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Abstract 
In this paper we show how the degree of risk aversion, discounting, and 
preference for intertemporal substitution for a natural resource manager 
can be structurally estimated within a recursive utility framework. We 
focus on the management of Oroville Reservoir, in Northern California, 
and test the data to see if they are more consistent with a recursive utility 
model specification than one with standard time-additive separability, 
and estimate the implied degree of risk aversion. The results show that 
the data on dam storage and releases are consistent with a risk-averse 
manager with recursive preferences, and that his preferences are 
stationary over the observed period. The data also rejects time-additive 
separability, whether specified with or without risk-aversion, such as the 
standard CRRA utility model. The improvement in model fit when risk 
aversion is included is diminished when recursive preferences are used.  
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Estimating Intertemporal Preferences for Natural Resource Allocation. 
 

1. Introduction 

Natural resource management problems are typically stochastic and dynamic in nature, by 

virtue of the characteristics of the underlying physical or biological processes that govern the 

evolution of the resource. This has been the reason for the many empirical applications of Dynamic 

Programming within the natural resource literature, as chronicled by Williams (1989). However, the 

tendency of researchers to use risk-neutral specifications when modeling natural resource problems 

has caused policy-makers to be somewhat skeptical of the real-world relevance of resource economics 

analysis1. 

Given the uncertainty facing the decision-maker in each period of the planning horizon, due to 

the realization of stochastic shocks, risk-aversion should feature prominently in the characterization of 

his intertemporal preferences. While a number of authors have incorporated risk-aversion into 

analytical and numerical models in the economics literature (Knapp and Olson, 1996; Krautkramer et 

al., 1992), few have actually tried to estimate the degree to which it enters into the decision-makers 

objective criterion, and none of those papers consider natural resource management problems. Most of 

the resource literature has imposed severe restrictions on the preferences for intertemporal substitution 

by adopting a time-additive separable formulation of the objective function. We avoid this problem by 

using a recursive utility specification that is more general and allows preferences towards risk and 

intertemporal substitution to be decoupled (Epstein and Zin, 1989).  

The estimation of dynamic preferences has been implemented  in a number of settings to elicit 

the underlying parameters of the decision-maker’s problem. Where adequate time-series data exists, it 

can be used to calculate empirical moments (Hansen and Singleton, 1982, 1983).  Rust (1987) has 

applied alternative dynamic estimation techniques to analyze the actions of a single decision-maker. 

This approach has laid the foundation for several analyses of this type (Provencher and Bishop, 1997; 

Provencher, 1995; Miranda and Schnitkey, 1995). However in the few papers that apply dynamic 

estimation to natural resource problems none specifically estimate intertemporal preference 

parameters, or quantify risk aversion. (Provencher, 1995), Fulton and Karp, 1989).  

                                                           
1 This paper was motivated by a comment made at an agency workshop in response to the presentation of results from a 
conventional risk-neutral SDP solution. The commentator was Dr. Francis Cheung of the California Department of Water 
Resources. He pointed out that optimization models tend to be discounted by decision-makers because they ignore the 
presence of risk in the objective function.  We gratefully acknowledge support from USDA ERS grant “Measuring, 
Costing and Mitigating Institutional Risk in Californian Irrigation Water Supplies” 
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 We seek to address this gap in the natural resource literature by applying dynamic estimation 

techniques to elicit the recursive intertemporal preferences with continuous state and control variables. 

We use the example of reservoir management, but take a different approach from authors in the water 

resources engineering literature who have only discussed the comparative dynamics of increasing risk-

aversion in reservoir management (Kerr and Read, 1998; Craddock et al., 1998). We identify the 

degree of risk-aversion that is exhibited by the decision-maker’s actions, and employ a non-nested 

specification test (Vuong, 1989) to test whether the data is consistent with a risk-averse decision-

maker, and whether the preferences of the decision-maker can be better characterized by a recursive 

utility function.   

 

The outline of the paper is as follows. In the next section, we will describe the general resource 

allocation problem and the recursive utility specification that we use. In the following section we will 

discuss the specific empirical application of our problem to Oroville Reservoir and describe the 

dynamic estimation methodology. The next section will present the results of the estimation problem 

and will be followed by a brief section of concluding remarks.   

   

 

2. Resource Allocation and Recursive Utility 
 

This section develops the specification for an intertemporal natural resource management 

problem with continuous state and control variables, and uses reservoir management as an example. 

Two important points should be emphasized. First, the majority of natural resource management 

problems require the specification of an interdependent multi-state model, and any simplification to a 

single state must take into account any interactions with the rest of the resource network. Second, 

managing risk and making intertemporal trade-offs, in terms of utility, is an integral part of resource 

management.  

