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Abstract 

Expert judgment (or expert elicitation) is a formal process for eliciting 

judgments from subject-matter experts about the value of a decision-relevant quantity. 

Judgments in the form of subjective probability distributions are obtained from 

several experts, raising the question how best to combine information from multiple 

experts. A number of algorithmic approaches have been proposed, of which the most 

commonly employed is the equal-weight combination (the average of the experts’ 

distributions). We evaluate the properties of five combination methods (equal-weight, 

best-expert, performance, frequentist, and copula) using simulated expert-judgment 

data for which we know the process generating the experts’ distributions. We examine 

cases in which two well-calibrated experts are of equal or unequal quality and their 

judgments are independent, positively or negatively dependent. In this setting, the 

copula, frequentist, and best-expert approaches perform better and the equal-weight 

combination method performs worse than the alternative approaches. 
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1. Introduction 

Expert judgment (or expert elicitation) is a formal process for eliciting experts’ beliefs 

or opinions about the value of a quantity that may be used as input to a model to inform 

policy decisions or for other purposes. A defining feature is that each expert provides a 

subjective probability distribution that summarizes his beliefs about the value of the quantity. 

While the method has been used for several decades, it is receiving increasing attention. 

Major expert-judgment studies have been conducted in recent years to quantify mortality 

effects of airborne particulate matter (Cooke et al. 2007, Roman et al. 2008), key parameters 

associated with climate change and its impacts (Morgan and Keith 1995, Morgan et al. 2001, 

Morgan et al. 2006, Zickfield et al. 2007), and future development of climate-friendly energy 

technologies (Curtwright et al. 2008), among others. The US Environmental Protection 

Agency (EPA) recently issued a draft white paper discussing the development and 

appropriate agency application of expert judgment (EPA 2009). 

Expert-judgment studies elicit a probability distribution for a quantity of interest (a 

‘target’ quantity or variable) from each of several experts, raising the question of how best to 

use the multiple distributions. Assume without loss of generality that the target variable is an 

input to a policy model (e.g., a risk-analytic, benefit-cost, integrated-assessment, or other 

model intended to inform a decision). The policy model propagates uncertainty about input 

variables (represented by probability distributions) and produces a probability distribution for 

the output variable (or variables).  

One approach is to run the policy model multiple times, using each expert’s 

distribution as input, then report the resulting set of output distributions to the decision 

maker. A second approach is to combine these multiple output distributions into a single 

distribution using some algorithmic method. A third approach is to combine the experts’ 

distributions for the target variable and to use that single distribution as input to the policy 

model, producing a single output distribution. In general, the second and third approaches 

will yield different output distributions unless the policy model is linear in the target quantity. 

Some authors argue strongly for the first approach, noting that the degree of similarity 

among experts’ distributions may convey important information to a decision maker (e.g., 

Keith 1996). This approach has limitations, however. If several target quantities are elicited 

from experts, reporting output distributions corresponding to each combination of input 

distributions could yield a very large number of output distributions for the decision maker to 
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somehow evaluate. More generally, there is always a question of the most useful balance 

between aggregating information through models and providing more disaggregate 

information to decision makers. Taken to an extreme, opposition to aggregation would 

suggest discarding the policy model and simply presenting decision makers with all available 

information about each input variable. To the extent that it is useful to aggregate information, 

it is not clear why one should aggregate information about quantities from some sources (e.g., 

direct measurements, model estimates reported in literature) but not from expert judgments. 

Many approaches to aggregating probability distributions have been developed 

(Cooke 1991, Clemen and Winkler 1999, 2007). Perhaps most often, aggregation is done 

informally by the analyst or consumers of the analysis. Alternatively, judgments can be 

combined using an algorithmic approach or some type of consensus-seeking process. The 

most common algorithmic approach is to calculate the simple average of the experts’ 

distributions. 

This paper is directed toward evaluating the properties of algorithmic combination 

methods. We compare two state-of-the-art combination methods, the performance (classical) 

method (Cooke 1991) and the copula method (Jouini and Clemen 1996) with each other and 

with several alternatives (equal-weight, best-expert, frequentist combination). We employ 

simulated expert-judgment data, for which we know the properties of the process by which 

the data are generated; hence we can vary these properties to determine how each of them 

affects the performance of the combination rules. The use of synthetic data complements 

studies that use real expert-judgment data (Kallen and Cooke 2002, Cooke 2008, Cooke and 

Goossens 2008, Lin and Cheng 2009, Flandoli et al. 2011). Another approach to evaluating 

the performance of alternative combination rules is the analytic method developed by Hora 

(2010).  

The following section presents the methods used, including the model to simulate 

expert-judgment data, the combination rules that are assessed, and the evaluation criteria. 

Results are presented in Section 3 and compared with results from studies using field data 

and with analytic results. Conclusions follow in Section 4. 

2. Summary of Methods  

We consider a decision maker who elicits subjective probability distributions from 

each of several experts. Simulated experts provide distributions for one ‘target’ variable and 

ten ‘seed’ variables. The target variable is the quantity of interest, for which the expert-
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judgment study is conducted. Seed variables are quantities for which the values are not 

known to the expert but are or will become known to the decision maker. Seed variables 

allow the decision maker to learn about the quality of the experts’ distributions and to use this 

information in combining them.  

