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Assessing the Impact of Environmental Regulation on

Industrial Water Use: Evidence from Brazil

Abstract

This paper aims at characterizing water demand by Brazilian manufacturing plants and
at assessing the potential impacts of environmental policies on industrial water use. We
first show that the price elasticity of the water demand, —1.0 on average, is high enough for
a water charge to act as an effective policy tool for reducing water consumption. Results
also provide some evidence of a tradeoff between water quality improvement and water
conservation policies, since more stringent environmental standards may lead to a higher
water demand. A joint use of environmental norms and water charges may reconcile both

policy goals.
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I. INTRODUCTION

It is surprising to notice that while there is a considerable empirical literature focusing on
residential and agricultural water demands, only a few works have been devoted to industrial

water use.!

Meanwhile, several questions related to the role of water in industrial applications
remain unanswered. Little is known about how water enters into the production process and the
substitution possibilities between water and other production inputs. Similarly, only a handful
of studies have addressed the issue of environmental regulation impacts on industrial water use.
This lack of information is particularly noticeable in the case of developing countries, the vast
majority of existing analyses dealing with North-American and Western European countries.
Yet, several reasons speak in favor of studying industrial water demand and its interaction
with environmental policies. Industrial withdrawals represent an important part of total ex-
tracted water in most countries and it is viewed as a major source of pollution. As water quality
problems are expected to be more severe in the next years, more stringent industrial water reg-
ulation is required. This is especially true in developing countries where populations live in the
vicinity of industrial areas and suffers from high pollution levels. Moreover, since a number of de-
veloping countries are moving from an historical environmental regulation based on a “command
and control approach” toward more incentive-based instruments like pollution taxes, estimating
industrial water demand function has become a major concern in water management policy.
This paper aims at characterizing Brazilian manufacturing plants water demand, and at
assessing the potential impact of environmental policies on industrial water use. Focusing on
Brazil is interesting for several reasons. First, numerous reforms on the country’s water man-
agement system are under way. The Federal Water Law of January 1997 introduced quality and
quantity-related water charges in the regulatory framework, which are currently being designed

and implemented in several river basins. Second, rapid population and industrial growth have



generated water scarcities in some urban areas, especially due to water quality deterioration. In
a context where one expects the introduction of more stringent environmental norms and new
policy instruments, it seems important to assess the impact of environmental policies on water
users. Last, our application to Brazil represents the first econometric analysis of industrial water
demand in a Latin-American country.

Estimating industrial water demand requires to fully identify the cost structure of firms as
water can be viewed as an input of the production process. As effluent control decisions cannot be
considered a priori separable from production decisions, effluents must also enter the production
function. However, a pervasive problem faced by developing countries is that, due to the lack of
pollution monitoring systems, plant-level efluents are not systematically measured. We will show
how an index measuring efluent discharge can be constructed in order to circumvent this problem.
We are especially interested in answering the three following questions. First, how does water
enter the production function and what are the complementarity or substituability relationships
between the different inputs? Second, what can be said about the price elasticity of industrial
water demand in Brazil? Third, what are the effects of environmental policy instruments (water
charge or environmental norm) on firms’ costs and input choices?

The remainder of the paper is organized as follows. In Section 2, we review the main findings
of the applied literature dealing with industrial water demand. Section 3 presents the economic
and econometric modeling together with the empirical application. Last, Section 4 addresses
more carefully the way water enters the production process and analyzes the consequences of

public authority intervention on firms production decision choices and on costs.

II. INDUSTRIAL WATER DEMAND: A BRIEF SURVEY

Most of the published studies have focused on two related issues: the price elasticity of in-

dustrial demand and the substituability /complementarity relationships between water and the



conventional inputs. Grebenstein and Field (1979) and Babin, Willis, and Allen (1982) study wa-
ter demand of the manufacturing industry in the United States. Both works estimate a translog
cost function using aggregate data. Grebenstein and Field (1979) compute price elasticity values
ranging from —0.33 to —0.80, depending on the water price specification adopted. The authors
show that water and labor are input substitutes whereas capital and water are complements.
Babin, Willis, and Allen (1982) find that price elasticity varies considerably across sectors, rang-
ing from 0.14 for the food industry to —0.66 for the paper and wood industry. Substitution
possibilities between water and other production inputs also depend on the industrial sector.
Renzetti (1988) provides a deeper investigation of the role of water in industrial plants by break-
ing down water use into four components: intake, pre-treatment, recirculation and discharge.
According to the sector considered, price elasticity varies from —0.54 to —0.12. The author
finds that water intake and recirculation are substitutes, providing some evidence that intake
water charges may induce water use efficiency.? Dupont and Renzetti (2001) extend the previous
analysis by incorporating information on other production inputs than water. They show again
that water intake is a substitute to water recirculation, as well as to energy, labor and capital.
Last, Reynaud (2003) investigates the structure of industrial water demand in France. Elasticity
values are generally in line with the ones found for US and Canadian firms, varying from —0.10
to —0.79 across activities.

Due to data availability problems, studies on industrial water demand in developing coun-
tries are particularly scarce and have just recently started. Wang and Lall (1999) is the first
econometric analysis applied to a developing country. They use plant-level information on ap-
proximately 1,700 Chinese industrial plants. In contrast to previous works, based on a dual cost
function estimation, Wang and Lall (1999) adopt a marginal productivity approach and they

find an average price elasticity around —1.0, a higher value than those reported for developed



countries. Onjala (2001) analyzes industrial water demand in Kenya. The author estimates a
single water demand equation based on a dynamic adjustment specification. The estimated price
elasticities range from —0.60 to 0.37.