 

2.1 Resource Allocation Model Specification 
 
 

A general characteristic of natural resource management is that decision-makers do not operate 

in a closed system. They have to take into account the uncertainty in the rest of the system. We assume 

that we can decouple management of the unit of natural resource being modeled from the rest of the 

network. There are two reasons to decouple a single state from the resource network. The first is the 
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reduction in the dimensionality of the SDP problem and an increase in its empirical tractability. The 

second reason is that a central aim of our approach is to estimate the recursive utility parameters from 

a time series of observed decisions. In most resource systems, decisions are split between agencies or 

levels of agencies. An estimation of preference parameters must be focused on a single decision maker 

(or unit) who is cognizant of, but decoupled from, the rest of the system. An example of this is in Rust 

(1987) where he models the actions of a single individual – Mr. Harold Zurcher.  

 
 The single state being modeled is decoupled from the network by approximating the network 

as having two elements: a natural resource, with stochastic inflow te1
~  and storage  at each date t, 

and the rest of the system characterized by a stochastic inflow 

tS

te2
~ . The system dynamics are given by: 

tttt weSS −+=+ 11
~  (1) 

 
The change in natural resource stock must balance the local inflow and the release. For 

reservoir management, equation (1) states that the variation of the reservoir storage plus the stochastic 

inflow must be equal to the water release . The index t in (1) denotes the time period – in our 

example, a year. Final demand for water may either be satisfied by water release  or by flows from 

the rest of the system 

tw

tw

te2
~ . 

We assume that exogenous stochastic variables, in the reservoir management example, water 

inflows ( 21 )~,~ ee

)(1 •Φ

, are i.i.d over time2 on a compact space and subject to a common joint distribution 

.  and  respectively represent the marginal distribution of the reservoir inflow and of 

the rest-of-network flows.  

)(•Φ )(2 •Φ

 
The timing of  management information and controls is important. First, the decision-maker 

observes the stock of stored water  and the realization of the exogenous stochastic variable tS te1
~ -- in 

the example, the local stochastic inflow. Second, the decision-maker chooses the control , the level 

of water release. This choice is a function of the future local stochastic inflow and the current stock of 

water in the reservoir. The natural resource available for consumption is, at each date, composed of the 

resource release and the realized rest-of-network inflow. Thus the value of the natural resource stock is 

a function of the stochastic flow in the rest of the network. We assume that the decision-maker cannot 

directly observe the rest-of-network inflow, but knows its distribution. Usually, resource networks are 

tw

                                                           
2 This assumption is clearly difficult to justify on a daily or monthly basis. It is more likely to hold at the yearly basis used 
in this model, and in the absence of any long term trend. 
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complex, and it may be the case that the decision-maker, for a given part of the system, is not aware of 

the state of the system in the rest of the network. This is especially true if different authorities (state 

versus federal level, private versus public) manage different parts of the water network, or if the 

network is managed on a large spatial scale. A direct consequence of this information structure is that 

a decoupled decision-maker, when computing the optimal release, should take into account the 

realized local inflow and the distribution of rest-of-network inflow that is conditional on this realized 

local inflow. We denote the distribution of the inflow to the rest of the network, conditional on the 

local inflow, by  . )(1/2 •Φ

t ew 2

 

2.2 The objective function 
 

Natural resource demand may either be satisfied by flows from the single decoupled system or 

by flows from the rest of the system. At each date, the consumption of resource flows is  defined as: tq

ttq ~+=

∫=
q

Pq
0

()(

 (2) 

Resource demand is defined by the inverse demand function . The net surplus, , derived 

from resource consumption is denoted by: 

)(qP )(qW

uuW d)  
(3) 

Note that the net surplus of resource consumption is a concave increasing function of q.  

 

We use a recursive utility specification to represent decision-maker preferences. Koopmans 

(1960) presents, in a deterministic context, the first axiomatic presentation of recursive preferences. 

While Kreps and Porteus (1978) generalized this structure to stochastic models, Epstein and Zin 

(1989) later developed an isoelastic formulation of Kreps and Porteus preferences. This formulation 

has been used in applications ranging from macroeconomic modeling (Weil,1990), to farm production 

behavior (Lence, 2000).  More recently Knapp and Olson (1996), Ha-Dong and Treich (2000) and 

Peltola and Knapp (2001) have used recursive specifications in resource management problems. Three 

main arguments are advanced in favor of utilizing this class of preferences in theoretical work. First, it 

encompasses a wide range of preferences (expected utility, Kreps and Porteus specification among 

others). Second, it enables a distinction to be drawn between risk and intertemporal substitution 
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effects3. Third, this specification satisfies the properties of intertemporal consistency and stationarity 

of preferences. Following Epstein and Zin (1991), we use an isoelastic formulation of Kreps and 

Porteus preferences. Given a current net profit  resulting from natural resource use in period t , 

recursive utility is given by: 

tW

( )
1

1(1 ) E   t t tU W U
ρ

ρ α ραβ β +

⎧ ⎫⎡ ⎤= − ⋅ +⎨ ⎬⎣ ⎦⎩ ⎭
 

 

(4) 

where [ ]0,1β ∈  is the subjective discount factor, β = 1/(1+δ), δ is the subjective rate of discount, 

