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Abstract

We analyse simulations reported in “The co-evolution of individual behav-

iors and social institutions” by Bowles, Choi & Hopfensitz (2003) in the Journal

of Theoretical Biology 223, 135-147 and begin with distinguishing two types
of group selection models. The literature does not provide different names for

them, but they are shown to be fundamentally different and have quite different

empirical implications. The working of the first one depends on the answer to

the question ‘is the probability that you also are an altruist large enough’, while

the other needs an affirmative answer to ‘are our interests enough in line’. The

first one therefore can also be understood as a kin selection model, while the

working of the second can also be described in terms of direct benefits. The

actual simulation model is a combination of the two. It is also a Markov chain,

which has important implications for how the output data should be handled.
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1 Introduction

The simulations by Bowles, Choi & Hopfensitz (2003) of the co-evolution of norms
and altruistic behaviour are interesting for a number of reasons. One of them is
that the social behaviour of the individuals that feature in the simulations is more
complex and realistic than models normally allow for (see Lehmann & Keller, 2006,
for an overview). Agents here may not only be altruistic towards members of their
own group, but they also engage in wars with other groups. Furthermore there
are norms that co-evolve with altruistic behaviour. Simulations that do encompass
intergroup conflicts and evolution of norms point at reasons why human other-
regarding behaviour as well as our norms have their peculiarities, one of which is
that the altruism we display is rather situation specific. Experimental evidence sup-
ports the idea that humans behave much less altruistic towards non-group members
than they do towards group members, even if individuals are randomly assigned to
groups (Tajfel & Turner, 1986). Furthermore, interactions between groups are
observed to be more competitive than between individuals and this is known as
the interindividual-intergroup discontinuity effect (see for instance Wildschut et al,
2003). Performing simulations which explicitly model inter-group conflict therefore
is a valuable thing to do. It may not only clarify why people evolved to be altruistic,
but also why altruism is not lavished on everyone and in all circumstances.

The actual form of the simulation model will shortly be discussed in Section 2,
but it is worthwhile mentioning here that it is not set up as a special case, numerical
version or interesting variant of an existing model. The decisive argument for the
choice of a simulation model seems to have been whether or not it is realistic, as for
instance the careful considerations concerning the choice of benchmark values of the
parameters indicate. This makes it an interesting model, but it might also be the
reason why it is not so easy to pinpoint the features of the simulation model that
are essential for the results. The first aim of this paper is therefore to disentangle
the different model ingredients. In Sections 3 and 4 we distinguish two models that
both are candidates for the label “group selection model”, but that are nonetheless
very different. The first one could be called the standard group selection model (see
Price (1972), Hamilton (1975), Frank (1998) and Sober & Wilson (1998)) and there
altruism evolves as a result of assortative group formation. In this type of model,
the degree to which group composition varies across groups determines for which
combinations of costs and benefits altruistic behaviour is selected. The essential
feature of the second type of model is that the fate of group members are, to some
extent, aligned. It therefore does not depend on or need assortative group formation
to work. In Section 4 we show how this aspect of the simulations can be described as
an extension of a model by Weibull & Salomonsson (2006). We also point out that
the first type of model fits within the kin selection framework, while the working of
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the second can be described in terms of direct benefits.
The simulations may be a combination of the two, but it is very much worth

exploring how the two composing models differ in their predictions of human be-
haviour. While the first type of group selection model for instance can be used to
explain racial discrimination (Hamilton, 1975), the behaviour that emerges from
the second type - and that is found in the experiments by Tajfel & Turner (1986)
- is better described as groupishness (see Ridley, 1997). Another implication of the
first type of model is that relatedness (genetic similarity) within groups must be
high enough to explain altruistic behaviour for given costs and benefits. This is in
contrast with the second model, which does not imply such a threshold. Section 5
discusses these empirical implications as well as some experimental evidence.

Then we put the two model ingredients together and return to the actual sim-
ulations with a rather technical section. This section characterizes the dynamics
in the simulation model and in subsection 6.1 we show that the simulations are in
fact Markov chains. Realizing this helps us properly interpret the numerical output
such as for instance the average frequency of altruists over a simulation run. Then
subsection 6.2 shows that an ‘estimation of the Price equation’ as done in BCH is
not a meaningful exercise, because what it does is fit a misspecified econometric
model to the simulation data.

Although parts of this article are written as critical comments on the analysis in
BCH, this must emphatically not be taken as an argument against the importance
of their simulation results. On the contrary, we hope that pointing out what drives
the evolution of altruism and norms in the simulations is helpful in understanding
why they are so interesting and thoroughly relevant.

2 The simulations

For a full description of the simulations, we refer to the original article. Here we
only give a brief sketch.

In the simulations, there is a fixed number of groups and a fixed total number
of individuals. Individuals can be altruistic (A) or not altruistic (N). Initially,
individuals are randomly assigned to groups, implying that not all groups will
contain the same number of individuals. Then every round consists of a number of
stages. 1. Pairing. First, group members are paired within their groups to play
a PD game, where the A-players play cooperate and the N -players play defect.
Cooperation means that a benefit b is conferred to the other player at cost c.
The resulting payoffs are used in two further stages, namely 2. Reproduction and
5. Group competition. 2. Reproduction. The next generation in each group is
produced by drawing from a binomial distribution, with the probability of drawing
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an A player equal to the total payoffs of A-players in the group in the old generation,
divided by the total payoff of all players in the group. 3. Mutation. Each new
generation member is drawn with probability e to redetermine its type, where it
will be A or N with equal probability. 4. Migration. With probability m each
member of the new generation relocates to a randomly selected other group. 5.
Group competition. With probability k each group is selected and the groups that
are drawn are paired randomly. The winning group is the one with the highest total
payoff, determined in the first stage. 6. Repopulation and fission. The losing group
members disappear. The winning group is temporarily enlarged to the total size of
both groups, where the new group members have the same frequency of A-players
as the winning group, with some roundoff error. The resulting group splits with
members assigned randomly to the two new groups, that therefore can differ in size.

In the versions with norms, a group can be endowed with either a sharing norm
or a segmentation norm, or both. These norms take values between 0 and 1, where
the sharing norm is modelled as a linear tax t, collected from the members payoffs,
with the proceeds distributed equally to all members of the population.1 A seg-
mentation norm ensures that members interact with a similar type with probability
s and are paired randomly with probability 1− s. Norms in this setting therefore
can be seen as anything that affects the expected payoffs of the different types by
changing (the payoffs in) the game. After a group conflict, the new groups adopt
the norms, that is, the values for s and t, of the winning group. The norms are
introduced by small random changes in values of t and s.

