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Abstract

A major aim in recent nonparametric frontier modeling is to estimate a partial
frontier well inside the sample of production units but near the optimal boundary.
Two concepts of partial boundaries of the production set have been proposed: an
expected maximum output frontier of order m = 1, 2, . . . and a conditional quantile-
type frontier of order α ∈]0, 1]. In this paper, we answer the important question of how
the two families are linked. For each m, we specify the order α for which both partial
production frontiers can be compared. We show that even one perturbation in data
is sufficient for breakdown of the nonparametric order-m frontiers, whereas the global
robustness of the order-α frontiers attains a higher breakdown value. Nevertheless,
once the α-frontiers break down, they become less resistant to outliers than the order-
m frontiers. Moreover, the m-frontiers have the advantage to be statistically more
efficient. Based on these findings, we suggest a methodology for identifying outlying
data points. We establish some asymptotic results, contributing to important gaps in
the literature. The theoretical findings are illustrated via simulations and real data.
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1 Introduction

In the economics, statistics, management science and related literatures a major aim is to

estimate the upper boundary of a sample {(Xi, Yi), i = 1, . . . , n} of independent copies of

a random production unit (X, Y ) with support defined by {(x, y) ∈ R
p+1
+ |0 ≤ y ≤ ϕ(x)}.

Econometric considerations lead to the natural assumption that the frontier function ϕ is

monotone nondecreasing. Let (Ω,A, P) be the probability space on which the vector of inputs

X ∈ R
p
+ and the single output Y are defined. Then following Cazals et al (2002), the optimal

value ϕ(x) can be characterized as the right-endpoint of the conditional distribution function

F (y|x) = P(Y ≤ y|X ≤ x) = F (x, y)/FX(x), with F (·, ·) and FX(·) being respectively the

joint and marginal distribution functions of (X, Y ) and X.

The conventional estimate for ϕ is the Free Disposal Hull (FDH) estimator, i.e. the

lowest nondecreasing step surface covering all sample points, that is ϕ̂n(x) := sup{y ≥
0|F̂n(y|x) < 1} = maxi|Xi≤x Yi, where F̂n(y|x) = F̂ (x, y)/F̂X,n(x), with F̂ (x, y) = (1/n)

∑n
i=1

1I(Xi ≤ x, Yi ≤ y) and F̂X,n(x) = F̂ (x,∞). When the frontier function ϕ is also assumed to

be concave, a popular estimator is the Data Envelopment Analysis (DEA) estimator, which

is the lowest concave surface covering the FDH frontier. Both FDH and DEA estimators
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derive from the pioneering work of Farrell (1957). The DEA frontier has been popularized by

Charnes at al (1978), while the FDH has been proposed by Deprins et al (1984). See Simar

and Wilson (2008) for a survey on inference techniques using FDH and DEA estimators.

By construction, these envelopment estimators are very sensitive to extremes and/or out-

liers in the output-direction. This dramatic lack of robustness results in poor estimation of

the corresponding economic efficiencies; the efficiency score of a firm is estimated via the

distance between the attained produced output and the optimal production level given by

the frontier function. Of course, in production activity, outlying outputs Yi are highly desir-

able. But in absence of information on whether the observations are measured accurately, it

is prudent to seek frontier estimators which are not determined by very few extreme obser-

vations. The underlying idea of the two existing methods in the econometric literature is to

estimate a partial frontier well inside the cloud of data points but near the upper boundary.

The first concept of a partial boundary of the joint support of (X, Y ) has been introduced

by Cazals et al (2002). Given an integer m ≥ 1, they define a notion of expected maximum

output function of order m as ξm(x) :=
∫ ϕ(x)

0
(1− [F (y|x)]m)dy. This partial frontier function

converges to the full frontier function ϕ(x) as m → ∞. It is estimated by ξ̂m,n(x) :=
∫ ϕ̂n(x)

0
(1−[F̂n(y|x)]m)dy. To summarize the properties of this estimator, for fixed sample size

n we have limm→∞ ↑ ξ̂m,n(x) = ϕ̂n(x), and for fixed order m we have
√

n(ξ̂m,n(x)−ξm(x)) →
N (0, σ2(x, m)) as n → ∞, where the asymptotic variance σ2(x, m) is given in (4.2). The

second concept of a partial frontier function, suggested by Aragon et al (2005), is defined

as the αth quantile function qα(x) := inf{y ≥ 0|F (y|x) ≥ α}, with α ∈]0, 1]. This order-

α frontier function converges to ϕ(x), as α ↑ 1, and is estimated by q̂α,n(x) := inf{y ≥
0|F̂n(y|x) ≥ α}. For n fixed, this estimator satisfies limα→1 ↑ q̂α,n(x) = ϕ̂n(x), and for fixed

order α we have
√

n(q̂α,n(x) − qα(x)) → N (0, σ2(α, x)) as n → ∞, where σ2(α, x) is given

in (4.3), provided that F (·|x) is differentiable at qα(x) with derivative f(qα(x)|x) > 0.

Unlike usual (FDH, DEA) methods, both alternatives {q̂α,n(x)} and {ξ̂m,n(x)} are quali-

tatively robust and bias-robust as shown in Daouia and Ruiz-Gazen (2006). But the order-α

quantile frontiers can be more robust to extremes than the order-m frontiers when estimat-

ing the true full frontier ϕ (i.e. when α ↑ 1 and m ↑ ∞) since the influence function is no

longer bounded for order-m frontiers as m tends to infinity, while it remains bounded for

the conditional quantile frontiers as the order α tends to one. This advantage is proved only

under the condition that the conditional density function f(·|x) is not null and continuous

on its support. No attention was devoted however to the difference between the reliability

of the two sequences of estimators {q̂α,n(x)} and {ξ̂m,n(x)} in the general setting. Moreover,

the influence function only offers a local quantification of robustness by measuring the sensi-

tivity of estimators to infinitesimal perturbations, but it is well known that estimators can be
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infinitesimally robust and yet still highly sensitive to small, finite perturbations. To measure

the global robustness of an estimator, the richest quantitative information is provided by

the finite sample breakdown point as shown by Donoho and Huber (1983). It measures the

smallest fraction of contamination of an initial sample that can cause an estimator to take

values arbitrarily far from its value at the initial sample.

In this paper, we deal with global robustness and some asymptotic aspects of the two

sequences {q̂α,n} and {ξ̂m,n} as estimators of the partial frontiers qα and ξm respectively, for

fixed orders α and m, and as estimators of the full frontier ϕ itself when α → 1 and m → ∞.

In Section 2 we first focus on the replacement breakdown values of the estimators. We

show that, as expected, both FDH and DEA frontiers may break down for any contamina-

tion (Lemma A.1). The surprising result is that even one outlying observation is sufficient

for breakdown of the partial frontier ξ̂m,n(x) for any order m, whereas the partial order-α

frontier q̂α,n(x) has the desirable robustness in withstanding the contamination of outlying

observations. While the asymptotic breakdown value is 0 for any order-m partial frontier,

it is (1 − α)FX(x) for the sequence {q̂α,n(x)}n≥1. But, once the α-frontiers break down,

they become less resistant to outliers than the order-m frontiers. A natural question arising

is: how to compare the reliability between the two sequences of partial frontiers once the

order-α frontier also breaks down? A more general question is: given a fixed order m, which

frontier function q̂α,n(x) can be analyzed and compared with ξ̂m,n(x)?