We evaluate several combination rules (also described as ‘decision makers’). Three 

are linear combinations of the experts’ probability distributions: Cooke’s (1991) performance 

(classical) decision maker (in which the weights depend on the quality of the experts’ 

judgments on seed variables), a simple (equally weighted) average, and a best-expert method 

(in which the expert with the largest weight in the performance method receives weight one 

and the other experts receive weight zero). The other combination rules are a copula method 

(Jouini and Clemen 1996) in which the decision maker updates his (non-informative) prior 

distribution using the experts’ distributions (the name derives from the use of a copula to 

characterize the decision maker’s beliefs about the mutual dependence of the experts’ 

judgments) and a frequentist approach that interprets the experts’ distributions as imperfect 

observations of the variable. In contrast to the linear combinations, the copula and frequentist 

approaches require information about dependence among the experts’ distributions. Because 

this information would generally not be available to a decision maker, it is estimated using 

the experts’ distributions for the seed variables. (An alternative would be to elicit judgments 

about dependence from the experts, Clemen et al. 2000.) 

The combined distributions are evaluated in terms of calibration (consistency of 

distributions with realizations), informativeness (tightness of distributions), and the product 

of these terms. These concepts are defined formally below. 

We model experts’ distributions as if the expert observes the sum of the variable plus 

an expert-specific random error (i.e., the expert observes the variable with noise). Each 

expert’s error terms are normally distributed with mean zero and each expert knows his 

observation-error distribution. An expert’s observation errors are independent across 

variables. Hence each expert’s distribution for a variable is normal with mean equal to the 

value he observes and variance equal to the variance of his individual-specific error.  

In general, experts may differ in quality and in the similarity of their knowledge. 

Quality of experts’ distributions is characterized here by two properties, calibration and 

informativeness. We model experts as perfectly calibrated: their error terms are unbiased 

(mean zero) and each expert knows his own error variance. We consider cases in which 

experts have equal and unequal error variances. In cases where experts have unequal error 
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variances, the expert with smaller variance has higher quality (his distribution is more 

informative).  

The assumption of perfect calibration is strong and in conflict with much empirical 

evidence suggesting that individuals providing probability distributions either in their 

domains of expertise or in areas where they have no special competence (e.g., ‘almanac 

questions’) are often overconfident, providing credible intervals that include the realized 

value much less often than the stated probability (e.g., Morgan and Henrion 1990 report that 

20 to 45 percent of realizations fall outside the stated 98 percent credible intervals). Several 

alternative justifications for the assumption can be offered. First, it provides an idealized 

benchmark case in which to evaluate the performance of different combination rules. In 

contrast, there is an infinity of ways in which experts can be imperfectly calibrated, 

comprising alternative degrees of miscalibration on each of several dimensions (e.g., 

overconfidence, bias, skewness, peakedness, excessively light or heavy tails). In future 

research, it would be useful to explore how results are affected by the extent and 

characteristics of imperfect calibration. 

Second, in some cases experts do appear to be reasonably well calibrated. Winkler 

and Poses (1993) found that physicians’ estimates of the probability that patients admitted to 

an intensive care unit would be discharged alive were reasonably well calibrated, especially 

among primary attending physicians and those with regular intensive care unit experience. 

Despite their lack of prior experience in reporting judgmental survival probabilities, the 

physicians’ performance compares favorably with meteorologists’ assessed probabilities of 

precipitation. In a small study, Walker et al. (2003) found that exposure experts asked to 

predict measured benzene concentrations in EPA Region V were reasonably well-calibrated. 

Lin and Bier (2008) analyzed calibration in 27 expert-judgment studies including 

approximately 200 experts in total, confirming the existence of systematic differences in 

calibration among studies and experts, with some cases suggesting reasonable calibration.  

Third, experts are often provided training in advance of the elicitation to alert them to 

the dangers of reliance on heuristics such as anchoring and adjustment that can lead to 

overconfidence or other forms of imperfect calibration (Tversky and Kahneman 1974, 

Morgan and Henrion 1990). Experts receiving this training may be better calibrated than 

subjects in many of the studies that demonstrate overconfidence.  

Fourth and finally, a decision maker could adjust experts’ distributions for the target 

variable, potentially improving calibration by using information about their performance on 
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seed variables or other factors (Hammitt and Shlyakhter 1999). Our analysis can be 

interpreted as applying to experts’ distributions after these adjustments have been made. 

A critical consideration in aggregating information from multiple experts is the extent 

of dependence among their judgments. If multiple experts provide independent information, 

then an appropriate aggregate can be highly informative (e.g., the average of N independently 

and identically distributed estimates of a quantity has variance N-fold smaller than the 

variance of each estimate). Alternatively, if experts share much of the knowledge relevant to 

estimating a parameter value (e.g., a common scientific literature and disciplinary 

perspective), the information contained in the union of their judgments may be little more 

than that contained in a single expert’s judgment (in effect, each expert may report his 

idiosyncratic perception of a consensus). Clemen and Winkler (1985) provide bounds on the 

number of independent experts whose combined information is equivalent to that of a larger 

number of dependent experts. 

We simulate expert distributions and combinations for a variety of cases defined by 

the covariance matrix of observation errors. We vary the relative quality of the experts and 

the dependence of their information. We report results for two experts and include cases in 

which the experts have equal or unequal error variances and zero, positive, or negative 

dependence among their observation errors for a common variable. The case of positive 

dependence between experts seems most realistic, given that subject-matter experts share 

knowledge, theoretical frameworks, and assumptions about their subject. Kallen and Cooke 

(2002) analyzed dependence among experts’ judgments (by comparing experts’ medians with 

realized values) for 28 expert-judgment studies and found they could reject the hypothesis of 

independence at the 5 percent significance level for about half the studies. They report the 

average correlation between experts in two studies as 0.55 and 0.32. Their analysis also 

suggests heterogeneity of inter-expert correlations. They report the estimated correlation 

matrix for one study with eight experts. The 28 estimated correlation coefficients range from 

0.23 to 0.76; four exceed 0.7 and two are less than 0.3. 