The main results of these studies are the following. First, price elasticities are small but
in general higher than domestic ones. Second, estimates strongly depend upon the industry
considered. Third, water and labor are mostly substitutes whereas capital and water are comple-
mentary inputs. Moreover, excepting Reynaud (2003), none of these papers integrates effluent
emissions when estimating the industrial cost function. The implicit assumption is that produc-
tion and water pollution control decisions are separable. This seems to be a strong assumption,
as Reynaud (2003) tests and rejects this separability hypothesis. In what follows, by considering
effluent discharge as a joint negative output of the production process, we can assess the impact

of environmental regulation on firms’ production decisions.
III. COST FUNCTION ESTIMATE OF BRAZILIAN FIRMS

A Translog Specification of Costs

Assessing how water enters the production process of a firm requires to specify the production
technology. We represent firm’s production technology by the long-term cost function:
J
TCW,Y; Z) = {minz WX; | XeV(Y;iZ), W> OJ} 1]
X ot
where X is the vector (J x 1) of inputs with an associated price vector W, Y a vector (L x 1)
of outputs and V(Y;Z) the production set. The vector Z (Q x 1) corresponds to technical

characteristics of the firm that may have an impact on its cost structure. The unknown cost



function defined by [1] is approximated by a translog form:
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where 7 = 1,..., N represents firms. Indexes 7,5 with 7,5’ = 1,...,J correspond to inputs,
indexes [,1" with [,I' =1,...,L to outputs and ¢q,q' with ¢,¢' = 1,...,Q to technical charac-

teristics included in vector Z. From Shepard’s Lemma, cost shares Sj; can be written:
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Sj; represents the cost share of input j for firm ¢. Equation [2| associated to J — 1 cost shares

constitutes the economic model to be estimated.?
Data Description

The data used for estimating the cost function come from a survey jointly conducted by the
Coordination of Environmental Studies of the Institute of Applied Economics Research (IPEA)
at Rio de Janeiro and the Center for International Development at Harvard University (CID).
The database contains information on economic and environmental management practices of 500
industrial plants in the state of Sao Paulo, Brazil, for year 1999. Due to missing information,

only 404 observations have been used.

Cost shares and input prices. The cost function includes five inputs: capital, labor, energy,
materials and water (the usual KLEM model plus a water input). In filling out the question-
naires, firms were asked to report the share of total expenditures for the following components:

depreciation, financial expenditures, labor, materials, energy, environmental control activities,



water/wastewater and other capital expenditures. The cost shares for labor, energy, materials
are obtained directly from the questionnaires. Water expenses include water/wastewater costs
and environmental control activities. The capital share is computed by summing up the other
component shares (depreciation, financial charges and other capital expenses).

The price of capital corresponds to the sum of the real interest rate and the depreciation
rate. The latter was calculated by Muendler (2001) at sector-level, according to the Brazilian
Census Bureau (IBGE) classification. The price of labor is computed by dividing the total labor
and social charge expenditures by the number of employees. For 84% of the sample, the unit
cost of labor belongs to [5,000;25,000] which is a relevant range of values given the Brazilian
yearly wage. Since the questionnaire does not include information on the quantity of energy
used by plants, the price of energy is computed at the sector-level. It corresponds to a weighted
average of the price (per 10% Kcal) of oil, natural gas, electricity and coal. The weights are
the respective shares in total energy use at sector-level as reported by the Sao Paulo Energy
Survey, BESP (2000). A material price index has also been constructed at the sector-level using
the input-output matrix computed by IBGE. Last, the water price is obtained by dividing the
water /wastewater and the environmental expenditures by the total quantity of water consumed.
The high price dispersion can be explained by differences in water quality needs and in wastewater

treatments across industrial sectors.

Outputs. The multi-output cost function includes two different outputs: a measure of pro-
duction Y] and a measure of plant effluents, Yo. The physical measure of the output produced
by the plant, Y7, is computed by dividing the annual production value by the sectoral wholesale
price index (IPA-FGV). The second output is a measure of effluent discharge, Y5. The main
empirical problem is that we do not observe directly this variable at plant-level.* In order to

circumvent this data availability constraint, researchers have developed two approaches. The



first one consists in estimating the efluent discharge from a matrix relating effluents to the level
of output. Such a matrix is usually defined at the industrial sector level.> There are two main
problems with using such an approach in our case. First, the two variables Y; and Y, will suffer
from a high level of collinearity. Second, efHuents will represent an average level for the industrial
sector considered. The implicit underlying assumption is that there is no heterogeneity in terms
of pollution control between plants within the same sector. As we are especially interested in
assessing the impact of environmental regulation on costs and pollution control, we can not rely
on such an assumption. As mentioned in Ferraz et al. (2002), a second approach could be to
use some measures of the plant environmental performance (such as the existence of ISO 14000
standard® or the result of an environmental audit) supposed to be correlated with effluent level.
The choice of the proxy is crucial and, at least, some sensitivity analyzes are required. Ferraz et
al. (2002) have used the annual level of environmental investment as a proxy for the pollution
emissions. The main problem with this proxy variable is that environmental investment may not
result in an immediate reduction of pollution emissions.

Our approach consists in defining an efluent index based on a principal component analy-
sis (PCA) performed on variables representing technical characteristics of the firm and on the
subjective assessment of managers concerning firm’s environmental performance. The reasoning
underlying this procedure is that the non-observable efluents depend on firm’s environmental
preferences and on some technical water-related characteristics of the production unit. Per-
forming a PCA on these variables allows to retrieve this hidden information, the resulting Y5
being interpreted as an index of effluent discharge. A complete presentation of the effluent index
computation can be found in the appendix.

Table 1 presents some descriptive statistics on the production costs of industrial firms. It

should be noticed that the survey realized by IPEA has targeted large firms. The average



production cost is larger than 17 million R$. On average, the number of employees is 271 with a
maximum equal to 4,861. With a cost share equal to 0.457, material is the most important input

in terms of cost expenses whereas water represents on average less than 1% of cost expenses.