[ ]1, 0≠α ∈ <  is the risk-aversion parameter, and [ ]1, 0ρ ∈ < ≠  the constant of resistance to 

intertemporal substitution. Given this specification, the elasticity of intertemporal substitution (EIS), 

σ , is equal to 1/(1- ρ), [ )+∞∈ ,0σ . It follows that a decrease of the intertemporal substitution 

resistance parameter, ρ, below 1 results in a lower intertemporal elasticity of substitution. Finally, note 

that recursive preferences nest expected utility as a special case: by setting α ρ=  we get the familiar 

constant relative risk aversion expected utility function. In what follows, we estimate the decision-

maker’s risk aversion, discount factor, and resistance to intertemporal substitution. Three main reasons 

support the estimation of these parameters. First, there is no consensus in the economic literature on 

the level of the two recursive utility parameters. Various authors have proposed estimates of the EIS 

that range from zero (Hall, 1988) all the way to 0.87 (Epstein and Zin, 1991), while estimates of the 

risk aversion coefficient (1-α ) range from 0.82 (Epstein and Zin, 1991) to 1.5 (Normandin and Saint-

Amour, 1998).  Second, the impact of risk-related parameters on optimal policies is known to be 

important. Knapp and Olson (1996) show that increasing risk-aversion results in more conservative 

decision rules. In contrast, Ha-Duong and Treich (2000) show that larger risk aversion strengthens 

optimal pollution control. They also find that a larger resistance to intertemporal substitution rotates 

the optimal control path toward less pollution control in the current period and more control in the 

future. However, none of these studies actually estimate these parameters, which is what we do in this 

paper.  

 

                                                           
3 Attitude toward variations in consumption across states of the world can be characterized by risk aversion. Attitude 
toward variations in consumption across time is represented by the degree of intertemporal substitutability. With the usual 
expected utility preferences (intertemporally additive and homogeneous von Neuman-Morgenstern utility index) these two 
notions are unattractively linked. Recursive preferences allows risk attitudes to be disentangled from the degree of 
intertemporal substitutability. 
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  Our problem maximizes the manager’s recursive utility subject to the equation of motion for 

the natural resource stock and the feasibility constraints and is as follows: 

2 1

1

1Max   (1 ) E   ( ) E    t e t t e tw
U W q U

ρ ρ
ρ α αβ β +

⎧ ⎫
⎡ ⎤= − ⋅ +⎨ ⎬⎣ ⎦

⎩ ⎭
 

 

(5) 

s.t. 

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

≥
≤
≥

+=
−+=

+

+

+

                             0
                           
                           

                   ~
          ~

1

1

2

11

t

t

t

ttt

tttt

w
SS
SS

ewq
weSS

 

(6a) 

(6b) 

(6c) 

(6d) 

(6e) 

The stochastic control problem consists of choosing a sequence of decision rules for resource flows 

that maximize the objective function (5) subject to (6a)-(6e). At each date, the current net surplus 

depends on the resource allocation and the stochastic level of flows in the rest of the network. The 

objective function is therefore the expected current net surplus. All model parameters and functions 

are the same for all decision stages, which assumes a stationarity of preferences that we will test for 

later in the paper (Section 3.3). The stochastic dynamic recursive equation defining optimal natural 

resource management is: 

( )
1

2 2 1 1 1, Max  (1 ) ( )d ( , )d    t /w
V S e W w e Φ V S e Φ

ρ
ρ α ραβ β

⎧ ⎫⎡ ⎤= − ⋅ + +⎨ ⎬⎣ ⎦⎩ ⎭
∫ ∫� �  

(7)

where  V(.)  is the value function representing the maximized value of recursive utility and w is the 

feasible allocation of water. We now have a standard SDP problem that we can solve by recursive 

solution methods, standard to the dynamic programming literature.The value iteration method that is 

used to solve (7), subject to 6(a)-6(e), consists of assigning an initial value for the value function, and 

then recursively solving the maximization problem until the implied carry-over value function 

converges to an invariant approximation (Bertsekas, 1976). In implementing this fixed-point 

procedure, we employ an orthogonal polynomial approximation to the value function, for 

computational efficiency and to accommodate our continuous state variable specification (Judd, 1998). 

This type of functional approximation has also been advocated by Miranda and Fackler (1999, 2002) 

for the solution of continuous-state dynamic programming problems.  
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3. An Empirical Application to Oroville reservoir 

 

Oroville Reservoir is located on the Feather River in Northern California. The State of 

California operates this reservoir within the State Water Project. Water releases from Oroville 

reservoir are used for electrical power generation, irrigated agriculture and to satisfy domestic and 

industrial user demands. Oroville also provides flood control and enhancement of sport fisheries and 

wildlife habitat in the Delta area. Most of the hydrologic data used comes from the ‘State Water 

Project Annual Report of Operations’ published each year by the California Department of Water 

Resources from 1974 to 1996. 