The case of two experts is unrealistic as most studies include about five or ten.
1
 This 

restriction simplifies the study design, analysis, and reporting, as it restricts the degrees of 

                                                 

1
 Cooke and Goosens (2008) describe 45 expert-judgment studies, in which the median 

number of experts is eight and the upper quartile is 11. Hora (2004) provides evidence that 

calibration of distributions obtained by pooling experts judgments increases substantially as 

the number of experts increases to about five, with modest additional improvement as the 

number increases to 10. 
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freedom in the experimental design. With more than two experts the set of possible cases that 

can be studied increases rapidly unless one imposes restrictions on how error variances and 

correlations may differ among experts. In subsequent work, it would be valuable to increase 

the number of experts. 

Combined distributions are evaluated in terms of calibration, informativeness, their 

product (called the ‘combined score’), and by the probabilities that the distribution is superior 

to the distribution produced by each alternative combination rule (i.e., has the larger 

combined score). Simulated experts report distributions for ten seed variables (a quantity 

frequently used in practice; Cooke and Goossens 2008) and one target variable. We replicate 

each expert’s and each decision maker’s distribution for the target variable 30 times in order 

to assess calibration. Without loss of generality, the value of each variable is set to zero (i.e., 

our analysis can be interpreted as studying the difference between the mean of a distribution 

and the value of the variable). 

The simulation proceeds as follows: 

1. Draw random observation errors for each expert for ten seed variables and 30 

replicates of one target variable using the specified covariance matrix. Generate each expert’s 

distributions for seed and target variables as normal with mean equal to the realized 

observation error and variance equal to the expert’s error variance. Using the seed-variable 

distributions, estimate the covariance matrix of experts’ errors (assuming each expert’s error 

has mean zero
 
) and calculate the calibration, informativeness, and combined score of each 

expert. Combine experts’ distributions using performance, copula, frequentist, equal-weight, 

and best-expert combination rules. Evaluate calibration, informativeness, and combined score 

of each decision maker and compare combined scores among all pairs of decision makers. 

2. Replicate step 1 100 times. Calculate the frequency with which each decision 

maker has the largest combined score in each pair-wise comparison. 

3. Replicate step 2 100 times. Calculate deciles of the distribution of the frequency 

with which each decision maker has the larger combined score for each pair-wise 

comparison. Pooling all 10,000 replicates, calculate deciles of calibration, informativeness, 

and combined score for each expert and each decision maker. 

Evaluation Criteria 

Consider the case of N experts indexed by i = 1, 2, …, N. Each expert provides a 

probability distribution for S + T variables, indexed by t. Variables 1, 2, …, S are seed 
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variables and variables S + 1, S + 2, …, S + T are replicates of the target. For a single 

realization of step 1 of the simulation, let it denote the realization of the observation error for 

expert i and variable t. Knowing that his observation error is normal with mean zero and 

variance i
2
, expert i reports that his distribution for variable t is N(it, i

2
). 

Calibration, informativeness, and combined score are defined by Cooke (1991). They 

are properties of a set of one or more distributions, either the distributions provided by an 

expert or a combined distribution. 

Calibration is a measure of the extent to which a distribution accurately portrays the 

frequency distribution of realizations. Divide each distribution into b bins and let pk be the 

probability content of bin k (in our analysis, b = 10 and the bins are divided by the deciles of 

the distribution so pk = 0.1 for k = 1, 2, …, 10). For the target variable, aggregate over the T 

realizations and let sk be the frequency with which bin k includes the value of the variable.
2
 

The calibration score of expert i is defined as the right-tail probability of a 
2
 variable with b 

– 1 degrees of freedom,
3
 

𝐶 = 1 − 𝜒   
 [2𝑇 ∙ ∑ 𝑠 𝑙𝑜𝑔 (

𝑠 

𝑝 
)

 

   

]. (1) 

C is bounded by zero and 1, achieving its maximum in the case of perfect calibration (when 

sk = pk for all k). An expert’s calibration score for the seed variables is calculated similarly, 

letting sk be the frequency with which the values of the seed variables fall in bin k and 

replacing T with S (the number of seeds). 

Informativeness is a measure of the concentration or spread of a distribution. It is 

defined as the relative information of the expert’s distribution compared with a minimal 

information density function. The minimal information density for a variable is taken to be 

uniform on the ‘intrinsic range’ for that variable (defined below).  

Consider an expert’s distribution for variable t with intrinsic range [l, u]. Let f
k
 be the 

kth fractile
4
 of the distribution. Then 

 = [∑ 𝑝 𝑙𝑜𝑔 (
𝑝 

  −     

 − 𝑙

)

 

   

]. (2) 

                                                 

2
 Note that if sk = 0, the value of the corresponding term in the summation of equation (1) is 

zero. 
3
 The term in brackets is asymptotically distributed 

2
 in the number of variables T. 

4
 Let f

0
 = l and f

b
 = u. 
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I takes its minimum value of 0 if the distribution is uniform on the intrinsic range. Its value 

increases as the difference between some pairs of adjacent fractiles becomes smaller, yielding 

a more spiked distribution. 