Regulation and technical characteristics of firms. In spite of the recent introduction of eco-
nomic instruments in the regulatory framework, licensing remains the main mechanism for en-
vironmental management in Brazil. The licensing procedure sets up a wide scope of command-
and-control mechanisms to be observed by industrial plants (abatement technology, emission
standards and other control procedures). The Brazilian licensing procedure has raised two types
of criticisms. First, the procedure is subject to excessive delays. According to Couto (2003) “it is
not uncommon to observe 5-year delays in the licensing of projects without any technical com-
plexity”. Second, there has been a conflict between municipalities and the State to decide who
is in charge of implementing the licensing process. In spite of these criticisms, the proportion of
firms in a non-compliance situation with environmental licensing is relatively low. This apparent
contradiction can be explained by a large share of firms being in a particular “conditional status”
authorized by the Brazilian environmental legislation. As observed by Ferraz et al. (2002), plants
failing to be fully licensed may operate within a grace period in order to realize some investments
and to conform to the licensed parameters. During this period, they are not legally considered
as non-compliant.

Firms may face two types of penalty for non-compliance with the norms and emission levels
mandated by the environmental licensing: administrative fines and/or legal sanctions.

In order to assess the effects of environmental regulation on the cost structure and input mix,
two variables describing environmental regulation are introduced in the cost function, see table 2.
Dings is a dummy variable equal to one if the plant has been inspected each year from 1997

to 1999 by the environmental agency. Regular inspections usually target the most important



pollution intensive sectors. As fine enforcement for non-compliant firms is weak, as it will be
discussed later, we expect a non positive sign associated to Dyyg3. Dsans is a dummy equal to
one if the industrial has been sanctioned at least once from 1997 to 1999 by the environmental
agency. This variable refers to administrative fines which may range from simple warnings to
financial compensations. Firms sanctioned may have found more cost-effective not to comply
with environmental standards. This variable should have a negative sign. A variable related
to environmental management practices has also been considered. Dy 7 is a dummy variable
equal to 1 if the plant possesses an environmental unit (monitoring network of effluents, end-of-
pipe environmental unit...). Such a plant should have higher production costs, everything being
equal. Finally, in order to take into account heterogeneity across activity sectors, we also consider
sectoral dummy variables. The 28 activities of the Brazilian national accounting system have
been grouped into 6 sectors: Chemical, Electric, Food, Metals, Textiles, all remaining activities

being grouped in Other.

Cost Function Estimate

The system of equations composed by the cost function [2| and the J — 1 cost shares [3] has
been estimated by Seemingly Unrelated Regression (model SUR). The symmetry and price ho-
mogeneity constraints have been imposed using the usual parametric restrictions. The estimated

parameters of the translog cost function are given in table 3.7

Cost specification issues. The cost estimate seems to behave correctly with good prediction
power. The adjusted R square associated to the translog is 0.906. Before commenting on the cost
function estimate, we must check that some regularity conditions are satisfied. First, we have
computed the bordered hessian (evaluated at the mean of the estimated factor shares). All eigen-
values but one are negative, indicating that the estimated cost function possesses relatively good

concavity properties. Next, using Wald tests, we test and reject the homotheticity hypothesis®,



which means that an increase in output levels induces changes in the relative input use ratios.
Effluent control is not separable from the conventional production process since some cross-terms
between Yo and input prices are significantly different from zero. This result is important as it
validates the cost-minimization program given by equation [1]. We also reject the hypothesis of

a unitary elasticity of substitution® which means that inputs are not separable.

Cost elasticities. First, we compute and analyze the cost elasticity with respect to the pro-
duction Y] and to the effluent index, Y5. The cost elasticity with respect to output i € {1,2}
is given by dlnTC/01nY;. The cost elasticity for the production Y; is equal to 0.91, meaning
that a 1% increase of the production Y7 results in a 0.91% increase in costs. This provides some
evidence of increasing returns to scale, further reinforced by the rejection of constant return to
scale at 1% significance level. At the mean sample, the cost elasticity for the effluent discharge
index, Yo, is —0.16. In spite of the expected negative sign, we cannot reject the hypothesis that
this cost elasticity is equal to zero. This result suggests that a marginal reduction of industrial
effluents can be achieved without a substantial cost increase. Notice however that the elasticity
differs across activities, varying from —0.07 for the Food industry to —0.18 for the Electricity
sector, where this value appears to be significantly different from zero.!® At the sample mean
the marginal cost of a reduction in the effluent index is equal to 9,670 R$, a very low figure

compared to the average cost of production.

Regulation and environmental management variables. Most regulation and environmental
management variables entering the cost equation are not significant, which would indicate that
environmental constraints have only a limited impact on costs.!! The only significant variable is
Dynrr, indicating that the presence of an environmental unit is cost-increasing. This suggests
that undertaking environmental-related actions is costly for firms.

On the other hand, the lack of significance of Dyygs and Dgans provides some evidence

10



of a limited impact of environmental regulation variables on costs. This result may have two
interpretations. First Brazilian environmental regulation may be stringent enough but may
suffer from weak enforcement: although monitoring activities by the Brazilian Environmental
Protection Agency (EPA) are rather intense, as shown by the high percentage of plants that have
been systematically inspected (see table 2), firms may find more profitable not to comply with
environmental regulation. This argument is supported by Ferraz et al. (2002), who observe that
“firms have the incentive to avoid payment of administrative fines since collection of those fines
are rather weak”. Actually, environmental fines are collected by the State Treasury but allocated
to the EPA’s budget in Sao Paulo. So, collection effort by the Treasury does not increase its
own resources, and there is no systematic process by which EPA can monitor the Treasury’s
collection efforts. An alternative interpretation is that the existing environmental regulation is

not enough severe to have a significant impact on firms’costs.