The families {ξm(·), m ≥ 1} and {qα(·), α ∈]0, 1]} have emerged in the econometric litera-

ture as two different theoretical concepts of partial production frontiers. See e.g. Daraio and

Simar (2007) for statistical properties of both concepts of partial boundaries together with

several appealing economic features. The estimators ξ̂m,n and q̂α,n (of ξm and qα respectively)

cannot be compared since they do not estimate the same quantity except for the limiting

case, when m ↑ ∞ and α ↑ 1 (when both estimate the true full frontier ϕ). We however

establish in Proposition 2.2 that the two concepts of partial boundaries are closely linked in

the sense that for each order m ≥ 1, there exists a well-specified order α = α(m) = (1/2)1/m

such that the theoretical order-m and order-α frontiers are respectively the mean and median

of the same distribution, namely that of the maximum of m independent random variables

drawn from the law of Y given X not exceeding some level of inputs. This result also confirms

the advantage of q̂α,n over ξ̂m,n in terms of finite sample breakdown point and gross-error

sensitivity, but such a robust proposal may sacrifice statistical efficiency.

We show in Section 3 how these results can be exploited to detect outlying data points in

the output-direction. In the frontier modeling context, descriptive methods for identifying

outliers have been proposed by Wilson (1993,1995). Although very useful, these methods

are very computer intensive as the sample size increases and are based on some tuning
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parameters whose choice is not justified. See further discussions in Sections 3 and 6.

Section 4 contributes to important gaps in the asymptotic theory for the estimators

ξ̂m,n(x) and q̂α,n(x). We establish pointwise and functional asymptotic representations for√
n(ξ̂m,n(x)− ξm(x)) and improve its order of convergence to O(

√
log log n). Similar asymp-

totic properties for
√

n(q̂α,n(x) − qα(x)) can be found in Daouia (2005) and Daouia et al

(2008). However, unlike ξm(x), the computation of the asymptotic confidence interval of

qα(x) requires estimation of the quantile density function f(qα(x)|x), often resulting in es-

timates of unsatisfactory accuracy for finite samples. To avoid this problem, we derive an

alternative asymptotic confidence interval for qα(x) not requiring knowledge of f(qα(x)|x).

Finally, we show under general conditions that the asymptotic normality of both ξ̂m,n(x) and

q̂α,n(x) is still valid when m = mn → ∞ and α = αn → 1 as n → ∞. Section 5 illustrates

the theoretical findings through simulations and real data and Section 6 concludes.

2 Robustness

The most successful notion of global robustness of an estimator T at a sample (Z)n =

(Z1, . . . , Zn) is provided by the finite sample breakdown point of Donoho and Huber (1983):

RB(T, (Z)n) = min

{

k

n
: k = 1, . . . , n, and satisfies sup

(Z)n
k

|T{(Z)n
k} − T{(Z)n}| = ∞

}

,

where (Z)n
k denotes the contaminated sample by replacing k points of (Z)n with arbitrary

values. Given m ≥ 1, α ∈]0, 1] and x ∈ R
p
+, the partial boundaries ξ̂m,n(x) and q̂α,n(x) are

representable as functionals of the joint empirical distribution function F̂ (·, ·), or equivalently,

of the data set (X, Y )n = {(Xi, Yi), i = 1, . . . , n}:
{

ξm(x) = Sm,x(F )

ξ̂m,n(x) = Sm,x(F̂ ) = Sm,x((X, Y )n)
,

{

qα(x) = T α,x(F )

q̂α,n(x) = T α,x(F̂ ) = T α,x((X, Y )n)

where the operators Sm,x and T α,x associate to a distribution function G(·, ·) on R
p
+ × R+

such that G(x,∞) > 0, the real values

Sm,x(G) =

∫ ∞

0

(

1 −
[

G(x, y)

G(x,∞)

]m)

dy and T α,x(G) = inf

{

y ≥ 0| G(x, y)

G(x,∞)
≥ α

}

,

with the integrand being identically zero for y ≥ inf{y | G(x, y)/G(x,∞) = 1}.
As expected we can easily show that even one outlying observation is sufficient for break-

down of the FDH frontier (see Lemma A.1, Appendix), and consequently for breakdown of

the DEA frontier. But the surprising result is that the partial order-m boundary breaks down

for the same fraction, 1/n, of contamination as the envelopment FDH and DEA estimators,

for any order m.
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Theorem 2.1. Let x ∈ R
p
+ such that F̂X,n(x) > 0. Then, for any order m ≥ 1,

RB(ξ̂m,n(x), (X, Y )n) = 1/n.

Hence the asymptotic breakdown value is 0 for any order-m partial frontier. In contrast,

by an appropriate choice of the order α as a function of n and F̂X,n(x), we can derive a

partial quantile-based frontier q̂α,n(x) capable of withstanding arbitrary perturbations of a

significant proportion of the data points without disastrous results.

Theorem 2.2. Let x ∈ R
p
+ such that F̂X,n(x) > 0. Then, for any order α ∈]0, 1],

RB(q̂α,n(x), (X, Y )n) =







(

n(1 − α)F̂X,n(x) + 1
)

/n if αnF̂X,n(x) = 1, 2, 3, . . .
(

nF̂X,n(x) −
[

αnF̂X,n(x)
])

/n otherwise,

where [αnF̂X,n(x)] denotes the integer part of αnF̂X,n(x).

Remark 2.1. The asymptotic breakdown value for the sequence {q̂α,n(x)}n≥1 is then (1 −
α)FX(x). When the order α is fixed, this theorem reflects how the corresponding partial

frontier q̂α,n(x) suffers from the left-border effect when the vector x ∈ R
p
+ of inputs-usage

is too small. Likewise, increasing the dimension p of input factors x decreases F̂X,n(x), and

hence RB(q̂α,n(x), (X, Y )n) goes down. On the other hand, once we know that q̂α,n(x) =

T α,x((X, Y )n) does not break down for the fraction (k∗ − 1)/n of contamination, with

k∗/n = RB(q̂α,n(x), (X, Y )n), it is of interest to know how large the bias |T α,x((X, Y )n
k∗−1)−

T α,x((X, Y )n)| can be. For this purpose we compute the upper bound of this bias, here we

only focus on contaminated samples (X, Y )n
k∗−1 := (X, Y )n,y

k∗−1 in the direction of Y obtained

by replacing k∗ − 1 points (Xi, Yi) with outlying extreme-values (Xi, Y
∗
i ).

Proposition 2.1. Let x ∈ R
p
+ such that F̂X,n(x) > 0. Then, for any order α ∈]0, 1],

0 ≤ T α,x((X, Y )n,y
k∗−1) − T α,x((X, Y )n) ≤ ϕ̂n(x) − q̂α,n(x)

for any contaminated sample (X, Y )n,y
k∗−1.

