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Abstract. This paper deals with multiobjective programming problems with inequality,
equality and set constraints involving Dini or Hadamard differentiable functions. A theorem
of the alternative of Tucker type is established, and from which Kuhn-Tucker necessary
conditions for local Pareto minima with positive Lagrange multipliers associated with all the

components of objective functions are derived.

1. INTRODUCTION

The key to identifying optimal solutions of constrained nonlinear optimiza-
tion problems is the Lagrange multiplier conditions. One of the main ap-
proaches to establishing such multiplier condition for inequality constrained
problems is based on the dual solvability characterizations of systems involving
inequalities. Farkas initially established such a dual characterization for non-
linear programming problems. This dual characterization is popularly known
as Farkas’s lemma which can also expressed as a so-called alternative theo-
rem. Alternative theorems have played a crucial role in establishing necessary
optimality conditions. Many works generalized classical theorems of the alter-
native such as Farkas’ Theorem, Tucker’s Theorem, Motzkin’s Theorem and
applied them to derive Fritz John and Kuhn-Tucker necessary conditions for
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optimality (see, e.g., [1], [2],[4]-[7],[9]-[14], and references therein). The classi-
cal Tucker theorem of the alternative and its generalizations play an important
role in establishing Kuhn-Tucker necessary conditions for efficiency with La-
grange multipliers associated with all the components of objective functions
to be positive. This attracts attention of mathematicians, since if a Lagrange
multiplier corresponding to some component of the objective is equal to zero,
then that component has no role in the considering necessary conditions.

Maeda [13] studies Fréchet differentiable multiobjective optimization prob-
lems with only inequality constraints and gives a Kuhn-Tucker necessary con-
ditions for a Pareto minimum with positive Lagrange multipliers correspond-
ing to all the components of the objective under a constraint qualification of
Guignard type. Giorgi et al [4] study several constraint qualifications which
generalize the constraint qualification introduced by Maeda [13] and the classi-
cal ones, and derive Kuhn-Tucker necessary conditions basing on establishing
an alternative theorem for a system comprising sublinear inequalities and lin-
ear equalities. Ishizuka [6] gives an alternative theorem for a system containing
only inequalities described by sup-functions, and derive Kuhn-Tucker neces-
sary conditions for properly efficient solutions of multiobjective programs with
inequality type constraints. Note that the aforementioned works are consid-
ered in finite dimensions. Recently, Luu and Nguyen[12] have developed Kuhn-
Tucker necessary conditions for efficiency of Gateaux differentiable multiob-
jective optimization problems in normed spaces involving inequality, equality
and set constraints with Lagrange multipliers of the objective are all positive
by proving a theorem of the alternative to a system comprising inequality,
equality and an inclusion in normed spaces.

Motivated by the works mentioned above, this paper deals with the gen-
eralization of classical Tucker’s theorem of the alternative to a system com-
prising inequalities described by sup-functions and an inclusion together with
establishing Kunh-Tucker necessary conditions for efficiency with positive La-
grange multipliers associated with all the components of objective functions
of directionally differentiable multiobjective optimization problems involving
inequality, equality and set constraints in finite dimensions.

The paper is organized as follows. After Introduction and some preliminar-
ies, Section 3 is devoted to present a theorem of the alternative to a system
comprising inequalities described by sup-functions and an inclusion along with
its consequences. From these results, section 4 gives Kuhn-Tucker necessary
conditions for efficiency with positive Lagrange multipliers corresponding to
all the components of the objective of the considering problem.
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2. PRELIMINARIES

Let f, g and h be mappings from R" into R?, R? and R", respectively, and C
be a nonempty subset of R". Assume that f, g, h can be expressed as follows:

f = (f17' '~7fp)7 g = (glv'” 79(])7 h = (hla-- -7h7‘)7 where fkagj7h£ :R*" - R
with keI ={1,...,phjeJ={1,....qh¢e L={1,...r}.
We consider the following multiobjective programming problem (VP):
min f(x)
st gi(2) <0, jeJ;
hi(z) =0, l€L;
xeC.
Denote by M the feasible set of (VP)
M = {33 € C:gj(z) <0,hy(z) =0,j€ J;l e L}.
Recall that a point Z € M is said to be a local Pareto minimum of (VP) if
there exists a number ¢ > 0 such that
FNMnB(z;0) =0,
where
F={zeR": f(z) < f(), f(z) # f(@)},
and B(T;0) denotes the open ball of radius ¢ around Z.
Definition 2.1. a)The tangent cone (or contingent cone ) to C at T € C is
the following set:
T(C;z) = {v e R":3v, — v,3t, | 0T such that T + t,v, € C,Vn}.
b)The cone of sequential linear directions (or sequential radial cone ) to C
at T € C is the following set:
Z(C;7) = {v e R"™:3t, | 01 such that T+ t,v € C,Vn}.
Note that both these cones are nonempty, T'(C; %) is closed and Z(C;T) C
T(C;x).
Let K be a cone in R™. The polar cone to K is
K'={{eR" <{v><0Yve K}
If K is a subspace, then K* is the orthogonal subspace K+ to K. In case
K =T(C;7), K* is the normal cone N(C;7) to C at 7.

Definition 2.2. Let f: R" — RP and T € R".
a) The lower Dini derivative of f at T in a direction v € R™ is

f@+tv) - f(T)

i

Df(z;v) = liminf
Df(w;v) im in ;



4 Manh-Hung Nguyen and Do Van Luu
b) The lower Hadamard derivative of f at T in the direction v is

df(z;v) = liminf f@+ty) = f(@) .

t|0t u—v t

Replacing ”liminf” by ”limsup” in a) or b), we get the upper Dini derivative
Df(T;v) and the upper Hadamard derivative df(;v),respectively, of f at =
in the direction v. In case Df(Z;v) = Df(Z;v) (resp. df(T;v) = df(T;v)), we
shall denote their common value by D f(Z;v)(resp. df(Z;v)), which is called
the Dini derivative or directional derivative (resp. Hadamard derivative) of
f at T in the direction v. The function f is said to be Dini differentiable
or directionally differentiable (resp. Hadamard differentiable) at T if its Dini
derivative(resp. Hadamard derivative) exists in all directions. Note that if
df (T;v) exists, then also Df(Z;v) exists and they are equal. In case f is
Fréchet differentiable at T with Fréchet derivative V f(Z), then

Df(@;v) = df (z;v) =< Vf(@),v>.
Definition 2.3. The Dini subdifferentiable of a Dini differentiable function
fR" —RatT is
Opf(@) ={£ eR"| <&v><Df(z;v) Vv € R"}.

In case the function Df(T;.) is convex, there exists the subdifferentiable
0D f(;.)(0) of this function at v = 0 in Convex Analysis sense, and

Ipf(x) = 0Df(z;.)(0).
This set is nonempty, convex, compact , and

Df(E:v) = max (€.v).

Note that in case Df(7;.) is convex, f was called quasidifferentiable at Z by
Pschenichnyi[16].

3. THEOREM OF THE ALTERNATIVE

To derive necessary conditions for efficiency with all positive Lagrange mul-
tipliers of all the components of the objective, we establish the following the-
orem of the alternative.

Theorem 3.1. Let Ay,...,Ap,, Bi,...,By and C be nonempty subset of R™.
Assume that

a) K is an arbitrary nonempty closed convex subcone of T(C;T) with vertex
at the origin;
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b) For each i € I, the set

p q
U{cl co(A4; + Z akAk+Zﬁij):ak20,k7éi,ﬁjZO}+K*
k=1 koti =1

1s closed in R™ where cl and co denote the closure and the convexr hull, respec-
tively.

Then the two following statements are equivalent:

i) For each i € {1,...,p}, the system

sup (ag,v) <0, kel;k#i, (3.1)
akEAk
sup (a;,v) <0, (3.2)
aiEAi
sup (bj,v) <0, j€J, (3.3)
bjGBj
veK (3.4)

has no solution v € R™.

it) There exist A, >0 (k€ I), ; >0 (j € J) such that

p
0€cleod NeAr+ > FBj)+ K" (3.5)

Proof. (i) = (ii): Suppose that (i) holds which means that the system (3.1)-
(3.4) has no solution. For each i = 1,...,p, we set

p q
D; = U{Cl CO(AZ' + Z ap Ak + Zﬂij) tap >0,k # i,,@j > 0} + K*.
k=1 ki j=1

Then by assumption, D; is closed. Moreover,

p q
D; = U{cl(coA; + Z aicoAy + Zﬁjcij) rap >0,k #4,6; >0} + K.
k=1,k+i j=1

It is easy to check that the set

p q
U{cl(coA; + Z apcoAy + Zﬁjcij) tag >0,k #1,8; >0}
k=1 ki j=1

is convex,and hence, D; is convex. We now show that 0 € D;(i =1, ..., p).
If this were not so, there would exist ig € I such that 0 ¢ D;,. Applying
strong separation theorem for a closed convex set and a point outside that set
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(see, e.g.,[15,Corollary 11.4.2]) yields the existence of a vector v € R™\{0} and
a number oy € R such that