The intrinsic range [l, u] for each variable is defined by applying the ‘10 percent 

overshoot’ rule to the data (Cooke and Goossens 2008). It is constructed as follows for 

variable t: (1) Let li and ui be expert i’s 0.05 and 0.95 fractiles. (2) Let l0 = mini {li, } and u0 

= maxi {ui } where  is the value of variable t. (3) Define l = l0 – 0.1 (u0 – l0) and u = u0 + 

0.1 (u0 – l0). In words, the intrinsic range is defined by the smallest 0.05 fractile and largest 

0.95 fractile (or the value of the variable when it is not contained by these extreme fractiles), 

extended in each direction by 10 percent of the difference between them. 

The combined score is a summary measure of the quality of a set of one or more 

distributions. It is defined as the product of the calibration and mean (over multiple variables) 

information score. 

Combination rules 

The combined distributions for the target variable (i.e., ‘decision makers’) are defined 

as follows. The equal-weight decision maker is the simple average of the experts’ 

distributions for the target variable. The best-expert decision maker is the target-variable 

distribution provided by the expert having the largest combined score (calculated over the 

seed variables) among all experts.  

The performance decision maker (Cooke 1991) is a weighted average of the 

distributions of the experts. The weights are proportional to the experts’ combined scores 

(calculated over the seed variables) except that experts’ whose calibration score falls below a 

cut-off  receive weight zero. Positive weights are normalized to sum to unity. The value of 

 is determined by maximizing the average combined score of the combined distributions for 

the seed variables. 

The frequentist decision maker combines distributions by treating each expert as 

providing an observation of the target variable plus random error. The frequentist decision 

maker is normal with mean equal to the inverse-variance weighted average of the experts’ 

means  

 =
𝑠  𝑠

𝑠 𝑠
 (3) 

and variance
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 =
𝑠  𝑠

𝑠  𝑠
 (4) 

where s is a column vector with si = 1/i, M is a diagonal matrix with Mii = i, R is a matrix 

with Rij = corr(i, j), V is a matrix with Vij = 1/(i j), and prime denotes transpose. The 

elements of s, R and V are estimated from the experts’ seed-variable distributions under the 

assumptions that each expert’s error terms are normally distributed, independent across 

variables, have mean zero, constant variance, and that the correlation coefficient between 

experts’ error terms for a variable is common for all variables and all pairs of experts. For the 

simulated expert-judgment data, all these assumptions are correct. 

 The copula decision maker (Jouini and Clemen 1996) is motivated by Bayes’ rule. 

Under this approach, the decision maker is taken to have a non-informative prior distribution 

for the target variable that he updates taking the experts’ distributions as data. Hence the 

copula decision maker is proportional to the likelihood of the experts’ judgments, 

 ( |       )   [1 −   ( )   1 −   ( )]∏  ( )

 

   

 (5) 

where P is the copula decision makers’ density function for the target variable , hi() and 

Hi() are expert i’s density and cumulative distributions for , and c[·] is the copula function 

that encapsulates the decision maker’s information about the dependence among experts’ 

observation errors. We adopt the multivariate normal copula  

 [ ] =
  𝑝[−  (   −  )  2]

√| |
 (6) 

where y is a vector with elements yi = 1 – Hi(), R is the correlation matrix estimated from 

the experts’ judgments of the seed variables (identical to the matrix used by the frequentist 

decision maker), and I is the identity matrix. It can be shown that the frequentist and copula 

decision makers are identical when the experts are independent or have equal variances (i all 

equal).
5
  

Because the copula decision maker’s density function is proportional to the joint 

likelihood of the experts’ densities, it exhibits a strong form of the ‘zero-preservation 

property’: if any expert assigns probability zero to some range of values of , then the copula 

decision maker also assigns probability zero to those values (Cooke 1991). Conversely, the 

                                                 

5
 Note that when both conditions are assumed to hold, R = I, and so c[y] = 1 (equation (6)) 

and the copula (and frequentist) decision makers’ density functions are equal to the product 

of the experts’ densities. 
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copula decision maker tends to concentrate probability on values to which all experts assign 

significant probability (see Hammitt and Shlyakhter 1999 and Kallen and Cooke 2002 for 

examples). In contrast, linear-opinion pools like the equal-weight and performance decision 

makers tend to spread probability over all values to which at least some experts assign 

significant probability. 

3. Results 

Simulations are reported for a panel of two experts and for six covariance matrices. 

The covariance matrices provide cases in which the experts have equal or unequal error 

variances and error terms that are independent, positively, or negatively dependent (with 

correlation coefficient of 0, 1/2, and -1/2, respectively).
6
 

Simple descriptive statistics (the mean and variance) of the combined distributions are 

reported in the two panels of Table 1. Columns correspond to the six covariance matrices 

(reported at the head of each column). Within each cell, the first number is the sample mean 

and the numbers in parentheses are the interquartile range from the simulation. For all 

decision makers and across all covariance matrices, the mean averages very nearly zero (its 

true value); the largest absolute deviation is 0.004. The variability of the mean (as 

characterized by its interquartile range) varies across covariance matrices. The means for the 

copula and frequentist decision makers tend to be among the least variable and those for the 

performance and best-expert decision makers among the most variable. This pattern is 

stronger when the experts’ errors are negatively correlated (columns C and F); when errors 

are positively correlated (columns B and E), there is little difference in variability of the mean 

across decision makers. Finally, the equal-weight decision maker has the least-variable mean 

when the experts have equal error variances but among the most-variable means when they 

have unequal variances. 