Input Cost Share Estimates

Cost share specification issues. Cost monotonicity in input prices has been examined by con-
sidering the estimated cost shares for each industrial firm. For capital, labor and material inputs,
the cost shares are positive for all observations. For energy and water inputs, respectively 4 and
19 observations have negative (but very low) cost shares. The cost monotonicity requirement in
input prices is largely satisfied. Moreover, the estimated cost shares present a relatively good

adjustment to observed data, the adjusted R-square being higher than 0.2 for all equations.

Effluent discharge and input use. First, the significant and positive coefficient for Y5 in the
materials share equation (see table 4) indicates that more polluting plants tend to be more
material-intensive. This is quite intuitive, since materials-intensive production tends to produce
a greater volume of waste residuals, and so to be more pollution-intensive. A deeper analysis

would require more detailed data on inputs included in the material expenses. For the four
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other equations the efluent index coefficient is negative but not significantly different from zero.
Capital-intensive plants seems to produce lower efHuent discharge. This can be the result of more
investments in efluent abatement equipment or use of modern, high-valued equipment which
embodies more effective pollution control technologies. The finding that more labor-intensive
plants produce less effluent discharge may be due to the fact that they are subject to more strict

environmental control by environmental agencies.

Effect of requlation on input miz. Globally, the effect of regulation on production decision
(input mix) is very limited as only a few variables appear to be significant. Dgn3 is significant
with a negative sign in the capital equation: sanctioned firms tend to have lower capital shares
than firms complying with environmental standards. This suggests that capital investment may
be a way of reducing effluent discharge. It is however interesting to have a closer look at the signs
associated to regulation variables in the cost share equations. Let us first consider the presence
of an environmental unit in the plant Dy yrr. Industrial firms possessing such an environmental
unit tend to have higher capital cost shares and lower cost shares associated to other inputs: they
are substituting capital to other input. Firms under close monitoring (Drys3 equal to 1) have
higher capital and labor cost shares and lower energy and material cost shares. The positive
coefficient associated to Djygs in the labor equation is in particular very high: firms under
close monitoring by the environmental agency use more labor. This could reflect environmental
agency monitoring practices: very often monitoring efforts target large firms measured in term
of number of employees. Globally, firms under more stringent environmental regulation tend to
substitute capital and labor to energy and material, increasing abatement activities and reducing
waste residual production. To conclude: (1) environmental regulation is not stringent enough
to have a significant and clear impact on firms’allocation of inputs (regulation variables are not

significant). (2) As all coefficients have the expected signs, reinforcing environmental regulation
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may have a significant impact on pollution control. The negative sign associated to effluent

discharge in the capital and labor cost share equations is another evidence of this.

IV. WATER USE AND ENVIRONMENTAL POLICIES

Substituability Between Water and the Conventional Inputs

The cost function estimate enables us to derive the cross and own price elasticities. Table 5
presents the mean of these elasticities. All own-price elasticities have the expected negative
sign, meaning that an increase in an input price results in a decrease of its own demand. Most
of the subsituability-complementarity between the conventional inputs correspond to what has
been found previously in the empirical cost literature. For instance, labor appears to be a
complementary input to capital and energy and a substitute to materials in production. Material
is a substitute to capital and energy inputs. Water is found to be substitute to capital, labor and
energy as also observed by Dupont and Renzetti (2001). This result differs from Grebenstein
and Field (1979) or Babin, Willis, and Allen (1982), where water was found to be a substitute
to labor and a complement to capital.

The own-price elasticity of water demand is quite high, —1.085 at the sample mean. A similar
result was obtained by Wang and Lall (1999) for the Chinese economy. However, since Wang
and Lall (1999) adopts a marginal productivity approach, any comparison between elasticities
should be made with caution. Our results are higher than those reported by Onjala (2001) for
Kenya, who estimates water price elasticities ranging from -0.60 to 0.37. Once more, comparisons
between elasticity estimates seem difficult to establish, since Onjala (2001) adopts a distinct
approach based on a dynamic adjustment model without data on input prices and production
levels. The water price elasticity estimate for Brazil (and for China) is significantly higher than

the ones obtained for developed countries. This suggests that pricing policies can be a potential
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instrument for water conservation. But it is difficult to assess if this elasticity discrepancy
between developing and developed countries has a structural-based explanation or can be solely
attributed to the difficulty in getting accurate water-related data in developing countries. Indeed,
the water price used in Wang and Lall (1999) corresponds to the marginal cost whereas Chinese
water prices are far below this level. This may lead to an upward bias in their estimates.
Moreover, both Brazilian and Chinese samples are composed by medium and large plants, which

tend to have higher water price elasticities than small ones.'?

Assessing the impact of Environmental Policy Instruments

The cost model can be used to assess how firms react to a modification of their regulatory
environment. We consider the implementation of environmental policies: a water tax and a

standard on effluent discharge.

Simulation method. First, given the observed input prices, outputs and technical character-
istics of firms, we compute for each firm the estimated total cost and cost shares:

0
[

TC; (Y2, WP; Z?) and S%(Y2, WP 7). 3]

Next, we consider an input price change (from Wi to WZIJ) or a change of output (from Y;° to

Y;!) and we simulate the corresponding total cost and cost shares for each firm :
1 ~
TC; (Y, W5 Z7) and Sy(Y;, Wi'; Z7). [4]

Last, we compute the ratio of total cost and cost share change:

—1 —0 a )
- X St — 5o
ATC = L{?—'C’Z and AS] = % [5]
TC; 5

which give the proportional change in cost and shares with respect to the initial situation. As we
are especially interested in water use, we also report AX,,,; which gives the proportional change

in water derived demand.
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Implementing water tazes: the Paraiba do Sul River Basin case. In Brazil, an important ini-
tiative for water management is the implementation of water charges promoted by the Paraiba do
Sul River Basin Committee (CEIVAP). The charge is intended to apply to water users following
four main principles. The charge mechanism must be based on measurable parameters, it must
be socially acceptable, the water charges are supposed to act as signals about the economic value
of water resources and last, the water tax must minimize economic impacts on users in terms of
cost increases. The following simulations give some insights on the impact of a water tax on the
cost of industrial firms.