Note that when the order α goes to 1, i.e. when estimating the full frontier function

ϕ(x) itself, the maximal bias tends to zero since limα↑1 q̂α,n(x) = ϕ̂n(x). However, when α is

fixed, the maximal bias ϕ̂n(x)− q̂α,n(x) may become too large as x increases. So, to estimate

ϕ(x) by q̂α,n(x), the order α should be chosen appropriately as a function of both x and n.

We next answer the important question of how the two families of order-α and order-m

boundaries are linked. We show that these concepts of partial frontiers are closely linked in

the sense that {qα(x), α ∈]0, 1]} defines a “robustified” variant of the family {ξm(x), m ≥ 1}
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while the latter defines an “efficient” variant of the former. We provide an explicit and exact

expression of α as a function of m that allows to select which frontier q̂α,n can be analyzed

and compared with ξ̂m,n. Indeed, it is easy to see that ξm(x) = E[max(Yx1, . . . , Yxm)] for

any sequence (Yx1, . . . , Yxm) of m independent random variables drawn from the conditional

distribution of Y given X ≤ x. Since the median is known to be more robust than the mean

(see e.g. Hampel 1968), we can “robustify” the expected value of the maximum, ξm(x),

by simply replacing the expectation with the median to obtain a median-type expected

maximum output frontier.

Proposition 2.2. Consider the robust-variant of ξm(x) defined as

ξ̃m(x) = Median [max(Yx1, . . . , Yxm)].

Then for any order m ≥ 1, there exists an order α(m) = (1/2)1/m such that ξ̃m(x) = qα(m)(x).

Hence for each expected-maximum output m-frontier, there exists a quantile-type fron-

tier of a well-specified order α = α(m) such that their pointwise values ξm(x) and qα(x)

are respectively the theoretical mean and median of the same distribution, namely that of

the random variable max(Yx1, . . . , Yxm). When this distribution is symmetric, ξ̂m,n(x) and

q̂α(m),n(x) estimate exactly the same quantity.

Remark 2.2. It is difficult to imagine the family {q̂α,n(x), α ∈]0, 1]} being preferred in all

contexts: of course q̂α,n(x) is preferred over ξ̂m,n(x) in terms of finite sample breakdown point

and gross-error sensitivity, but such a robust proposal may sacrifice in terms of statistical

efficiency (measured e.g. by means of estimation variance). Moreover, once {q̂α,n(x)} breaks

down, it becomes less resistant to extreme values than {ξ̂m,n(x)}. Indeed, putting Nx =

nF̂X,n(x) and taking Y x
1 , . . . , Y x

Nx
to be the Y ′

i s such that Xi ≤ x, we first have

q̂α,n(x) =

{

Y x
(αNx) if αNx = 1, 2, 3, . . .

Y x
([αNx]+1) otherwise,

(2.1)

where Y x
(i) denotes the ith order statistic of the points Y x

1 , . . . , Y x
Nx

. Likewise, we have

ϕ̂n(x) − ξ̂m,n(x) =
Nx−1
∑

i=1

(i/Nx)
m{Y x

(i+1) − Y x
(i)}. (2.2)

This difference being a sum of weighted spacings, ξ̂m,n(x) is more resistant to FDH points

in the sense that it converges slowly to ϕ̂n(x) as m increases, whereas q̂α(m),n(x), as an order

statistic, converges rapidly to ϕ̂n(x) once it breaks down. It is easy to see that

q̂α(m),n(x) =

Nx
∑

i=1

Y x
(i)1I

{(

i − 1

Nx

)m

<
1

2
≤

(

i

Nx

)m}

, (2.3)
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and so q̂α(m),n(x) coincides with ϕ̂n(x) for all m > log(2)/ log(Nx/(Nx −1)), which is not the

case for

ξ̂m,n(x) =
Nx
∑

i=1

Y x
(i)

{(

i

Nx

)m

−
(

i − 1

Nx

)m}

. (2.4)

These sensitivity and resistance characteristics of ξ̂m,n(x) and q̂α(m),n(x), as well as their

statistical efficiency, are illustrated in Subsection 5.1 with simulated and real data sets.

To conclude, the α(m)-frontier ξ̃m,n is sometimes preferred over the m-frontier ξ̂m,n and

sometimes not according to the values of m. So a sensible practice is not to restrict the

frontier analysis to one procedure, but to check whether both concepts of partial boundaries

point toward similar conclusions. See the practical guidelines in Subsection 5.4.

3 Detection of anomalous data

The word “anomalous” is used here for detecting isolated data points in the direction of Y .

From now on, we write ξ̃m,n := q̂α(m),n.

Local distance : Let (xa, ya) be an isolated outlier, that is, (xa, ya) = (xa, ϕ̂n(xa)) is an FDH

observation clearly outlying the cloud of data points. We know that both partial boundaries

ξ̂m,n(xa) and ξ̃m,n(xa) ր ϕ̂n(xa) as m → ∞. We distinguish between two different behaviors

of ξ̂m,n(xa) and ξ̃m,n(xa) as the order m increases :

i. While ξ̂m,n(xa) breaks down (i.e. ξ̂m,n(xa) becomes attracted by the outlying value

ya = ϕ̂n(xa)) for any order m ≥ 1 in view of Theorem 2.1, the quantile-type value

ξ̃m,n(xa), being determined solely by the frequency α(m), remains unaffected even

when m increases (quantiles are known to be robust in this sense). In this situation,

the distance between the robust value ξ̃m,n(xa) and the influencable value ξ̂m,n(xa) shall

increase rapidly as m increases;

ii. However, when m achieves a sufficiently large threshold ma, the partial boundary

ξ̃m,n(xa) also breaks down in view of Theorem 2.2 and converges rapidly, as an order

statistic (see (2.1) and (2.3)), to the outlying maximum value ϕ̂n(xa). Even more

strongly, it is easy to see that ξ̃m,n coincides overall with the FDH frontier ϕ̂n for

any m ≥ log(1/2)/ log((n − 1)/n). In contrast, ξ̂m,n(xa) being a linear combination of

order statistics (see (2.2) and (2.4)), converges more slowly to the largest order statistic

ϕ̂n(xa). Hence, although its sensitivity to the magnitude of the outlying value ϕ̂n(xa)

for any m ≥ 1, ξ̂m,n(xa) becomes more resistant than ξ̃m,n(xa) as m exceeds ma. Thus,

the distance between ξ̃m,n(xa) and ξ̂m,n(xa) shall decrease slowly as m > ma increases.
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To summarize, if ϕ̂n(xa) is really outlying, the curve m 7→ |ξ̃m,n(xa)− ξ̂m,n(xa)| shall have

roughly a “Λ” structure, that is, a sharp positive slope (indicating that ξ̂m,n(xa) breaks down

while ξ̃m,n(xa) remains still unaffected as m increases) followed by a smooth decreasing slope

(indicating that ξ̃m,n(xa) becomes non-robust for m large enough whereas ξ̂m,n(xa) is more

resistant). Here the “Λ” effect appears at ma − 1 such that the value of |ξ̃m,n(xa)− ξ̂m,n(xa)|
at m = (ma − 1) is sufficiently large compared with its initial value at m = 1.