Across covariance matrices, the variance of the combined distribution is smallest (on 

average) for the copula and frequentist decision makers and largest for the equal-weight 

decision maker. The variance of the combined distribution is larger (smaller) when the expert 

errors are positively (negatively) correlated than when they are uncorrelated, except for the 

best-expert decision maker when the experts have equal error variances (for which the 

variance of the combined distribution is necessarily one). The variance is of course larger 

                                                 

6
 The value of 1/2 is compatible with the values (0.55 and 0.32) that Kallen and Cooke (2002) 

estimate for the two expert-judgment studies they report. 
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when the experts have unequal variances (1 and 4) than when they both have variance one. 

The distribution of the variance is right-skewed, with mean values greater than or equal to the 

third-quartile in 8 of the 20 cells shown in Table 1. 

Performance characteristics of the combined distributions are summarized in Table 2. 

The three panels report the calibration, informativeness, and combined score for each 

decision maker as a function of the covariance matrix of the experts’ errors.  

With regard to calibration, the copula and frequentist decision makers are very similar 

and the performance decision maker is somewhat better. The best-expert decision maker is 

always better calibrated than the others and the equal-weight decision maker is substantially 

more poorly calibrated than any of the others. The superiority of the best-expert to the 

performance and equal-weight decision makers is anticipated from Hora’s (2004) proof that a 

linear combination of well-calibrated experts must be less well calibrated than the experts 

themselves (unless their judgments are identical). For the performance and equal-weight 

decision makers, calibration is substantially better when the experts’ errors are positively 

correlated (columns B and E) than when they are independent or negatively correlated. The 

equal-weight decision maker is very poorly calibrated when the experts’ errors are negatively 

correlated. Calibration of the other decision makers does not vary much across error 

distributions. 

In terms of informativeness, the copula and frequentist decision makers are very 

similar and are more informative than any of the others. The best-expert tends to be the next 

most informative followed by the performance decision maker. The equal-weight decision 

maker is uniformly the least informative. This pattern is expected because the copula and 

frequentist approaches tend to concentrate probability while the linear combinations spread it. 

Informativeness of the copula and frequentist decision makers is highly sensitive to the error 

distribution. These decision makers are more informative when the experts’ errors are 

negatively correlated and less informative when the experts’ errors are positively correlated. 

When the experts have equal error variances, the performance and best-expert decision 

makers are more informative when the experts are negatively correlated and less informative 

when they are positively correlated; the dependence on correlation is less evident when the 

experts have unequal error variances. For all decision makers, information is larger when the 

experts have unequal rather than equal error variances, which reflects the fact that the 

intrinsic range (against which information is calculated) is larger in this case (holding 
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dependence constant, variance of the combined distribution is always larger when the experts 

have unequal rather than equal variances, see Table 1). 

The copula and frequentist decision makers have similar combined scores that are 

larger than those of the other decision makers. These are followed by the best-expert then the 

performance decision maker. The equal-weight decision maker has uniformly the smallest 

combined score. With the exception of the equal-weight decision maker, the other decision 

makers tend to have larger combined scores when the experts are negatively rather than 

positively correlated and when the experts have unequal rather than equal variances. 

Results of the pair-wise comparisons of decision makers are reported in Table 3. The 

six panels correspond to the covariance matrices in the corresponding columns of Table 2. 

The number in each cell is the estimated probability that the row decision maker is superior to 

the column decision maker (i.e., has the larger combined score). Asterisks indicate that the 

estimated probability is significantly different from 50 percent at the 5 percent level.  

Over all covariance patterns, the copula and frequentist decision makers perform 

similarly. Their results are generally equal or superior to those of the performance, equal-

weight, and best-expert decision makers. In cases where their performance differs 

significantly, the copula decision maker outperforms the frequentist decision maker (panels A 

and C, with equal variance and independent or negatively dependent expert errors). Although 

the copula and frequentist decision makers are identical when the experts’ errors are assumed 

to be independent or to have equal variance (as noted above), the simulated decision makers 

use estimates of the covariance matrix (calculated from the seed variables) and hence are not 

identical in panels A, B, C, and D.  

The equal-weight decision maker is substantially inferior to the alternative 

combination rules. Its probability of being superior to an alternative decision maker is about 

30 percent in the cases with positive dependence among the experts’ errors (panels B and E) 

and less than about 10 percent in all other cases.  

The best-expert decision maker performs well against the performance and equal-

weight decision makers. Its probability of providing the better distribution is always about 80 

percent or larger. Its advantage is smallest in cases with positive dependence among the 

experts’ errors (panels B and E). The best-expert decision maker is comparable to the copula 

and frequentist decision makers. It performs significantly worse than these alternatives in 

panel C (equal variance, negative dependence of experts’ errors) and somewhat better in 

panel E (unequal variance, positive dependence). 
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The performance decision maker is superior to the equal-weight, and inferior to the 

best-expert, decision maker for all six covariance matrices. It is comparable to the copula and 

frequentist decision makers when the experts’ errors are positively dependent (panels B and 

E) but inferior for other cases. As noted above, positive dependence seems likely to be the 

most realistic case. 

Comparison with empirical and other studies 

Our analysis of the comparative performance of five combination methods using 

synthetic expert-judgment data complements prior studies that have compared a smaller 

number of combination methods using data collected in real expert-judgment studies. Cooke 

and Goossens (2008) compare the performance, equal-weight, and best-expert combination 

rules using 45 expert-judgment studies that include multiple seed variables and encompass a 

wide variety of topics. Evaluating the performance of the three decision makers using the 

combined score calculated on the full set of seed variables for each study, they find that the 

performance decision maker is better than both equal-weight and best-expert decision makers 

in 27 of 45 cases. In an additional 15 cases, the performance decision maker and best expert 

coincide (i.e., the performance decision maker puts unit weight on a single expert) and have a 

higher combined score than the equal-weight decision maker. The equal-weight decision 

maker is best in only one case and better than the best-expert in 18 cases. The best-expert 

decision maker is best in two cases. Overall, they find the equal-weight decision maker is 

slightly less well calibrated and significantly less informative than the performance decision 

maker.  

