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†GREMAQ-IDEI, Université de Toulouse 1, Manufacture des Tabacs, 21, Allée de Brienne, 31000
Toulouse, France and Europlace Institute of Finance, 39-41 rue Cambon, 75001 Paris, France.
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1 Introduction

Research on optimal dividend payouts for a cash constrained firm is based on the premise

that the firm wants to pay some of its surplus to the shareholders as dividends and there-

fore follows a dividend policy that maximizes expected present value of all payouts until

bankruptcy. This approach has been in particular used to determine the market value of a

firm which, in line with Modigliani and Miller [23], is defined as the present value of the sum

of future dividends. In diffusion models, the optimal dividend policy can be determined as

the solution of a singular stochastic control problem. In two influential papers, Jeanblanc

and Shiryaev [18] and Radner and Shepp [26] assume that the firm exploits a technology

defined by a cash generating process that follows a drifted Brownian motion. They show

that the optimal dividend policy is characterized by a threshold so that whenever the cash

reserve goes above this threshold, the excess is paid out as dividend.

Models that involve singular stochastic controls or mixed singular/regular stochastic con-

trols are now widely used in Mathematical Finance. Recent contributions have for instance

emphasized restrictions imposed by a regulatory agency (Paulsen [25]), the interplay between

dividend and risk policies (Højgaard and Taksar [14], Asmussen, Højgaard and Taksar [1],

Choulli, Taksar and Zhou [3]), or the analysis of hedging and insurance decisions (Rochet

and Villeneuve [27]). A new class of models that combine features of both regular stochas-

tic control and optimal stopping have recently emerged. Two recent papers in this line

are Miao and Wang [22], who study the interactions between investment and consumption

under incomplete markets and Hugonnier, Morellec and Sundaresan [16], who focus on irre-

versible investment for a representative agent in a general equilibrium framework. From a

mathematical viewpoint, the problem we are interested in is different and combines features

of both singular stochastic control and optimal stopping. Such models are less usual in

corporate finance and, to the best of our knowledge, only Guo and Pham [13] dealt with

such an issue. These authors consider a firm having to choose the optimal time to activate

production and then control it by buying or selling capital. Their problem can be solved in

a two-step formulation which consists in solving the singular control problem arising from

the production activity after the exercise of the investment option.

The novelty of our paper is to consider the interaction between dividends and investment

as a singular control problem. Specifically, we consider a firm with a technology in place

and a growth option. The growth option offers the firm the opportunity to invest in a

new technology that increases its profit rate. The firm has no access to external funding

and therefore finances the opportunity cost of the growth option on its cash reserve. Our

objective is then to study the interactions between dividend policy and investment decisions.

Such an objective leads us to deal with a mixed singular control/optimal stopping problem

that we solve establishing connection with an optimal stopping problem. Precisely, let

us consider the two following alternative strategies, (i) never invest in the growth option

(and follow the associated optimal dividend policy), (ii) defer dividend distributions, invest

optimally in the growth option (and follow the associated optimal dividend policy). We show
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that the firm value under the optimal dividend/investment policy, coincides with the value

function of the optimal stopping problem whose payoff function is the maximum between

the values of the firm computed under the above strategies (i) and (ii). The equivalence

between the mixed singular control/optimal stopping problem and the stopping problem

is proved in our main theorem and is founded on a verification procedure for stochastic

control. We compute quasi-explicitly the value function and show that it is piecewise C2

and not necessarily concave as in standard singular control problems. Furthermore, from

a detailed analysis based on properties of local time, we construct explicitly the optimal

dividend/investment policy. Our model allows us to address several important questions

in corporate finance. We explain when it is optimal to postpone dividend distribution, to

accumulate cash and to invest at a subsequent date in the growth option. We analyse the

effects of cash flow and uncertainty shocks on dividend policy and investment decision. We

study the effects of financing constraints on dividend policy and investment decision with

respect to a situation where the firm has unlimited cash.

Finally, our work helps to bridge the gap between the literature on optimal dividend

payouts and the now well established real option literature. The real option literature

analyses optimal investment policy that can be mathematically determined as the solution

of an optimal stopping problem. The original model is due to McDonald and Siegel [21] and

has been extended in various ways by many authors1. An important assumption of standard

models is that the investment decision can be made independently of the financing decision.

In contrast, in our paper, two inter-related features drive our investment problem. First,

the firm is cash constrained and must finance the investment using its cash reserve. Second,

the firm must decide its dividend distribution policy in view of its growth opportunity. Such

a perspective can be related to Boyle and Guthrie [2] who analyse, in a numerical model,

dynamic investment decision of a firm submitted to cash constraints. Two state variables

drive their model: the cash process and a project value process for which the decision

maker has to pay a fixed amount. Boyle and Guthrie [2] do not consider however dividend

distribution policy.

The outline of the paper is as follows. Section 2 describes the model, analyses some useful

benchmarks, provides a formulation of our problem based on the dynamic programming prin-

ciple, and derives a necessary and sufficient condition for the growth option being worthless.

Section 3 states and proves our main Theorem, derives the optimal dividend/investment

policy and present financial implications. Section 4 concludes.

1See for instance Dixit and Pindyck [9] for an overview of this literature. Recent developments include
for example the impact of asymmetric information in a duopoly model (Lambrecht and Perraudin [20],
Décamps and Mariotti [5]), the impact of agency conflicts and information asymmetries (Grenadier and
Wang [11]), regime switchs (Guo, Miao and Morellec [12]), learning (Décamps, Mariotti and Villeneuve
[6]), incomplete markets and risk aversion (Henderson [15], Hugonnier and Morellec [17]), or investment in
alternative projects (Décamps, Mariotti and Villeneuve [7]).
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2 The model

2.1 Formulation of the problem

We consider a firm whose activities generate a cash process. The firm faces liquidity con-

straints that cause bankruptcy as soon as the cash process reaches the threshold 0. The

manager of the firm acts in the best interest of its shareholders and maximizes the expected

present value of dividends up to bankruptcy. At any time the firm has the option to in-

vest in a new technology that increases the drift of the cash generating process from µ0

to µ1 > µ0 without affecting its volatility σ. This growth opportunity requires a fixed in-

vestment cost I that must be financed using the cash reserve. Our purpose is to study the

optimal dividend/investment policy of such a firm.

The mathematical formulation of our problem is as follows. We start with a probability

space (Ω,F ,P), a filtration (Ft)t≥0 and a Brownian Motion W = (Wt)t≥0 with respect to

Ft. In the sequel, Z denotes the set of positive non-decreasing right continuous processes

and T , the set of Ft-adapted stopping times. A control policy π = (Zπ
t , τπ; t ≥ 0) modelizes

a dividend/investment policy and is said to be admissible if Zπ
t belongs to Z and if τπ

belongs to T . We denote the set of all admissible controls by Π. The control component

Zπ
t therefore corresponds to the total amount of dividends paid out by the firm up to time

t and the control component τπ represents the investment time in the growth opportunity.