In table 6, we simulate changes in production cost, input cost shares and water demand
induced by different water price increases. As it can be seen, increases in water prices have a
quite small impact on total costs. This should be expected, given the low water cost share. A
100% increase in water prices will result in less than a 0.5% increase in total costs. Moreover
the water cost share variations will also be modest, falling by about 2.35%. The small impact of
water price on total cost indicates that implementation of the Paraiba do Sul River Basin charge
should not face strong resistance by industrial water users. At the same time, water consumption
appears to be highly responsive to water prices. A 10% increase in water price induces a 9.33%
reduction of water withdrawal.'®> These results suggest that given the low impact on total cost
and the high responsiveness of water demand to price, water charges may be acceptable by firms
and act as an effective instrument for water conservation.

Albeit its small impact on total cost, the water charge has a more substantial impact in terms
of input mix. This is somewhat expected given the substitution possibilities between inputs. The
most significant impact is observed for the energy share which, as already noted, has the highest
substitution degree to water. Doubling the water price will result in a 8.21% increase in the

energy cost share. One possible explanation is that firms facing higher water prices will use more
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water-saving processes (recirculation of water inside plants, reuse of wastewater for less quality

demanding activities...) which are more energy intensive.

Production under more stringent environmental requlation. There is a vast literature (both
theoretical an empirical) trying to assess the relationship between environmental regulation and
productivity of firms. In a famous article published in 1991, Porter (1991) has suggested that
implementing a more stringent environmental regulation may also lead to a decrease of costs
and an increase of competitiveness of firms. But this so-called “Porter hypothesis” has been
recognized by many economists as clearly controversial. Our cost estimates allow to simulate the
impact of a more stringent environmental regulation on the cost structure of industrial firms.

Table 7 shows that reducing efluent discharge will result in significant changes in total cost
and input mix. A 10% reduction of the effluent index will imply a 1.70% cost increase. If the
effluent discharge index is reduced by half, this will imply a 11.24% increase in costs. This
figure may be useful to support policy-maker assessment of environmental measures in term of
cost-benefit analysis. Concerning input shares, the efluent discharge reduction will result in a
decrease of the material cost share, while the share increases for all other inputs. This reflects
the fact that effluent discharge is closely linked to materials use, as we have seen in the cost
share estimates analysis. In order to decrease effluent discharges, firms should reduce materials
use, while expending more on capital (by investing in pollution abatement technology), labor,
energy and water. To achieve a 50% reduction in the effluent index, firms reduce by 10.94%
the materials cost share. It should be noticed that the variation in the labor cost share is more
significant than capital share adjustments. It seems that in adjusting to pollution environmental
level targets, capital plays a relatively minor role compared to labor variations. One explanation
of this result is that production technology of firms is considered as given: we do not allow firms

to adapt to the more stringent environmental regulation by developing new technologies, maybe
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more capital-intensive. Adjustments described by our cost approach should be considered as

short-term adjustments.

Toward a joint use of environmental norms and water taz? From table 7, it can be seen that
the requirement to reduce the effluent index will lead to a substantial increase in water demand.
For instance, a 20% decrease of the effluent index will induce a 12.80% increase in total water
consumption. This relationship between efluent discharge and water demand indicates that,
in order to attain the required levels of effluent reduction, firms use higher water volume for
effluent dilution. It follows that policy makers face a tradeoff concerning environmental goals:
water quality improvement measures will have a negative effect on water conservation.

A way to mitigate the negative impact of efluent norms on water conservation is to jointly
implement a more stringent environmental norm together with an increase in water price (through
a withdrawal tax, for instance). A 20% decrease of the effluent index together with a 12.5%
increase of the water price will make the water withdrawals remain the same. This implies a
3.8% increase of the production cost, a figure slightly higher than in the scenario of more stringent
environmental norms without water price increase (+3.6%). The water withdrawal reduction is
made possible by increasing the cost share of energy (by 4.3% instead of 3.6% without water
price change) and by reducing the cost share of material (by —3.7% instead of —3.5%) which
is the most pollution-intensive input. One possible interpretation is that the reduction of water
use requires to develop recirculation of water which is very energy-intensive. This substitution
between energy and material is more visible when considering a 50% reduction of the index of
effluent. Maintaining water use at the same level requires in such a case to increase the water price
by 43.6%. The energy cost share increase is equal to 15.4% (versus 11.1% without water price
change) whereas the fall in the material cost share represents —11.2% (versus —10.9% without

water price change). The cost increases by 11.7% compared to the 11.2% increase without price
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change. The detrimental impact of a more stringent environmental norm on water conservation
can be compensated, without a significant cost change, by a water price increase. This results
clearly show that derived demands in production inputs are interdependent: Any policy aiming
at modifying one input will affect the other ones and these interdependences must be internalized

by the regulator.

V. CONCLUSION

In this paper we have investigated the water demand of Brazilian manufacturing plants with
a special emphasis on the structure of cost and on pollution. We have characterized the structure
of the industrial water demand by estimating a multiproduct translog cost function on a sample
of 404 Brazilian firms located at Sao Paulo state observed in 1999.

We find that Brazilian firms exhibit a significant price elasticity, about —1.0 at the mean
sample. This high value is similar to what has been found by other researchers working on
developing countries (China for example). Moreover, our simulations suggest that implementing
water charges will only have a limited impact on firm’s cost. Given this low impact on costs
and the high responsiveness of water demand to price, water charges may be both acceptable by
firms and act as an effective instrument for water conservation. This finding provides support
for the water tax currently being implemented in the Paraiba do Sul River Basin, Brazil.

