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Abstract. This paper deals with multiobjective programming problems with inequality,

equality and set constraints involving Dini or Hadamard differentiable functions. A theorem

of the alternative of Tucker type is established, and from which Kuhn-Tucker necessary

conditions for local Pareto minima with positive Lagrange multipliers associated with all the

components of objective functions are derived.

1. Introduction

The key to identifying optimal solutions of constrained nonlinear optimiza-
tion problems is the Lagrange multiplier conditions. One of the main ap-
proaches to establishing such multiplier condition for inequality constrained
problems is based on the dual solvability characterizations of systems involving
inequalities. Farkas initially established such a dual characterization for non-
linear programming problems. This dual characterization is popularly known
as Farkas’s lemma which can also expressed as a so-called alternative theo-
rem. Alternative theorems have played a crucial role in establishing necessary
optimality conditions. Many works generalized classical theorems of the alter-
native such as Farkas’ Theorem, Tucker’s Theorem, Motzkin’s Theorem and
applied them to derive Fritz John and Kuhn-Tucker necessary conditions for

0Received September 16, 2006. Revised December 12, 2007.
02000 Mathematics Subject Classification: 90C46, 90C29.
0Keywords: Theorem of the alternative, Kuhn-Tucker necessary conditions, directionally

differentiable functions.
0This research was partially supported by the Natural Science Council of Vietnam. M.H

Nguyen acknowledges the financial support from the project ”ANR Jeunes Chercheuses et
Jeunes Chercheurs”, n0 ANR-CEDEPTE-05-JCJC-0134-01.



2 Manh-Hung Nguyen and Do Van Luu

optimality (see, e.g., [1], [2],[4]-[7],[9]-[14], and references therein). The classi-
cal Tucker theorem of the alternative and its generalizations play an important
role in establishing Kuhn-Tucker necessary conditions for efficiency with La-
grange multipliers associated with all the components of objective functions
to be positive. This attracts attention of mathematicians, since if a Lagrange
multiplier corresponding to some component of the objective is equal to zero,
then that component has no role in the considering necessary conditions.

Maeda [13] studies Fréchet differentiable multiobjective optimization prob-
lems with only inequality constraints and gives a Kuhn-Tucker necessary con-
ditions for a Pareto minimum with positive Lagrange multipliers correspond-
ing to all the components of the objective under a constraint qualification of
Guignard type. Giorgi et al [4] study several constraint qualifications which
generalize the constraint qualification introduced by Maeda [13] and the classi-
cal ones, and derive Kuhn-Tucker necessary conditions basing on establishing
an alternative theorem for a system comprising sublinear inequalities and lin-
ear equalities. Ishizuka [6] gives an alternative theorem for a system containing
only inequalities described by sup-functions, and derive Kuhn-Tucker neces-
sary conditions for properly efficient solutions of multiobjective programs with
inequality type constraints. Note that the aforementioned works are consid-
ered in finite dimensions. Recently, Luu and Nguyen[12] have developed Kuhn-
Tucker necessary conditions for efficiency of Gâteaux differentiable multiob-
jective optimization problems in normed spaces involving inequality, equality
and set constraints with Lagrange multipliers of the objective are all positive
by proving a theorem of the alternative to a system comprising inequality,
equality and an inclusion in normed spaces.

Motivated by the works mentioned above, this paper deals with the gen-
eralization of classical Tucker’s theorem of the alternative to a system com-
prising inequalities described by sup-functions and an inclusion together with
establishing Kunh-Tucker necessary conditions for efficiency with positive La-
grange multipliers associated with all the components of objective functions
of directionally differentiable multiobjective optimization problems involving
inequality, equality and set constraints in finite dimensions.