A given control policy (Zπ
t , τπ; t ≥ 0) fully characterizes the associated investment process

(Iπ
t )t≥0 which belongs to Z and is defined by relation It = I11t≥τπ . We denote by Xπ

t the

cash reserve of the firm at time t under a control policy π = (Zπ
t , τπ; t ≥ 0). The dynamic

of the cash process Xπ
t satisfies

dXπ
t = (µ011t<τπ + µ111t≥τπ)dt + σdWt − dZπ

t − dIπ
t , Xπ

0− = x.

Remark that, at the investment time τπ, the cash process jumps for an amount of (∆Xπ)τπ ≡
Xπ

τπ − Xπ
τπ− = −I − (Zπ

τπ − Zπ
τπ−). This reflects the fact that we do not exclude a priori

strategies that distribute some dividend at the investment time τπ. For a given admissible

control π, we define the time of bankruptcy by

τπ
0 = inf{t ≥ 0 : Xπ

t ≤ 0},

and the firm value Vπ by

Vπ(x) = Ex

[∫ τπ
0

0

e−rsdZπ
s

]
.

The objective is to find the optimal return function which is defined as

V (x) = sup
π∈Π

Vπ(x), (2.1)

and the optimal policy π? such that

Vπ?(x) = V (x).
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We thus consider in this paper the interaction between dividends and investment as a

mixed singular control/optimal stopping problem. Our main Theorem shows that problem

(2.1) can be reduced to a stopping problem that we solve quasi explicitly.

2.2 Benchmarks

Assume for the moment that the firm has only access to one of the two technologies (say,

technology i = 0 for drift µ0 and technology i = 1 for drift µ1). The cash process

Xi = (Xi,t)t≥0 therefore satisfies

dXi,t = µidt + σdWt − dZi,t.

The firm value Vi,t at time t is defined by the standard singular control problem:

Vi,t = ess sup
Zi∈Z

Ex

[∫ τi,0

t∧τi,0

e−r(s−t∧τi,0)dZi,s|Ft∧τi,0

]
, (2.2)

where τi,0 = inf{t : Xi,t ≤ 0} is the time of bankruptcy. This is the standard model of

optimal dividend proposed by Jeanblanc and Shiryaev [18] or Radner and Shepp [26]. It

follows from these papers that the firm value satisfies Vi,t = Vi(Xi,t∧τi,0
) where

Vi(x) = sup
Zi∈Z

Ex

[∫ τi,0

0

e−rsdZi,s

]
. (2.3)

Moreover, there exists a threshold xi such that the optimal dividend policy solution of

problem (2.3) is the local time Lxi(µi, W ) defined by the increasing process

Lxi
t (µi,W ) = max

[
0, max

0≤s≤t
(µis + σWs − xi)

]
.

Computations are explicit and give

Vi(x) = Ex

[∫ τi,0

0

e−rsdLxi
s (µi, W )

]
=

fi(x)

f ′i(xi)
0 ≤ x ≤ xi, (2.4)

with

fi(x) = eα+
i x − eα−i x and xi =

1

α+
i − α−i

ln

(
α−i

)2

(
α+

i

)2 , (2.5)

where α−i < 0 < α+
i are the roots of the characteristic equation

µix +
1

2
σ2x2 − r = 0.

If the firm starts with cash reserves x above xi, the optimal dividend policy distributes

immediately the amount (x − xi) as exceptional dividend and then follows the dividend

policy defined by the local time Lxi(µi,W ). Thus, for x ≥ xi,

Vi(x) = x− xi + Vi(xi), (2.6)
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where

Vi(xi) = Exi

[∫ τi,0

0

e−rsdLxi
s (µi,W )

]
=

µi

r
.

It is worth noting that the function fi defined on [0,∞) is non negative, increasing, con-

cave on [0, xi], convex on [xi,∞) and satisfies f
′
i ≥ 1 on [0,∞) together with

Lifi − rfi = 0 on [0, xi] where Li is the infinitesimal generator of the drifted Brownian

motion µit + σWt. Remark also that Vi is concave on [0, xi] and linear above xi. Finally,

it is also important to note that there is no obvious comparison between x0 and x1 (see

for instance [27] Proposition 2). We shall use repeatedly all theses properties in the next

sections.

Coming back to our problem (2.1), we deduce from these standard results that the

strategies

π0 = (Z0
t , 0) = ((x− x0)+11t=0 + Lx0

t (µ0,W )11t>0 , ∞) , (2.7)

and

π1 = (Z1
t , 0) = ((x− I)− x1)+11t=0 + Lx1

t (µ1,W )11t>0 , 0) (2.8)

lead to the inequalities V (x) ≥ V0(x) and V (x) ≥ V1(x − I). Strategy π0 corresponds to

the investment policy “never invest in the growth option (and follow the associated optimal

dividend policy)”, while strategy π1 corresponds to the investment policy “invest immediately

in the growth option (and follow the associated optimal dividend policy)”. Finally, note that,

because the inequality x− I ≤ 0 leads to immediate bankruptcy, the firm value V1(x− I) is

defined by: 



V1(x− I) = max

(
0,

f1(x− I)

f
′
1(x1)

)
, 0 ≤ x ≤ x1 + I,

V1(x− I) = x− I − x1 + µ1

r
, x ≥ x1 + I.

(2.9)

2.3 First results.

In this section we prove that the value function V satisfies the dynamic programming princi-

ple. We then derive a necessary and sufficient condition under which, the growth opportunity

is worthless.

Proposition 2.1 The value function V satisfies the dynamic programming principle:

V (x) = sup
π∈Π

Ex

[∫ (τπ∧τπ
0 )−

0

e−rsdZπ
s + e−r(τπ∧τπ

0 )V1(X
π
(τπ∧τπ

0 )− − I)

]
. (2.10)

Proof of Proposition 2.1 Let us define

W (x) = sup
π∈Π

Ex

[∫ (τπ∧τπ
0 )−

0

e−rsdZπ
s + e−r(τπ∧τπ

0 )V1(X
π
(τπ∧τπ

0 )− − I)

]
.
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We start by proving the inequality V (x) ≤ W (x). Let consider a given admissible policy

π = (Zπ
t , τπ). Now, from (2.2) and (2.3), the firm value at the investment date τπ satisfies

V1,τπ = ess sup
Z∈Z

E

[∫ τπ
0

τπ∧τπ
0

e−r(s−τπ∧τπ
0 )dZs|Fτπ∧τπ

0

]
= V1(X

π
(τπ∧τπ

0 )−−I) = V1(X
π
τπ∧τπ

0
), (2.11)

where the first equality uses the relation τπ
0 = τ1,0 which holds almost surely on the event

τπ ∧ τπ
0 = τπ. We then deduce

Vπ(x) = Ex

[∫ τπ
0

0

e−rsdZπ
s

]
= Ex

[∫ (τπ∧τπ
0 )−

0

e−rsdZπ
s + E

[∫ τπ
0

τπ∧τπ
0

e−rsdZπ
s |Fτπ∧τπ

0

]]

≤ Ex

[∫ (τπ∧τπ
0 )−

0

e−rsdZπ
s + e−r(τπ∧τπ

0 )ess sup
Z∈Z

E

[∫ τπ
0

τπ∧τπ
0

e−r(s−τπ∧τπ
0 )dZs|Fτπ∧τπ

0

]]

