ =

1

n

∑
i

φ(Zi), Gnφ =
√
n(Pn − P )φ

for the expectation, empirical measure and empirical process at φ, respectively. Furthermore, we write

ōp(an) as a shorthand notation for ”op(an) uniformly in y ∈ R”.

The difficulties in deriving the limit behaviour of Fn arise from the fact that F̂ ∗Y is itself a random

function that has been estimated from the data. Using the notation described above, the first component

of Fn can be rewritten as

√
n(F̂ ∗Y − F ∗Y ) =

√
n(P∗n∗ F̂Y |X − P ∗FY |X)

where P ∗ is the distribution of X∗ and both F̂Y |X and FY |X are seen as functions of X∗ indexed by

y, i.e. X∗ 7→ F̂Y |X(y,X∗) and similarly for FY |X . The above expression can be decomposed into the

following three terms,

√
n(P∗n∗ F̂Y |X − P ∗FY |X) =

√
λG∗n∗(F̂Y |X − FY |X) +

√
λG∗n∗FY |X +

√
nP ∗(F̂Y |X − FY |X)

= T1 + T2 + T3,
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which can now be analyzed separately. Beginning with T1, it is shown below in Lemma 1 that

sup
y∈R

∣∣∣G∗n∗(F̂Y |X − FY |X)
∣∣∣ = op(1)

and thus the first term on the right hand side vanishes as n tends to infinity. The second term is equal

to

T2 =
1√
n∗

n∗∑
i=1

√
λ(FY |X(y,X∗i )− F ∗Y (y)),

which does not contain any unknown functions and is thus easy to handle. Finally, Lemma 2 establishes

that

T3 =
1√
n

n∑
i=1

f∗X(Xi)

fX(Xi)
(I{Yi ≤ y} − FY |X(y,Xi)) + ōp(1).

To derive the asymptotic distribution for the actual process of interest, we have to distinguish between

a dependent and an independent policy implementation, and we have to introduce some more notation.

First, define the functions

ξ11(y) :X∗ 7→
√
λFY |X(y,X∗)

ξ12(y) :X∗ 7→ 0

ξ21(y) :(Y,X) 7→ f∗X(X)

fX(X)
(I{Y ≤ y} − FY |X(y,X))

ξ22(y) :(Y,X) 7→ I{Y ≤ y} − FY (y)

and let ξ1 = (ξ11, ξ12)T and ξ2 = (ξ21, ξ22)T and ξ = ξ1 + ξ2. Second, define the classes of functions

Pij = {ξij(y); y ∈ R} for i, j = 1, 2 and Pi = {ξi(y); y ∈ R2} for i = 1, 2 and P = {ξ(y); y ∈ R2}. Then it

can be shown that each of these classes of functions is Donsker by combining the results in the Examples

19.6, 19.9 and 19.20 in van der Vaart (2000), and by noting that if two classes of functions are Donsker

then so is their Cartesian product (van der Vaart 2000, p. 270).

Now consider the case of an independent policy implementation. Letting P be the distribution of

(Y,X), the process of interest can be written as

√
n
(
F̂− F

)
= G∗n∗ξ1 + Gnξ2 + op(1).

Since P1 and P2 are Donsker, the first and second term on the right hand side converge to two independent

Gaussian process. Thus, by the continuous mapping theorem, the entire right hand side of the last

equation converges to the sum of these to Gaussian processes, which is again a Gaussian process by

independence. It is then straightforward to see that this has mean zero and covariance function as stated

in the Theorem.

For a dependent policy implementation, let P̄ be the joint distribution of (Y,X,X∗) and recall that

λ = 1 in this case. The process can then be written as

√
n
(
F̂− F

)
= Ḡnξ + op(1).
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which converges to a Gaussian process since P is Donsker. It is again straightforward to see that the

limiting process has again mean zero and covariance function as stated in the Theorem (with λ = 1).

This completes our proof.

We now prove the two lemmas used in the above argument.