The paper is organized as follows. After Introduction and some preliminar-
ies, Section 3 is devoted to present a theorem of the alternative to a system
comprising inequalities described by sup-functions and an inclusion along with
its consequences. From these results, section 4 gives Kuhn-Tucker necessary
conditions for efficiency with positive Lagrange multipliers corresponding to
all the components of the objective of the considering problem.
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2. Preliminaries

Let f , g and h be mappings from Rn into Rp, Rq and Rr, respectively, and C
be a nonempty subset of Rn. Assume that f , g, h can be expressed as follows:
f = (f1, . . . , fp), g = (g1, . . . , gq), h = (h1, . . . , hr), where fk, gj , h` : Rn → R
with k ∈ I = {1, . . . , p}; j ∈ J = {1, . . . , q}; ` ∈ L = {1, . . . r}.

We consider the following multiobjective programming problem (VP):

min f(x)
s.t gj(x) ≤ 0, j ∈ J ;

hl(x) = 0, l ∈ L;
x ∈ C.

Denote by M the feasible set of (VP)

M =
{

x ∈ C : gj(x) 6 0, h`(x) = 0, j ∈ J ; ` ∈ L
}

.

Recall that a point x ∈ M is said to be a local Pareto minimum of (VP) if
there exists a number δ > 0 such that

F ∩M ∩B(x; δ) = ∅,
where

F = {x ∈ Rn : f(x) ≤ f(x), f(x) 6= f(x)},
and B(x; δ) denotes the open ball of radius δ around x.

Definition 2.1. a)The tangent cone (or contingent cone ) to C at x ∈ C is
the following set:

T (C;x) =
{
v ∈ Rn : ∃ vn → v, ∃ tn ↓ 0+ such that x + tnvn ∈ C,∀n

}
.

b)The cone of sequential linear directions (or sequential radial cone ) to C
at x ∈ C is the following set:

Z(C; x) =
{
v ∈ Rn : ∃ tn ↓ 0+ such that x + tnv ∈ C,∀n

}
.

Note that both these cones are nonempty, T (C; x) is closed and Z(C; x) ⊂
T (C;x).

Let K be a cone in Rn. The polar cone to K is

K∗ = {ξ ∈ Rn| < ξ, v >≤ 0 ∀v ∈ K}.
If K is a subspace, then K∗ is the orthogonal subspace K⊥ to K. In case
K = T (C; x),K∗ is the normal cone N(C;x) to C at x.

Definition 2.2. Let f : Rn −→ Rp and x ∈ Rn.
a) The lower Dini derivative of f at x in a direction v ∈ Rn is

Df(x; v) = lim inf
t↓0+

f(x + tv)− f(x)
t

;
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b) The lower Hadamard derivative of f at x in the direction v is

df(x; v) = lim inf
t↓0+,u→v

f(x + tu)− f(x)
t

.

Replacing ”liminf” by ”limsup” in a) or b), we get the upper Dini derivative
Df(x; v) and the upper Hadamard derivative df(x; v),respectively, of f at x
in the direction v. In case Df(x; v) = Df(x; v) (resp. df(x; v) = df(x; v)), we
shall denote their common value by Df(x; v)(resp. df(x; v)), which is called
the Dini derivative or directional derivative (resp. Hadamard derivative) of
f at x in the direction v. The function f is said to be Dini differentiable
or directionally differentiable (resp. Hadamard differentiable) at x if its Dini
derivative(resp. Hadamard derivative) exists in all directions. Note that if
df(x; v) exists, then also Df(x; v) exists and they are equal. In case f is
Fréchet differentiable at x with Fréchet derivative ∇f(x), then

Df(x; v) = df(x; v) =< ∇f(x), v > .

Definition 2.3. The Dini subdifferentiable of a Dini differentiable function
f : Rn −→ R at x is

∂Df(x) = {ξ ∈ Rn| < ξ, v >≤ Df(x; v) ∀v ∈ Rn}.
In case the function Df(x; .) is convex, there exists the subdifferentiable

∂Df(x; .)(0) of this function at v = 0 in Convex Analysis sense, and

∂Df(x) = ∂Df(x; .)(0).