≤ Ex

[∫ (τπ∧τπ
0 )−

0

e−rsdZπ
s + e−r(τπ∧τπ

0 )V1(X
π
(τπ∧τπ

0 )− − I)

]
. (2.12)

Taking the supremun over π ∈ Π on both sides gives the desired inequality. The reverse

inequality relies on the fact that Z1
t defined by equation (2.8) is the optimal dividend policy

solution to problem (2.11). Indeed, consider the control π = (Zπ
t 11t<τπ + Z1

t 11t≥τπ , τπ) where

Zπ
t and τπ are arbitrarily chosen in Z and T , we get

V (x) ≥ Vπ(x)

= Ex

[∫ (τπ∧τπ
0 )−

0

e−rsdZπ
s + e−r(τπ∧τπ

0 )ess sup
Z∈Z

E

[∫ τπ
0

τπ
0 ∧τπ

e−r(s−τπ∧τπ
0 )dZπ

s |Fτπ∧τπ
0

]]

= Ex

[∫ (τπ∧τπ
0 )−

0

e−rsdZπ
s + e−r(τπ∧τπ

0 )V1(X
π
(τπ∧τπ

0 )− − I)

]
.

Taking the supremum over (Zπ, τπ) on the right-hand side gives the result. ¦

We now establish a necessary and sufficient condition under which, for all current value

of the cash process, the growth opportunity is worthless.

Proposition 2.2 The following holds.

V (x) = V0(x) for all x ≥ 0 if and only if

(
µ1 − µ0

r

)
≤ (x1 + I)− x0.

Proof of Proposition 2.2 It follows from the previous section that, if V (x) = V0(x)

for all x ≥ 0 then, V0(x) ≥ V1(x) which implies for x ≥ max{x0, x1 + I} the inequality(
µ1−µ0

r

) ≤ (x1 + I)−x0. The sufficient condition in Proposition 2.2 is less obvious and relies

on the lemma:

6



Lemma 2.3 The following holds.

If

(
µ1 − µ0

r

)
≤ (x1 + I)− x0 then V0(x) ≥ V1(x− I) for all x ≥ 0.

Proof of Lemma 2.3 We distinguish three cases. First, if x ∈ [0, I] then, V1(x− I) = 0

≤ V0(x). Second, if x ≥ x0 then,

V1(x− I) < x− x1 +
µ1

r
≤ x− x0 +

µ0

r
= V0(x),

where the first inequality comes from the concavity of V1, the second inequality is our

assumption and the last equality follows from the definition of V0 for x ≥ x0. Third, fix x ∈
[I, x0] and consider the function k defined on [I, x0] by the relation k(x) = V0(x)−V1(x−I).

We already know that k(I) > 0 and k(x0) > 0. Note also that k′(x0) = 1− V
′
1 (x0 − I) ≤ 0

and k
′′
(x0) ≥ 0. Next, suppose that there exists y ∈ (I, x0) such that k(y) = 0. Because k is

decreasing convex in a left neighbourhood of x0, there exists z ∈ (y, x0) such that k′(z) = 0

with k concave in a neighbourhood centered in z. We thus obtain

L0k(z)− rk(z) =
σ2

2
k
′′
(z)− rk(z) < 0. (2.13)

Taking advantage from the equality L0V0(x) − rV0(x) = 0, which holds for all x ∈ (I, x0),

we get

L0k(x)− rk(x) = −L0V1(x− I) + rV1(x− I). (2.14)

Now, because µ1 > µ0, the inequality x0 ≥ x1 + I holds by assumption and the relation

L1V1(x − I) − rV1(x − I) = 0 is therefore satisfied for x ∈ (I, x0). We then deduce for all

x ∈ (I, x0),

L0V1(x− I)− rV1(x− I) = (L0 − L1)V1(x− I) = (µ0 − µ1)V
′
1(x− I) < 0,

where the last inequality comes from the increasness of V1(.− I) and from µ1 > µ0. It then

follows from (2.14) that L0k(z)−rk(z) > 0. This contradicts (2.13) and concludes the proof

of lemma 2.3. ¦

We now finish the proof of Proposition 2.2. By Equation (2.12), for all fixed π =

(Zπ
t , τπ; t ≥ 0) ∈ Π, we have

Vπ(x) ≤ Ex

[∫ (τπ∧τπ
0 )−

0

e−rsdZπ
s + e−r(τπ∧τπ

0 )V1(X
π
(τπ∧τπ

0 )− − I)

]

≤ Ex

[∫ (τπ∧τπ
0 )

0

e−rsdZπ
s + e−r(τπ∧τπ

0 )V0(X
π
(τπ∧τπ

0 )−)

]

≤ V0(x),
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where the second inequality comes from lemma 2.3 and the third from the dynamic pro-

gramming principle applied to the value function V0. It thus follows that V (x) ≤ V0(x)

which implies our result since the reverse inequality is always true. ¦

In the rest of the paper, condition (H1) will refer to the inequality

µ1 − µ0

r
> (x1 + I)− x0.

Condition (H1) is therefore a necessary and sufficient condition for the growth option not

being worthless. Note that condition (H1) ensures the existence and the uniqueness of a

positive real number x̃ such that V0(x) ≥ (resp. ≤) V1(x − I) for x ≤ (resp. ≥) x̃. This

property will play a crucial role in the next section.

3 Main Results

We derive in this section our main results. First, we present and comment in section 3.1

our main Theorem and prove it in section 3.2. Next, we derive in section 3.3 the optimal

dividend/investment policy and develop in section 3.4 the economic interpretations.

3.1 The Main Theorem

Let denote by R = (Rt)t≥0 the cash reserve process generated by the activity in place in

absence of dividend distribution:

dRt = µ0dt + σdWt,

and let consider the stopping time problem with value function

φ(x) = sup
τ∈T

Ex

[
e−r(τ∧τ0) max(V0(Rτ∧τ0), V1(Rτ∧τ0 − I))

]
, (3.15)

where τ0 = inf{t ≥ 0 : Rt ≤ 0}. We show:

Theorem 3.1 For all x ∈ [0,∞), V (x) = φ(x).

The intuition of our result is as follows. Having in mind the properties derived in section

2 and standard results on optimal stopping problems, one expects that the optimal divi-

dend/investment policy being defined by a reflecting barrier for the dividend policy together

with an investment threshold. Such a guess implies that only two alternative strategies re-

main available, (i) ignore the growth option and pay out any surplus above x0 as dividend;

(ii) postpone dividend distribution, invest at a certain threshold b in the growth opportunity

and pay out any surplus above x1 as dividend. Theorem 3.1 shows that this intuition is the
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correct one. In other words, Theorem 3.1 says that the manager fits his dividend policy to

the option value to invest in the growth opportunity and every things happens as if he had

simply to choose between paying dividend versus retaining the earnings for investment. The

mixed singular control/optimal stopping problem (2.1) is therefore reduced to the stopping

time problem (3.15).