Our simulations also provide some evidence on the strong relationship between effluent dis-
charge and industrial water need. Policy makers should be careful when considering implemen-
tation of more stringent pollution standards. Reductions in effluent discharge may lead to a
substantial increase in water demand. Hence, water managers face a tradeoff concerning en-
vironmental goals: water quality improvement policies may have a detrimental effect on water

conservation. Interestingly, it is possible to mitigate the negative impact of a more stringent
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environmental norm by a joint use of efHuent discharge norms and water charges. This reflects
the idea that efluent norms and water charges should be viewed more as complementary tools

than substitutes.

APPENDIX
DERIVATION OF THE EFFLUENT DISCHARGE INDEX

The derivation of the effluent discharge index can be decomposed into two stages. First, we
perform a principal component analysis (PCA) on six variables concerning firms’ water-related
technical characteristics and environmental preferences. By this procedure we obtain an index
reflecting best water-related environmental practices by firms. Then, we rescale this index and
we obtain an index representing effluent discharges.

The PCA is a mathematical procedure that transforms a number of (possibly) correlated
variables into a (smaller) number of uncorrelated variables called principal components, each
component being defined as a linear combination of the initial variables. The primary objective
of this method is to summarize the data with little loss of information, and thus to provide a
reduction in the dimensionality of the data. The interested reader may refer to Jolliffe (2002)
for a complete presentation of the PCA method.

In our application, the PCA is based on the 6 following variables. First, g, gives the total
quantity of water consumed by the plant. This variable is introduced in order to make the
water efluent index depend on the quantity of water use. Second, SUBENYV gives firms’s self-
evaluation of environmental compliance status. SUBENV takes values {1, 2, 3,4, 5} respectively
if the firm always fails, regularly fails, periodically fails, just meets or exceeds the environmental
requirements. SUBFENYV should be negatively correlated with the water efluent index. Third,
ENV PREF describes firms’s environmental preferences and is equal to {1,2,3} respectively

if environmental protection is not important, is important or is very important for the plant
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manager. ENV PREF should be negatively correlated with the water effluent index. Fourth,
UNITENV?2 is equal to 1 if the industrial possesses an environmental unit. Fifth, 15014 gives
the certification status of the firms for ISO 14000. This variable takes the values {1,2,3,4}
respectively in case of no license yet, beginning licensing process, approved with conditionality
and fully approved. 15014 should be negatively correlated with the water efluent index. Last,
AUTOW AT is equal to 1 if the industrial self-reports water effluents to the environmental
agency.

The first component explains 32.8% of the total variance and almost 50% of the variance is
captured by the two first components. Moreover, as shown on figure 1, the first axis is highly
positively correlated with UNITENV2, ENVPREF, 1SO14 and AUTOW AT. The Pearson
correlation coefficients between the first component and these four variables are respectively
0.76, 0.53, 0.65 and 0.72. This first component is an index that measures the best environmen-
tal practices of plants (using objective characteristics such the ISO norm status and subjective
characteristics such environmental preferences) related to water use. Firms with high first compo-
nent values correspond to plants with high environmental performance, as verified by the positive
correlation between the first component and variables entering the PCA. In what follows, the
effluent discharge index, Ys, is the negative of the first component. Last, this index is re-scaled
in order to be greater than one (the cost function requires to take the logarithm of all outputs)
for all observations (the minimal value plus one has been added to —Y3). This approach assumes
implicitly that water effluents are inversely correlated with the measure of best environmental

practices of plants given by the first component.

[ Figure 1, here]

As we do not observe the true water effluents of plants, we can not explicitly evaluate our

method. However, some robustness tests can be conducted. An output-pollution matrix, which
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relates effluents (both for organic charge, MO, and total suspended solids, TSS) to produc-
tion, has been computed at the sectoral level by the Brazilian-French cooperative project on the
Paraiba do Sul river basin. The coefficients of this matrix, based on the French Water Agencies’
matrices, have been further calibrated in order to account for Brazilian technological specificities.
They are presented in Cooperagao-Brasil-Franga (1994). Using, the Brazilian sectoral output-
pollution matrix, we have computed the theoretical effluents. As expected, our effluent index is
positively and significantly correlated with the theoretical MO and TSS emissions. The correla-
tion coefficient between Yo and TSS is equal to 0.36. The correlation coefficient between Yy and
MO is equal to 0.32. This result tends to indicate that Y5 is a reliable proxy of the non-observed

water effluents.
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Notes

'Frederick et al. (1997), in a survey for the US, report 494 estimates of the economic values

of freshwater. Among these estimates, only 7 deal with industrial water use.
2 Renzetti (1992) estimates the same model using an enlarged sample and finds similar results.

3As the sum of cost shares is equal to 1, only J — 1 cost shares must be taken into account

otherwise the variance-covariance matrix would be singular.

4 This is a pervasive problem in developing countries where plant-level monitoring of emitted

pollution is at best imperfect, and where monitoring equipment is often obsolete.

SFor instance, the World Bank has developed a model called Industrial Pollution Projection
System (IPPS) that allows to estimate the level of pollution emissions per unit of industrial

activity at the sectoral level, Hettige et al. (1994).

6ISO 14000 refers to a series of voluntary standards in the environmental field developed by

the International Organization for Standardization located in Geneva, Switzerland.

"We have considered other specifications of the translog including for example cross-terms be-
tween environmental regulation variables, price of inputs and outputs. Most of these coefficients

were not significant. For simplicity reasons and in order to limit the number of parameters to
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be estimated, we only report the translog specification where environmental regulation variables

only interact with input prices and outputs.
8The test statistics is equal to 78.5 whereas the critical value at 1% is 20.1.
9The test statistics is equal to 38.9 whereas the critical value at 1% is 24.7.
10Sectoral estimations are available upon request from the authors.