However, if ϕ̂n(xa) is only extreme (not really isolated), the graph of m 7→ |ξ̃m,n(xa) −
ξ̂m,n(xa)| will have a slight “∧” curvature, that is, a non-decreasing slope followed by a non-

increasing slope such that the maximal value of the distance |ξ̃m,n(xa) − ξ̂m,n(xa)| is very

close to its initial value at m = 1.

So, in general, if the graph of the distance function m 7→ |ξ̃m,n(xi) − ξ̂m,n(xi)| shows

clearly a sharp “Λ” curvature for a given observed value xi, this indicates a potential outlier

in the data set. The suspicious outlying point can be then easily recovered: it corresponds

to the FDH point (xk, yk) for which yk = ϕ̂n(xi). This is the basic idea of our procedure.

Global distance : Consider now the maximal “distance” between the partial boundaries

ξ̃m,n and ξ̂m,n, defined as d(m) = max1≤i≤n |ξ̃m,n(xi) − ξ̂m,n(xi)|. Assume that (xa, ya) is the

unique outlier in the sample. If this point is far enough from the cloud of data points, then

the local distance |ξ̃m,n(xa)− ξ̂m,n(xa)| coincides for all m ≥ 1 with the global distance d(m).

In this case, as described above, the shape of the entire curve m 7→ d(m) (and not only a

part of this graph) should be a sharp “Λ”.

If, instead, the sample contains two isolated outliers (xa, ya) and (xb, yb) with xa < xb, it

is easy to see from Theorem 2.2 that ξ̃m,n(xa) breaks down before ξ̃m,n(xb). Let ma and mb

be respectively the values of m at which ξ̃m,n(xa) and ξ̃m,n(xb) break down. Then ma < mb.

On the other hand, due to the conditioning on X ≤ x, both ξ̂m,n and ξ̃m,n are more resistant

to outliers at xb than at xa (left-border effect). It follows that :

i. for m < ma, both ξ̃m,n(xa) and ξ̃m,n(xb) are unaffected by the two outliers, while

ξ̂m,n(xa) is more attracted by these outliers than ξ̂m,n(xb) due to the left-border effect.

This implies that |ξ̃m,n(xa) − ξ̂m,n(xa)| ≥ |ξ̃m,n(xb) − ξ̂m,n(xb)| as m increases, whence

d(m) = |ξ̃m,n(xa) − ξ̂m,n(xa)| as m ↑ ma. Therefore the graph of d(m) should have a

sharp positive slope as m ↑ ma;

ii. once m exceeds ma, the local distance |ξ̃m,n(xa)− ξ̂m,n(xa)| decreases smoothly to zero

(breakdown of ξ̃m,n(xa)), while |ξ̃m,n(xb) − ξ̂m,n(xb)| still increases rapidly as m ↑ mb.

Let ma,b be the value of m at which |ξ̃m,n(xb)− ξ̂m,n(xb)| exceeds |ξ̃m,n(xa)− ξ̂m,n(xa)|.
Then ma ≤ ma,b < mb. If ma = ma,b, then d(m) = |ξ̃m,n(xb) − ξ̂m,n(xb)| for m ≥ ma.

Whence d(m) increases rapidly as m ↑ mb and decreases smoothly as m ≥ mb. In
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contrast, if ma < ma,b < mb, then d(m) = |ξ̃m,n(xa)− ξ̂m,n(xa)| decreases smoothly for

m ∈ [ma, ma,b) whereas d(m) = |ξ̃m,n(xb)−ξ̂m,n(xb)| increases rapidly for m ∈ [ma,b, mb)

and decreases smoothly for m ≥ mb.

In summary, in presence of two outliers far from the cloud of data points, the shape of

the entire graph m 7→ d(m) should be either one sharp “Λ” or two successive “Λ” effects

showing an “M” structure. It should be also clear that if (xa, ya) is only a suspicious extreme

(not really isolated), then the strong “Λ” effect corresponding to the outlier (xb, yb) could be

preceded by a slight “∧” oscillation due to the presence of the extreme observation (xa, ya).

In general, in presence of k outliers, the graph m 7→ d(m) shows at least one sharp “Λ”

effect and at most k “Λ” effects. However, in absence of outliers, the graph shows only slight

“∧” oscillations as m increases and shall have a decreasing trend. To avoid any ambiguity of

appreciation between sharp “Λ” effects and slight “∧” oscillations, we also make use of the

concave envelopment of m 7→ d(m) (i.e. the lowest concave curve enveloping the graph).

The methodology : For a given order m, let x(m) denote the observed input xj for which

d(m) = |ξ̃m,n(xj) − ξ̂m,n(xj)|. Then the basic tool will be a picture plotting the graph of

d(m) and its concave envelopment for increasing equidistant values of m. Remember that

d(m) ց 0 as m → ∞. So, if the graph of d(m) ends with an increasing slope, it should be

redone by adding larger values of m until it ends with a decreasing slope. Note also that, if

the graph of d(m) is plotted by using (2J + 1) or (2J + 2) values of m (with J = 1, 2, . . .),

then it has at most J sharp “Λ” effects or slight “∧” oscillations. The different possible

behaviors of the graph of d(m) and its concave envelopment can be summarized as follows:

(a) If the shape of the entire graph of m 7→ d(m) is a sharp “Λ”, then the order m∗ at which

the graph is maximal should indicate that the FDH point (xk, yk), with yk = ϕ̂n(x(m∗)),

is an isolated outlier. The concave envelopment curve should have also a sharp “Λ” effect.

Likewise, if the entire graph of d(m) shows a sharp “Λ” effect followed by a second one, that

is, a structure “M”, then each local maximum m∗ allows to detect an outlier. In this case,

the concave envelopment curve should have roughly a structure “∩”.

(b) If the graph of d(m) begins with a sharp positive slope as m increases, it could have

a global structure of at most J successive “Λ” effects. The local maxima corresponding to

these sharp effects will allow to detect isolated outliers. Here also, the concave envelopment

curve should have a structure “Λ” or “∩”.

(c) If, in contrast, the graph of d(m) begins with a smooth positive slope followed by a

decreasing trend showing a global maximum value very close from the initial value d(1), this

indicates the presence of only suspicious extreme observations (not really isolated). In this

case, the concave envelopment curve should not have a clear structure “Λ” or “∩”.
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(d) If, in contrary, the graph of d(m) decreases overall, this indicates clearly the absence

of both outliers and suspicious extremes. Here also, a structure “Λ” or “∩” of the concave

envelopment curve should not appear.