3.2 Proof of the main Theorem

The proof follows the standard line of stochastic control which relies on the dynamic pro-

gramming principle and Hamilton-Jacobi-Bellman (HJB) equation. We start with the fol-

lowing lemma.

Lemma 3.2 For all x ∈ [0,∞), V (x) ≥ φ(x).

Proof of Lemma 3.2. According to Proposition (2.1) and Equation (2.11), we have for all

policy (Zπ
t , τπ) and for all x ≥ 0,

V (x) ≥ E

[∫ (τπ
0 ∧τπ)−

0

e−rs dZπ
s + e−r(τπ

0 ∧τπ)V1(Xτπ
0 ∧τπ)

]

= E

[∫ (τπ
0 ∧τπ)−

0

e−rs dZπ
s + e−r(τπ

0 ∧τπ)V (Xτπ
0 ∧τπ)

]
.

The strategy, Zπ
s = 0 for 0 ≤ s ≤ t and τπ = t leads to

V (x) ≥ E (
e−r(t∧τπ

0 )V (Rt∧τπ
0
)
)
,

it results from the Markov property that the process (e−r(t∧τπ
0 )V (Rt∧τπ

0
))t≥0 is a supermartin-

gale which dominates the function max(V0(.), V1(. − I)). On the other hand, according to

optimal stopping theory, our candidate value function φ is defined as the smallest super-

martingale which dominates max(V0(.), V1(.− I)), therefore the inequality V (x) ≥ φ(x). ¦

The proof of the reverse inequality V (x) ≤ φ(x) is more involved and requires a verifi-

cation result for the HJB equation associated to problem (2.10). One indeed expects from

the dynamic programming principle, the value function to satisfy the HJB equation

max(1− v′, L0v − rv, V1(.− I)− v) = 0. (3.16)

The next proposition shows that any piecewise function C2 which is a supersolution to

the HJB equation (3.16) is a majorant of the value function V .

Proposition 3.3 (verification result for the HJB equation) Suppose we can find a positive

function Ṽ piecewise C2 on (0, +∞) with bounded first derivatives2 and such that for all

x > 0,

2in the sense of Definition 4.8 page 271 in Karatzas and Shreve [19].
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(i) L0Ṽ − rṼ ≤ 0 in the sense of distributions,

(ii) Ṽ (x) ≥ V1(x− I),

(iii) Ṽ ′(x) ≥ 1,

with the initial condition Ṽ (0) = 0 then, Ṽ (x) ≥ V (x) for all x ∈ [0,∞).

Proof of Proposition 3.3 We have to prove that for any control policy π = (Zπ
t , τπ; t ≥ 0),

Ṽ (x) ≥ Vπ(x) for all x > 0. Let us write the process Zπ
t = Zπ,c

t + Zπ,d
t where Zπ,c

t is the

continuous part of Zπ
t and Zπ,d

t is the pure discontinuous part of Zπ
t . Using a generalized

Itô’s formula (see Dellacherie and Meyer [8], Theorem VIII-25 and Remark c) page 349), we

can write

e−r(τπ∧τπ
0 )Ṽ (Xπ

(τπ∧τπ
0 )−) = Ṽ (x) +

∫ (τπ∧τπ
0 )−

0

e−rs(L0Ṽ (Xπ
s )− rṼ (Xπ

s )) ds

+

∫ (τπ∧τπ
0 )−

0

e−rsṼ
′
(Xπ

s ) σdWt −
∫ (τπ∧τπ

0 )−

0

e−rsṼ
′
(Xπ

s ) dZc
s

+
∑

s<τπ∧τπ
0

e−rs(Ṽ (Xπ
s )− Ṽ (Xπ

s−)).

Since Ṽ satisfies (i), the second term of the right hand side is negative. On the other hand,

the first derivative of Ṽ being bounded, the third term is a square integrable martingale.

Taking expectations, we get

Ex

[
e−r(τπ∧τπ

0 )Ṽ (Xπ
(τπ∧τπ

0 )−)
]
≤ Ṽ (x)− Ex

[∫ (τπ∧τπ
0 )−

0

e−rsṼ
′
(Xπ

s ) dZπ,c
s

]

+ Ex

[ ∑
s<τ∧τ0

e−rs(Ṽ (Xπ
s )− Ṽ (Xπ

s−))

]
.

Since Ṽ ′(x) ≥ 1 for all x > 0, we have Ṽ (Xπ
s )− Ṽ (Xπ

s−) ≤ Xπ
s −Xπ

s−. Therefore, using the

equality Xπ
s −Xπ

s− = −(Zπ
s − Zπ

s−) for s < τπ ∧ τπ
0 , we finally get

Ṽ (x) ≥ Ex

[
e−r(τπ∧τπ

0 )Ṽ (Xπ
(τπ∧τπ

0 )−)
]

+ Ex

[∫ (τπ∧τπ
0 )−

0

e−rsṼ
′
(Xπ

s ) dZπ,c
s

]

+Ex

[ ∑
s<τ∧τ0

e−rs(Zπ
s − Zπ

s−)

]

≥ Ex

[
e−r(τπ∧τπ

0 )V1(X
π
(τπ∧τπ

0 )− − I)
]

+ Ex

[∫ (τπ∧τπ
0 )−

0

e−rs dZπ
s

]

= Vπ(x),

where assumptions (ii) and (iii) have been used for the second inequality. ¦
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We call thereafter supersolution to HJB equation (3.16) any function Ṽ satisfying Propo-

sition 3.3. To complete the proof of Theorem 3.1, it thus remains to verify that our candidate

value function φ is a supersolution to HJB equation (3.16). This will clearly imply the in-

equality V (x) ≤ φ(x). It is worth pointing out that, contrary to a standard verification

procedure, we do not need here to close the proof of Theorem 3.1 by constructing a control

policy whose performance functional coincides with the value function φ. The reason is that

we proved in Lemma 3.2 that the inequality V (x) ≥ φ(x) is always satisfied. Deriving the

optimal control/stopping strategy is nevertheless crucial for a detailed analysis of economic

interpretations and this will be done in subsection 3.3. We now turn to the last step of the

proof of Theorem 3.1:

Proposition 3.4 φ is a supersolution to HJB equation (3.16).

The proof of Proposition 3.4 requires to solve quasi explicitly optimal stopping problem

(3.15), a task we achieve in the next paragraph.

Solution to optimal stopping problem φ.

As a first remark, note that, from Lemma 3.2 and from the definition of optimal stopping

problem φ we have, for all positive x, V (x) ≥ φ(x) ≥ θ(x) where θ is the value function of

optimal stopping problem

θ(x) = sup
τ∈T

Ex

[
e−r(τ∧τ0)V1(Rτ∧τ0 − I)

]
, (3.17)

where τ0 = inf{t ≥ 0 : Rt ≤ 0}.