 

3.1 Specification of the problem 
 

We consider the optimal annual use of Oroville reservoir and limit our analysis to the inter-

year management problem. The change in the reservoir storage plus the stochastic inflow must be 

equal to the water release , and the spills from the reservoir, . The spills balance the system in 

times of high flows, but have no economic value in the model. 

tw tsp

 

 Distribution of inflows 

We assume that yearly inflows ( 21 )~,~ ee  are i.i.d over time with a Gaussian joint distribution: 

2
1 1 1 12

2
2 2 12 2

N ,
e
e

μ σ σ
μ σ σ

⎛ ⎞⎡ ⎤⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

�
∼

�
. 

 

(8) 

It follows that the marginal distributions )(•Φ i , 2,1=i , are defined by: 

( )2N ,i ie iμ σ� ∼  (9) 

and the distribution of the rest-of-network4 inflow conditional on the reservoir inflow, )(1/2 •Φ , by: 

( )
2

212 12
2 1 2 1 1 22 2

1 1

| N ,e e eσ σμ μ σ
σ σ

⎛ ⎞
+ − −⎜ ⎟

⎝ ⎠
� ∼ . 

 

(10) 

The joint distribution of inflows is estimated by maximum likelihood using GAUSS. The estimate is 

based on nineteen years of observed flows into Oroville and the rest of the network. Inflow parameter 

estimates are presented in Table 1, below. 

 

                                                           
4 “Rest-of-network” flows consist of those flows from other sources outside Oroville that flow from the North into the Delta region. 
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Table 1: Estimate of inflow distribution 
Parameter Estimates Standard Error Student t 

1μ  3.7957 0.6009 6.317 

2μ  15.7583 2.2742 6.929 
2
1σ  6.8594 2.2257 3.082 
2
2σ  98.2635 31.8850 3.082 

12σ  24.1569 8.1346 2.970 

 

From Table 1, the marginal distribution of Lake Oroville inflow is given by: 

( )1 N 3.7957,  6.8594e� ∼  (11) 

and , the distribution of the rest-of-network inflow is conditioned on  the reservoir inflow by: )(1/2 •Φ

( )2 1 1| N 2.3910 3.5217 ,  13.1896e e e+ ⋅� ∼ . (12) 

The reservoir inflow and rest-of-network conditional inflow distributions are discretized over 8 points. 

 

 The demand function 

As previously mentioned, the demand for water is represented by an aggregate inverse demand 

function . The inverse demand function was adopted from the one used in the CALVIN5 model. 

CALVIN is run for a seventy two year hydrologic sequence and reflects the current level of 

development of the water system. The inverse demand is computed using total inflow to the Delta per 

year and the implied scarcity values associated with them. A quadratic form is fitted to the data 

generated by CALVIN. The resulting inverse demand function is: 

( ) 202.09.2150 qqqP ⋅+⋅−=  (13) 

where q is the quantity of water in millions of acre-feet (MAF) and P(.) is the associated marginal 

value in dollars per acre-feet. When water quantity varies from 10 MAF to 40 MAF, the resulting 

demand price per acre-feet varies from $123 to $66, an acceptable price range for California. 

The resulting net benefit function from water consumption may be written as: 

( ) 32 0067.045.1150 qqqqW ⋅+⋅−⋅= . (14) 

which is increasing and concave in water consumption for q within the relevant ranges of value. 

                                                           
5 CALVIN is an economically-driven optimization model of California’s statewide inter-tied surface and groundwater 
system, Jenkins et al (2001). CALVIN optimizes the operations of system resources over a given hydrologic sequence to 
maximize statewide net willingness-to-pay of urban consumers and agricultural producers for additional water. 
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 Spillways 

Optimal management of a reservoir aims to minimize the occurrences of both shortages and 

spills. By keeping a high storage level of water from year-to-year, the decision-maker can smooth 

water consumption over dry years. However, keeping a high level of water storage increases the 

probability of important spills in the case of a wet year. Optimal reservoir management must tradeoff 

between these two effects. We assume that the spill during year t, ( ), is a function of the realized 

inflow during this period (

tsp 

te1
~ ) and the available storage capacity at the beginning of the period 

( ). The available storage capacity in t is defined as the difference between the maximum storage 

capacity of the reservoir (

tcap 

S ) and the storage at the beginning of the year (  ). Different functional 

forms were tested in the estimation of this relationship. The one giving the best fit for the realized 

spills is: 

tS

tttttttt capeeeecapesp ⋅⋅⋅+⋅+⋅= 1
3

1
2

111
~0.02305-~0.000993~0.005024~0.095382),~(  (15)

with an adjusted R-square of 0.657. Spill is an increasing function of inflow and decreasing in the 

available storage capacity. However, the greater the inflows, the more important storage capacity 

becomes in reducing spills. Finally, we assume that decision-maker knows the relationship in equation 

(15) that links spills, inflows and storage capacity. 