HUWe have tested the cost model with and without the regulation and environmental man-
agement variables Dy yrr, Drnss and Dgang using a Wald test. The Wald statistics is equal
to 40.04 whereas the critical value at 1% is x?(19) = 36.2. We reject the null hypothesis of no
effect of regulation and environmental management variables on cost. These variables have a

significant impact on cost, although limited.

2Gince large firms withdraw high volumes of water, they face high incentives to invest in
water-recycling activities. Water recirculation being a substitute to water withdrawal, these

firms should have a more elastic water demand.

13This figure is compatible with the estimated price elasticity of water demand, —1.08 on

average.
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TABLE 1

DESCRIPTIVE STATISTICS ON COSTS

Variable Unit Mean  Std. Dev. Min. Max.
TC RS 17,226,823 32,408,331 100,000 289,800,000
Y; index 117.119 230.587 2.092 2,146.769
Y, index 4.822 1.402 1.000 7.738
Sk — 0.200 0.125 0.005 0.875
S — 0.297 0.150 0.037 0.917
Se — 0.039 0.037 0.000 0.255
Sm — 0.457 0.170 0.010 0.954
Sw — 0.006 0.012 0.000 0.150
Wi R$ by 1,000 R$ 9.983 7.877 148 213
W, R$ by employee 14,394 7,984 3,111 47,806
We R$ by 1,000,000 Kcal 6.946 0.902 4.071 8.107
Wi R$ by unit of material index 8.624 5.723  24.402 63.786
W R$ by m? 3.675 1.954 0.004 9.709
Xy Index 25,573 66,189 12 954,894
X Number of employees 271 475 6 4,861
X, 1,000,000 Kcal 94,882 210,450 10 2,261,891
X Index 307,758 641,218 167 5,917,206
Xy m3 51,438 176,737 6 1,560,000
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TABLE 2
DESCRIPTIVE STATISTICS FOR REGULATION AND TECHNICAL CHARACTERISTICS

Variable Frequency Percent
DSAN3 Yes 15 3.71
No 389 96.29
Dinss Yes 212 52.48
No 192 47.52
DUNIT Yes 73 18.07
No 331 81.93
IBGE6 Chemical 40 9.90
Electricity o7 14.11
Food 18 4.46
Metals 68 16.83
Other 140 34.65
Textiles 81 20.05

Dsans is a dummy for sanctioned firms.

Dirnss is a dummy for regularly inspected firms.

Dynrr is a dummy for the presence of an environmental unit.
IBGE6 are dummies for industrial sectors.
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TABLE 3

PARAMETER ESTIMATES OF THE TRANSLOG CoOST FUNCTION

Variable Est. St.Err St.-T  Variable Estimate St.Err St.-T
CONST 15.551 0.091 170.536 YiDynir 0.035  0.047 0.753
Yi 0.852  0.058 14.820 YsDynir 0.151  0.177 0.850
Y5 —0.335 0.218 —-1.537 WxD;ns3 0.007  0.012 0.607
Wk 0.198 0.017 11.603 WD ns3 0.218 0.056 3.875
Wt 0.321 0.023 13.854 WgDins3 —0.001  0.005 —0.300
Wg 0.048 0.007 7.044 WpyDinss —-0.005 0.015 —0.297
War 0.422 0.023 18.552 WwDinNs3 0.003  0.003 0.901
Ww 0.011  0.005 2.209 WxDsans —0.028 0.012 -—2.371
WrWgk 0.052 0.118 0.445 WrDsans —0.105 0.057 —1.859
WrWi, —-0.317 0.110 —-2.880 WgDsans 0.003  0.005 0.579
WrkWg 0.012  0.041 0.301 Wy Dsans 0.008 0.016 0.528
WxWun 0.252  0.085 2.950 WwDsans 0.001  0.004 0.341
WrxWw 0.000 0.006 —0.011 WgDyniT 0.021  0.014 1.508
WLWy, 0.176  0.091 1.942 WpDyniT —0.113  0.043 —2.627
WirWg —-0.035 0.063 —0.552 WgDyniT —0.001 0.006 —0.243
WiWun 0.175  0.108 1.617 Wy DynrT —0.004 0.019 -0.202
WiWw 0.000  0.008 0.040 WwDyniT —0.004 0.004 -1.037
WeWg —0.099 0.030 -3.324 DpyprWgk —0.009 0.020 -—0.454
WeW 0.117  0.036 3.222 DyprWy —0.004 0.027 —0.166
WeWw 0.004 0.002 1.825 DyprWg 0.015  0.009 1.688
W War —0.540 0.133 —4.068 DyeprWu 0.000 0.026 —0.018
Wy Ww —0.004 0.007 —-0.526 DyeprWw —0.001 0.006 —0.141
Ww Ww —0.001 0.002 —-0.348 DegpmWk —0.084 0.031 —2.748
Yy —0.010 0.020 —0.538 DegpmWyi —0.071 0.042 -—1.689
WkY; 0.015  0.006 2.414 DopgpuWeg —-0.051 0.014 -3.551
WYy —0.060 0.008 —-7.214 DcgpmWum 0.203  0.039 5.253
WgY: —0.001 0.002 —-0.336 DcgemWw 0.003  0.007 0.493
WnYy 0.048 0.008 6.003 DproopWk —0.227  0.066 —3.447
WwY, —0.002 0.002 -1.0"4 DpgoopWy —0.205 0.085 —2.396
Y5Y5 —0.027 0.280 —0.097 DpgpoopWg —0.103 0.028 —-3.742
WkYs —0.013 0.021 —-0.636 DroopWu 0.544  0.096 5.655
WiYs —0.046 0.029 —1.581 DpoopWw —-0.009 0.011 -0.891
WgYs —0.006 0.008 —0.686 DyrpxWgk —0.019 0.019 -1.029
WnYs 0.071  0.028 2.559 DrpxWg —0.020 0.025 —0.808
WwYs —0.006 0.006 —1.016 DypxWg —0.001 0.007 —0.087
Y, —0.047 0.052 —0.908 DrpxWuy 0.043 0.025 1.723
Dynrr 0.175  0.073 2.396 DrpxWw —0.002 0.005 —0.446
Dins3 0.049 0.041 1.197 DgrecWk 0.048  0.020 2.348
Dsans —0.034 0.044 —-0.765 DpgrpcWg 0.017  0.027 0.642
YiDins3 0.025  0.037 0.656 DgrpcWg 0.003  0.008 0.353
YsDins3 0.023  0.137 0.168 DgrecWu —-0.071  0.027 -2.634
Y1Dsans 0.042 0.040 1.067 DgrecWw 0.002  0.006 0.378
YsDsans —0.039 0.135 —0.287