The value function θ therefore represents the option value to invest in the growth oppor-

tunity when the manager decides to postpone dividend payments until investment. In line

with the intuition underlying Theorem 3.1, one anticipates that, if, for all positive x, the

option value θ(x) is larger than V0(x) then, we have the equalities V (x) = φ(x) = θ(x). A

crucial point will be to show that the inequality θ(x) > V0(x) holds for all positive x, if and

only if it is satisfied at the threshold x0 that triggers distribution of dividend when the firm

is run under the technology in place. In such a situation, the optimal dividend/investment

policy will be to postpone dividend distribution, to invest at a certain threshold b in the

growth opportunity and to pay out any surplus above x1 as dividend. Next proposition

precises all these points and derives the solution to optimal stopping problem φ.

Proposition 3.5 The following holds.

(A) If condition (H1) is satisfied then,

(i) If θ(x0) > V0(x0) then, the value function φ satisfies for all positive x,

φ(x) = θ(x).

11



(ii) If θ(x0) ≤ V0(x0) then, the value function φ has the following structure.

φ(x) =





V0(x) 0 ≤ x ≤ a,

V0(a)Ex[e
−rτa11τa<τc ] + V1(c− I)Ex[e

−rτc11τa>τc ] = Aeα+
0 x + Beα−0 x a ≤ x ≤ c,

V1(x− I) x ≥ c,

where τa = inf{t ≥ 0 : Rt ≤ a} and τc = inf{t ≥ 0 : Rt ≥ c} and where A, B, a, c

are determined by the continuity and smooth-fit C1 conditions at a and c:

φ(a) = V0(a),

φ(c) = V1(c− I),

φ′(a) = V
′
0 (a),

φ′(c) = V
′
1 (c− I).

(B) If condition (H1) is not satisfied then, for all positive x, φ(x) = V0(x).

Figures 1 and 2 illustrate cases (i) and (ii) of Proposition 3.5. We establish Proposition

3.5 through a series of lemmas. The first one derives quasi explicitly the value function θ.

Lemma 3.6 The value function θ is defined by





θ(x) =
f0(x)

f0(b)
V1(b− I) x ≤ b,

θ(x) = V1(x− I), x ≥ b,
(3.18)

where f0 is defined in (2.5) and where b > I is defined by the smooth-fit principle

V
′
1 (b− I)

f
′
0(b)

=
V1(b− I)

f0(b)
. (3.19)

Proof of Lemma 3.6 It follows from Dayanik and Karatzas [4] (Corollary 7.1) that the

optimal value function θ is C1 on [0,∞) furthermore, from Villeneuve [29] (Theorem 4.2. and

Proposition 4.6) a threshold strategy is optimal. This allows us to use a standard verification

procedure and to write the value function θ in terms of the free boundary problem:
{ L0θ(x)− rθ(x) = 0, 0 ≤ x ≤ b, and L0θ(x)− rθ(x) ≤ 0, x ≥ b,

θ(b) = V1(b− I), θ′(b) = V
′
1 (b− I).

(3.20)

Standard computations lead to the desired result. ¦

The next Lemma characterizes the stopping region of optimal stopping problem φ.

Lemma 3.7 The stopping region S of problem φ satisfies S = S0 ∪ S1 with

S0 = {0 < x < x̃ |φ(x) = V0(x)}
and

S1 = {x > x̃ |φ(x) = V1(x− I)},
where x̃ is the unique crossing point of the value functions V0(.) and V1(x− .).

12



Proof of Lemma 3.7 According to Optimal Stopping Theory (see El Karoui [10], Theorems

10.1.9 and 10.1.12 in Øksendal [24]), the stopping region S of problem φ satisfies

S = {x > 0 |φ(x) = max(V0(x), V1(x− I))}.

Now, from Proposition 5.13 and Corollary 7.1 by Dayanik-Karatzas [4], the hitting time

τS = inf{t : Rt ∈ S} is optimal and the optimal value function is C1 on [0,∞). Moreover,

it follows from Lemma 4.3 from Villeneuve [29] that x̃, defined as the unique crossing point

of the value functions V0(.) and V1(x− .), does not belong to S. Hence, the stopping region

can be decomposed into two subregions S = S0 ∪ S1 with

S0 = {0 < x < x̃ |φ(x) = V0(x)},

and

S1 = {x > x̃ |φ(x) = V1(x− I)}.
¦

We now obtain Assertion (i) of Proposition 3.5 as a byproduct of the next Lemma.

Lemma 3.8 The following assertions are equivalent:

(i) θ(x0) > V0(x0).

(ii) θ(x) > V0(x) for all x > 0.

(iii) S0 = ∅.

Proof of Lemma 3.8.

(i) =⇒ (ii). We start with x ∈ (0, x0). Let us define τx0 = inf{t : Rt < x0} ∈ T . The

inequality θ(x0) > V0(x0) together with the initial condition θ(0) = V0(0) = 0 implies

Ex

[
e−r(τx0∧τ0)

(
θ(Rτx0∧τ0)− V0(Rτx0∧τ0)

)]
> 0.

Itô’s formula gives

0 < Ex

[
e−r(τx0∧τ0)

(
θ(Rτx0∧τ0)− V0(Rτx0∧τ0)

)]

= θ(x)− V0(x) + Ex

[∫ τx0∧τ0

0

e−rt (L0θ(Rt)− rθ(Rt)) dt

]

≤ θ(x)− V0(x),

where the last inequality follows from (3.20). Thus, θ(x) > V0(x) for all 0 < x ≤ x0. Assume

now that x > x0. We distinguish two cases. If b > x0, it follows from (2.4) and (3.18) that,

θ(x) > V0(x) for x ≤ x0 is equivalent to θ
′
(x0) > 1. Then, the convexity properties of f0

yields to θ
′
(x) > 1, for all x > 0. If, on the contrary, b ≤ x0 then, θ(x) = V1(x − I) for all
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x ≥ x0. Since V
′
1 (x− I) ≥ 1 for all x ∈ [I,∞), the smooth fit principle implies θ

′
(x) ≥ 1 for

all x ≥ x0. Therefore, the function θ − V0 is increasing for x ≥ x0 which ends the proof.

(ii) =⇒ (iii). Simply remark that equations (3.17) and (3.15) give φ ≥ θ. Therefore, we

have, φ(x) ≥ θ(x) > V0(x) for all x > 0 which implies the emptyness of S0.

(iii) =⇒ (i). Suppose S0 = ∅ and let us show that θ = φ. This will clearly im-

ply θ(x0) = φ(x0) > V0(x0) and thus (i). From Optimal Stopping theory, the process

(e−r(t∧τ0∧τS)φ(Xt∧τ0∧τS
))t≥0 is a martingale. Moreover, on the event {τS < t}, we have

φ(RτS
) = V1(RτS

− I) a.s. It results that

φ(x) = Ex

[
e−r(t∧τS)φ(Rt∧τS

)
]

= Ex

[
e−rτSV1(RτS

− I)11τS<t

]
+ Ex

[
e−rtφ(Rt)11t<τS

]

≤ θ(x) + Ex

[
e−rtφ(Rt)

]
.

Now, it follows from (2.6), (2.9) that φ(x) ≤ Cx for some positive constant C. This implies

Ex [e−rtφ(Rt)] converges to 0 as t goes to infinity. We therefore deduce that φ ≤ θ and thus

that φ = θ. ¦

Assertion (ii) of Proposition 3.5 relies on the following lemma.