  

 The SDP formulation 

Given flood control constraints, the maximum storage capacity in Lake Oroville is determined 

on January first of each year and is 2.861 million acre-feet (MAF). We assume a minimum storage 

constraint equal to 0.987 MAF. This value corresponds to the minimum storage observed from 1974 to 

1996. The model assumes that decision-makers maximize their utility subject to the equation of 

motion for the reservoir stock and the feasibility constraints. The stochastic dynamic optimization 

program is: 

2

1

1 1Max   (1 ) E   ( ) E    t e t e tw
U W q U

ρ ρ
ρ α αβ β +

⎧ ⎫
⎡ ⎤= − ⋅ +⎨ ⎬⎣ ⎦

⎩ ⎭
 

 

(16) 
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(17a) 

(17b) 

(17c) 

(17d) 

(17e) 

where the spill function is given by equation (15).  

 

3.2 Estimating the Intertemporal Preference Parameters 
 

We use a dynamic estimation approach to estimate the primitive parameters of the decision-

maker’s objective function, in a similar vein to that of Fulton and Karp (1989) and Fernandez (1997). 

However, unlike those authors, we are not restricting ourselves to the linear-quadratic case, in order to 

apply the inverse-control rule, which they do for computational ease, at the expense of imposing 

severe behavioral restrictions on their model. Like Fafchamps (1993) and Deaton and Laroque (1996), 

we allow our decision and state variables to be continuous, in contrast to the majority of the structural 

estimation literature (Rust, 1989; Provencher, 1995; Miranda and Schnitkey, 1995; Wolpin, 1984, 

1985; Keane and Wolpin, 1994, 1997; Erdem and Keane, 1996).  

 Several notable papers have addressed the problem of estimating the relevant parameters 

within a discrete choice dynamic programming problem, such as Keane and Wolpin’s 1994 paper, 

where they address the computational difficulties associated with finding the relevant functions for 

both the discrete-choice and intertemporal optimization problems. Recent efforts to overcome these 

computational difficulties have been addressed by some authors (Geweke and Keane, 1995; 

Aguirreagabiria and Mira, 2001; Imai et al., 2002) – however they deal with only the discrete-choice 

case. Since our decision problem is a continuous one, we concentrate our efforts on developing a 

reliable method that can be handled within a standard software package.  

The estimation procedure used to find the ‘best-fit’ model parameters, corresponds closely with 

the procedure described by Rust (1987) and Provencher (1995) – where an SDP optimization 

procedure is nested within an outer “hill-climbing” algorithm that perturbs the parameter values in a 

direction that maximizes the likelihood. This iterative procedure is comprised of three stages, which 

can be described as follows.  

In the first stage of parameter estimation a set of values is specified in parameter space, which 

is comprised of a combination of values for the three model parameters. For each set of parameter 

values the chebychev polynomial values for the carry-over value function are found by the value-
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iteration method, and then a twenty three year sequence is then simulated and compared with the 

actual sequence of storage and releases. In the second stage, the log likelihood value for the joint 

sequence of storage and releases is calculated by solving the following problem for each simulation 

1 2 12

2 2 2 2
1 2

, , 1 2 12 2 12
112

1 2

( ) / ( ) /
1(2 1 2 ( )( )

2(1 )

t t t tn

r t t t t
t

wo w so s
Max L n Ln r r wo w so s

rσ σ

σ σ
πσ σ

σ σ=

⎧ ⎫− + −
⎪ ⎪= − ⋅ − − − −⎨ ⎬−− ⎪ ⎪
⎩ ⎭

∑             (18) 

subject to   1 2 12, 0, 1 r 1σ σ > − < <  

where wot and sot are the observed water releases and storage,  wt and st are the calculated 

water releases and storage, and 2
1σ , 2

2σ , and r12 are the unknown variances and correlation coefficient 

for releases and storage. 

The third and final stage employs a search procedure  that perturbs the parameter values in a 

direction that will maximize the log likelihood values from (18). We used the Nelder-Mead (Nelder 

and Mead, 1965) search algorithm, since it requires neither derivatives nor concavity of the log-

likelihood function in the parameters. Details of how this algorithm works are given by Dennis and 

Woods (1985).  Once a new set of parameter values is obtained, then the procedure returns to stage 1 

and repeats iteratively until convergence is determined by a ‘stop’ criterion.  

We found that solving simultaneously for the three unknown parameters in the recursive utility 

function led to instability in the algorithm and a failure to converge in likelihood values. Accordingly, 

we selected the parameter on which we had the strongest priors, namely the discount rate, and solved 

for the risk aversion and intertemporal substitution parameter conditional on a 5% discount rate. Later 

in this section we will show the sensitivity results on the parameter estimation of changing the 

specified discount rate. The initial iteration of the Nelder-Mead (NM) search requires the likelihood 

function for three sets of parameters. It follows that each of these parameter sets requires the solution 

of the SDP and maximum likelihood problems for each iteration of the search algorithm – which 

points to the need for a solution method that is both rapid and stable. 