The BCH paper contains a thorough description of the parameter space, indi-
cating that small groups, low migration rates and high frequencies of group conflict
are good for the evolution of altruism, and that the possibility of institutions en-
large the part of the parameter space that is favourable for altruism. The latter
may seem obvious, once we see it; both norms decrease the (expected) payoff of N -
players and increase the (expected) payoff of A players, thereby reducing selection
pressure against A-players. Yet it is a very valuable insight that, even if the norms
come at a cost, they themselves can spread too. The reason is that norms elevate
the frequencies of A-players within the group (or, rather, they reduce the speed of
the demise) and therefore they can help the groups that have them win inter-group
conflicts, by means of which the norm itself also spreads.

1BCH state that this reduces payoff differences between A’s and N ’s to (1− t) c, but a more
accurate description is that within a group, it reduces the expected difference in payoffs between
A’s and N ’s to (1− t) c+ b

n
, where n is the size of the group.
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3 The standard group selection model

Section 2 of BCH contains a simple model of multi-level selection that we will
categorize as an example of the standard group selection model. We will shortly
characterize it and mention a common misunderstanding concerning the workings
of the model. In this model, the population is divided into groups. Within these
groups, members can, at cost c > 0, choose to confer a benefit b > c to a randomly
chosen member of the group the individual is in. Here we are to think of b and c

as differences in fitness and in this version altruism is a binary trait; an individual
is either an A-player that does perform this (altruistic) act or an N -player that
does not. It can be useful to let p denote the fraction of A-players in the whole
population and pj the fraction of A-players in group j.

Whether or not the fraction of A-players in the population will rise, crucially
depends on how the total population is divided into groups. If this division is
completely assortative, so that there are only homogeneous groups, then obviously
the fraction of A-players in the population will rise; all N -players do not give and
do not receive, and all A-players do give and do - in expectation - receive once, so
they have an expected net gain of b − c. If on the other hand group formation is
completely random, then the fraction of A-players will fall in expectation; all players
receive b with probability p, but A-players lose c whereN -players lose nothing. More
generally, the expected payoff to an A-player is b P (A | A)− c, where P (A | A) is
the probability of being paired with an A-player if you are an A-player yourself. The
expected payoff to an N -player is b P (A | N), where P (A | N) is the probability
of being paired with an A-player if you are an N -player. The share of A-players
rises if the first exceeds the second, that is, if b {P (A | A)− P (A | N)} − c > 0,
where P (A | A)− P (A | N) can be seen as a general measure of either relatedness
or assortativeness of group formation. This formula obviously is Hamilton’s rule.
Following the classification of models by Lehmann and Keller (2006), it is clear that
any model that implies that this difference in probabilities diverges from zero falls
in the category of kin selection (see also Lehmann et al., 2007 and Grafen, 2007.
Both these papers provide a parallel analysis in terms of kin selection of models
that were not originally presented as such).

There can however be some misunderstanding concerning the case of completely
random group formation, or, in other words, the absence of assortativeness. On
page 138 of BCH, one can read: “When the variance among groups is zero, A’s
no longer have the advantage of being in groups with disproportionally many A’s.
In this case group selection is inoperative, so only a costless form of group benefit
could proliferate”. The point where P (A | A) − P (A | N) = 0 therefore seems
to be associated with the point where the (sample) variance among groups is 0.2

2See Van Veelen (2005) for the use of terms like variance, sample variance, expectation and
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This is not correct; also with random group formation, group composition will
vary from group to group. If we for simplicity think of groups of size 2, p = 0.5

and an infinite (or very large) population, then random group formation leads to
(approximately) 25% AA groups, 50% AN groups and 25% NN groups. So here
the variance among groups is not 0, but the probability of being paired to an A-
player is 0.5 both for A’s and for N ’s. It is therefore important to realise that,
as can be deduced from Hamilton (1975), it is excess variability that is needed to
select (strong) altruism, that is, more variability than the variability that comes
with random group formation. In case of random group formation there is also
variability, but A-players on average face the same composition of the rest of the
group they are in as N-players do. However, if the variability increases from there,
then the probability for A-players meeting A-players and the probability for N -
players meeting A-players start diverging and if the size of this gap is big enough,
given costs and benefits, A-players have a selective advantage. The point where
variance among groups is 0 - which with group size 2 and p = 0.5 would be a
population that consists of 100% AN groups - would in fact imply anti-assortative
matching, and in this particular example it would come with P (A | A)−P (A | N) =
−1. Contrary to what the quote suggests, even a costless form of group benefit could
not proliferate here, but spiteful behaviour could, if the cost inflicted on the other
outweighs the cost bore by oneself.

In BCH the working of the standard group selection model is illustrated with
the following figure.

The probability of being paired with an A

b

b-c 

0 

-c 

P(A|N) P(A|A)

Nπ

Aπ

Fig. 1 from BCH, page 138.

average. The literature on the Price equation has also lead some to believe that all that is relevant
to know about this division into groups is the (sample) variance of the frequency of altruists in
groups. On pages 423 and 424 of Van Veelen (2005) it is shown that this is not true. Therefore we
choose to use the not further specified term “variability” instead.
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In this figure, πA is the payoff of an A-player as a function of the probability of being
paired with an A-player, and πN is the payoff of an N -player, also as a function
of the probability of being paired with an A-player. The message of the picture is
that for (strong) altruism to be selected, the difference between those probabilities,
conditional on the type that the player itself is, must be large enough.

3.1 The first stages of the simulation model

As the standard group selection model does not involve groups engaging in conflicts,
it can be useful to first figure out how the simulation model without war translates
to this setting. What can be slightly confusing, is that fitness cost and benefits in
the standard group selection model in BCH are given by c and b, while the same
letters are used for parameters in their simulations. This might induce readers to
think that 1) performing the act is (strongly) altruistic by definition, as c > 0 and
b > 0, and that 2) by definition it implies an efficiency gain within the group, since
b > c. It follows from the translation of the first two phases of the simulations that
the latter is not true. The first is shown not necessarily to be true in section 4.