Lemma 1. Under the conditions of Theorem 1, it holds that

sup
y∈R

∣∣∣G∗n∗(F̂Y |X − FY |X)
∣∣∣ = op(1)

Proof. By Lemma 19.24 in van der Vaart (2000), the statement of the lemma follows if (i) the sequence

of random functions F̂Y |X takes its values in some Donkser class F , and if (ii)

sup
y∈R

P ∗(F̂Y |X − FY |X)2 = op(1).

This last condition obviously holds in our case because

P ∗(F̂Y |X − FY |X)2 =

∫
(F̂Y |X(y, x)− FY |X(y, x))2dF ∗X(x)

= op(n
−1/2)

uniformly in y and x since ||F̂Y |X(y, x)−FY |X(y, x)||∞ = op(n
−1/4) by Proposition 2, and the integration

takes place over a compact set.

To see that the first condition holds, define the class F by

F = {F̂Y |X(y, ·) : y ∈ R},

and note that by Assumption 4 each of it’s elements is r times continuously differentiable, and the

derivatives are uniformly bounded. Hence F ⊂ CrM (J∗), the space of all functions on J∗, the support

of X∗, whose derivatives up to order r are uniformly bounded by some constant M . But this class

is Donsker if r > d/2, where d is dimension of J∗, as shown in van der Vaart (2000, Example 19.9).

However, our assumptions on the bandwidth already require that r > d, so that this condition easily

holds in our case.

Lemma 2. Under the conditions of Theorem 1,

√
nP ∗(F̂Y |X − FY |X) =

1√
n

n∑
i=1

(I{Yi ≤ y} − FY |X(y,Xi))
f∗X(Xi)

fX(Xi)
+ op(1)

uniformly in y.

Proof. Switching back to the usual notation, we have that

√
nP ∗(F̂Y |X − FY |X) =

√
n

∫
F̂Y |X(y, x)− FY |X(y, x)dF ∗X(x).
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Here and in the following, all integrals are understood to be taken over the entire Rd. In order to derive

an expression for the integral in the above equation, it is useful to split it up into two components.∫
F̂Y |X(y, x)− FY |X(y, x)dF ∗X(x)

=

∫
1

n

∑
i

(I{Yi ≤ y} − FY |X(y,Xi))
Kx,h(x−Xi)

f̂X(x)
dF ∗X(x)

+

∫
1

n

∑
i

(FY |X(y,Xi)− FY |X(y, x))
Kx,h(x−Xi)

f̂X(x)
dF ∗X(x)

= A+B

We start with analysing the term A. Using the fact that X is a continuous random variable with density

function fX , and applying a second order Taylor expansion of 1/f̂X(x) around 1/fX(x), we obtain

A =

∫
1

n

∑
i

(I{Yi ≤ y} − FY |X(y,Xi))
Kx,h(x−Xi)

f̂X(x)
f∗X(x)dx

=

∫
1

n

∑
i

(I{Yi ≤ y} − FY |X(y,Xi))
Kx,h(x−Xi)

fX(x)
f∗X(x)dx

−
∫

1

n

∑
i

(I{Yi ≤ y} − FY |X(y,Xi))(f̂X(x)− fX(x))
Kx,h(x−Xi)

fX(x)2
f∗X(x)dx

+ op(n
−1/2)

= A1 +A2 + op(n
−1/2)

where the last term is op(n
−1/2) uniformly in x and y since ||f̂X(x) − fX(x)||∞ = op(n

−1/4), |I{Yi <

y} − FY |X(y,Xi)| ≤ 1, and integration takes place over a compact set.

To derive an expression for A1, define u(x) = f∗X(x)/fX(x), let u(µ)(x) = ∂µxu(x) and K
(µ)
c (x) =

∂µcKc(x). Using standard techniques from the kernel smoothing literature, we obtain that

A1 =

∫
1

n

∑
i

(I{Yi ≤ y} − FY |X(y,Xi))Kx,h(x−Xi)u(x)dx

=
1

n

∑
i

(I{Yi ≤ y} − FY |X(y,Xi))

∫
Kzh+Xi

(z)u(zh+Xi)dz

=
1

n

∑
i

(I{Yi ≤ y} − FY |X(y,Xi))

∫
(KXi

(z) + zhK
(1)
Xi

(z) + . . .+ (zh)rK
(r)
ξ (z))