 

 The SDP solution and Value Iteration process 

The state variable (reservoir storage) is discretized in eight points from 0.987 MAF to 2.861 

MAF. We use a 6th-order Chebyshev orthogonal polynomial approximation of the value function6: 

                                                           
6 Provencher and Bishop (1997), in a different context, also use such a polynomial approximation to the value function. 
They nest the dynamic programming approach within a maximum likelihood procedure. 
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( ) ( )
5

0

ˆ ˆ ,  where S= (S)C i i
i

V S a T S
=

= ⋅∑ M . 
(19) 

The Chebyshev polynomial coefficients  ia 5,,1…=i

ia

 are iteratively computed using the Chebyshev 

regression algorithm, and  is a mapping of S onto the [–1, –1] interval, Judd (1998). For each 

possible value of the discount factor and intertemporal substitution preferences of decision-maker, the 

SDP program is first solved with some initial values for Chebyshev polynomial coefficients. The 

resulting SDP solution allows us to compute new ’s. If the resulting coefficients differ from those in 

the previous step, the SDP is re-solved with new Chebyshev coefficients. The SDP program ends once 

quasi-stabilization of ’s is achieved. For details of the solution method and its implementation using 

GAMS, see Howitt et al. (2002). 

(S)M

ia

 

 The NM search procedure continued until the likelihood values for the selected simplex of 

parameter sets converged to within 0.4% difference. The starting point of the algorithm was also 

perturbed sufficiently to ensure robustness of the estimation results.  

 

3.3 Results 
 
 
Parameter Estimation 
 

The nested SDP and likelihood problems were run until convergence in the parameter estimates 

was achieved.  To improve the numerical stability of the search procedure, the value of the discount 

factor, β , was set to 0.95, as mentioned previously.  The resulting parameter estimates are shown in 

Table 2, below, along with their calculated standard errors, which were bootstrapped with 500 

repetitions. While it is standard to use 1000 bootstrap repetitions (Efron and Tibshirani, 1993), we 

found the computational time to be excessive, and consider these to be upper-bound estimates of the 

standard errors. Nonetheless, our estimates are still significant at the 95% level, even with these 

standard error estimates, so we are confident as to the robustness of our estimates. Efforts to recover a 

consistent estimate of the Fisher Information Matrix through approximation of the Hessian of the 
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likelihood function (as described in Fafchamps, 1993), resulted in unreliable estimates of the variance-

covariance matrix.  

Table 2: Parameter  Estimates for Recursive Utility SDP Model. 

Parameter Estimated Value Standard Error 
EIS value 

( )1 1 ρ−  

Coeff. of Risk Aversion 

(1 α− ) 

ρ  -9.009 3.94 0.0999  

α  -0.441 0.20  1.441 

Log Likelihood 22.1    

These parameters were calculated with a fixed discount rate of β =0.95. Standard errors are based on 500 bootstrap repetitions 

 

Because of the few empirical examples of recursive utility in the agricultural and resource 

literature, in the discussion of the estimates for the risk and time-preference parameters, we refer to 

two main fields in the economics literature that use of recursive preferences, namely, macroeconomics 

and finance. While our estimate of the elasticity of intertemporal substitution (EIS) is low it is, 

nevertheless, compatible with the results within the macroeconomic literature based on aggregate data. 

Hall (1998) concludes, for example, that most of the studies “support the strong conclusion that the 

elasticity is unlikely to be much above 0.1, and may well be zero”. Although this conclusion has been 

recently challenged by empirical studies based on micro-data – see, for example, Atkeson and Ogaki 

(1995) – it seems that there is still consensus among macroeconomists that the intertemporal elasticity 

of consumption is very low. A low estimate of the decision-maker’s EIS means that she is relatively 

insensitive to the discount rate, and that the indifference contours that map between income in 

consecutive periods have string curvature. Smoothing the income benefits from water releases over 

time does not appear to be a crucial objective of the decision-maker that we observe. One explanation 

might lie in the fact that we have annual data and are focusing on the year-to-year management of the 

reservoir – whereas an estimation based on monthly data on water releases and storage could result in 

a different value of EIS.  
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 Estimates of the risk aversion parameter have been discussed less in the macroeconomics and 

finance literature, and range widely. Estimates of the coefficient of relative risk aversion range from 

around one7 to as high as 18 in Obstfeld (1994). Our estimate of 1.441 is well within the range of 

admissible values.   

 
  Sensitivity of the recursive utility parameter estimates 
 
 Since the recursive utility parameter estimates are conditional on the specified β  values, we 

re-estimated the parameters under a range of discount rates to test for the sensitivity of the results to 

changes in the discount rate. Table 3 shows the changes in likelihood values and parameter estimates 

for discount rates that vary from 3% to 15% either side of the 5% rate used in the above results. The 

results show that changing β  from 0.97 to 0.85 – which is equivalent to changing the discount rate by 

80% (from 3% to 15%) – resulted in only a 0.77% increase in the log likelihood value, and a 

corresponding 16.7% decrease in the estimated value of ρ  and a 17.3% decrease in the value of α . 