Because group size is fixed by assumption, the actual game within the group
is a zero-sum game; the number of offspring of the group as a whole does not
change, so all a person can change is the distribution of the odds within the group.
The payoffs determine the shares of individuals in the probability distribution from
which the offspring is drawn. The next generation’s group members are drawn
one at a time, and every time the probability that it is your offspring equals your
payoff divided by total payoffs in the group. What seems to be an efficiency gain
(b > c) therefore really is not, because probabilities have to add up to one and are
normalized by dividing individual payoffs by total payoffs. The behaviour therefore
not only decreases the fitness to the actor and increases the fitness of the actual
recipient, but it also decreases the fitness of all group members - including donor
and recipient - by increasing the denominator. Given that we know that total fitness
benefits and total fitness costs are equal, A-players only shift a certain fixed amount
of fitness away from themselves and divide it, in expectation, equally among the
other group members, without any efficiency increase. In that case, Hamilton’s rule
predicts that only if groups form completely assortative, so that there are no mixed
groups and P (A | A)−P (A | N) = 1−0 = 1, altruism will not be selected against.
It will be selected against as soon as it is smaller than 1 and the picture for the
simulation model, excluding the war phase, is as follows:
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The probability of being paired with an A

Fig. 2. Payoffs in the group phase of the simulations.

Again, πA is the payoff of an A-player as a function of the probability of being
paired with an A-player, πN is the payoff of an N -player also as a function of
the probability of being paired with an A-player, f is baseline fitness (which is
10 in BCH) and n is the group size. The formulas for calculating fitness in the
picture are explained in Section 4, but the most important thing to realise is that
an altruist surrounded by altruists and a non-altruist surrounded by non-altruists
both have the same fitness, which is 1 here. Equality can therefore only be achieved
if P (A | A) = 1 and P (A | N) = 0. The line πA is a little steeper than πN because
if there are many altruists already, the altruistic act confers less fitness to the
others, since the total, unnormalized group payoff is larger. The difference between
A-players and N -players therefore is smaller at P = 1 - the right side of the figure
- than it is at P = 0.

An obvious conclusion is that without the war phase, A-players could never be
selected for. This conclusion is still valid if we allow for norms to evolve. To
see why, we first have to see that both norms work on this picture in the same
way; both a tax t and a segregation parameter s reduce the slope of the two lines.
The fitness of an N -player with P (A | N) = 0 however will remain at 1 and the
same holds for an A-player with P (A | A) = 1. This indicates that however strong a
norm is, without war this simulation model could not result in selection of altruism,
whatever the variability in group composition. More precisely: only for s = 1, t = 1
or P (A | A)− P (A | N) = 1 will there not be selection against A-players.
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Fig. 3. Payoffs in the group phase with norms.

The dotted lines are the payoffs in the group fase of the simulations with norms.
Otherwise, everything is the same as in figure 2.

In order to see how large ‘relatedness’ really was, we reran the simulation model.
To compute it empirically, it is important to realise that it might be frequency
dependent. If it is, then that could make a difference for the dynamics and it
is a little problematic to speak of relatedness or of the difference in conditional
probabilities. If we however insist on summarizing this difference and reducing it
to one single number, then a relatively reasonable expression to compute is the
average difference in probabilities, and that can be done by first conditioning on
overall frequency p and then integrate over the distribution of frequencies as they
occur in simulation runs (see Appendix A). The average difference is then as follows:Z 1

0
(P (A | A, p)− P (A | N, p)) dP (p)

where P (A | A, p) is the probability of being paired with an A-player if you are
an A-player yourself and the overall frequency of A-players is p, P (A | N, p) is the
probability of being paired with an A-player if you are an N -player and the overall
frequency of A-players is p, and P is the probability measure that represents the
distribution of frequencies p during simulation runs. We found that it is 0.085 for
default values (same group size).
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4 Reproductive externalities

In Weibull & Salomonsson (2006) reproductive externalities are introduced in a
situation with random matching and finite symmetric games. This is not exactly
the setting of BCH, where groups stay together and are only stirred by migration,
rather than break up and reform randomly every period. Yet it can help clarify what
reproductive externalities are and what they can do, if we look at how this game
would be analysed in a random matching setting. More importantly, it also shows
that with the game from the simulations, the (seemingly) altruistic behaviour can
be selected for without any excess variability, which drives selection in the standard
group selection model. In passing it also gives a nice and interesting example of
a frequency dependent version of Weibull and Salomonsson’s model. So while the
standard group selection crucially depends on assortative matching, we now take
exactly that aspect out of the simulation model by assuming that every generation,
groups are completely reformed at random. Why the remaining features still make
it a candidate for the label “group selection model” (which is how Weibull and
Salomonsson qualify it) will be discussed in Section 5.

Suppose that groups all have the same size n, the population is infinite, and all
players can be A or N . If an A-player faces i other A-players in her group, then her
expected payoff is (f+b i

n−1−c)/(f+(b− c) i+1n ). The numerator is baseline fitness
f , plus the benefit b times the probability with which it will be matched with an
A-player, minus the costs c she bears because she is an A player. The denominator
is the average payoff in the group and it thereby normalizes the expected payoffs
because group size is fixed. If an N -player faces i A-players in her group, then her
expected payoff is (f + b i

n−1)/(f + (b− c) i
n).

In Weibull and Salomonsson these payoffs translate directly to a derived game,
but in our setting this derived game is frequency dependent. The derived payoff of
the average A-player, that is, its expected number of offspring after a possible war,
depends on the frequency p and can be computed as follows. The probability of be-
ing in a group where i of the others are A-players is

¡n−1
i

¢
pi (1− p)n−1−i. The prob-

ability of being matched, as a group, to a group with j A-players is
¡n
j

¢
pj (1− p)n−j .

Groups with more A-players than the other group get to replace the other group,
and hence double their payoffs, groups with less see their payoffs reduce to 0, and
groups that draw just keep their payoffs. With a probability k of war, the expected
payoff of an A-player isPn−1

i=0

¡n−1
i

¢
pi (1− p)n−1−i

f+b i
n−1−c

f+(b−c) i+1
n

n
(1− k) + k

³
2
Pi

j=0

¡n
j

¢
pj (1− p)n−j +

¡
n
i+1

¢
pi+1 (1− p)n−(i+1)

´o
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while the expected payoff of an N -player isPn−1
i=0

¡n−1
i

¢
pi (1− p)n−1−i

f+b i
n−1

f+(b−c) i
n

n
(1− k) + k

³
2
Pi−1

j=0

¡n
j

¢
pj (1− p)n−j +

¡
n
i

¢
pi (1− p)n−i

´o
With the benchmark values of BHC, that is n = 20, f = 10, b = 2, c = 1, k = 0.25,
the expected payoffs of the two strategies as functions of the frequency p are plotted
in the following picture.

10.750.50.250

1.125

1

0.875

0.75

Frequency of A-players

Exp. payoff

Frequency of A-players

Exp. payoff

Fig. 4. Expected payoffs A’s (grey line) and N ’s (black line) for benchmark values.