This set is nonempty, convex, compact , and

Df(x; v) = max
ξ∈∂Df(x)

〈ξ, v〉.

Note that in case Df(x; .) is convex, f was called quasidifferentiable at x by
Pschenichnyi[16].

3. Theorem of the alternative

To derive necessary conditions for efficiency with all positive Lagrange mul-
tipliers of all the components of the objective, we establish the following the-
orem of the alternative.

Theorem 3.1. Let A1, ..., Ap,, B1, ..., Bq and C be nonempty subset of Rn.
Assume that

a) K is an arbitrary nonempty closed convex subcone of T (C; x) with vertex
at the origin;
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b) For each i ∈ I, the set

∪{cl co(Ai +
p∑

k=1,k 6=i

αkAk +
q∑

j=1

βjBj) : αk ≥ 0, k 6= i, βj ≥ 0}+ K∗

is closed in Rn where cl and co denote the closure and the convex hull, respec-
tively.

Then the two following statements are equivalent:
i) For each i ∈ {1, . . . , p}, the system

sup
ak∈Ak

〈ak, v〉 6 0, k ∈ I; k 6= i, (3.1)

sup
ai∈Ai

〈ai, v〉 < 0, (3.2)

sup
bj∈Bj

〈bj , v〉 6 0, j ∈ J, (3.3)

v ∈ K (3.4)

has no solution v ∈ Rn.
ii) There exist λk > 0 (k ∈ I), µj > 0 (j ∈ J) such that

0 ∈ cl co(
p∑

k=1

λkAk +
q∑

j=1

µjBj) + K∗. (3.5)

Proof. (i) ⇒ (ii): Suppose that (i) holds which means that the system (3.1)-
(3.4) has no solution. For each i = 1, ..., p, we set

Di = ∪{cl co(Ai +
p∑

k=1,k 6=i

αkAk +
q∑

j=1

βjBj) : αk ≥ 0, k 6= i, βj ≥ 0}+ K∗.

Then by assumption, Di is closed. Moreover,

Di = ∪{cl(coAi +
p∑

k=1,k 6=i

αkcoAk +
q∑

j=1

βjcoBj) : αk ≥ 0, k 6= i, βj ≥ 0}+ K∗.

It is easy to check that the set

∪{cl(coAi +
p∑

k=1,k 6=i

αkcoAk +
q∑

j=1

βjcoBj) : αk ≥ 0, k 6= i, βj ≥ 0}

is convex,and hence, Di is convex. We now show that 0 ∈ Di(i = 1, ..., p).
If this were not so, there would exist i0 ∈ I such that 0 /∈ Di0 . Applying

strong separation theorem for a closed convex set and a point outside that set
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(see, e.g.,[15,Corollary 11.4.2]) yields the existence of a vector v ∈ Rn\{0} and
a number α0 ∈ R such that

〈ξ, v〉 < α0 < 0(∀ξ ∈ Di0),

which implies that

〈ai0 , v〉+
p∑

k=1,k 6=i0

αk〈ak, v〉+
q∑

j=1

βj〈bj , v〉+ 〈ζ, v〉 < α0 < 0 (3.6)

for all ak ∈ Ak, ai0 ∈ Ai0 , bj ∈ Bj , ζ ∈ K∗, αk ≥ 0, k ∈ I, k 6= i0, βj ≥ 0, j ∈ J.
Taking αk = 0 ∀ k ∈ I, k 6= i0, βj = 0, j ∈ J, ζ = 0, we obtain that

sup
ai0
∈Ai0

〈ai0 , v〉 < 0. (3.7)

We can show that
sup

bj∈Bj

〈bj , v〉 ≤ 0 (∀j ∈ J). (3.8)

Assume the contrary, that there exists j0 ∈ J such that

sup
bj0
∈Bj0

〈bj0 , v〉 > 0,

then, by letting βj0 be large enough, we arrive at a contradiction with (3.6).
Similarly, we also get that

sup
ak∈Ak

〈ak, v〉 ≤ 0 ∀k 6= i0. (3.9)