× (u(Xi) + zhu(1)(Xi) + . . .+ (zh)ru(r)(ξ))dz

=
1

n

∑
i

(I{Yi ≤ y} − FY |X(y,Xi))(u(Xi) +Op(h
r))

=
1

n

∑
i

(I{Yi ≤ y} − FY |X(y,Xi))
f∗(Xi)

f(Xi)
+ op(n

−1/2)

where ξ is some value between Xi and Xi+zh. Here the second-to-last equality follows from interchanging

the order of differentiation and integration (which in turn follows by dominated convergence) and using

the kernel properties, and the last equality holds because Op(h
r) = op(n

−1/2) by Assumption 5.
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Next, we consider the term A2. Plugging in the definition of f̂X , we obtain

A2 =

∫
1

n

∑
i

(I{Yi ≤ y} − FY |X(y,Xi))(f̂(x)− f(x))
Kh(x−Xi)

fX(x)2
f∗X(x)dx

=
1

n

∑
i

(I{Yi ≤ y} − FY |X(y,Xi))

∫  1

n

∑
j

Kx,h(Xj − x)− f(x)

Kx,h(x−Xi)
f∗X(x)

fX(x)2
dx

=
1

n2

∑
i,j

(I{Yi ≤ y} − FY |X(y,Xi))

∫
(Kx,h(Xj − x)− f(x))Kx,h(x−Xi)

f∗X(x)

fX(x)2
dx

=
1

n2

∑
i,j

(I{Yi ≤ y} − FY |X(y,Xi))

×
(∫

Kx,h(Xj − x)Kx,h(x−Xi)
f∗X(x)

fX(x)2
dx−

∫
Kx,h(x−Xi)

f∗X(x)

fX(x)
dx

)
=

1

n2

∑
i,j

(I{Yi ≤ y} − FY |X(y,Xi))(A21 −A22)

Applying the same kind of argument as for the derivation of A1, we obtain

A22 =
f∗X(Xi)

fX(Xi)
+ op(n

−1/2)

Turning to the first term, defining v(x) = f∗X(x)/f2X(x), using similar arguments as before, we obtain

that

A21 =

∫
v(x)Kx,h(Xj − x)Kx,h(x−Xi)dx

=

∫
v(zh+Xi)Kzh+Xi,h(Xj −Xi − zh)Kzh+Xi

(z)dz

= v(Xi)KXi,h (Xj −Xi) + ōp(n
−1/2).

Hence we have shown that

A2 =
1

n2

∑
i,j

v(Xi)(I{Yi ≤ y} − FY |X(y,Xi)) (KXi,h (Xj −Xi)− fX(Xi)) + ōp(n
−1/2)

= Un(y) + ōp(n
−1/2).

To proceed, we need to introduce some further notation. Let f̄X(x) = E(Kx,h (Xj − x)), and define

H(Zi, Zj ; y, h) = v(Xi)(I{Yi ≤ y}−FY |X(y,Xi))
(
KXi,h (Xj −Xi)− f̄X(Xi)

)
. Then, because by Propo-

sition 2 we have that f̄X(x)− fX(x) = op(n
−1/2) uniformly in x, we can write Un(y) as

Un(y) =
1

n2

∑
i

∑
j 6=i

H(Zi, Zj ; y, h) +
1

n2

∑
i

H(Zi, Zi; y, h) + op(n
−1/2). (A.4)

It is straightforward to see that the first term on the right hand side of (A.4) is a degenerate second

order U-process. It then follows from Corollary 4 in Sherman (1994), a Uniform Law of Large Numbers

for U-processes, that

sup
y∈R

∣∣∣∣∣∣ 1

n2

∑
i

∑
j 6=i

H(Zi, Zj ; y, h)

∣∣∣∣∣∣ = Op(h
−dn−1).
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To see that the conditions of Sherman (1994, Corollary 4) are satisfied, let

H = {hdH(·; y, h), y ∈ R, h > 0}.

Since hdH(·; y, h) is uniformly bounded as a function of both y and h, the class H has a constant (and

hence square integrable) envelope function. The class also satisfies the so-called euclidean property

required for Corollary 4, by Assumption 3 and 4, Lemma 22(ii) in Nolan and Pollard (1987) and Lemma

2.14 of Pakes and Pollard (1989). Hence the conditions of the corollary are satisfied.