(§,0) < ap <0(V€ € Dyy),
which implies that

P q
(@i, D)+ > olar, D)+ Bi{bi, D) + ((,T) < ag <0 (3.6)
k=1,k+i0 j=1
for all akEAk7ai0 EAiO,bj EBj,CEK*,akZO,kEI,k#io,ﬂj ZO,jEJ.
Taking ap, =0V k€ I,k # 19,8, =0, j € J,( =0, we obtain that

sup (a;,,v) < 0. (3.7)
aiOGAiO
We can show that
sup (bj,v) <0 (Vj € J). (3.8)
bjEBj

Assume the contrary, that there exists jo € J such that
sup (bj,,v) > 0,
bjoijO

then, by letting 3;, be large enough, we arrive at a contradiction with (3.6).
Similarly, we also get that

sup (ag,7) < 0 VEk # ip. (3.9)

ap €A

Let us show that v € K. If this were false, there would exist (y € K* such that
(C0,7) > 0. For oy =0V k # ig,8; = 0,5 € J, Ao € K*, for A sufficiently
large, we also get a contradiction with (3.6). Hence,

(¢,7) <0,9¢ € K*
which leads to the following
ve K™ =K. (3.10)

It follows readily from (3.7)-(3.10) that the system (3.1)-(3.4) has a solution
v : a contradiction. Therefore, for each ¢ € 1,0 € D; . So there exists numbers

o > 0,8; > 0 with @ = 1 such that, for i = 1,...,p,

P qa
0ecl (Za};coAk + ZB;COBJ‘) + K*
k=1 j=1

as coA+coB =co(A + B).
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Summing up these inclusions, we obtain

P P q
0 € ch (Z@};co A+ ZB;CO Bj)+ K~
i=1 k=1 J=1
PP a
C CIZ Z a,coAL, + ZB}COBJ') + K~
i=1 k=1 j=1
P p a p
= [ZZE}CCOAk + ZZ ]coBJ |+ K,
k=1 i=1 j=1i=1

which implies that
P q
0ecl [Z ApCOA) + Zﬁjcij] + K*,
k=1 j=1

as clA4clB Ccl(A + B), where A, = Y0 _ @) > 0,,7; = >0, B; > 0.

Observing that Y37 ArcoAg+>_7_ Ti;coBj =co (30 MAp+>_0_, 71, Bj)
we arrive at (3.5). B

(ii) = (i):Suppose that (ii) holds. This implies that there exist A\, > 0,7z; >
0 (k€ 1,j € J) such that (3.5) holds. We set

P q
E =l CO[ZXkAk + ZﬁjBJ] + K
k=1 j=1

By assumption, 0 € E. It is obviously that E is convex.
We invoke Theorem 13.1 in [15] to deduce that

sup(¢,v) > 0 Vo.

(er
It follows from this and Theorem 32.2 in [15] that, Vv,
P q
Z)\k sup (ag,v Z - sup (bj,v) + sup (§,v) > 0. (3.11)
=1 k€A% =1 b €B, feK*

If (i) were false, there would exists i € I such that the system (3.1)-(3.4)
has a solution vy € R™. It implies that

sup (€, v9) <0, (3.12)
feK™
and
p —
Z)\ sup (ag,vo) + Zu] sup (bj,v9) <O . (3.13)
k=1 Ak€Ak =1 bi€B;
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Combining (3.12) and (3.13) yields that

P
3 s o)+ 3 s )+ s 6.) <0
akEAk j=1 b;eB; (eK
which contradicts (3.11). This completes the proof. O

Remark 3.2. a) If the cone T(C;T) is replaced by the cone Z(C;T), then
Theorem 3.1 is still valid.
b) Theorem 3.1 is a generalization of Proposition 2.2 in [6].