Let us show that v ∈ K. If this were false, there would exist ζ0 ∈ K∗ such that
〈ζ0, v〉 > 0. For αk = 0 ∀ k 6= i0, βj = 0, j ∈ J, λζ0 ∈ K∗, for λ sufficiently
large, we also get a contradiction with (3.6). Hence,

〈ζ, v〉 ≤ 0, ∀ζ ∈ K∗

which leads to the following

v ∈ K∗∗ = K. (3.10)

It follows readily from (3.7)-(3.10) that the system (3.1)-(3.4) has a solution
v : a contradiction. Therefore, for each i ∈ I, 0 ∈ Di . So there exists numbers
αi

k ≥ 0, β
i
j ≥ 0 with αi

i = 1 such that, for i = 1, . . . , p,

0 ∈ cl (
p∑

k=1

αi
kcoAk +

q∑

j=1

β
i
jcoBj) + K∗

as coA+coB =co(A + B).
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Summing up these inclusions, we obtain

0 ∈
p∑

i=1

cl (
p∑

k=1

αi
kco Ak +

q∑

j=1

β
i
jco Bj) + K∗

⊂ cl
p∑

i=1

(
p∑

k=1

αi
kcoAk +

q∑

j=1

β
i
jcoBj) + K∗

= cl [
p∑

k=1

p∑

i=1

αi
kcoAk +

q∑

j=1

p∑

i=1

β
i
jcoBj ] + K∗,

which implies that

0 ∈ cl [
p∑

k=1

λkcoAk +
q∑

j=1

µjcoBj ] + K∗,

as clA+clB ⊂cl(A + B), where λk =
∑p

k=1 αi
k > 0, , µj =

∑p
i=1 β

i
j ≥ 0.

Observing that
∑p

k=1 λkcoAk+
∑q

j=1 µjcoBj =co (
∑p

k=1 λkAk+
∑q

j=1 µjBj)
we arrive at (3.5).

(ii) ⇒ (i):Suppose that (ii) holds. This implies that there exist λk > 0, µj >
0 (k ∈ I, j ∈ J) such that (3.5) holds. We set

E = cl co[
p∑

k=1

λkAk +
q∑

j=1

µjBj ] + K∗.

By assumption, 0 ∈ E. It is obviously that E is convex.
We invoke Theorem 13.1 in [15] to deduce that

sup
ζ∈E

〈ζ, v〉 ≥ 0 ∀v.

It follows from this and Theorem 32.2 in [15] that, ∀v,

p∑

k=1

λk sup
ak∈Ak

〈ak, v〉+
q∑

j=1

µj sup
bj∈Bj

〈bj , v〉+ sup
ξ∈K∗

〈ξ, v〉 ≥ 0. (3.11)

If (i) were false, there would exists i ∈ I such that the system (3.1)-(3.4)
has a solution v0 ∈ Rn. It implies that

sup
ξ∈K∗

〈ξ, v0〉 ≤ 0, (3.12)

and
p∑

k=1

λk sup
ak∈Ak

〈ak, v0〉+
s∑

j=1

µj sup
bj∈Bj

〈bj , v0〉 < 0 . (3.13)
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Combining (3.12) and (3.13) yields that
p∑

k=1

λk sup
ak∈Ak

〈ak, v0〉+
q∑

j=1

µj sup
bj∈Bj

〈bj , v0〉+ sup
ξ∈K∗

〈ξ, v0〉 < 0,

which contradicts (3.11). This completes the proof. ¤

Remark 3.2. a) If the cone T (C; x) is replaced by the cone Z(C;x), then
Theorem 3.1 is still valid.

b) Theorem 3.1 is a generalization of Proposition 2.2 in [6].