Lemma 3.9 Assume θ(x0) ≤ V0(x0) then, there are two positive real numbers a ≥ x0 and

c ≤ x1 + I such that

S0 =]0, a] and S1 = [c, +∞[.

Proof of Lemma 3.9 From the previous Lemma we know that the inequality θ(x0) ≤ V0(x0)

implies S0 6= ∅. We start the proof with the shape of the subregion S0. Take x ∈ S0, we have

to prove that any y ≤ x belongs to S0. As a result, we will define a = sup{x < x̃ |x ∈ S0}.
Now, according to Proposition 5.13 by Dayanik and Karatzas [4], we have

φ(y) = Ey

[
e−r(τS∧τ0) max(V0(RτS∧τ0), V1(RτS∧τ0 − I))

]
.

Since x ∈ S0, x < x̃ and thus τS = τS0 Py a.s. for all y ≤ x. Hence,

φ(y) = Ey

[
e−r(τS0

∧τ0)V0(RτS0
∧τ0)

]

≤ V0(y),

where the last inequality follows from the supermartingale property of the process (e−r(t∧τ0)V0(Rt∧τ0))t≥0.

Now, assuming that a < x0, (i.e. φ(x0) > V0(x0)) yields the contradiction:

φ(a) = V0(a)

= Ea

[
e−rτx011τx0<τ0V0(Rτx0

)
]

≤ Ea

[
e−rτx0V0(Rτx0

)
]

< Ea

[
e−rτx0φ(Rτx0

)
]

≤ φ(a),
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where the second equality follows from the martingale property of the process

(e−r(t∧τx0∧τ0)V0(Rt∧τx0∧τ0))t≥0 under Pa and the last inequality follows from the supermartin-

gale property of the process (e−r(t∧τ0)φ(Rt∧τ0))t≥0.

The shape of the subregion S1 is a direct consequence of Lemma 4.4 by Villeneuve [29].

The only difficulty is to prove that c ≤ x1+I. Let us consider x ∈ (a, c), and let us introduce

the stopping times τa = inf{t : Rt = a}, and τc = inf{t : Rt = c}, we have:

φ(x) = Ex

[
e−r(τa∧τc) max(V0(Rτa∧τc), V1(Rτa∧τc − I))

]

≤ Ex

[
e−r(τa∧τc)(Rτa∧τc − (x1 + I) +

µ1

r
)
]

= x− (x1 + I) +
µ1

r
+ Ex

[∫ τa∧τc

0

e−rs(µ0 − r(Rs − (x1 + I))− µ1) ds

]
.

Remark that, on the stochastic interval [0, τa ∧ τc], Rs ≥ a ≥ x0 Px a.s. and thus

µ0 − r(Rs − (x1 + I))− µ1 ≤ µ0 − r(x0 − (x1 + I))− µ1 < 0,

by condition (H1). Therefore, φ(x) ≤ x−(x1 +I)+ µ1

r
for x ∈ (a, c). We conclude remarking

that, assuming the inequality c > x1 + I would yield to the contradiction
µ1

r
= V1(x1) < φ(x1 + I) ≤ µ1

r
.

¦
We now finish the proof of Proposition 3.5. It follows from Lemma 3.9 that the structure

of the value function φ in assertion (ii) of Proposition 3.5 is a direct consequence of continuity

and smooth-fit C1 properties. Finally, consider case (B) of Proposition 3.5 and therefore

assume that condition (H1) is not satisfied. Similar arguments to those used for studying

optimal stopping problem θ easily yield to the relation

V0(x) = sup
τ∈T

Ex

[
e−r(τ∧τ0)V0(Rτ∧τ0 − I)

]
.

The equality V (x) = φ(x) follows then from Proposition 2.2. ¦
As a final remark note that, if θ(x0) = V0(x0) then, we have that a = x0, c = b and the

value functions φ and θ coincide. Indeed, using same argument than in the first part of the

proof of Lemma 3.8, we easily deduce from θ(x0) = V0(x0) that θ(x) = V0(x) = φ(x) for

x ≤ x0. Furthermore, (2.4) and (3.18) imply that, θ(x0) = V0(x0) is equivalent to θ′(x0) =

V ′(x0) = 1, which implies that a = x0. The equality c = b follows then from relations (3.18)

and (3.19). To summarize, if θ(x0) = V0(x0) then, θ is the lowest supermartingale that

majorizes e−r(τ∧τ0) max(V0(Rτ∧τ0), V1(Rτ∧τ0 − I)) from which it results that θ = φ.

We are now ready to prove Proposition 3.4 namely that φ is a supersolution to HJB

equation (3.16). This will complete the proof of Theorem 3.1.

Proof of Proposition 3.4 The result clearly holds if, for all positive x, φ(x) = V0(x)

(that is, if condition (H1) is not satisfied ). Assume now that condition (H1) is satisfied.

Two cases have to be considered.
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i) θ(x0) > V0(x0).

In this case, φ = θ according to part (i) of Proposition 3.5. It remains to check that

the function θ satisfies the assumptions of Proposition 3.3. But, according to optimal

stopping theory, θ ∈ C2[(0,∞) \ b)], L0θ− rθ ≤ 0 and clearly θ ≥ V1(.− I). Moreover,

it is shown in the first part of the proof of Lemma 3.8 that θ
′
(x) ≥ 1 for all x > 0.

Finally, let us check that θ
′
is bounded above in the neighbourhood of zero. Clearly

we have that

θ(x) ≤ sup
τ∈T

Ex

[
e−r(τ∧τ0)V1(Rτ∧τ0)

]
,

furthermore, the process (e−r(t∧τ0)V1(Rt∧τ0))t≥0 is a supermartingale since µ1 > µ0.

Therefore θ ≤ V1, the boundedness of the first derivative of θ follows then from Equa-

tion (2.9).

ii) θ(x0) ≤ V0(x0).

In this case, the function φ is characterized by part (ii) of Proposition 3.5. Thus,

φ = V0 on (0, a), φ = V (.− I) on (c, +∞) and φ(x) = Aeα+
0 x +Beα−0 x on (a, c). Hence,

φ will be a supersolution if we prove that φ
′
(x) ≥ 1 for all x > 0. In fact, it is enough

to prove that φ
′
(x) ≥ 1 for x ∈ (a, c) because V

′
0 ≥ 1 and V

′
1 (.− I) ≥ 1. The smooth

fit principle gives φ
′
(a) = V

′
0 (a) ≥ 1 and φ

′
(c) = V

′
1 (c − I) ≥ 1. Clearly, φ is convex

in a right neighbourhood of a. Therefore, if φ is convex on (a, c), the proof is over. If

not, the second derivative of φ given by A(α+
0 )2eα+

0 x + B(α−0 )2eα−0 x vanishes at most

one time on (a, c), say in d. Therefore,

1 ≤ φ
′
(a) ≤ φ

′
(x) ≤ φ

′
(d) for x ∈ (a, d),

and

1 ≤ φ
′
(c) ≤ φ

′
(x) ≤ φ

′
(d) for x ∈ (d, c),

which completes the proof of Proposition 3.4 and thus concludes the proof of Theorem

3.1. ¦

3.3 Optimal policy

We give here a construction of the optimal dividend/investment policy. Theorem 3.1 and

Proposition 3.5 drive the intuition. For instance, one expects that, if condition (H1) is

satisfied together with the inequality θ(x0) < V0(x0) then, for a current value of the cash

reserve between the thresholds a and c, the optimal strategy is to delay any decision until the

cash reserve process hits threshold a or threshold c. Two cases can then happen, if the cash

reserve process raises to c before hitting a, the optimal strategy is to invest in the growth

option and then to deliver any surplus above x1 as dividend. On the contrary, if the cash

reserve process falls to a before hitting c, the optimal strategy is to deliver as exceptional

dividend the amount a− x0 and never to invest in the growth opportunity. Assertion (ii) of

the next Proposition encompasses this particular case. We now state our result.
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Proposition 3.10 The following holds.