For each i =1, ..., p, we set

p q
T, = U{Cl CO(AZ' + Z oAy + Zﬁij) cag >0,k #£ i,,@j > 0},
k=1,k£i j=1

and denote by coneT; the cone generated by T;.
In case the sets Ay, and B; are compact, we obtain the following consequence
of Theorem 3.1.

Corollary 3.3. Let Ay, ..., Ay, Bi,..., By be nonempty compact subset of R™.
Assume that K is a nonempty closed convex subcone of T(C;T) with the vertex
at the origin. Suppose, in addition, that for each i € I,

P q
0 l U ApU UB;
¢c CO(k:l,k;ﬁi e i)
and (—coneT;)NK* = {0}. Then the conclusions of Theorem 3.1 hold in which
the clin (3.5) is superfluous.

Proof. By assumption, for each i = 1, ..., p, the set S; = (k Uk:;é AU U Bj) is
I’ 7 ]
compact, and hence, coS; is compact. Taking account of Proposition 1.4.7 8]

we deduce that the set cone(coS;) is closed. This leads to the set

p q
Ufco( Y apdr+ > BiBj)tag >0,k #1,8; >0} (3.14)
k=1,k#i j=1

is closed. On the other hand, in view of the compactness of coA; and coB;,
it follows that

P q
cl(coA; + Z apcoAy + Zﬂjcij) =

k=1,k#i j=1

p q
coA; + Z apCcoAy + Z BjcoB;. (3.15)
k=1,k#i Jj=1
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for all a, > 0,k # i, 8; > 0. It follows readily from (3.15) that

p q
T, = U{cod; + Z oAy + Zﬂjcij) tap >0,k #14,06; >0}
k=1,k+i =1

P q
= cod; + U{ Z apCcoAy + Zﬁjcij) tap >0,k #14,6; > 0}.
k=1,k£i j=1

This along with (3.14) yields that T; is closed. We invoke Corollary 9.1.1 [15]
to deduce that T;+ K* is closed (i = 1, ..., p). Applying Theorem 3.1 we obtain
the desired conclusions. O

4. KUHN-TUCKER NECESSARY CONDITIONS FOR EFFICIENCY

From the results obtained in the previous section, we shall establish Kuhn-
Tucker necessary conditions for efficiency with Lagrange multipliers associated
with all the components of the objective function to be positive.

We set

J(@) = {jeJ:g® = 0};
Q = {zeC: fiylx) < fi(T),9i(x) <O0,h(x) =0,kel,je JlelL}
Q" = {ze€C: fi() < fir(@),g;(x) <0, hy(z) =0,k € I\{i},j € J,£ € L}.
If for each v € Z( T), Dh(T;v) exists (£ € L), we put
Co(@:7) = {ve Z(C;m): Dfu(mv) <O,k e,
Dg;(z;v) < 0,5 € J(T), Dhy(z;v) = 0,0 € L}.
If for each v € T(C; ), dh)(T; v) exists (£ € L), we put
Ca(@;T) = {veT(C;7): dfu(T;v) <0,k e,
dgj(z;v) < 0,j € J(T),dhy(z;v) =0, € L}.

Note that Cp(Q;T) and Cy(Q;T) are cones with vertices at the origin. We
recall some results in [12] which will be employed in the sequel.

Proposition 4.1. [12]. Let T € M.
a) If for each ,v € T(C;7), the Hadamard directional derivatives

dhy(T;v), ..., dh.(T;v)

& \

exist, then

ﬂ T(Q47) C Ca(Qs 7). (4.1)

b) If for each v € Z(C; l‘), the Dini directional derivatives
Dhy(%;v), ..., Dh,(T; v)
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exist, then
p

() 2(Q%®) C Cp(Q; ). (4.2)

=1

In general, the converse inclusions of (4.1) and (4.2) do not hold. As also in
[12], we introduce the following constraint qualifications of Abadie type at T