The results demonstrate that the likelihood surface that maps onto the parameter values of ρ , α  and 

β  is relatively flat with respect to β  and, therefore, that the optimal parameter estimates for ρ  and 

α  are relatively insensitive to the prior value specified for β . This is consistent with a low estimate 

for the elasticity of intertemporal subsititution (EIS). A low EIS means, in fact, that the decision maker 

is relatively insensitive to the interest rate – and so, to β .  

 

Table 3: Sensitivity of Recursive Estimates to Discount Rate. 
Discount rate β  Log Likelihood ρ  α  

3% 0.97 22.102 -9.000 -0.440 

5% 0.95 22.100 -9.009 -0.441 

10% 0.91 22.457 - 9.629 - 0.481 

15% 0.85 22.272 - 10.500 - 0.516 

 

                                                           
7 Epstein and Zin (1991) report a value around 1, for example. 
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Test for Stationarity of Preferences 

 We also tested for stationarity of the recursive preferences over the 23-year data series by 

estimating the parameters over first and last 7 years of observed data and testing for differences 

between these estimates and those estimated from the full data set. Table 4, below, shows the results. 

 
Table 4: Test of the Stationarity of  Preferences 

 1974 – 1982 1988 - 1996 1974 - 1996 

ρ  estimate -7.875 -5.00 - 9.009 

α  estimate -0.458 -0.490 -0.441 

Likelihood value 22.44 23.95 22.1 

Regression Sum Squares 3.50 3.08 9.77 

F Test Statistic   1.95  (df (3,12)) 

 

 From these results, we see that the null hypothesis – stating that the parameter values estimated 

from the two sub-periods are equal – cannot be rejected by either an F-test or a likelihood ratio test. So 

our previously stated assumption of stationary preferences over the planning horizon is validated. 

 

Model Specification Tests 

To further evaluate the fit of our model to the observed data, we tested three other objective 

function specifications against the recursive utility specification. It can be seen from equation (4) that 

by setting the value of both ρ  and α  equal to one, the recursive utility specification devolves to a 

risk-neutral (RN) specification, while just setting α  equal to one gives us a risk-neutral recursive 

model (RNR). The RNR model is fit to the data by fixing the β  value to the same 0.95 value as in the 

Recursive Risk model, setting α =1 , and estimating the ρ  parameter – which was found to be –9.3 

(giving an EIS value of  0.0971). We found the estimation of the RN model to give a very implausible 

value of β , so we also fixed it to the same 0.95 value and simulated it for comparison with the other 

models.  
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Yet another alternative objective function is the familiar Constant Relative Risk Aversion 

(CRRA) utility function shown in equation (20) below using the same definitions as equations (3) and 

(4): 

                   )(1 1

)1(

+

−

+−= t
t

t UEWU βα
α

                             (20) 

The unknown parameters within the CRRA specification are α – the level of risk aversion– and β – 

the discount factor. α  and β  were estimated using the same procedure that is used to estimate the 

recursive utility parameters. The resulting optimal estimates are, β  = 0.9795 and α = 0.9220. We note 

that the estimated value for β  is somewhat lower than the fixed value chosen for the estimation of the 

recursive utility model, but is not an unreasonable rate of discount (2.1%).  The four models (with 

their respectively estimated parameters) are then compared in terms of their maximized likelihood 

values, as well as with respect to the mean squared error calculated from the resulting fit of the 

simulated storage and releases with observed data. The improvement of the MSE values for the 

Recursive Risk, Recursive Risk-Neutral and CRRA models over that of the non-Recursive Risk-

Neutral model, is also noted.  

The restrictions implicit in the RNR, CRRA and RN specifications are tested against the 

recursive specification with risk by using the maximized likelihood values for each model to calculate 

a likelihood ratio test statistic. Since the CRRA specification is not nested within the recursive utility 

model, we employed the non-nested specification test proposed by Vuong (1989) and implemented by 

Fafchamps (1993). This is essentially a modified likelihood ratio test, which takes the following form: 

 ( ) ( )
2

2
11 1ˆ,

ˆ
R U CRRA R U CRRA
n n n nN

n n

LRV l l
NN

ω
ω

− −l l⎡ ⎤⎛ ⎞ ⎛ ⎞= = − − −⎜ ⎟ ⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎣ ⎦
∑ ∑  

where LR is the likelihood ratio,  and  are the contributions of each observation to the 

likelihood value for the respective recursive utility and CRRA models, and 

R U
nl
− CRRA

nl

ω̂  is the variance of these 
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likelihood contributions. As the risk-neutral specification is nested within the recursive utility model, 

we simply use the simple likelihood ratio test statistic.  