(e) If, instead, the graph of d(m) begins with a decreasing slope followed by an increasing

one, then we distinguish between two situations: either (e1) the (short) decreasing slope

is too smooth compared with the (longer) increasing one showing roughly a curvature “X”

for the first values of m, or (e2) the decreasing deviation is, at least, as important as the

increasing one. In situation (e1), the concave envelopment curve should have a structure

“Λ” or “∩” whose maxima allow to detect isolated outliers as described in (a). In situation

(e2), the concave envelopment curve should behave as the graph of d(m) in (c) or (d) leading

thus to the same conclusions.

In conclusion, the above description tells us that a “Λ” or “∩” structure of the concave

envelopment curve is necessary and sufficient for detecting outliers. It is also important

to note that looking only at the graph of d(m) may result in some confusion between the

desirable “Λ” effects (isolated outliers) and possibly contestable “∧” oscillations (suspicious

extremes). To overcome such a subjectivity of appreciation, it is best to overlay in the same

picture the graph of d(m) and its concave envelopment. Then only sharp “Λ” deviations of

the graph of d(m) whose maximal points belong to the concave envelopment curve should

be retained to identify potential outliers. This smoothing strategy however allows to detect

only few outliers per picture. An outlier can “mask” other outliers situated near the first

one and who are less isolated. To avoid such a masking effect pointed out earlier by Wilson

(1993,1995), the analysis should be redone without the identified outliers until the concave

envelopment curve shows no more “Λ” or “∩” effects. Then, a careful analysis is to plot again

the last graph of d(m) and its concave envelopment by using a refined sequence of “small”

equidistant values of m in order to detect potential masked outliers at the left-border of

the sample. Indeed, when the increasing values of m are large, our procedure cannot detect

outliers having too small values of xi since, in this case, ξ̃m,n(xi) = ξ̂m,n(xi) = ϕ̂n(xi). All

this results in the following simple practical algorithm (illustrated in Subsection 5.3):

[1] Plot the graph of d(m) and its concave envelopment for m = 1, [ n
10

], [2n
10

], . . . , [9n
10

], n.

[2] If the concave envelopment curve shows a “Λ” or “∩” effect, then the order m∗ at

which this curve attains its maximum indicates that the FDH point (xk, yk), with

yk = ϕ̂n(x(m∗)), is a potential outlier. This suspicious point can be really identified as

an isolated outlier only if the maximal value d(m∗) is clearly distant above from the

initial value d(1). To avoid the masking effect, proceed again to step [1] without the

identified outliers.
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[3] If the concave envelopment curve shows neither a “Λ” nor a “∩” effect, let m1 > 1

be the first value of m in the chosen sequence in step [1] at which the graph of d(m)

shows a decreasing deviation. Then,

[3a] if m1/10 ≤ 1, there are no isolated outliers in the sample of interest.

[3b] if m1/10 > 1, proceed to [1] by using m = 1, [m1

10
], [2m1

10
], . . . , [9m1

10
], m1.

Multivariate extensions : Let us now extend the ideas to the full multivariate setup

where a set of inputs X ∈ R
p
+ is used to produce a set of outputs Y ∈ R

q
+. Let Ψ denote the

joint support of the random vector (X, Y ) that we assume to be free disposal, i.e., (x, y) ∈ Ψ

implies (x′, y′) ∈ Ψ as soon as x′ ≥ x and y′ ≤ y (the inequalities here have to be understood

componentwise). Let Y (j), (y(j)) denote the jth component of Y , (of y). Since a natural

ordering of Euclidean spaces of dimension greater than one does not exist, we overcome

the difficulty by utilizing the conditional distribution of the dimensionless transformation

Yy := minj=1,...,q Y (j)/y(j) given X ≤ x instead of the multivariate distribution of Y ∈ R
q
+

conditioned by X ≤ x. The distribution function of this univariate transformation is given

by

P(Yy ≤ λ|X ≤ x) = 1 − P(Y > λy|X ≤ x) = 1 − SY |X(λy|x) for all λ ≥ 0,

where SY |X(·|x) denotes the conditional survival function of Y given X ≤ x. Its endpoint

λ(x, y) := sup{λ ≥ 0|SY |X(λy|x) > 0}

coincides with the conventional Farrell efficiency score, sup{λ ≥ 0|(x, λy) ∈ Ψ}, for the unit

(x, y) ∈ Ψ, and the set Y ∂(x) := {λ(x, y)y | y : (x, y) ∈ Ψ} represents the set of maximal

outputs a unit operating at the level x can produce. The point y∂(x) := λ(x, y)y is the

radial projection of (x, y) on the support frontier Y ∂ := {(x, λ(x, y)y) | (x, y) ∈ Ψ} in the

output-orientation (orthogonal to the vector x). In the particular case of q = 1, we have the

equalities λ(x, y) ≡ ϕ(x)/y and Y ∂(x) ≡ {ϕ(x)}.
Parallely to the concepts of partial frontier functions qα(x) and ξm(x) related to the

conditional distribution of Y given X ≤ x in the case of one output, we define the quan-

tile function of order α and the expected maximum output function of order m for the

dimensionless distribution of Yy given X ≤ x, respectively, as

Qα(x, y) := inf{λ ≥ 0|1−SY |X(λy|x) ≥ α}, Xm(x, y) :=

∫ λ(x,y)

0

{1− [1−SY |X(λy|x)]m}dλ.

As a matter of fact, Xm(x, y) coincides with the order-m output efficiency score for the

unit (x, y), introduced by Cazals et al. (2002), while Qα(x, y) coincides with the αth
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quantile output efficiency score favored by Daouia and Simar (2007). The sets Y ∂
α :=

{(x, Qα(x, y)y) | (x, y) ∈ Ψ} and Y ∂
m := {(x,Xm(x, y)y) | (x, y) ∈ Ψ} represent, respectively,

the efficient order-α and order-m partial surfaces in the output direction. In the particular

case of one output, Qα(x, y) = qα(x)/y and Xm(x, y) = ξm(x)/y. In this case, the sets Y ∂
α

and Y ∂
m coincide with the graphs of the frontier functions qα(·) and ξm(·), respectively. See,

e.g., Daraio and Simar (2007) for a detailed description of both partial efficiency measures

and for their economic meaning.