The game has, from left to right, a stable mixed equilibrium, an unstable mixed
equilibrium and a stable pure equilibrium. For different values of n and k this
picture changes accordingly, with payoffs for A-players going down if the group size
goes up, and going up along with the probability of wars.

As an illustration of the dynamics, it can be useful to consider what happens at
both extremes. At p = 1, that is, in a population that consists of A-players only,
any individual that mutates into an N -player makes the group it is in lose a war
with probability 1, against a probability of winning of 0.5 had it not mutated. So
if c is not too large, selection at p = 1 favours A-players, which makes it a stable
equilibrium. At p = 0, that is, in a population that consists of N -players only, any
individual that mutates into an A-player makes the group it is in win a war with
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probability 1, against a probability of winning of 0.5 had it not mutated. So if c
is not too large, selection at p = 0 favours A-players, from which we can conclude
that it can not be an equilibrium.

It can be worthwhile to realise that at both equilibria in the above picture the
behaviour simply optimizes the fitness of the individual and no arguments con-
cerning who receives the benefits of the so-called altruistic act play a role. The
reproductive externalities here consist of the increased probability of surviving a
possible war. While it saves costs c to be an egoist, it lowers the odds of surviving
a conflict situation with other groups. In the classification of Lehmann & Keller
(2006), this model would therefore fall within the category of direct benefits. The
outcome also shows that excess variability, unlike in the standard group selection
model, is not needed to get selection of A-players; both stable equilibria have A-
players, even though groups are formed randomly. Whether or not we qualify the
A-players as altruistic is perhaps a matter of taste. If we define (strong) altruism
as behaviour that lowers an individual’s fitness, relative to the whole population,
then it depends on the current frequency whether or not it is (strongly) altruistic.
In equilibrium however it is not. This is an unambiguous, clear and possibly prefer-
able definition of altruism. Another option is to restrict the horizon or the scope of
the definition to times of peace. In that case we would simply always include this
A-player’s behaviour, that may very well match with what in everyday life passes
the test of genuine altruism. Furthermore, even in equilibrium, the behaviour of
A-players does always satisfy Wilson’s (1979, 1990) definition of weak altruism; in
equilibrium, A-players do not decrease their fitness compared to the whole popula-
tion by playing A, but they do increase their group members’ fitness, so the other
group members gain more from the behaviour of an A-player than it does itself.

Given that we can find out whether or not A-players have a selective advantage
by looking at direct benefits only (see Lehmann & Keller, 2006), one may wonder
why this is nonetheless called a group selection model. This will be discussed in
Section 5, but for now it is important to see that we have only taken the game from
the simulations, eliminated the process that makes group formation assortative,
and find that A-players can still be selected for.

It is also worth noting that of the two composing elements of the simulation
model, the second one - tying together the fate of group members - is the innovative
ingredient. Although BCH do follow Darwin (see Section 5), conflicts between
groups were, to our knowledge, not modelled explicitly before in this context.

4.1 Evolution of norms

The norms that feature in BCH can evolve because of a combination of ingredients
from both models. First we should note that within the standard group selection
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model, norms could also evolve together with altruism. We then would need to
assume that groups can indeed grow in size, which is not the case in the simulations,
but which is essential for the evolution of altruism as well as norms within this
model (see Section 3). Furthermore we would have to assume that groups are not
reshuffled every stage in an assortative way, but that there is a group fissioning
process that causes relatedness within groups, and that causes group norms also
to be conserved to some extent during a group’s history. This does happen in the
simulations. Groups with higher t or s then would grow faster, or larger, than
groups with lower t or s. The reason is that higher norms have a positive effect on
the share of A-players in the group, and groups with more A-players grow faster.
So if not counterbalanced by some cost of the norm, higher values of t and s would
always spread at the expense of lower values.

In the second type of group selection model, where groups are randomly reshuf-
fled every period, it is a little hard to imagine how norms are retained within groups,
as groups only exist for one generation. If that could be overcome, and higher levels
of norms can cause higher frequencies of A-players within groups, then there would
be a very good reason for norms to spread, as groups with more A-players win wars
with higher probability.

The actual simulations combine the ingredients from both models in such a way
that norms can evolve. Although groups cannot grow in size - thereby violating
a necessary condition in the pure standard group selection setting - the groups
are only marginally changed between rounds and therefore correlation between the
fraction of A-players and the level of the norms can build up. Combined with an
ingredient from the other type of model - where groups with many A-players win
wars more frequently - this allows the norms to spread.3

3The simulations have two norms, a sharing norm t and a segmentation norm s. Although the
sharing norm is perhaps more appealing, it is also slightly problematic for the following reason. In
the model under consideration, the only individual trait on which selection act is altruism. Given
this model, it is clear that the presence of a norm reduces the selection pressure within a group
against altruists and thereby increases the odds of surviving inter-group conflicts. This norm
however not only reduces selection pressure against altruists, it also reduces selection pressure
against a lot of other things. Lazy farmers for instance and incapable hunters benefit from it
as well. And so genes for altruism thrive along with genes for laziness and low hunting ability,
whereby the first may increase the total payoff of the group, while the other two decrease it.
A possible solution for this problem may lie in interaction with sexual selection. If benefits from

efficient farming and good hunting also lie in the increased number of interested mates, then a
sharing norm reduces the selection pressure against lazy farming and bad hunting less than the
pressure against altruism. Once a preference for good farmers or hunters is established, the survival
value of it is not needed to sustain the feedback loop of trait and preference for the trait.
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4.2 Combining the two

The simulation model of BCH combines the ingredients of both types of models.
Group formation is not random and during the simulations relatedness builds up.
(How much depends on the parameters, but there is always some.) The war phase
on the other hand introduces reproductive externalities and causes the interests of
group members to align to some extent. (Again, to what extent depends on the
parameters). Together, these two ingredients make a simulation model in which
altruism as well as norms spread for some and do not spread for other parameter
values. Even if relatedness is not extremely high (it is for instance 0.085 for default
values) then still the benefit of increasing the probability of surviving a war is
shared by the whole group, members of which are slightly related to the actor.
For the default group size of 20, this amounts to an additional contribution to the
expected number of A-players surviving the group conflict phase that can be roughly
approximated by 20×0.085 = 1. 7 times the value of the increase for the individual
itself. Note that, first of all, benefits are not additive, and also that benefits and
costs can not be added to / substracted from each other. If benefits eb are measured
as increases in survival probability and costs ec as reductions in expected number of
offspring conditional on survival, then fitness becomes

³
1 +eb´ (1− ec).

It is furthermore important to realise that benefits and costs are no longer
exogenously given values, but endogenous variables, values of which not only are
frequency dependent but also depend on the choice of parameter values. So even
though the behaviour under study itself is constant across different simulations, it
is the choice of parameters and the overall frequency that determine how altruistic
the action is.