p

Ca(@;7) C (T(Q57), (4.3)
=1

Cp(@;7) C [)Z(Q42). (4.4)
=1

If for each v € Z(C;%), the Dini directional derivatives D f(Z;v) and
Dhy(T;v) exist , we set
Lp(f;7) = {ve€Z(C;7): Dfi(w;v) <0,
Dfi(mv) < 0,Vk € I,k # i}
Lo(M;7) = {v€ Z(C;7): Dgy(mv) < 0,5 € J(@),
Dhe(z;v) = 0,0 € L}.
If for each v € T(C; ), the Hadamard directional derivatives dfy(T;v) and
dh;(T;v) exist , we set
Ly(f;7) = {veT(Ci7):dfi(m;v) <0,
dfy(z;v) <0,Vk € I,k #i}.
Ly(M;T) = {veT(C;7):dgj(m;v) <0,j5 € J(T),
dhy(z;v) =0, € L},
where M indicates the feasible set of the Problem (VP).
Proposition 4.2. [12]. Let T be a local efficient solution of Problem (VP).
Assume that the functions g; (j ¢ J(T)) are continuous at T, and for each
v e T(C;Z) (resp.v € Z(C;T) ), the Hadamard directional derivatives dfy(T; v)
and dh(Z;v) (resp. the Dini directional derivatives D fy(Z;v) and Dh(T;v)),
keI, le L, exist. Suppose, in addition, that the constraint qualification (4.3)
(resp. (4.4)) holds at T. Then, for each i € I,
Ly(f;7) N La(M;7) =
(resp. Lp(f;) N Lp(M;T) =

= =
.\/

To derive Kuhn-Tucker necessary conditions for efficiency of Problem (V' P),
we introduce the following assumption.
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Assumption 4.3. The functions fi, , g; and h; are Dini directionally differ-
entiable at T € R", and there are ¢; € R" and the families F,G; of nonempty
sets of R" (kel,je J(T),L € L) such that

Dfi(z;v) = infsup (z,v),Yv e R" k€I, (4.5)
Fr€Fy,z€F

Dgj(z;v) =  infsup (zj,v),Yv € R",j € J(T), (4.6)
Gjegj,ZjEG]'

Dhy(z;v) = (c,v), L€ L. (4.7)

Note that assumptions (4.5) and (4.6) were employed by Ishizuka [6]. The
class of functions directionally differentiable whose directional derivatives have
representations (4.5), (4.6) is rather wide, which contains all quasidifferentiable
functions in the sense of Pschnichyi [16], Demyanov-Rubinov [3] and Ishizuka
[5].

We are now in a position to formulate a Kuhn-Tucker necessary condition
for efficiency of Problem (VP).

Theorem 4.4. LetZ be a local efficient solution of Problem (VP). Let fi, g;, by
(ke I;je J(@);l € L) be Hadamard directionally differentiable (resp. Dini
directionally differentiable) at T . Let K be an arbitrary nonempty closed con-
vex subcone of T(C;T) (resp. Z(C;T)) with vertex at the origin and the func-
tions g; (j ¢ J(T)) continuous at T. Assume that for each i € I, the following
set is closed

p
U{Cl CO(FZ‘ + Z apFy, + Z ﬂjGj) oap >0,k #£ i,ﬂj > 0}
k=1k#i jeJ(z)
+iin{e; : leL}+ K"

Suppose, furthermore, that the constraint qualification (4.4) (resp (4.3)) and
Assumption 4.3 are fulfilled. Then, there exist A\, > 0, m; > 0,7, € R (k €
IjeJilel)and Fy € Fy,G; € Gy (ke l;jeJ;l e L) such that

p q T
0€cl CO(ZXka—i-ZﬁjGj)+Z@cl,ak+K*, (4.8)
k=1 j=1 =1

7ij0;(T) = 0.%j € J. (4.9)

Proof. We have only to prove this theorem in case f, g; and h; are Hadamard
differentiable. In case fj,g; and h; are Dini differentiable, the proof is analo-
gous.
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Taking account of Proposition 4.2, we get that for each i € I the following
system has no solution v € R :

0,k e I\{i},
0,
0,j € J(z),
0,le L,
v € K.
Since dfy, (T, v), dg;(T,v) and dhy(Z,v) exist, it follows that D f(Z,v), Dg;(z,v)
and Dhy(Z,v) also exist and they are equal. Hence, the following system has
no solution solution v € R :

IN A CIA

U
&
0]
4
I

Dfi(z,v) < 0,kel, (4.10)
Dg;(@,v) < 0,5 €J(@), (4.11)
Dhi(z,v) = 0,l€L, (4.12)

v € K. (4.13)

By Assumption 4.3, the inequalities (4.10)-(4.12) imply that there exist F, €
Fi,Gj € Gjand ¢ € R"(k € I;j € J(T);£ € L) such that

sup (zx,v) < 0, kel,

ZkGﬁ];

sup <Zk,U> < 07 ] € J(T)v

Zjeaij

(c,v)y = 0, € L.