The sample estimators Q̂α,n(x, y) and X̂m,n(x, y) of Qα(x, y) and Xm(x, y), respectively,

are obtained by replacing SY |X(λy|x) with its empirical version ŜY |X(λy|x) =
∑n

i=1 1I(Xi ≤
x, Yi > λy)/

∑n
i=1 1I(Xi ≤ x). They can be easily computed in the same way as the quantities

q̂α,n(x) and ξ̂m,n(x), respectively, by simply replacing in (2.1) and (2.4) the Yi’s such that Xi ≤
x with the dimensionless observations Yy

i such that Xi ≤ x. Moreover, it is not hard to show

that all robustness and sensitivity properties established in the univariate case for the classes

{qα(x), q̂α,n(x)} and {ξm(x), ξ̂m,n(x)} hold true for the transformations {Qα(x, y), Q̂α,n(x, y)}
and {Xm(x, y), X̂m,n(x, y)}. In particular, the practical algorithm described above in the

three steps [1]-[3] for detecting potential outliers remains still valid in the full multivariate

case up to two natural adaptations :

i. the maximal distance d(m) between the curves of q̂α(m),n(·) and ξ̂m,n(·) in the case of

q = 1 extends naturally to the distance

d(m) = max
1≤i≤n

||Q̂α(m),n(Xi, Yi)Yi − X̂m,n(Xi, Yi)Yi||

between the empirical partial surfaces Ŷ ∂
α(m),n = {(Xi, Q̂α(m),n(Xi, Yi)Yi) | i = 1, . . . , n}

and Ŷ ∂
m,n = {(Xi, X̂m,n(Xi, Yi)Yi) | i = 1, . . . , n} in the general case of q ≥ 1, where || · ||

denotes the Euclidean norm on Rq;

ii. the outlying FDH point (Xk, Yk) to be identified in step [2], with Yk = ϕ̂n(x(m∗)) in

the case of one output, is determined in the case of multi-outputs by

Yk = λ̂n (x(m∗), y(m∗)) y(m∗),

where λ̂n(x, y) = sup{λ ≥ 0|ŜY |X(λy|x) > 0} = maxi|Xi≤x minj=1,...,q Y
(j)
i /y(j) is the

FDH estimator of λ(x, y), and where (x(m∗), y(m∗)) is the observation (Xj, Yj) for

which d(m∗) = ||Q̂α(m),n(Xj , Yj)Yj − X̂m,n(Xj , Yj)Yj||.

Subsection 5.3 illustrates the procedure with simulated and real data.
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4 Asymptotic properties

We first derive the following pointwise and uniform asymptotic representations for ξ̂m,n(x).

Proposition 4.1. (i) For all m ≥ 1 and any x ∈ R
p
+ such that FX(x) > 0, we have

√
n(ξ̂m,n(x) − ξm(x)) =

√
nΦm,n(x) + op(1) as n → ∞ (4.1)

where Φm,n(x) = m
FX(x)

F̂X,n(x)
∫ ϕ(x)

0
F m−1(y|x)[F (y|x)− F̂n(y|x)]dy.

(ii) Suppose the upper boundary of the support of Y is finite. Then, for all m ≥ 1

and any X ⊂ R
p
+ such that infx∈X FX(x) > 0, (4.1) holds uniformly in x ∈ X , i.e.

{√n(ξ̂m,n(x) − ξm(x)); x ∈ X} = {√nΦm,n(x); x ∈ X} + op(1).

As an immediate consequence of Proposition 4.1(i),
√

n(ξ̂m,n(x)−ξm(x)) is asymptotically

normal with mean 0 and variance

σ2(x, m) = E

{

m

FX(x)
1I(X ≤ x)

∫ ϕ(x)

0

F m−1(y|x) [F (y|x) − 1I(Y ≤ y)] dy

}2

(4.2)

=
2m2

FX(x)

∫ ϕ(x)

0

∫ ϕ(x)

0

F m(y|x)F m−1(u|x)[1 − F (u|x)]1I(y ≤ u)dydu.

Even more strongly, it follows from Proposition 4.1(ii) (see also the proof) that the process

{√n(ξ̂m,n(x) − ξm(x)), x ∈ X} converges in distribution in the space L∞(X ) of bounded

functions on X to the centered Gaussian process {Gm(x); x ∈ X} as n → ∞, where

Gm(x) =
m

FX(x)

∫ ϕ(x)

0

F m−1(y|x) [F(x,∞)F (y|x)− F(x, y)] dy

with F being a (p + 1) dimensional F -Brownian bridge. Similar results can be found in

Cazals et al (2002, Theorem 3.1 and Appendix B). Their techniques of proof rely on the

differentiability of the operator Sm,x in the Fréchet sense with respect to the sup-norm. In

statistical applications however, Fréchet differentiability may not hold, whereas Hadamard

differentiability does, the latter being a less restrictive concept of differentiability than the

former. The results in Proposition 4.1 are derived by applying the functional delta method

in conjunction with the (less restrictive) Hadamard differentiability.

Note that the functional convergence of the process {√n(ξ̂m,n(x) − ξm(x)), x ∈ X}
in Proposition 4.1(ii) provides the consistency and asymptotic distribution of parametric

approximations of the order-m frontiers, as shown in Florens and Simar (2005). Their elegant

approach tries to capture the shape of the cloud points near its boundary by combining

parametric and nonparametric approaches.
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Next we show that
√

n(ξ̂m,n(x) − ξm(x)) also obeys a law of the iterated logarithm,

which improves the order of convergence to O(
√

log log n) and even gives the proportionality

constant.

Theorem 4.1. For all m ≥ 1 and any x ∈ R
p
+ such that FX(x) > 0, we have almost surely

for either choice of sign

lim sup
n→∞

±
√

n(ξ̂m,n(x) − ξm(x))

(2 log log n)1/2
= σ(x, m).

By the asymptotic normality we have limn→∞ P{ξm(x) ∈ [ξ̂m,n(x) ± 2σ(x, m)/
√

n]} =

2Φ(2)−1 ≈ 95%, where Φ denotes the standard normal distribution function. An intriguing

implication of the law of the iterated logarithm (see, e.g., Serfling 1980) is that we can

be sure that ξm(x) is outside the asymptotic confidence interval [ξ̂m,n(x) ± 2σ(x, m)/
√

n]

infinitely often, but this is of little practical consequence. Monte-Carlo experiments are

provided in Subsection 5.2 to illustrate the performance of the asymptotic confidence interval

Qn := [ξ̂m,n(x) ± zσ̂(x, m)/
√

n] which satisfies limn→∞ P[ξm(x) ∈ Qn] = 2Φ(z) − 1 for any

z > 0, where σ̂2(x, m) is a strongly consistent estimator of σ2(x, m):

σ̂2(x, m) =
m2

F̂X,n(x)

∫ ϕ̂n(x)

0

∫ ϕ̂n(x)

0

[F̂ (y|x)F̂ (u|x)]m−1
{

F̂ (y ∧ u|x) − F̂ (y|x)F̂ (u|x)
}

dydu.

Note that similar results to Proposition 4.1 and Theorem 4.1 have been proved for√
n(q̂α,n(x) − qα(x)) in Daouia (2005) and Daouia et al (2008). Note also that, as pointed

in Section 1, we have
√

n (q̂α,n(x) − qα(x))
d−→ N (0, σ2(α, x)) as n → ∞, where

σ2(α, x) = α(1 − α)/f 2(qα(x)|x)FX(x). (4.3)

Then the interval In = [q̂α,n(x)±zσ(α, x)/
√

n] satisfies limn→∞ P[qα(x) ∈ In] = 2Φ(z)−1, for

any z > 0. Putting z = Φ−1(1−a/2) to be the (1−a/2)th quantile of Φ, we obtain (1−a) as

the confidence coefficient. However, the computation of the asymptotic confidence interval

In requires estimation of the quantile density function f(qα(x)|x), which often results in

estimates of unsatisfactory accuracy for finite samples. In the following theorem, we derive

an alternative confidence interval for qα(x) which is asymptotically equivalent to In, but does

not need f(qα(x)|x) to be known or estimated.