5 Telling the different types apart

It can be useful to summarize the differences between the two types of models and
relate that to the way they are treated in the literature. In a book that strongly
advocates group selection theory (Sober & Wilson, 1998) the distinction between
the types is not made - or at least not explicitly - but both of them are present.
The first (or standard) type is discussed most elaborately (pp 17-100) and seems
to define their idea of group selection. As we have seen, the defining feature there
is that altruists are more likely to interact with (other) altruists than egoists are.
Whichever way the accounting is done, it follows that assortativeness in group
formation allows for altruism to evolve. From the individual point of view the
argument is as follows: altruists incur more costs than egoists because they are
altruists. They also enjoy more benefits than egoists do, because they interact
more with altruists. Whether a given form of altruism can evolve, depends on how
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these costs and benefits are balanced. From the ‘gene for altruism’ point of view
the end result is the same; an altruistic act is of course costly, but the benefits are
enjoyed by a disproportional share of altruists, which then may do more good than
harm for the share of altruistic genes in the total population.

Their explanation of how increased variability in group composition can lead
to altruism is accompanied, however, with a discussion of frameshifting the idea of
hierarchical selection from ‘gene-individual’ to ‘individual-group’. Group selection
is then to be seen as another major transition in evolution, like the transition from
single celled to multicellular organisms. Here it is important to realise that the
explanation of why cooperation is stable for different cells within one body is not
that they share 100 % of their genes. Even though it is very well possible that full
relatedness has played a role in the transition itself, the reason why those cells keep
on cooperating lies in the fact that they are sharing one and the same vehicle of
reproduction. As a result of that, their interests are, on the relevant time scale,
very much in line. The dilemma that a cell faces is therefore not whether or not
it will increase the offspring of the other cell at the cost of reducing its own, but
the question is to produce more offspring together or not. If one wants to force
this into a game theory setting, then the appropriate game is not a social dilemma,
but a mutualistic game, as it is not against the cells own reproductive interest to
cooperate.

The parable of the boat race in Dawkins (1976, p38-39) explains how genes that
cooperate in making one working organism can be selected for. Sober & Wilson
(1998, p97, p124) apply the same reasoning to individuals and groups. They are
aware of the fact that there may be limits to the analogy, but their assessment
of to what extent interests of individuals within a group can align is nonetheless
relatively positive. Although one can have reservations concerning the extent of the
alignment of interests, it is undeniably true that in the simulation model of BCH
fates of individuals at least coincide a bit. In times of peace they may compete for
resources, but a war is survived together or not at all. It is therefore important
to identify this aspect of the simulation model as distinct from the assortative
matching idea and it is worthwhile realising that the two different types of group
selection models have different reasons why they work, if they do. The working of
the first one depends on the answer to the question ‘is the probability that you also
have the gene large enough’4 and the other needs an affirmative answer to ‘are our
interests enough in line’. In many situations the answer to both questions may be
the same, but it is important to realise that either model can work without the
ingredient that is crucial for the other. Also in the actual simulations there is a

4 If we allow for assortment of phenotypes that not necesarily implies assortment of genotypes
one could also write this as ‘is the probability that you are an altruist too large enough ’.
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bit of both, but we hope we have convincingly argued that for this particular case
the behaviour can not be selected for in the pure standard group selection model
(that is, without warfare and with groups of constant size), while A-players can
be selected in the pure reproductive externalities case (that is, without assortative
matching). In the simulations the warfare part therefore is every bit as important
as the relatedness that the process induces.

5.1 Different labels & terminology

In the literature, both models are referred to in different ways. The first type
of model is called a group selection model by a variety authors, including Sober
& Wilson (1998) and Bowles, Choi & Hopfensitz (2003). Other authors, such as
Lehmann & Keller (2006) and Grafen (2007) classify this type of model as a kin
selection model. The second type of model is called a group selection model by,
again, Sober & Wilson (1998), while others, such as Lehmann & Keller (2006),
would classify it as a model with direct benefits. We do not have a preference for a
specific set of labels for these two types of models. What we do think is important
is that they are clearly distinguished, and hence that those who prefer to refer to
both types as group selection models, can improve clarity by adding an indication
of the type. It is also important to realize that the insight that group selection and
kin selection are different but equivalent ways to describe the same process (see for
instance Lehmann et al., 2007 and Grafen, 2007) applies to the first type of group
selection model, and not to the second.

5.2 Racial discrimination or groupishness?

Humans behave nicer towards group members than they do towards individuals
that do not belong to their group. In Innate social aptitudes of man Hamilton
(1975) chooses what we call the standard group selection model in order to explain
inter-group hostility and intra-group friendliness. Relatedness of an individual to
out-group members is lower than to in-group members, hence the difference in
behaviour. Experimental evidence, starting from Tajfel & Turner (1986) has shown
that the difference in behaviour is still there if individuals are randomly assigned to
groups. In that case the actual difference in relatedness and therefore the supposed
evolutionary reason is no longer there, but the behaviour remains. One explanation
within the standard group selection model could be that in our evolutionary past
humans hardly ever were in a situation where group members were not related
(that is, group members in expectation shared more genes with each other than
with the average population member). In that case humans are just not adapted
to a situation with randomly composed groups.
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In the other group selection model, however, being in the same group is not just
a cue for relatedness. If an individual is in the same group, then that is something
that matters by itself; it implies that the fate of surviving a possible conflict is
shared. Here relatedness is not an issue, so it is not maladaptive to behave nicer to
group members than to non-group members even if the groups are formed randomly.

Going for the first type of model, Hamilton (1975, p134) writes

I hope to produce evidence that some things which are often treated as
purely cultural in humans–say racial discrimination–have deep roots
in our animal past and thus are quite likely to rest on direct genetic
foundations. To be more specific, it is suggested that the ease and
accuracy with which an idea like xenophobia strikes the next replica of
itself on the template of human memory may depend on the preparation
made for it there by selection - selection acting, ultimately, at the level
of replicating molecules.

His explanation implies that (standard) group selection has been at work and racial
discrimination is expected to be as strong as relatedness is.

In The origins of virtue, Ridley (1997, p188) on the other hand claims that it is
not the interests of others that share the genes for altruism, but a keen eye for our
own individual interests that shape group-behaviour. His conclusion is that this
refutes group selection as a mechanism.

The fact that people form emotional attachments to groups, even arbi-
trary ones, such as randomly selected sports teams, does not prove group
selection, but the reverse. It proves that people have a very sensitive
awareness of where their individual interests lie - with which group. We
are an extremely groupish species, not a group-selected one. We are de-
signed not to sacrifice ourselves for the group but to exploit the group
for ourselves.