The likelihood ratio tests shown in Table 5, below, strongly reject both the CRRA and RN 

specifications compared to the recursive specification with risk. We are unable to reject the RNR in 

favor of the recursive risk model, however, both in terms of the Likelihood ratio test and by comparing 

the MSE values. However, the mean squared errors for both the storage and release values from the 

simulations of both the two Recursive and CRRA models show significant improvement over those 

from the non-recursive risk-neutral , and speak highly in favor of the recursive utility model 

specification.  

 

Table 5: Comparison of Alternative Objective Function Specifications 

 
Recursive Utility 

With Risk 

Recursive Utility 

Risk-Neutral 

Constant Relative 

Risk Aversion 

Non-Recursive 

Risk-Neutral 

Log Likelihood 22.1 22.448 - 20.99 - 55.922 

Likelihood ratio*  -0.35 43.09 45.732 

Non-Nested Vuong Test**    2.59  

Storage MSE 0.1080 0.1075 0.5649 1.2557 

% Improvement 91.40 91.44 55.01 -- 

Release MSE 0.3173 0.3141 0.5581 1.0352 

% Improvement 69.35 69.66 46.09 -- 

(* The Likelihood ratio test statistic is compared to the critical level of the 
2
1χ statistic, which has a value of  6.63 at the 1% level) 

(** The test statistic for the Vuong Test is Standard Normal under the hypothesis that both models are equal) 
 
 

Further evidence of the superiority of the recursive utility model with risk over the RN and CRRA 

models is shown in figures 1 and 2, which plot the observed reservoir storage and releases alongside 

the simulated storage and release values from the three models. The results from the RNR model were 

omitted from these figures for clarity, as they would overlap very closely with those from the recursive 

model with risk.  
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Figure 1: Simulated and Actual Storage Quantities 
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Figures 1 and 2 both clearly show that the closeness-in-fit reflected in the MSE values translates into 

correct predictions of the turning points, by the model simulations, over the observed time series. The 

recursive utility model simulation correctly predicts all but one of the turning points in the observed 

23-year time series. The only turning point that the recursive utility model misses (by two years) 

occurs in the extreme drought of 1990-91.  The ability to demonstrate that the estimated models 

produce simulations that closely reproduce past behavior should reinforce the validity of dynamic 

models with estimated intertemporal preference relationships. In contrast, the simulation results from 

the risk-neutral model support the misgivings expressed by public decision makers towards models 

that ignore their risk preferences – namely, that they do not reasonably represent the decisions of the 

true agent.  
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Figure 2: Simulated and Actual Release Quantities 
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The closeness of the Recursive models seems to suggest that the recursive specification 

accounts more from the improvement in fit, than the addition of risk to the model. In a non-recursive 

setting, the addition of risk causes a rather large improvement in model fit, as seen from the 

Likelihood ratio test statistics and the improvement in MSE values. However this improvement seems 

to be diminished once one has already incorporated the intertemporal substitution into the behavioral 

model, which may suggest that the consequences of omitting risk from policy models may not be as 

severe, in terms of explanatory and predictive ability, once one accounts for intertemporal substitution.   
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4. Conclusion 
 
 In this paper, we have demonstrated how the underlying behavioral parameters of a risk-averse 

natural resource manager can be dynamically estimated within the more general theoretical framework 

of recursive-utility preferences. We used the example of Oroville reservoir and were able to reject both 

the non-recursive risk-neutral and CRRA utility specifications in favor of a recursive one with 

preferences for both risk and intertemporal substitution. The fit of the estimated recursive-utility 

model was much closer to the observed data on dam storage and releases, than that of either the non-

recursive risk-neutral or CRRA models. We also demonstrate that these preferences remain stationary 

over the period we observe. However, when we compare the fit of our recursive model with one that 

imposes risk-neutrality (while still allowing for resistance to intertemporal substitution), we see that 

there is negligible diminution (or improvement) in fit, which suggests that there may be little gained 

by adding risk to a recursive model specification. 

 We have argued that policy-makers are reluctant to accept the results of policy models that 

ignore the importance of risk to the decision-making process – especially when dealing with the 

management of important public utilities. However, there may be less reason to be concerned with 

risk-neutral models once recursivity of intertemporal preferences is taken into account, and may even 

suggest that reservoir managers are more concerned with their inability to trade-off public benefits 

over time, than with the risk they face.  We advocate for a renewed effort, on the part of researchers, to 

explore this issue further, in terms of model specification, when dealing with management of 

important public utilities, such as reservoirs. The severity of imposing the assumption of time-additive 

separability in inter-temporal preferences is clearly demonstrated by our results.  

 Using our framework, the behavioral parameters of any dynamic decision process that can be 

modeled with continuous state and decision variables, can be elicited, without resorting to the 

restrictive behavioral assumptions of the linear-quadratic or time-additive separable utility 

frameworks. We find that a more generalized approach to the representation of intertemporal 

preferences offers a richer theoretical framework and more precise prediction of management behavior 

under uncertainty.   
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