For each i = 1, ..., p, we set

Ti = ∪{cl co(Ai +
p∑

k=1,k 6=i

αkAk +
q∑

j=1

βjBj) : αk ≥ 0, k 6= i, βj ≥ 0},

and denote by coneTi the cone generated by Ti.
In case the sets Ak and Bj are compact, we obtain the following consequence

of Theorem 3.1.

Corollary 3.3. Let A1, ..., Ap, B1, ..., Bq be nonempty compact subset of Rn.
Assume that K is a nonempty closed convex subcone of T (C; x) with the vertex
at the origin. Suppose, in addition, that for each i ∈ I,

0 /∈ cl co(
p∪

k=1,k 6=i
Ak ∪

q∪
j=1

Bj),

and (−coneTi)∩K∗ = {0}. Then the conclusions of Theorem 3.1 hold in which
the cl in (3.5) is superfluous.

Proof. By assumption, for each i = 1, ..., p, the set Si = (
p∪

k=1,k 6=i
Ak ∪

q∪
j=1

Bj) is

compact, and hence, coSi is compact. Taking account of Proposition 1.4.7 [8]
we deduce that the set cone(coSi) is closed. This leads to the set

∪{co(
p∑

k=1,k 6=i

αkAk +
q∑

j=1

βjBj) : αk ≥ 0, k 6= i, βj ≥ 0} (3.14)

is closed. On the other hand, in view of the compactness of coAk and coBj ,
it follows that

cl(coAi +
p∑

k=1,k 6=i

αkcoAk +
q∑

j=1

βjcoBj) =

coAi +
p∑

k=1,k 6=i

αkcoAk +
q∑

j=1

βjcoBj . (3.15)
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for all αk ≥ 0, k 6= i, βj ≥ 0. It follows readily from (3.15) that

Ti = ∪{coAi +
p∑

k=1,k 6=i

αkcoAk +
q∑

j=1

βjcoBj) : αk ≥ 0, k 6= i, βj ≥ 0}

= coAi + ∪{
p∑

k=1,k 6=i

αkcoAk +
q∑

j=1

βjcoBj) : αk ≥ 0, k 6= i, βj ≥ 0}.

This along with (3.14) yields that Ti is closed. We invoke Corollary 9.1.1 [15]
to deduce that Ti+K∗ is closed (i = 1, ..., p). Applying Theorem 3.1 we obtain
the desired conclusions. ¤

4. Kuhn-Tucker necessary conditions for efficiency

From the results obtained in the previous section, we shall establish Kuhn-
Tucker necessary conditions for efficiency with Lagrange multipliers associated
with all the components of the objective function to be positive.

We set

J(x) = {j ∈ J : gj(x) = 0};
Q = {x ∈ C : fk(x) 6 fk(x), gj(x) 6 0, h`(x) = 0, k ∈ I, j ∈ J, ` ∈ L};
Qi = {x ∈ C : fk(x) 6 fk(x), gj(x) 6 0, h`(x) = 0, k ∈ I\{i}, j ∈ J, ` ∈ L}.

If for each v ∈ Z(C;x), Dhl(x; v) exists (` ∈ L), we put

CD(Q; x) = {v ∈ Z(C;x) : Dfk(x; v) 6 0, k ∈ I,

Dgj(x; v) 6 0, j ∈ J(x), Dh`(x; v) = 0, ` ∈ L}.
If for each v ∈ T (C; x), dhl(x; v) exists (` ∈ L), we put

Cd(Q;x) = {v ∈ T (C;x) : dfk(x; v) 6 0, k ∈ I,

dgj(x; v) 6 0, j ∈ J(x), dh`(x; v) = 0, ` ∈ L}.
Note that CD(Q;x) and Cd(Q; x) are cones with vertices at the origin. We
recall some results in [12] which will be employed in the sequel.