Theorem 4.2. Let 0 < α1 < α2 < 1 and assume that F (·|x) is continuously differentiable

on the interval [a, b] := [qα1(x)−ε, qα2(x)+ε] for some ε > 0, with strictly positive derivative

f(·|x). For any α ∈]α1, α2[ and any z > 0, let Cn =]q̂αn1,n(x), q̂αn2,n(x)[ where αn1 =

α − z[α(1 − α)/nF̂X,n(x)]1/2 and αn2 = α + z[α(1 − α)/nF̂X,n(x)]1/2. Then

lim
n→∞

P[qα(x) ∈ Cn] = 2Φ(z) − 1 and
√

n|length(Cn) − length(In)| p−→ 0 as n → ∞.
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In case the true partial frontiers qα(·) and ξm(·) coincide, one can compare the perfor-

mances of the asymptotic confidence intervals Cn and Qn. See Subsection 5.2.

It should be clear that the estimation of the partial frontiers qα(·) and ξm(·) instead of the

full frontier ϕ(·) itself is mainly motivated by the construction of robust frontier estimators

which are well inside the sample {(Xi, Yi), i = 1, . . . , n} but near its upper boundary. It is

then natural to investigate whether the asymptotic normality of the estimators q̂α,n(x) and

ξ̂m,n(x) is still valid when α = αn → 1 and m = mn → ∞ as n → ∞. First, note that

lim
α↑1

q̂α,n(x) = lim
m↑∞

ξ̂m,n(x) = ϕ̂n(x).

Note also that the necessary and sufficient condition under which the FDH estimator ϕ̂n(x)

converges to a non-degenerate distribution is given by

1 − F (y|x) = ℓx

(

{ϕ(x) − y}−1
)

{ϕ(x) − y}ρx as y ↑ ϕ(x) (4.4)

(Daouia et al (2010), Theorem 2.1), where ρx > 0 is a constant and ℓx is a slowly varying

function, i.e., limt↑∞ ℓx(tz)/ℓx(t) = 1 for all z > 0. In the particular case where ℓx({ϕ(x) −
y}−1) = ℓ(x) is a strictly positive function in x, it is shown in Daouia et al (2010, Corollary

2.1) that

{nℓ(x)}1/ρx
(

ϕ(x) − ϕ̂n(x)
) d−→ Weibull(1, ρx) as n → ∞.

For the estimator q̂αn,n(x) to keep the same limit Weibull distribution as ϕ̂n(x), it suffices to

choose αn → 1 rapidly so that n1+1/ρx(1 − αn) → 0 (see Daouia et al (2010), Theorem 2.2).

This result has been also proved by Aragon et al (2005) in the restrictive case where the

joint density of (X, Y ) has a sudden jump at the frontier, which corresponds to ρx = p+1 in

(4.4). Likewise, in this restrictive setting, Cazals et al (2002) recover the same asymptotic

Weibull distribution of ϕ̂n(x) for the estimator ξ̂mn,n(x) provided that mn = O(n logn).

Instead of the Weibull extreme-value distribution, we provide in the next proposition

sufficient conditions under which q̂αn,n(x) and ξ̂mn,n(x) are rather asymptotically normal.

Proposition 4.2. (i) Suppose (4.4) holds with ℓx({ϕ(x) − y}−1) = ℓ(x) > 0 and F (·|x)

is differentiable in a left neighborhood of ϕ(x) with a strictly positive derivative f(·|x).

If n(1 − αn) → ∞ as n → ∞, then
√

n{σ(αn, x)}−1 (q̂αn,n(x) − qαn(x))
d−→ N (0, 1).

(ii) If mn → ∞ and mn(mn−1)
σ(x,mn)

= O
( √

n
log log n

)

as n → ∞, then
√

n{σ(x, mn)}−1(ξ̂mn,n(x) −
ξmn(x))

d−→ N (0, 1).

Thus, the convergence in distribution of both
√

n
σ(α,x)

(q̂α,n(x)− qα(x)) and
√

n
σ(x,m)

(ξ̂m,n(x)−
ξm(x)) to N (0, 1), for fixed orders α and m, is still valid when the partial frontiers qα(x) and

ξm(x) approach the true full frontier ϕ(x).
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5 Numerical Illustration

We present simulation studies to illustrate the robustness and statistical efficiency of the em-

pirical partial boundaries ξ̂m,n and ξ̃m,n := q̂α(m),n and to compare the asymptotic confidence

intervals Cn and Qn. We also provide illustrations with a real data set.

5.1 Comparing ξ̂m,n and ξ̃m,n

Simulated example: Consider the Cobb-Douglas model Y = X1/2 exp (−U), where X is

uniform on [0, 1] and U is exponential with mean 1/3. This model was studied by Gijbels

et al (1999) among others. Here ϕ(x) = x1/2 and F (y|x) = 3x−1y2 − 2x−3/2y3 for 0 < x ≤ 1

and 0 ≤ y ≤ ϕ(x). As can be seen from Figure 1, in this example the theoretical partial

frontiers ξm (solid lines) and ξ̃m = qα(m) (dotted lines) are very close.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

outliers
true frontier
m=20
alpha(m)=.9659
m=15
alpha(m)=.9548
m=10
alpha(m)=.9330
m=5
alpha(m)=.8706
m=1
alpha(m)=.5
simulated points

Figure 1: The true frontiers ξm and ξ̃m for several values of m (Cobb-Douglas model).

We also represent in Figure 1 a simulated sample of size 100 (green points) and we add

five outliers (blue points) to this sample. For the resulting sample (X, Y )n of size n = 105,

we compute the finite sample breakdown points RB(ξ̃m,n(x)) := RB(q̂α(m),n(x), (X, Y )n) for

several values of m and x and provide in Table 1 the values n × RB(ξ̃m,n(x)).

Since the data set contains five outlying points in the output-direction, the estimator

ξ̃m,n(x) can break down whenever RB(ξ̃m,n(x)) ≤ 5/n. This is clearly seen from Fig-

ure 2 where the frontiers ξ̃m,n and ξ̂m,n are plotted in absence of outliers (bottom: n =

100, 200, 300) and in presence of the 5 outliers (top: n = 105, 205, 305). Moreover, as

pointed in Remark 2.2, once ξ̃m,n(x) breaks down, it becomes less resistant to the influential

outliers than ξ̂m,n(x) as m increases. This is exactly what happens for ξ̃25,105 and ξ̃25,205 at

x = 0.3, where these order-α(25) frontiers are clearly more influenced than ξ̂25,105 and ξ̂25,205

(here m = 25). In contrast, before breaking down at the point x = 0.3, we see that ξ̃10,105
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and ξ̃10,205 (here m = 10) are rather more robust than ξ̂10,105 and ξ̂10,205, respectively.
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Figure 2: In each picture, ξ̃10,n and ξ̃25,n (respectively: ξ̂10,n and ξ̂25,n) in solid and dot-
ted blue (respectively: red) lines. From left to right and from top to bottom: n =
105, 205, 305, 100, 200, 300.