One can furthermore directly see that the second term in (A.4) is also Op(h
−dn−1) uniformly in

y, and thus A22 = ōp(n
−1/2) because Op((nh

d)−1) = op(n
−1/2) by Assumption 5. This completes our

argument regarding the term A. Turning to the term B, it can be shown that B = op(n
−1/2) uniformly

in y through similar reasoning.

A.5 Proof of Theorem 2

The statement of the Theorem follows directly from the Functional Delta Method (see Section 3.9 in

van der Vaart and Wellner (1996))

A.6 Proof of Theorem 3

To see the first assertion of the theorem, consider the case of a dependent policy implementation. Recall

from the proof of Theorem 1 that

√
n
(
F̂− F

)
= Ḡnξ + op(1).

Since P = {ξ(y); y ∈ R2} is Donsker, the result then follows from Theorem 3.6.1 in van der Vaart and

Wellner (1996). An analogous argument can be made for the case of an independent policy implemen-

tation. The second assertion of the theorem is then simply a consequence of the Function Delta Method

for the bootstrap, see Theorem 3.9.11 in van der Vaart and Wellner (1996).

A.7 Proof of Proposition 3

By Lemma 21.4 in van der Vaart (2000), under the conditions of the proposition the map Γ with

Γ(φ) = (φ−11 , φ−12 ) and φ−1i (τ) = inf{y : φi(y) ≥ τ}, i = 1, 2

is Hadamard differentiable at F tangentially to C(0, 1)× C(0, 1), with derivative

φ 7→ Γ′F(φ) = −
(
φ1
f∗Y
,
φ2
fY

)
◦ F−1.

Thus, by Theorem 2 the joint quantile process
√
n(Q̂−Q) converges weakly to Qo in `∞(0, 1)× `∞(0, 1).

The validity of the bootstrap then follows directly from Theorem 3.
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A.8 Proof of Proposition 4

Our process of interest
√
n(L̂− L) can be rewritten as

√
n(L̂− L) =

√
n(ΓL(F̂)− ΓL(F))

with the ”Lorenz functional” ΓL defined as

ΓL(φ)(p) =

(∫ p1

0

φ−11 (τ)dτ,

∫ p2

0

φ−12 (τ)dτ

)
·

(
1∫∞

0
φ−11 (τ)dτ

,
1∫∞

0
φ−12 (τ)dτ

)
≡ S(φ)(p) · µ−1(φ)

for p = (p1, p2)T . Using this notation, we can rewrite the Lorenz process as

√
n(L̂− L) = µ−1(F̂) ·

√
n(S(F̂)− S(F))− µ−1(F̂) · L ·

√
n(µ(F̂)− µ(F))

The asymptotic properties of this expression can now be derived by looking at the individual components.

First, since µ−1(·) is a continuous functional, it follows from Theorem 1 and the continuous mapping

theorem that

µ−1(F̂)→ µ−1(F) ≡ (1/µ∗Y , 1/µY ),

where µ∗Y and µY are the unconditional means of Y ∗ and Y , respectively. Second, using a result from

Bhattacharya (2007, Claim 1), it follows that the map S is Hadamard differentiable at F tangentially to

C[0, 1]× C[0, 1] with derivative

φ 7→ S
′

F(φ)(p) =

(∫ p1

0

φ1(F ∗−1Y (τ))

f∗Y (F ∗−1Y (τ))
dτ,

∫ p2

0

φ2(F−1Y (τ))

fY (F−1Y (τ))
dτ

)
.

Note that this is the componentwise integral over the Hadamard derivative of the quantile operator from

the proof of Proposition 3. Applying Theorem 2, we obtain that

√
n(S(F̂)− S(F))⇒ Ho.

Finally, we have that

√
n(µ(F̂)− µ(F))⇒ Ho(1)

because µ(·) = S(·)(1). Taking the last results together, the first statement of the proposition follows

from Slutzky’s Theorem. The validity of the bootstrap then follows again directly from Theorem 3.