Proposition 4.1. [12]. Let x ∈ M.
a) If for each , v ∈ T (C; x), the Hadamard directional derivatives

dh1(x; v), ..., dhr(x; v)

exist, then
p⋂

i=1

T (Qi; x) ⊂ Cd(Q; x). (4.1)

b) If for each v ∈ Z(C;x), the Dini directional derivatives

Dh1(x; v), ..., Dhr(x; v)
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exist, then
p⋂

i=1

Z(Qi; x) ⊂ CD(Q; x). (4.2)

In general, the converse inclusions of (4.1) and (4.2) do not hold. As also in
[12], we introduce the following constraint qualifications of Abadie type at x

Cd(Q; x) ⊂
p⋂

i=1

T (Qi; x), (4.3)

CD(Q; x) ⊂
p⋂

i=1

Z(Qi; x). (4.4)

If for each v ∈ Z(C;x), the Dini directional derivatives Dfk(x; v) and
Dhl(x; v) exist , we set

Li
D(f ; x) = {v ∈ Z(C;x) : Dfi(x; v) < 0,

Dfk(x; v) ≤ 0, ∀k ∈ I, k 6= i}
LD(M ; x) = {v ∈ Z(C;x) : Dgj(x; v) ≤ 0, j ∈ J(x),

Dh`(x; v) = 0, ` ∈ L}.
If for each v ∈ T (C; x), the Hadamard directional derivatives dfk(x; v) and

dhl(x; v) exist , we set

Li
d(f ; x) = {v ∈ T (C; x) : dfi(x; v) < 0,

dfk(x; v) ≤ 0, ∀k ∈ I, k 6= i}.
Ld(M ; x) = {v ∈ T (C; x) : dgj(x; v) ≤ 0, j ∈ J(x),

dh`(x; v) = 0, ` ∈ L},
where M indicates the feasible set of the Problem (VP).

Proposition 4.2. [12]. Let x be a local efficient solution of Problem (VP).
Assume that the functions gj (j /∈ J(x)) are continuous at x, and for each
v ∈ T (C; x) (resp.v ∈ Z(C; x) ), the Hadamard directional derivatives dfk(x; v)
and dhl(x; v) (resp. the Dini directional derivatives Dfk(x; v) and Dhl(x; v)),
k ∈ I, ` ∈ L, exist. Suppose, in addition, that the constraint qualification (4.3)
(resp. (4.4)) holds at x. Then, for each i ∈ I,

Li
d(f ; x) ∩ Ld(M ; x) = ∅

(resp. Li
D(f ; x) ∩ LD(M ; x) = ∅).

To derive Kuhn-Tucker necessary conditions for efficiency of Problem (V P ),
we introduce the following assumption.
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Assumption 4.3. The functions fk , gj and hl are Dini directionally differ-
entiable at x ∈ Rn, and there are cl ∈ Rn and the families Fk,Gj of nonempty
sets of Rn (k ∈ I, j ∈ J(x), ` ∈ L) such that

Dfk(x; v) = inf sup
Fk∈Fk,zk∈Fk

〈zk, v〉,∀v ∈ Rn, k ∈ I, (4.5)

Dgj(x; v) = inf sup
Gj∈Gj ,zj∈Gj

〈zj , v〉, ∀v ∈ Rn, j ∈ J(x), (4.6)

Dhl(x; v) = 〈cl, v〉, ` ∈ L. (4.7)

Note that assumptions (4.5) and (4.6) were employed by Ishizuka [6]. The
class of functions directionally differentiable whose directional derivatives have
representations (4.5), (4.6) is rather wide, which contains all quasidifferentiable
functions in the sense of Pschnichyi [16], Demyanov-Rubinov [3] and Ishizuka
[5].

We are now in a position to formulate a Kuhn-Tucker necessary condition
for efficiency of Problem (VP).