Here Ridley seems to claim that finding individuals being groupish would exclude
group selection. It is interesting to note that in the Weibull and Salomonsson case
with reproductive externalities, individuals do indeed behave according to their
individual interests. Nonetheless they classify it as a group selection model. It is
a model that is rather different from the hierarchical selection models that we are
used to and that depend on relatedness or assortative matching, but they are not
alone in their choice. Many authors quote the following excerpt from The descent
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of man, Darwin (1871, p166) to argue that he thought group selection a possibility,
and the process he describes here does coincide with the second type of model:

It must not be forgotten that although a high standard of morality gives
but a slight or no advantage to each individual man and his children
over the other men of the same tribe, yet that an increase in the number
of well-endowed men and an advancement in the standard of morality
will certainly give an immense advantage to one tribe over another. A
tribe including many members who, from possessing in a high degree
the spirit of patriotism, fidelity, obedience, courage, and sympathy, were
always ready to aid one another, and to sacrifice themselves for the com-
mon good, would be victorious over most other tribes; and this would
be natural selection. At all times throughout the world tribes have sup-
planted other tribes; and as morality is one important element in their
success, the standard of morality and the number of well-endowed men
will thus everywhere tend to rise and increase.

In this passage, it seems evident that tribes are thought of as units that compete
directly with each other, as they can ‘supplant’ and ‘be victorious over’ other tribes.
Herewith it differs from the standard hierarchical selection models that for instance
Price (1972), Hamilton (1975) and Frank (1998) have in mind. In those models,
the payoffs determine the frequencies in and the size of subsequent groups, but
there is no explicitly modelled reason why overall populations would not dwindle or
explode. This can be overcome by assuming that when some constraint is binding,
all payoffs should be normalized. A natural way to do this is to divide them by
the sum of all payoffs of all groups and multiply with the overall carrying capacity.
Such a normalization keeps the total population constant, but its form rests on the
assumption that every member of the total population competes with every other
member equally intensely for a place in the next generation. In many situations
that is a very reasonable assumption, especially if the life cycle includes a period
spent within the group as well as a period in which groups are dissolved and all in-
dividuals live alone, competing for some scarce resource. In the simulations in BCH
however there is no such life cycle. Moreover, the assumption that groups regularly
interact violently gives competition between individuals a particular structure. It
is perhaps an uncomfortable idea to model violent competition between groups so
explicitly, but that does not make it unrealistic and it works out Darwin’s idea of
the evolution of morality quite literally. The result of this assumed structure of vi-
olent interactions is that there are externalities that, ironically, drive the evolution
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of pro-social behaviour within the group. BCH’s model therefore is a combination
of a standard hierarchical selection model with a group selection model in the spirit
of Darwin, and it has individuals that are groupish - more than racist - as well as
group-selected.

5.3 Searching for the right relatedness

Hamilton’s rule in principle provides a testable implication of the standard group
selection model. If fitness costs and benefits are known, we have to measure relat-
edness (differences in conditional probabilities) to see if it is high enough to explain
the altruistic behaviour. The model with reproductive externalities on the other
hand does not need relatedness to work. If that were the true model, and we misin-
terpret c and b in this model as actual fitness costs and benefits, then we find that
relatedness is 0 and therefore reject the standard group selection model. What goes
wrong is that we have overlooked the reproductive externalities that makes actual
fitness costs 0 and not c.

More important is that the simulations suggest that the true model might very
well be a mixture of the two. If we again (mis)take c and b for actual fitness costs
and benefits, we will find that relatedness is positive, but still too low to explain
altruistic behaviour with the standard group selection model only. It is important
to note that the measurement issue of the true fitness costs and benefits is at least as
big a problem as the measurement of relatedness. As we have seen in subsection 4.2,
fitness costs and benefits of a given behaviour have become endogenous variables in
the model, and will differ between different choices of parameters in the simulation.
As the behaviour itself is the same across all those choices of the parameters in the
simulation model, and benefits may not even be reaped within one generation, it is
not strange that measuring the actual fitness costs and benefits is rather hard. An
interesting and recent empirical study in this respect is Bowles (2006).

6 Markov chains

6.1 A simple example

Apart from distinguishing the different composing elements, it can also be useful
to recognise the basic structure of the actual simulations, which is that the simu-
lation model is a Markov chain. This is useful if we interpret simulation outcomes,
and especially if we want to use the data that the simulations produce to draw
conclusions concerning the dynamics. Simulation results therefore are best seen
as characteristics of the dynamics in a Markov chain that will differ for different
choices of parameter values. In order to illustrate what kind of Markov chain the
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model is, we take the simplest possible example with only two groups consisting of
only two players that can be either A or N . The six states are numbered as follows:

1 (NN,NN)

2 (NN,NA)

3 (NN,AA)

4 (NA,NA)

5 (NA,AA)

6 (AA,AA)

One whole round (or generation) can be decomposed in matrices for every stage;
K for the war phase, R for the reproduction, E for the mutation and M for the
migration. The matrices are given in Appendix B. A whole round, starting with
war and ending with migration, is represented by the product matrixMERK. The
invariant distribution p∗ is the solution of MERKp = p and for benchmark values
k = 0.25, f = 10, c = 1, b = 2, � = 0.001 and m = 0.1 it is, numerically:

p∗ =

0.088

0.001

0.005

0.001

0.006

0.899

The average frequency of altruists in the invariant distribution is the inner product
of the vector v that consists of frequencies of altruists in the different states - so
here v = [0, 0.25, 0.25, 0.5, 0.75, 1]T - and the invariant distribution p∗, which makes
hv, p∗i =P6

i=1 vip
∗
i = 0.9. We can also compute the expected change in frequency

of altruists for every state by taking the difference [MERK]T v − v. The i’th
component of this vector is the expected change in frequency of A-players when in
state i. In this case, that is:

[MERK]T v − v =

0.001

0.018

0.125

−0.071
0.035

−0.001
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The combined effect of the four matrices can be described as follows. Mutations
create a very small outflow from (NN,NN) and (AA,AA). From (NA,NA) the
expected change in the overall fraction of altruists is negative, which is to be ex-
pected, because wars can not increase it, but within groups A-players in expectation
do worse than N -players. The other states show an expected increase in the overall
fraction of A-players

To compare this to the case with random matching in an infinite population, we
below plot the payoffs of altruists and non-altruists with N = 2, b = 2, c = 1, k =

0.25. The only equilibrium is pure; all play A. Interestingly, the simulations will,
by contrast, show on average a proportion of 8.8% of non-altruists. This is caused
by the relative stickiness of both (NN,NN) and (AA,AA), from which the only
way out is by mutation. Although the tendency for the share of A-players is up,
chance might bring the Markov chain to (NN,NN), from which it takes on average
a very long waiting time to leave.