(A) If condition (H1) is satisfied then,

(i) If θ(x0) > V0(x0) then, the policy π? = (Zπ?

t , τπ?
) defined by the increasing right-

continuous process

Zπ?

t = ((Rτb
− I)− x1)+11t=τb

+ Lx1
t (µ1,W )11t>τb

,

and by the stopping time

τπ?

= τb

satisfies for all positive x the relation φ(x) = Vπ?(x).

(ii) If θ(x0) ≤ V0(x0) then, the policy π? = (Zπ?

t , τπ?
) defined by the increasing right-

continuous process

Zπ?

t =
[
(Rτa − x0)+11t=τa + (Lx0

t (µ0,W )− Lx0
τa

(µ0,W ))11t>τa

]
11τa<τc

+ [((Rτc − I)− x1)+11t=τc + Lx1
t (µ1,W )11t>τc ] 11τc<τa ,

and by the stopping time

τπ?

=

{
τc if τc < τa

∞ if τc > τa

satisfies for all positive x the relation φ(x) = Vπ?(x).

(B) If condition (H1) is not satisfied then, the policy π? = (Zπ?

t , τπ?
) defined by the in-

creasing right-continuous process

Zπ?

t = (x− x1)+11t=0 + Lx0
t (µ0,W )11t>0,

and by the stopping time

τπ?

= ∞
satisfies for all positive x the relation φ(x) = Vπ?(x).

Proof of Proposition 3.10 Part (i) is immediate from equation (2.8) and part (i) of

Proposition 3.5. We start the proof of part (ii) by some helpful remarks on the considered

policy π?. On the event {τa < τc}, the investment time τπ?
is infinite a.s. Moreover, denoting

by Xπ?
the cash process generated by the policy π?, we have that Xπ?

τa
= x0 a.s and for

t ≥ 0, we have the equality

Xπ?

τa+t = x0 + µ0t + σ(Wτa+t −Wτa)− (Lx0
τa+t(µ0,W )− Lx0

τa
(µ0,W )). (3.21)

Now, introduce the process B
(a)
t = Wτa+t −Wτa . We know that B(a) is a Brownian motion

independent of Fτa (Theorem 6.16 in Karatzas and Shreve [19]) and from the uniqueness of
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the Skorohod equation (Ch IX, Exercise 2.14 in Revuz and Yor [28]) it follows from (3.21)

the identity in law

Lx0
τa+t(µ0,W )− Lx0

τa
(µ0,W )

law
= Lx0

t (µ0, B
(a)). (3.22)

Keeping in mind these remarks, we now turn to the proof of (ii). According to the structure

of the value function φ in Proposition 3.5, three cases have to be considered.

α) If x ≤ a then we have, τa = 0, τπ?
= ∞ a.s and

Zπ?

t = (x− x0)+11t=0 + Lx0
t (µ0,W )11t>0.

We get

Vπ?(x) = Ex

[∫ τπ?

0

0

e−rsdZ?
s

]
= (x− x0)+ + Emin(x,x0)

[∫ τπ?

0

0

e−rsdLx0
s (µ0, W )

]

= V0(x)

= φ(x).

β) If x ≥ c then we have, τπ?
= τc = 0 a.s, Zπ?

t = ((x− I)− x1)+ 11t=0 + Lx1
t (µ1,W )11t>0

and Xπ?

τc
= x− I a.s. We thus obtain, Vπ?(x) = V1(x− I) = φ(x).

γ) Finally, assume that a < x < c. We have

Vπ?(x) = Ex

[
11τa<τc

∫ τπ?

0

0

e−rsdZπ?

s

]
+ Ex

[
11τa>τce

−rτcV1(c− I)
]
.

Now,

Ex

[
11τa<τc

∫ τ0π?

0

e−rsdZ?
s

]
= Ex

[
11τa<τc

(
e−rτa(a− x0) +

∫
11]τa,τπ?

0 ](s)e
−rsdLx0

s (µ0,W )

)]

= Ex

[
11τa<τce

−rτa(a− x0)
]
+ A. (3.23)

On the other hand, on the event τa < τc, we have the equality

τπ?

0 ≡ inf{s : Xπ?

s ≤ 0} = τa + inf{s : Xπ?

s+τa
≤ 0} a.s.

It then follows from (3.21) and (3.22) that

τπ?

0 − τa
law
= T0 ≡ inf{s ≥ 0 : x0 + µ0s + σB(a)

s − Lx0
s (µ0, B

(a)) ≤ 0}.
Coming back to (3.23) we thus obtain,

A = Ex

[
11τa<τcE

(∫
11]τa,τπ?

0 ](s)e
−rsdLx0

s (µ0,W )|Fτa

)]

= Ex

[
11τa<τcE

(∫
11]0,τπ?

0 −τa](u)e−r(u+τa)dLx0
u+τa

(µ0,W )|Fτa

)]

= Ex

[
11τa<τce

−rτaEx0

[∫
11]0,T0](u)e−rudLx0

u (µ0, B
(a))

]]

= Ex

[
11τa<τce

−rτaV0(x0)
]
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where the third equality follows from the independence of B(a) with respect to Fτa and

from equation (3.22) together with the fact that Lx0(µ0, B
(a)) is an additive functional.

We therefore obtain

Ex

[
11τa<τc

∫ τπ?

0

0

e−rsdZπ?

s

]
= Ex

[
11τa<τce

−rτaV0(a)
]

which leads to

Vπ?(x) = Ex

[
11τa<τce

−rτaV0(a)
]
+ Ex

[
11τa>τce

−rτcV1(c− I)
]

= φ(x).

The proof of the Proposition is complete remarking that assertion (B) directly follows from

relation (2.7). ¦

3.4 Discussion.

Our Mathematical analysis addresses several important issues in corporate finance. We first

characterize situations where it is optimal to postpone dividend distribution in order to

invest later in the growth opportunity. We then investigate the effect of liquidity shock on

the optimal dividend/investment policy. In particular, we show that a liquidity shock can

result in an inaction region in which the manager waits to see whether or not the growth

opportunity is valuable. In a third step we analyse the effect of positive uncertainty shock.