The last equalities can be rewritten as follows

(c1,v) <0, {—¢cp,v) <0,¢ € L. (4.14)

It is obvious that

p
U{Cl co(F;+ Z o Fr+ Z ,BjGj) tap >0,k # i,,@j > O}—i—lin{cl :le L} =
k=1 k#i jed (@)

P T
U{cl co(F;+ Z apFr+ Z BjGj—i—Z ey s ap >0,k #1i,6; >0, € R}
k=1,k£i j€J(T) =1
Consequently, apply Theorem 3.1 to the system comprising (4.10),(4.11),(4.13),(4.14)
and deduce that there exist Ay > 0, ;=0 ﬁ; >0,y 20(keljc
J(Z);¢ € L) such that

p T
0eccl co(z A Fr + Z ;G + Z(W—Cl +7, (—a))) + K.
k=1 JEJ(T) =1
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By setting 7, = 72“ — 7, ,¢ € L, one has

p T
0ecl CO(ZXka + Z 7;Gy) + Z%cl + K™ (4.15)
k=1 jEI(E) =1

By taking 7i; = 0 for j ¢ J(¥),we get (4.9). Then, (4.15) implies that (4.8)
holds, which completes the proof. O

In case directional derivatives are convex in directional variable, we get the
following theorem.

Theorem 4.5. LetZ be a local efficient solution of Problem (VP). Let fi, g;, by
(k€ I;j e J;te L) be Hadamard directionally differentiable (resp. Dini direc-
tionally differentiable) at T, where dfy(Z,.) and dg;(Z, .) (resp. Dfy(Z,.), Dg;(Z,.))
are convex, (k € I;j € J(Z)) and dhi(Z,.) (resp. Dhi(Z,.)),l € L, be linear,
which is given by dhy(T,.) = (¢, v) (resp.Dhy(T;v) = {(¢;,v)),£ € L. Let K be

an arbitrary nonempty closed convex subcone of T(C;T) (resp. Z(C;T)) with
vertezx at the origin and the functions g; (j ¢ J(T)) continuous at T. Assume
that for each i € I, the following set is closed

P _ _
L; = coneco(kzgk#iapfk(x)) + coneco(jey(j)ﬁpgj (7))

+lin{¢ :l e L} + K*.

Suppose also that the constraint qualification (4.4) (resp (4.3)) is fulfilled.
Then, there exist A\, > 0, p; 20,7, €R (kel;je J;le L) such that

p q 7’
0e Zxkapfk(f) + Zﬁjang(f) + Zﬁlcl + K* (4.16)
k=1 j= =1
iy0() =0, € J (417)

Proof. As in the proof of Theorem 4.4, we have only to prove this theorem in
case fr, g5, (k€ I;j € J;¢ € L) be Hadamard directionally differentiable,
while the remainder is similarly proved.

Since dfy, (T, v), dg;(T,v) and dhy (T, v) exist, D fi(Z,v), Dg;(Z,v) and Dhy(Z,v)
also exist and they are equal. In view of the convexity of D fx(Z,.) and
Dg;(z, .), the Dini subdifferentials Op f;(Z) and Opg;(Z) are nonempty, convex
, compact, and

Dfi(x = kel
fk(xvv) Eeég?i{(f)<§a U>v €1,
Dg@v) = max (E.).j € J(E).

£€0py;(T)
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By assumption, L; is closed, ¢ € I,and hence, Op f;(Z)+ L; is also closed, which
means that for each ¢ € I, the set

P
U{el (Op fi(T) + Z axOp fi(T Z B;0pg;j(T)) : ar >0,k #1,68; >0}
k::l,k#’t ]GJ

+lin{¢; : leL}+ K"

is closed. According to Theorem 4.4 , there exist A\, > 0, ;=20 eR
(ke l;je J;¢e L) such that (4.17) holds, and

0€clco Z M\eOp f1(T) + Zujﬁpg] )+ Zvlcl + K*. (4.18)
k=1 j=1 1=1

Since the set

p q
> MOp fr(T Z i9pg;(T
k=1 =

is closed convex, (4.18) implies (4.16). O

Remark 4.6. In case C' = R" and h1, ..., h, are Fréchet differentiable, from
Theorem 4.5 above we obtain Theorem 4.3 [4] as a special case.
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