In response to Clemen’s (2008) observation that performance should be tested out of 

sample (i.e., on variables other than those used to estimate the weights for the performance 

decision maker), Cooke (2008) reports a follow-on comparison of performance and equal-

weight decision makers in which weights for the performance decision maker are calculated 

using half the seed variables in a study and performance is evaluated using the other half of 

the seed variables for each study. This analysis is restricted to 13 studies having at least 16 

seed variables and yields 26 comparisons (using each half of the seed variables alternatively 

to estimate weights and to evaluate combination rules). In this out-of-sample comparison, the 

performance decision maker has a larger combined score than the equal-weight decision 

maker in 20 of 26 cases (results for the best-expert are not reported).  
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Using a subset of the Cooke and Goosens (2008) data, Lin and Cheng (2009) conduct 

a cross-validation exercise in which each seed variable is used in sequence as the target and 

the performance and best-expert decision makers are identified using the remaining seeds. 

They find that performance and equal-weight methods perform similarly, with the 

performance decision maker and equal-weight decision maker having the largest average 

combined scores for 16 and 17 cases out of 40, respectively. The best expert has the largest 

average combined score for 8 cases (for one cases the performance decision maker and best 

expert coincide). 

Flandoli et al. (2011) use data from five expert-judgment studies. For each study, they 

treat 70 percent of the seed variables as seeds and the remaining 30 percent as targets. 

Averaging over all possible splits between seeds and targets, they find the performance 

decision maker has a higher combined score for three datasets and the equal-weight decision 

maker has a higher combined score for two. 

Kallen and Cooke (2002) provide the only study of which we are aware that compares 

copula and performance decision makers using field data. In contrast to the present study, 

they use Frank’s copula (as originally suggested by Jouini and Clemen 1996). They use data 

from two expert-judgment studies to compare the copula, performance, equal-weight, and 

best-expert decision makers. In both cases, the copula decision maker has the smallest 

calibration and highest information. Its combined score is the smallest in one case and second 

smallest in the other (slightly exceeding the combined score of the equal-weight decision 

maker). They observe that Frank’s copula can lead to numerical instability and suggest that 

use of a multivariate normal copula (as suggested by Clemen and Reilly 1999 and used here) 

may improve performance. 

Hora (2010) provides an analytic approach to evaluate performance of combination 

rules and illustrates its application to equal-weight and geometric combinations of experts’ 

distributions that are normal, independent or positively dependent, and perfectly or 

imperfectly calibrated. He finds that geometric combination (like the copula and frequentist 

measures) performs best when experts are independent and well calibrated but its 

performance deteriorates compared with the equal-weight combination as (positive) 

dependence increases or expert calibration decreases. Consistent with the present study, he 

also finds that geometric combinations tend to have lower variance (higher informativeness) 

than the equal-weight combination. 
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Our results using synthetic data are consistent with most of the studies using field data 

in finding that the equal-weight decision maker performs worse than alternatives. In contrast, 

in our analysis the best-expert decision maker outperforms the performance decision maker, 

with probabilities of having a higher combined score exceeding 80 percent for all six 

covariance matrices. In the analyses using field data, the best-expert is usually inferior to 

performance and equal-weight decision makers. The difference may be explained by the use 

of perfectly calibrated experts in the synthetic data. As shown by Hora (2004), a linear 

combination of well-calibrated experts is necessarily less well calibrated than the individual 

experts; hence the best synthetic expert compares well with both performance- and equal-

weight decision makers. Human experts are often not well calibrated and so a linear 

combination can improve calibration and potentially overall performance.  

4. Conclusion 

Evaluation of alternative combination rules for experts’ judgments, using simulation 

methods so that the process generating the experts’ distributions is known and its properties 

can be experimentally varied, can contribute to understanding the properties of methods for 

combining judgments and have implications for the choice of method for application. We 

simulate what may be considered a best case for expert judgment in which the experts are 

perfectly calibrated. In subsequent work, it would be useful to compare combination rules 

using more realistic synthetic data where the experts are not perfectly calibrated and to 

determine how the type of miscalibration (e.g., overconfidence, bias, excessively light tails) 

influences the performance of alternative combination rules. In addition, future studies should 

explore how relative performance of the combination rules depends on the number of experts. 

We evaluate five combination rules in six contexts characterized by equal or unequal 

quality of the experts (as represented by the variance of their error terms) and by positive, 

negative, or zero dependence among their judgments. With the exception of the equal-weight 

combination rule, all of the other rules require information on experts’ quality that can be 

obtained by evaluating their judgments on seed variables (under the maintained assumption 

that expert performance on the seed variables is predictive of their performance on the 

target). Among these combination rules, we find that the copula, frequentist, and best-expert 

approaches generally perform better than the performance combination method. Across all 

cases considered, the equal-weight combination rule, which is the approach most often 

applied in practice, is clearly worst. It should be noted that the performance deficit of the 
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equal-weight combination rule is smaller when experts’ error terms are positively correlated 

(rather than independent or negatively correlated), a condition that seems likely to obtain in 

practice.  