In stark difference with the standard real option literature, we explain why a sufficiently

large positive uncertainty shock can make worthless the option value to invest in a growth

opportunity. Finally, we identify situations where a cash constrained firm may want to ac-

cumulate cash in order to invest in the growth opportunity whereas an unconstrained firm

will definitively decide not to invest.

When to postpone dividend distribution? Intuitively, delaying dividend distribution is

optimal when the growth option is “sufficiently” valuable. Our model allows to precise this

point. Let describe the optimal dividend/investment policy assuming the current value x

of the cash reserve lower than the threshold level x0 that triggers distribution of dividend

when the firm is run under the initial technology. Two cases arise. If, evaluated at the

threshold x0, the option value to invest in the new project is larger than the value of the

firm under the technology in place (that is θ(x0) > V0(x0)) then, the manager postpones

dividend distribution in order to accumulate cash and to invest in the new technology at

threshold b. Any surplus above x1 will be then distributed as dividend. If, on the contrary,

θ(x0) < V0(x0) then, the manager optimally ignores the growth option, runs the firm under

the technology in place and pays out any surplus above x0 as dividend.

The effect of liquidity shock. Our model emphasizes the value of cash for optimal div-

idend/investment timing. Consider indeed the case where the current value of the cash
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reserve x is lower than the threshold x0 and where θ(x0) ≤ V0(x0). Assume that an exoge-

nous positive shock on the cash reserve occurs so that the current value x is now larger than

x0. Three possibilities must be considered. First, if x > c, then, according to Proposition

3.10, the manager optimally invests immediately in the new project (and pays out any sur-

plus above I +x1 as dividend). Second, if x lies in (x0, a), then the manager pays out x−x0

as “exceptional dividend”, never invest in the new technology, and pays out any surplus

above x0 as dividend. Finally, if x lies in (a, c), then two scenarii can occur. If the cash

reserve raises to c before hitting a, the manager invests in the new project (and pays out

any surplus above x1 as dividend). By contrast, if the cash reserve falls to a, before hitting

c, the manager pays a − x0 as “exceptional dividend”, never invest in the new technology,

and pays out any surplus above x0 as dividend. The region (a, c) is therefore an inaction

region where the manager has not enough information to decide whether or not the growth

option is valuable. He therefore chooses neither to distribute dividend nor to invest in the

new technology. His final decision depends on which bounds a or c will be first reached by

the cash flow process. As a result, our model suggests that a given cash injection does not

always provoke or accelerate investment decision.

The effect of uncertainty shock. In the standard real option literature as well as in

the optimal dividend policy literature, increasing the volatility of the cash process has an

unambiguous effect: Greater uncertainty increases both the option value to invest (see Mc-

Donald and Siegel [21]), and the threshold that triggers distribution of dividend (see Rochet

and Villeneuve [27]). In our setting, because the dividend and the investment policies are

inter-related, the effect of uncertainty shock is ambiguous. Consider for instance a situation

where, initially, θ(x0) < V (x0) with a current value x of the cash reserve lower than x0 and

assume that a positive shock on the volatility of the cash process occurs. The volatility

shock increases the trigger x0 but does not affect V (x0) which is by construction equal to
µ0

r
. A volatility shock however increases θ(x0), the option value to invest in the new project,

and therefore the inequality θ(x0) < V (x0) can happen to be reversed. In this case, the

manager who initially ignores the growth opportunity, will decide, after a positive shock

on uncertainty, to accumulate cash and to exercise the growth opportunity at threshold

b. Here, in line with the standard real option literature, a positive volatility shock makes

worthy the growth option. An interesting feature of our model is that the opposite can also

occur, precisely a sudden increase of the volatility can kill the growth option. The crucial

remark is that the difference x1 − x0 considered as a function of the volatility σ tends to
µ1−µ0

r
when σ tends to infinity. This implies that for large volatility, condition (H1) is never

satisfied and thus that the growth opportunity is worthless. As a matter of fact, think to

an initial situation where θ(x0) > V (x0) (and thus condition ( H1) holds) and consider a

shock on the volatility such that ( H1) is no more satisfied. In such a case, before the shock

occurs, the optimal strategy is to postpone dividend and to invest in the new technology at

threshold b whereas after the uncertainty shock, the growth option is worthless and will be

thus no more considered by the manager.
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The effect of liquidity constraints. As a last implication of our model, we now investigate

the role of liquidity constraints. In absence of liquidity constraints, the manager has unlim-

ited cash holdings. The firm is never in bankruptcy, the manager injects money whenever

needed and distributes any cash surplus in the form of dividend. In this setting, for a current

cash reserve x, we thus have that V0(x) = x + µ0

r
while V1(x − I) = x + µ1

r
− I. It follows

that the manager invests in the growth option if and only if µ1−µ0

r
> I, a decision that is fur-

thermore immediate. We point out here that liquidity constraints have an ambiguous effect

on the decision to exercise the growth opportunity. Indeed it can happen that, in absence

of liquidity constraints, exercising the growth option is optimal (that is µ1−µ0

r
> I), whereas

it is never the case when there are liquidity constraints because condition (H1) does not

hold. On the contrary, the growth opportunity can be worthless in absence of liquidity con-

straints whereas this is not the case with liquidity constraints. Such a situation occurs when
µ1−µ0

r
< I, condition (H1) holds and θ(x0) > V0(x0) (that is3 r(x1 + I − x0) < µ1 − µ0 < rI

and θ(x0) > µ0

r
). The reason is that investing in the growth option for a liquidity con-

strained firm will increase the drift of the cash generating process, and therefore will lower

the probability of failure. An unconstrained firm however is not threatened by bankruptcy

and will ignore the growth opportunity because the drift µ1 driving the new technology is

not large enough (µ1 < I + rµ0).

4 Conclusion.

In this paper, we consider the implications of liquidity for the dividend/investment policy

of a firm that owns the perpetual right to invest in a new increasing profit rate technology.

The mathematical formulation of our problem leads to a mixed singular control/optimal

stopping problem that we solve quasi explicitly using connection with an auxiliary stopping

problem. A detailed analysis based on the properties of local time gives the precise optimal

dividend/investment policy. This type of problem is non standard and does not seem to have

attracted much attention in the corporate finance literature. Our analysis follows the line of

stochastic control and relies on the choice of a drifted Brownian motion for the cash reserve

process in absence of dividend distribution. This modelling assumption guarantees the quasi

explicit nature of value function φ. We use for instance this feature in Proposition 3.4 where

we show that φ is a supersolution. Furthermore, the property of independent increments

for Brownian motion plays a central role for deriving the optimal policy (Proposition 3.10).

Clearly, future work is needed to examine the robustness of our results to more general

diffusions than a drifted Brownian motion.

3These conditions are indeed compatible. Keeping in mind that the threshold x0 is a single peaked
function of µ0 (see Rochet and Villeneuve [27]), consider µ0 large, I small and µ1 in a left neighbourhood
of rI + µ0. It then follows that r(x1 + I − x0) < 0 < µ1 − µ0 < rI and x̃ < x1 + I which implies
θ(x0) ≥ V1(x0 − I) > V0(x0) = µ0

r .
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Figure 1: θ(x0) > V0(x0)
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