10.750.50.250

1.2

1.1

1

0.9

0.8

Frequency of A-players

Exp payoff

Frequency of A-players

Exp payoff

Fig. 5. Expected payoffs A’s (grey line) and N ’s (black line)

6.2 Statistical estimation of the Price equation

The actual simulations are also Markov chains, but there is a complication that
concerns the size of the state space. If we take default values of 20 groups and a
total of 400 individuals, then even if we restrict ourselves to situations where all
groups have equal size, the number of states5 equals

¡40
20

¢
= 137 846 528 820. The

5A state is then characterized by 20 numbers, that represent how many groups with 20 A-players
there are, how many with 19 A-players, and so forth. Distributing 20 groups over 20 positions can
be done in 20+20

20
ways.

21



state space is therefore best described as enormous and without further information
on transition probabilities, simulation runs of feasible length would be insufficient
to make any statement about the average frequency of altruists in the invariant
distribution. In this simulation model, however, the different transition probabili-
ties are related to each other, as they are the result of the same type of probability
calculation with only differing number inputs that correspond with the two relevant
states. Thus there is reason to expect that even when two consecutive runs of the
simulation hardly share states they both have visited, the dynamics may be very
similar in terms of frequencies of A-players. It is therefore natural to look for an
overall characterization of the probabilities of changes in the overall frequency of
altruists as a function of simple characteristics of the states, such as current fre-
quency of altruists and some measure of the variability of the frequency of altruists
within the different groups. The regressions in section 3 of BCH can be viewed as a
way to try to do this. In the paper they are described as a statistical estimations of
the Price equation, and although we now know from Van Veelen (2005, Section 6)
that applying the Price equation as a statistical device to group selection models is
generally not such a good idea, we can still ignore the name or what inspired it and
simply look at the regression itself to see whether it could be informative about the
dynamics.

The dependent variable in the regression is the change in the overall frequency
of A-players - ∆p - and the explanatory variables are a measure of within group
variability -

P
i pi (1− pi)

ni
N - and between group variability -

P
i (pi − p)2 ni

N -
where pi is the frequency of A-players in group i, ni is the number of individuals in
group i, N =

P
i ni is the total number of individuals and p =

P
i pi

ni
N is the overall

frequency of A-players. Indexing all observations with l = 1, ..., L , this suggests
that dependent and explanatory variables are related in the following way

∆pl = α+ β1
X
i

pi,l (1− pi,l)
ni,l
N
+ β2

X
i

(pi,l − pl)
2 ni,l
N
+ εl

where ε is some iid variable with mean zero. If we restrict attention to the mean
of the error terms only, this would reduce to the assumption that

E∆pl = α+ β1
X
i

pi,l (1− pi,l)
ni,l
N
+ β2

X
i

(pi,l − pl)
2 ni,l
N

∀l

Because we actually know what the true model is, it can be checked whether or not
this assumption is correct and it turns out that it is not. Appendix C contains a
simple choice of a state space combined with BCH’s benchmark values that shows
that the expected change in overall frequency of altruists is not a linear function of
the two proposed variables already for a very simple case. This implies that we fit
a misspecified model to the data, which results in residuals that contain not only
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errors induced by the transition probabilities being random variables, but also the
differences between E∆p and the right hand side of the above equation.

There is also another angle from which we can directly see that this approach
cannot work. Therefore it is important to first note that BCH make one such es-
timate of the Price equation, using data generated by four simulation runs with
presumably the same parameter values k, �,m and N . The outcome therefore only
applies to this one choice of parameter values; with different parameter values we
would get different estimates. The reason is that expected changes in p in any
particular state will differ across different choices for the parameters. For the in-
cidence of war for instance, the general pattern for any single state is that it will
have an expected decrease in p for low values of k and an expected increase for
high values of k. And while the different k’s lead to different E∆p’s, the suppos-
edly explanatory variables stay the same, as within and between group variability
both are determined by state characteristics only and not by the parameters of the
simulation. This implies that such regressions have very limited meaning; E∆pl is
not adequately explained by within- and between group variability.

The “statistical estimation of the Price equation” therefore fits a misspecified
model to the data and interpretation of the regression result can lead to erroneous
claims. The structure within the large state space of the Markov chain however still
remains, and therefore we think that it is justified to rely on simulation runs of oth-
erwise insufficient length to represent characteristics of the invariant distribution.
It therefore seems justified to compute relatedness as we did above, or use output
data to compute any averaged characteristic we are interested in as a function of
the parameters. The dependence of such characteristics on the parameters however
is essential, as most of the things we are interested in, such as for instance fitness
differentials, are endogenous

7 Final remarks

We hope we have convincingly argued that the simulations in BCH combine in-
gredients from two different types of model that on their own have quite different
implications. The first could be called the standard group selection model and here
assortative group formation is essential for selection of altruism. In the second type
of group selection model the interests of group members are to some extent aligned.
Understanding and distinguishing the exact workings of these different ingredients
of the simulation model we think is useful, because both of them are likely to have
played a role in the evolution of human altruism and norms. While the first type
has received quite some attention in the literature, compared to the second one, we
think that the second is no less relevant.
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Making this distinction is a contribution to the effort made recently by evo-
lutionary biologists to clarify the significance of published papers (see Grafen,
2006, Lehmann et al, 2006) and classify them according to what drives the re-
sults (Lehmann & Keller, 2006). This is an important thing to do in a field that
is facing a plethora of models, in which the mechanism at work is not always ex-
plicitly identified. In the classification of Lehmann & Keller, the first type of group
selection model can be understood as a kin selection model, while the second type
can be understood in terms of direct benefits.