The copula and frequentist decision makers may not perform as well relative to other 

combination methods in cases with more, or less well-calibrated, experts. The copula 

decision maker concentrates probability on values to which all experts assign significant 

probability and very little probability to values to which any expert assigns small probability 

(including zero to regions to which any expert assigns zero probability). This contributes to 

its higher informativeness than other combination methods (consistent with Kallen and 

Cooke 2002 and Hora 2004). With more experts, or with less well-calibrated experts, it is 

more likely that some expert will assign very small probability to values the other experts 

judge plausible, making these combination rules highly sensitive to the set of experts that are 

included. For example, a copula combination of 16 experts’ judgments on climate sensitivity 

to greenhouse gases (Morgan and Keith 1995) is extremely sensitive to whether a particular 

expert is included or excluded while the equal-weight combination is only slightly affected 

by this choice (Hammitt and Shlyakhter 1999).
7
 In general, the equal-weight combination is 

likely to be the least sensitive of the combination methods considered to variation in the 

experts who are initially selected.  

Overall, our results suggest that expert-judgment studies should use one or more of 

the alternative methods as a substitute, or at least a complement, to the equal-weight 

combination. To do so, studies must elicit experts’ judgments on seed variables that can be 

used to evaluate their performance, individually (for the performance and best-expert 

decision makers) or jointly (for the copula and frequentist decision makers).  

                                                 

7
 This expert provided a very tight distribution with its support entirely outside the other 

experts’ inter-quartile ranges. 
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Table 1. Means and variances of combined distributions (mean and interquartile range) 

Column label A B C D E F 

Covariance 

matrix of 

experts’ errors 

[
1  
 1

] [
1 1 2⁄

1 2⁄ 1
] [

1 −1 2⁄

−1 2⁄ 1
] [

1  
  

] [
1 1
1  

] [
1 −1

−1  
] 

Mean 

 Performance 0.003 

(-.114, 0.116) 

0.000 

(-0.119, 0.120) 

-0.001 

(-0.110, 0.108) 

-0.001 

(-0.137, 0.134) 

0.003 

(-0.137, 0.142) 

-0.001 

(-0.138, 0.136) 

 Copula 0.003 

(-0.087, 0.092) 

0.001 

(-0.112, 0.113) 

0.000 

(-0.065, 0.066) 

-0.001 

(-0.116, 0.117) 

0.002 

(-0.127, 0.131) 

-0.000 

(-0.086, 0.084) 

 Frequentist 0.003 

(-0.087, 0.092)  

0.001 

(-0.107, 0.109) 

0.000 

(-0.068, 0.068) 

-0.001 

(-0.115, 0.114) 

0.002 

(-0.132, 0.134) 

0.000 

(-0.089, 0.089) 

 Equal weight 0.002 

(-0.085, 0.085) 

0.001 

(-0.106, 0.108) 

0.000 

(-0.061, 0.062) 

-0.001 

(-0.140, 0.140) 

0.003 

(-0.160, 0.166) 

-0.001 

(-0.110, 0.108) 

 Best expert 0.003 

(-0.122, 0.124) 

0.000 

(-0.122, 0.124) 

-0.001 

(-0.125, 0.121) 

0.002 

(-0.128, 0.132) 

0.004 

(-0.126, 0.131) 

0.001 

(-0.130, 0.131) 

Variance 

 Performance 1.088 

(1, 1) 

1.059 

(1, 1.109) 

1.113 

(1, 1) 

2.286 

(1, 3.676) 

1.989 

(1, 2.544) 

2.524 

(1, 4) 

 Copula 0.451 

(0.295, 0.571) 

0.673 

(0.447, 0.845) 

0.227 

(0.149, 0.227) 

0.717 

(0.467, 0.912) 

0.904 

(0.593, 1.144) 

0.386 

(0.253, 0.489) 

 Frequentist 0.455 

(0.297, 0.576) 

0.698 

(0.464, 0.878) 

0.233 

(0.156, 0.291) 

0.746 

(0.487, 0.746) 

1.086 

(0.702, 1.385) 

0.441 

(0.318, 0.537) 

 Equal weight 1.499 

(1.406, 1.579) 

1.250 

(1.203, 1.289) 

1.754 

(1.615, 1.875) 

3.751 

(3.520, 3.954) 

3.523 

(3.114, 3.373) 

4.246 

(3.931, 4.510) 

 Best expert 1 

(1, 1) 

1 

(1, 1) 

1 

(1, 1) 

1.285 

(1, 1) 

1.214 

(1, 1) 

1.317 

(1, 1) 
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Table 2. Performance characteristics of combined distributions (mean and interquartile range) 

Column label A B C D E F 

Covariance 

matrix of 

experts’ errors 

[
1  
 1

] [
1 1 2⁄

1 2⁄ 1
] [

1 −1 2⁄

−1 2⁄ 1
] [

1  
  

] [
1 1
1  

] [
1 −1

−1  
] 

Calibration 

 Performance 0.382 

(0.094, 0.633) 

0.420 

(0.151, 0.675) 

0.380 

(0.073, 0.647) 

0.342 

(0.073, 0.577) 

0.412 

(0.141, 0.671) 

0.345 

(0.042, 0.618) 

 Copula 0.326 

(0.055, 0.556) 

0.320 

(0.052, 0.539) 

0.325 

(0.055, 0.556) 

0.317 

(0.050, 0.525) 

0.324 

(0.055, 0.558) 

0.320 

(0.053, 0.525) 

 Frequentist 0.327 

(0.055, 0.562) 

0.336 

(0.066, 0.566) 

0.316 

(0.047, 0.539) 

0.330 

(0.059, 0.563 

0.339 

(0.072, 0.577) 

0.345 

(0.077, 0.577) 