Theorem 4.4. Let x be a local efficient solution of Problem (VP). Let fk, gj , hl

(k ∈ I; j ∈ J(x); ` ∈ L) be Hadamard directionally differentiable (resp. Dini
directionally differentiable) at x . Let K be an arbitrary nonempty closed con-
vex subcone of T (C;x) (resp. Z(C; x)) with vertex at the origin and the func-
tions gj (j /∈ J(x)) continuous at x. Assume that for each i ∈ I, the following
set is closed

∪{cl co(Fi +
p∑

k=1,k 6=i

αkFk +
∑

j∈J(x)

βjGj) : αk ≥ 0, k 6= i, βj ≥ 0}

+lin{cl : l ∈ L}+ K∗.

Suppose, furthermore, that the constraint qualification (4.4) (resp (4.3)) and
Assumption 4.3 are fulfilled. Then, there exist λk > 0, µj > 0, ν` ∈ R (k ∈
I; j ∈ J ; ` ∈ L) and F̃k ∈ Fk, G̃j ∈ Gj (k ∈ I; j ∈ J ; ` ∈ L) such that

0 ∈ cl co(
p∑

k=1

λkF̃k +
q∑

j=1

µjG̃j) +
r∑

l=1

vlcl, αk + K∗, (4.8)

µjgj(x) = 0, ∀j ∈ J. (4.9)

Proof. We have only to prove this theorem in case fk, gj and hl are Hadamard
differentiable. In case fk, gj and hl are Dini differentiable, the proof is analo-
gous.
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Taking account of Proposition 4.2, we get that for each i ∈ I,the following
system has no solution v ∈ Rn :

dfk(x, v) ≤ 0, k ∈ I\{i},
dfi(x, v) < 0,

dgj(x, v) ≤ 0, j ∈ J(x),
dhl(x, v) = 0, l ∈ L,

v ∈ K.

Since dfk(x, v), dgj(x, v) and dhl(x, v) exist, it follows that Dfk(x, v), Dgj(x, v)
and Dhl(x, v) also exist and they are equal. Hence, the following system has
no solution solution v ∈ Rn :

Dfk(x, v) < 0, k ∈ I, (4.10)
Dgj(x, v) < 0, j ∈ J(x), (4.11)
Dhl(x, v) = 0, l ∈ L, (4.12)

v ∈ K. (4.13)

By Assumption 4.3, the inequalities (4.10)-(4.12) imply that there exist F̃k ∈
Fk, G̃j ∈ Gj and cl ∈ Rn(k ∈ I; j ∈ J(x); ` ∈ L) such that

sup
zk∈F̃k

〈zk, v〉 < 0, k ∈ I,

sup
zj∈G̃j

〈zk, v〉 < 0, j ∈ J(x),

〈cl, v〉 = 0, ` ∈ L.

The last equalities can be rewritten as follows

〈cl, v〉 ≤ 0, 〈−cl, v〉 ≤ 0, ` ∈ L. (4.14)

It is obvious that

∪{cl co(Fi+
p∑

k=1,k 6=i

αkFk+
∑

j∈J(x)

βjGj) : αk ≥ 0, k 6= i, βj ≥ 0}+lin{cl : l ∈ L} =

∪{cl co(Fi+
p∑

k=1,k 6=i

αkFk+
∑

j∈J(x)

βjGj+
r∑

l=1

γlcl) : αk ≥ 0, k 6= i, βj ≥ 0, γl ∈ R}.

Consequently, apply Theorem 3.1 to the system comprising (4.10),(4.11),(4.13),(4.14)
and deduce that there exist λk > 0, µj > 0 ,γ+

` ≥ 0, γ−` ≥ 0 (k ∈ I; j ∈
J(x); ` ∈ L) such that

0 ∈ cl co(
p∑

k=1

λkF̃k +
∑

j∈J(x)

µjG̃j +
r∑

l=1

(γ+
` cl + γ−` (−cl))) + K∗.
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By setting γ` = γ+
` − γ−` , ` ∈ L, one has

0 ∈ cl co(
p∑

k=1

λkF̃k +
∑

j∈J(x)

µjG̃j) +
r∑

l=1

γ`cl + K∗. (4.15)

By taking µj = 0 for j /∈ J(x),we get (4.9). Then, (4.15) implies that (4.8)
holds, which completes the proof. ¤

In case directional derivatives are convex in directional variable, we get the
following theorem.