The last section of the paper, that focusses on how to handle output data in
simulations that are Markov chains, follows Van Veelen (2005) in suggesting that
statistics and probability theory are easily confused, and this should carefully be
avoided when interpreting simulation results. These simulation models can, as a
rule, be described as Markov chains and we should aim at describing the results as
characteristics of invariant distributions.
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A Computing relatedness

In computing assortativeness of group formation, we keep in mind that we are after
conditional probabilities that have the form

P (C | D) = P (C ∩ D)

P (D)
which here means that

P (being matched with an A-player | being an A-player) =
2P (AA)

2P (AA) + P (AN)

P (being matched with an A-player | being an N -player) =
P (AN)

P (AN) + 2P (NN)

If i is the number of A-players in the population, we condition on the frequency
p = i

N , and compute the empirical difference in conditional probabilities for every
different frequency before summing them with the appropriate weights: (∗)

NX
i=0

Ã
2 ·# ¡AA, p = i

N

¢
2 ·# ¡AA, p = i

N

¢
+#

¡
AE, p = i

N

¢ − #
¡
AE, p = i

N

¢
#
¡
AE, p = i

N

¢
+ 2 ·# ¡EE, p = i

N

¢! #
¡
p = i

N

¢
simulation length

Note that conditioning makes a difference, and that the above formula really is
different from

(∗∗) 2 ·#(AA)
2 ·#(AA) + #(AE) −

#(AE)

# (AE) + 2 ·#(EE)

As an example, suppose that groups are duo’s, population size is infinite and group
formation is random. Suppose furthermore that only two extreme population fre-
quencies occur: p = 0.1 and p = 0.9 and that both occur with probability 0.5. Then
P (A | A, 0.9) = P (A | N, 0.9) = 0.9 and P (A | A, 0.1) = P (A | N, 0.1) = 0.1. In
that case

Z 1

0
(P (A | A, p)− P (A | N, p)) dP (p) = 0

and (*) will also be close to 0.
Lumping all AA-pairs together, AE-pairs together and EE-pairs together how-

ever gives a different picture; (**) will be around
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2 ·
³
0.5 (0.1)2 + 0.5 (0.9)2

´
2 ·
³
0.5 (0.1)2 + 0.5 (0.9)2

´
+ 2 · (0.1) (0.9)

− 2 · (0.1) (0.9)
2 · (0.1) (0.9) + 2 ·

³
0.5 (0.1)2 + 0.5 (0.9)2

´ = 0.64,
even though the probability of being matched with an A-player is equal for both
types all the time. This measure therefore would incorrectly give the impression
that matching is assortative.

B Transition matrices

In order to be able to decompose the transition matrix of one round (or generation)
in matrices for every stage, the timing of the different stages is altered slightly. This
is inconsequential for the dynamics but very helpful for the illustration.

With probability k the two groups engage in a war. This war is won by the
group with the higher number of A-players, which replaces the group with the lower
number of A-players. The resulting transition matrix K is therefore

1 0 0 0 0 0

0 1− k 0 0 0 0

0 0 1− k 0 0 0

0 k 0 1 0 0

0 0 0 0 1− k 0

0 0 k 0 k 1

where Kij is the transition probability from state j to state i.
As the matching within groups is not random anymore, the payoffs are deter-

ministic, but they do make up the probabilities with which the next generation is
drawn. For baseline fitness f , costs c and benefits b, the reproduction matrix R is

1
³

f+b
2f+b−c

´2
0

³
f+b

2f+b−c
´4

0 0

0 2
³

f+b
2f+b−c

´³
f−c

2f+b−c
´

0 4
³

f+b
2f+b−c

´3 ³
f−c

2f+b−c
´

0 0

0
³

f−c
f+b−c

´2
1 2

³
f+b

2f+b−c
´2 ³

f−c
2f+b−c

´2 ³
f+b

2f+b−c
´2

0

0 0 0 4
³

f+b
2f+b−c

´2 ³
f−c

2f+b−c
´2

0 0

0 0 0 4
³

f+b
2f+b−c

´³
f−c

2f+b−c
´3

2
³

f+b
2f+b−c

´³
f−c

2f+b−c
´
0

0 0 0
³

f−c
2f+b−c

´4 ³
f−c

2f+b−c
´2

1
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With mutation probability �, the matrix of transition probabilities E can for small
� be approximated with

1− 4� � 0 0 0 0

4� 1− 4� 2� 2� 0 0

0 � 1− 4� 0 � 0

0 2� 0 1− 4� 2� 0

0 0 2� 2� 1− 4� 4�

0 0 0 0 � 1− 4�

This matrix only includes transitions of zero or one mutation.6

If migration pairs are formed with equal probability, this makes the following
migration matrix M

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1−m m
2 0 0

0 0 m 1− m
2 0 0

0 0 0 0 1 0

0 0 0 0 0 1

A whole round consists of the product matrix MERK.

C Expected changes in frequency

For this example, we will again have a population of 4, but now not with fixed and
equal group sizes. This complicated matters, as the state space now expands to the
following 19 states:

1 (·, EEEE)
2 (·, EEEA)
3 (·, EEAA)
4 (·, EAAA)
5 (·, AAAA)

6 (E,EEE)

7 (E,EEA)

8 (E,EAA)

9 (E,AAA)

10 (A,EEE)

11 (A,EEA)

12 (A,EAA)

13 (A,AAA)

14 (EE,EE)

15 (EE,EA)

16 (EE,AA)

17 (EA,EA)

18 (EA,AA)

19 (AA,AA)

For m = 0.1, � = 0.001, f = 10, c = 1, b = 2 and k = 0.25 we compute for this
example E∆p = [MERK]T v− v. From the table below we can easily find out that

6Computations with all transitions are available upon request from the corresponding author,
together with the computation of the invariant distribution that shows the difference in negligible.

28



this is not a linear function of
P

pi (1− pi)
ni
N and

P
(pi − p)2 ni

N ; for states with
identical values of these variables, the expected change in frequency differs.

P
pi (1− pi)

ni
N

P
(pi − p)2 ni

N p E∆p

(·, EEEE) 0 0.001

(·, EEEA) 0.25 −0.02993
(·, EEAA) 0.5 −0.0396
(·, EAAA) 0.75 −0.0295
(·, AAAA) 1 −0.001
(E,EEE) 0 0 0 0.001

(E,EEA) 1
6

1
48 0.25 −0.0109

(E,EAA) 1
6

1
12 0.5 0.01039

(E,AAA) 0 3
16 0.75 0.06187

(A,EEE) 0 3
16 0.25 −0.06188

(A,EEA) 1
6

1
12 0.5 −0.07378

(A,EAA) 1
6

1
48 0.75 −0.05249

(A,AAA) 0 0 1 −0.001
(EE,EE) 0 0 0 0.001

(EE,EA) 1
8

1
16 0.25 0.01832

(EE,AA) 0 1
4 0.5 0.12476

(EA,EA) 1
4 0 0.5 −0.07129

(EA,AA) 1
8

1
16 0.75 0.03514

(AA,AA) 0 0 1 −0.001

The matrices M,E,R and K needed to calculate E∆p are very large. They can
be obtained from the corresponding author, together with the computation of the
invariant distribution and E∆p for every state.
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