 Equal weight 0.068 

(0.003, 0.073) 

0.309 

(0.067, 0.511) 

0.001* 

(0.000, 0.000) 

0.067 

(0.003, 0.069) 

0.306 

(0.073, 0.500) 

0.001* 

(0.000, 0.000) 

 Best expert 0.447 

(0.179, 0.726) 

0.451 

(0.182, 0.726) 

0.446 

(0.175, 0.726) 

0.442 

(0.173, 0.703) 

0.448 

(0.179, 0.703) 

0.443 

(0.175, 0.703) 

Informativeness 

 Performance 0.223 

(0.212, 0.256) 

0.180 

(0.158, 0.204) 

0.257 

(0.248, 0.295) 

0.403 

(0.217, 0.578) 

0.410 

(0.329, 0.549) 

0.393 

(0.148, 0.604) 

 Copula 0.533 

(0.401, 0.641) 

0.355 

(0.239, 0.446) 

0.817 

(0.686, 0.930) 

0.737 

(0.605, 0.850) 

0.654 

(0.522, 0.761) 

0.983 

(0.850, 1.098) 

 Frequentist 0.529 

(0.406, 0.637) 

0.339 

(0.223, 0.432) 

0.803 

(0.681, 0.914) 

0.718 

(0.591, 0.833) 

0.563 

(0.432, 0.672) 

0.921 

(0.818, 1.016) 

 Equal weight 0.121 

(0.118, 0.124) 

0.124 

(0.121, 0.126) 

0.119 

(0.116, 0.122) 

0.199 

(0.194, 0.204) 

0.210 

(0.206, 0.214) 

0.192 

(0.188, 0.197) 

 Best expert 0.245 

(0.230, 0.260) 

0.198 

(0.189, 0.209) 

0.281 

(0.263, 0.299) 

0.544 

(0.569, 0.600) 

0.524 

(0.543, 0.565) 

0.565 

(0.592, 0.627) 
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Combined score 

 Performance 0.092 

(0.019, 0.156) 

0.077 

(0.026, 0.122) 

0.106 

(0.020, 0.182) 

0.143 

(0.022, 0.221) 

0.171 

(0.044, 0.280) 

0.134 

(0.014, 0.174) 

 Copula 0.158 

(0.027, 0.261) 

0.098 

(0.016, 0.155) 

0.249 

(0.043, 0.413) 

0.217 

(0.036, 0.364) 

0.196 

(0.034, 0.326) 

0.298 

(0.051, 0.498) 

 Frequentist 0.158 

(0.027, 0.262) 

0.102 

(0.019, 0.161) 

0.238 

(0.036, 0.402) 

0.225 

(0.042, 0.375) 

0.180 

(0.036, 0.294) 

0.308 

(0.069, 0.512) 

 Equal weight 0.008 

(0.000, 0.009) 

0.038 

(0.008, 0.063) 

0.000* 

(0.000, 0.000) 

0.013 

(0.001, 0.014) 

0.064 

(0.015, 0.104) 

0.000* 

(0.000, 0.000) 

 Best expert 0.110 

(0.043, 0.173) 

0.089 

(0.036, 0.139) 

0.125 

(0.048, 0.198) 

0.214 

(0.077, 0.394) 

0.243 

(0.079, 0.381) 

0.249 

(0.082, 0.407) 

Note: For equal-weight decision maker, mean is outside interquartile range in cells marked with *. Column C: max cal = 0.343, max 

weight = 0.039; column F: max cal = 0.219, max weight = 0.045. 
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Table 3. Probability that row decision maker is superior to column decision maker  

(* indicates significantly different from 50 percent at 5 percent significance level) 

A. Equal variance, independence 

 Copula Frequentist Performance Best expert Equal weight 

Copula - 60* 61* 55 89* 

Frequentist 40* - 61* 55 90* 

Performance 39* 39* - 2* 86* 

Best expert 45 45 98* - 95* 

Equal weight 11* 10* 14* 5* - 

B. Equal variance, positive dependence 

 Copula Frequentist Performance Best expert Equal weight 

Copula - 56 52 47 68* 

Frequentist 44 - 53 49 71* 

Performance 48 47 - 7* 71* 

Best expert 53 51 93* - 77* 

Equal weight 32* 29* 29* 23* - 

C. Equal variance, negative dependence 

 Copula Frequentist Performance Best expert Equal weight 

Copula - 58* 67* 62* 98* 

Frequentist 42* - 66* 60* 98* 

Performance 33* 34* - 0* 90* 

Best expert 38* 40* 100* - 99* 

Equal weight 2* 2* 10* 1* - 

D. Unequal variance, independence 

 Copula Frequentist Performance Best expert Equal weight 

Copula - 48 60* 43 89* 

Frequentist 52 - 62* 45 90* 

Performance 40* 38* - 10* 89* 

Best expert 57 55 90* - 95* 

Equal weight 11* 10* 11* 5* - 

E. Unequal variance, positive dependence 

 Copula Frequentist Performance Best expert Equal weight 

Copula - 53 51 40 71* 

Frequentist 47 - 50 38* 72* 

Performance 49 50 - 17* 75* 

Best expert 60 62* 83* - 83* 

Equal weight 29* 28* 25* 17* - 

F. Unequal variance, negative dependence 

 Copula Frequentist Performance Best expert Equal weight 

Copula - 48 67* 51 98* 

Frequentist 52 - 70 54 99* 

Performance 33* 30 - 6* 99* 

Best expert 49 46 94* - 100* 

Equal weight 2* 1* 1* 0* - 

 