RZ: 0.906.
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TABLE 4
PARAMETER ESTIMATES OF THE COST SHARES

Capital Labor Energy Material Water
Variable Est. St-T Est. St-T Est. St-T Est. St-T Est. St-T
CONST 0.198 11.599 0.321 13.854 0.048 7.040 0.422 18.552 0.011 2.209
Y, 0.015 2.414 -0.060 -7.214 -0.001 —-0.336 0.048 6.003 —0.002 -1.074
Ys —-0.013 -0.636 —0.046 —1.581 —0.006 —0.686 0.071 2.559 —0.006 —1.016
Wk 0.052 0.443 —-0.317 —2.880 0.012 0.300 0.252 2.944 0.000 -0.011
Wy, —0.038 —3.080 0.176 1.942 -0.004 -0.899 —-0.035 -—2.124 0.000 -0.073
Wg 0.012 0.300 —0.035 —-0.552 —0.099 -3.319 0.117 3.222 0.004 1.825
War 0.252 2.944 0.175 1.617 0.117 3.222 —0.540 —4.068 —0.004 —0.526
Ww 0.000 -0.011 0.000 0.040 0.004 1.825 —-0.004 -0.526 —0.001 —0.348
Dynrr 0.021 1.508 -0.113 -2.627 -0.001 -0.243 -0.004 -0.202 -0.004 —1.037
Dinss 0.007 0.607 0.218 3.875 —0.001 -0.300 -—0.005 —0.297 0.003 0.901
Dsans —0.028 -2.371 —-0.105 -—1.859 0.003 0.579 0.008 0.528 0.001 0.341
Dypr —0.009 -0.453 —0.004 -—0.166 0.015 1.687 0.000 —-0.018 -0.001 -—0.141
Dgrec 0.048 2.347 0.017 0.642 0.003 0.353 —0.071 -—2.634 0.002 0.378
Degpv —0.084 —-2.747 -0.071 -1.689 -0.051 -3.551 0.203 5.253 0.003 0.493
Drpx —-0.019 -1.028 -0.020 -0.808 —0.001 —0.087 0.043 1.723 —0.002 —0.446
Droop —0.227 -—-3.434 —-0.205 —-2.396 —0.103 —3.742 0.544 5.655 —0.009 —0.891

R?: 0.222 R?: 0.233 R?: 0.217 R?: 0.290 R?: 0.198
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TABLE 5
Cross AND OWN PRICE ErAsTICITY OF INPUT DEMANDS, (€i)

Capital Labor Energy Material Water

Capital —0.539 —1283 0.1 1715 0.006
(0.587) (0.549) (0.202)  (0.427)  (0.028)
Labor ~ —0.866 —0.11 —0.077 1.046  0.007

(0.37)  (0.306) (0.211)  (0.364)  (0.026)
Energy 0511 —0.581 —3.468  3.425  0.113
(1.03)  (1.589) (0.754)  (0.921)  (0.059)
Material ~ 0.752  0.679  0.295 —1.724 —0.002
(0.187)  (0.236) (0.079)  (0.29)  (0.016)
Water 0.191 0348  0.721 —0.174 —1.085
(0.922) (1.271) (0.373)  (1.199)  (0.263)

Elasticities computed at the mean sample. Standard-errors in

parentheses computed according Binswanger (1974), considering the

cost as non-stochastic.
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TABLE 6
IMPACT OF A PRICE INCREASE ON COST AND INPUT USE

Ww +10% +20% +50% +100% +200%
ATC 0.064% 0.120% 0.263% 0.443% 0.690%
A Sk —0.003%  —0.006%  —0.013%  —0.022%  —0.035%
A Sy, 0.011% 0.021% 0.048% 0.082% 0.129%
A Sk 1.129% 2.159% 4.801% 8.208% 13.009%
A Sy —0.083%  —0.158%  —0.351%  —0.600%  —0.952%
A Sy -0.323%  —0.617% —1.372%  —2.346% —3.718%
A Xyat —-9.327% —17.082% —34.079% —50.966% —67.700%

Note: Percentage computed at the mean sample.
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TABLE 7
IMPACT OF A REDUCTION OF THE EFFLUENT INDEX ON COST AND INPUT USE

Y, —1% —10% —20% —30% —50%
ATC 0.163% 1.697% 3.598% 5.761% 11.234%
A Sk 0.072% 0.752% 1.593% 2.546% 4.948%
A Sy, 0.172% 1.799% 3.811% 6.091% 11.838%
A Sk 0.161% 1.687% 3.574% 5.712% 11.100%
A Sy —0.159% —1.662% —3.520% —5.627% —10.935%
A Sy 0.384% 4.024% 8.522%  13.622% 26.473%
A Xyat 0.548% 5.870%  12.796%  21.125% 44.426%

Note: Percentage computed at the mean sample.
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