Theorem 4.5. Let x be a local efficient solution of Problem (VP). Let fk, gj , hl

(k ∈ I; j ∈ J ; ` ∈ L) be Hadamard directionally differentiable (resp. Dini direc-
tionally differentiable) at x, where dfk(x, .) and dgj(x, .) (resp. Dfk(x, .), Dgj(x, .))
are convex, (k ∈ I; j ∈ J(x)) and dhl(x, .) (resp. Dhl(x, .)), l ∈ L, be linear,
which is given by dhl(x, .) = 〈cl, v〉 (resp.Dhl(x; v) = 〈cl, v〉), ` ∈ L. Let K be
an arbitrary nonempty closed convex subcone of T (C; x) (resp. Z(C; x)) with
vertex at the origin and the functions gj (j /∈ J(x)) continuous at x. Assume
that for each i ∈ I, the following set is closed

Li = coneco(
p∪

k=1,k 6=i
∂Dfk(x)) + coneco( ∪

j∈J(x)
∂Dgj(x))

+lin{cl : l ∈ L}+ K∗.

Suppose also that the constraint qualification (4.4) (resp (4.3)) is fulfilled.
Then, there exist λk > 0, µj > 0 ,ν` ∈ R (k ∈ I; j ∈ J ; ` ∈ L) such that

0 ∈
p∑

k=1

λk∂Dfk(x) +
q∑

j=1

µj∂Dgj(x) +
r∑

l=1

vlcl + K∗ (4.16)

µjgj(x) = 0, j ∈ J. (4.17)

Proof. As in the proof of Theorem 4.4, we have only to prove this theorem in
case fk, gj , hl (k ∈ I; j ∈ J ; ` ∈ L) be Hadamard directionally differentiable,
while the remainder is similarly proved.

Since dfk(x, v), dgj(x, v) and dhl(x, v) exist, Dfk(x, v), Dgj(x, v) and Dhl(x, v)
also exist and they are equal. In view of the convexity of Dfk(x, .) and
Dgj(x, .), the Dini subdifferentials ∂Dfk(x) and ∂Dgj(x) are nonempty, convex
, compact, and

Dfk(x, v) = max
ξ∈∂Dfk(x)

〈ξ, v〉, k ∈ I,

Dgj(x, v) = max
ξ∈∂Dgj(x)

〈ξ, v〉, j ∈ J(x).
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By assumption, Li is closed, i ∈ I,and hence, ∂Dfi(x)+Li is also closed, which
means that for each i ∈ I, the set

∪{cl (∂Dfi(x) +
p∑

k=1,k 6=i

αk∂Dfk(x) +
∑

j∈J(x)

βj∂Dgj(x)) : αk ≥ 0, k 6= i, βj ≥ 0}

+lin{cl : l ∈ L}+ K∗

is closed. According to Theorem 4.4 , there exist λk > 0, µj > 0 ,ν` ∈ R
(k ∈ I; j ∈ J ; ` ∈ L) such that (4.17) holds, and

0 ∈ cl co (
p∑

k=1

λk∂Dfk(x) +
q∑

j=1

µj∂Dgj(x)) +
r∑

l=1

vlcl + K∗. (4.18)

Since the set
p∑

k=1

λk∂Dfk(x) +
q∑

j=1

µj∂Dgj(x)

is closed convex, (4.18) implies (4.16). ¤

Remark 4.6. In case C = Rn and h1, ..., hr are Fréchet differentiable, from
Theorem 4.5 above we obtain Theorem 4.3 [4] as a special case.
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[7] B. Jiménez and V. Novo, Alternative theorems and necessary optimality conditions for
directionally differentiable multiobjective programs, J. Convex Anal, 9 (2002), 97-116.
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