A.9 Proof of Proposition 5

From the continuous mapping theorem, it follows that

√
n(Ĝ−G)⇒

∫ 1

0

Lo(p)dp.

Since Lo is a Gaussian process, the term on the right-hand-side is a normally distributed random variable,

with mean zero and variance as given in the proposition. The validity of the bootstrap follows again

from Theorem 3.
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A.10 Proof of Proposition 6

Our proof follows essentially the same lines as the one of Proposition 3 in Barrett and Donald (2003).

First, note that the map φ 7→ Dj(·, φ) is a linear functional of a Hadamard differentiable mapping. This

follows by induction, since D1(·, φ) is the identity and thus Hadamard differentiable, and the integral

operator that transforms Dj−1(·, φ) into Dj(·, φ) is linear. It thus follows from Theorem 2 that

√
nDj(·, F̂ ∗Y − F̂Y ) = Dj(·,

√
n∆̂F )⇒ Dj(·, (1,−1)Fo).

Furthermore, since the map φ 7→ supy |φ(y)| is continuous, it follows from the CMT that

KSj
d→ sup

y
Dj(y, (1,−1)Fo) = KSj .

On the other hand, invoking similar arguments and Theorem 3, we obtain for the bootstrapped test

statistic that

KSj,b
d→ KSj , (A.5)

conditional on the sample, in probability. Using the same arguments as in Barrett and Donald (2003,

p.102), the distribution of KSj,b is absolutely continuous on (0,∞), and cj(α) defined by P (KSj >

cj(α)) = α is finite for α < 1/2. Then the event that p̂j < α is equivalent to the event KSj > ĉj(α),

where

inf {t : Pb (KSj,b > t) > α} = ĉj(α)
p→ cj(α)

by (A.5). Then, under the least favorite null hypothesis,

lim
n→∞

P (reject Hj
0) = lim

n→∞
P (KSj > ĉj(α))

= lim
n→∞

P (KSj,b > cj(α)) + lim
n→∞

(P (KSj > ĉj(α))− P (KSj > cj(α)))

= α+ lim
n→∞

P (KSj ∈ (ĉj(α), cj(α)))

= α

since ĉj(α)
p→ cj(α). This proves assertion (i) of the proposition. Under the alternative, there is an

additional drift term such that the distribution of KSj,b diverges, and hence limn→∞ P (reject Hj
0) = 1

in this case, since cj(α) is finite. This proves assertion (ii).

B Influence Function of the Lorenz Curve

The influence function ψL of the bivariate Lorenz process has a lengthy expression, but can be calculated

using standard rules of calculus. First, one has to compute the influence function ψH of the Gaussian

process Ho defined in Proposition 5 by integrating over the influence function ψQ of the quantile process.
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It then follows from the product rule that

ψL1 (p, Zi) =
1

µ∗Y
ψH1 (p, Zi)−

L∗Y (p)

µ∗Y
ψH1 (1, Zi),

ψL2 (p, Zi) =
1

µY
ψH2 (p, Zi)−

LY (p)

µY
ψH2 (1, Zi).

Using the definiton that α(p, x) = Q∗Y (p)FY |X(Q∗Y (p), x) − E(I{Y ≤ Q∗Y (p)}Y |X = x), the bivariate

function ψH can be written as

ψH1 (p, Zi) = (pQ∗Y (p)−H∗Y (p))− α(p,X∗i )

− f∗X(Xi)

fX(Xi)
(I{Y ≤ Q∗Y (p)}(Q∗Y (p)− Yi)− α(p,Xi)) ,

ψH2 (p, Zi) = (pQY (p)−HY (p))− (I{Y ≤ QY (p)}(QY (p)− Yi)) ,

where HY (p) =
∫ τ
0
QY (τ)dτ and H∗Y (p) is defined analogously. Noting that α(1, x) = E(Y |X = x), we

furthermore obtain that

ψH1 (1, Zi) = (ȳ − µ∗Y − α(1, X∗i ))− f∗X(Xi)

fX(Xi)
(ȳ − Yi − α(1, Xi)),

ψH2 (1, Zi) = Yi − µY ,

which completes the description of the components of ψL.
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