On the other hand, for too small values of x (e.g. x = 0.1), we see that both ξ̂m,n(x) and

ξ̃m,n(x) coincide with the non-robust FDH estimator, or at least, are drastically attracted by

ϕ̂n(x). As pointed out in Remark 2.1, this left-border defect is due to the conditioning on

X ≤ x in the construction of these two estimators. However, when the number nF̂X,n(x) of

observations (Xi, Yi) with Xi ≤ x increases, we see clearly that both ξ̂m,n and ξ̃m,n become

more robust to the outlying points.

We also simulated 1000 samples of size n = 1000 to analyze the bias and the mean

squared error (MSE) of ξ̂m,n and ξ̃m,n as estimators of ξm ≃ ξ̃m. According to the numerical

results reported in Table 2 (l-h.s), we can see that ξ̂m,n is slightly more efficient than ξ̃m,n

in terms of MSE, whereas the latter estimator is better than the former in terms of bias.

When the data are contaminated by adding five outliers (indicated by “∗” in Figure 1), we

see in Table 2 (r-h.s) the improvement of ξ̃m,n over ξ̂m,n in terms of MSE. Moreover, ξ̃m,n still

outperforms ξ̂m,n in terms of bias. Therefore, we can say that ξ̃m,n is globally more robust

to the outlying points than ξ̂m,n in this particular example. This can be explained by the

fact that, even when the α(m)-frontier ξ̃m,n breaks down at a value x, it is influenced only

locally on a right neighborhood of x, whereas the m-frontier ξ̂m,n remains attracted overall

between the 5 outliers as illustrated in Figure 2. Remember in comparing the α(m)- and
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m-frontiers that, in absence of outliers, ξ̃m,n is almost overall larger than or equal to ξ̂m,n,

which is no more the case when adding the five outliers.

A real data set: To further illustrate the sensitivity and resistance properties of the

empirical partial frontiers ξ̂m,n and ξ̃m,n, we use the real data example of Cazals et al (2002)

and Aragon et al (2005) on the frontier analysis of 9521 French post offices observed in 1994,

with X as the quantity of labor and Y as the volume of delivered mail. In this illustration,

we only consider the n = 4000 observed post offices with the smallest levels xi. We compared

ξ̂m,n and ξ̃m,n for different orders m ∈ {100, 200, 1000, 4000}. The cloud of points and the

resulting estimates are provided in Figure 3 (top): for m large enough (m ∈ {100, 200}),
the quantile-based frontier ξ̃m,n is clearly more resistant to the extreme points than the

expected maximal output frontier ξ̂m,n. But for m too large (i.e. m ∈ {1000, 4000}), both

partial boundaries ξ̃m,n and ξ̂m,n are drastically influenced by the few ostensible FDH points.

Nevertheless, while ξ̃4000,n coincides overall with the FDH frontier, ξ̂4000,n has the advantage

to be still resistant to this envelopment frontier. These results are expected in our theory.
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Figure 3: Top (full sample): ξ̂m,n and ξ̃m,n for m = 100, 200, 1000, 4000. Bottom: as above
without the anomalous data indicated by circles.

5.2 Comparing Cn and Qn

In the Cobb-Douglas model described above, as pointed in Daouia and Ruiz-Gazen (2006),

ξm(·) coincides with qα(·) if and only if α = 1
2
(1 − cos[3 arccos(1

2
− Bm) − 4π]), with Bm =

∑m
j=0 (m

j)3
j(−2)m−j/(3m − j + 1). For example, we obtain α = .8557 for m = 5 and

α = .9242 for m = 10. In this case, the partial frontier ξm ≡ qα can be estimated by ξ̂m,n

as well as q̂α,n, and one can compare the confidence intervals Qn and Cn. The true partial

frontier and its 95% confidence intervals are displayed in Figure 4 with (m = 5, α = .8557)

on the l-h.s and (m = 10, α = .9242) on the r-h.s. Here we consider two simulated samples

of size n = 100 (top) and n = 1000 (bottom).
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Figure 4: 95% confidence intervals Qn (red) and Cn (blue) of ξm = qα (Simulated example).

By construction, the upper bound q̂αn2,n(x) of Cn does not exist (see the upper blue

solid lines) for small inputs-usage x and high values of α which result in orders αn2 > 1.

This is the major drawback of the confidence interval Cn. On the other hand, even if the

confidence bands of Qn (in red lines) are overall well-defined, they do not contain ξm(x)

for small levels x and high orders m. Apart from these left-border defects, we observe that

Cn and Qn have very similar lower bounds, but Q100 performs globally better than C100

in terms of upper bounds. This is the price to be paid in order to avoid the estimation

of the conditional quantile density f(qα(x)|x) involved in the asymptotic variance σ2(α, x)

of q̂α,n(x). For n = 1000, the two confidence intervals provide more similar results. Note

also that Qn is computationally prohibitive when the sample size is of the order of several

thousands. On the contrary, Cn is very easy and very fast to implement.

Table 3 provides the average lengths and the achieved coverages of the 95% asymptotic

confidence intervals Cn and Qn computed over 1000 random replications, for sample sizes

n = 100 and n = 1000. The table only displays results for values of x where the upper

bound of Cn exists, e.g., for x ranging over {0.4, 0.5, · · · , 1} when m = 5 and for x ∈
{0.65, 0.7, · · · , 0.95} when m = 10. For n = 100 both Cn and Qn provide reasonably good

confidence intervals, but Qn performs clearly better than Cn in terms of average lengths. In

contrast, Cn outperforms Qn in terms of achieved coverages. For n = 1000 the confidence

interval Qn performs as Cn in terms of achieved coverages, however it still outperforms Cn
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in terms of average lengths. We repeated this exercise for other values of m and MC trials

and obtained the same conclusion: no winner in all contexts. On the other hand, when

comparing the MSE and bias of ξ̂m,n and q̂α,n as estimators of ξm(x) = qα(x), we find here

also that ξ̂m,n is more efficient than q̂α,n in terms of MSE and that q̂α,n performs better in

terms of bias. We do not reproduce the tables in order to save place.

5.3 Detection of anomalous data

A univariate simulated example: We consider the cloud of n = 105 points represented

in Figure 1. The procedure based on the analysis of the curve of m 7→ d(m) and its concave

envelopment will detect only the five points ‘*’ as isolated outliers. The first picture in

Figure 5 (l-h.s) gives these two curves for m = 1, 10, 20, . . . , 90, 100: here the graph of d(m),

in solid blue line, shows clearly two sharp “Λ” effects and the concave envelopment curve,

in dotted red line, has roughly a structure “∩”. The “Λ” effects attain their maximal values

at m∗ = 10 and m∗ = 40. We also see that each maximal point (m∗, d(m∗)) belongs to

the concave envelopment curve, which indicates that the FDH points (xk, yk), for which

yk = ϕ̂n(x(m∗)), can be really identified as isolated points in the direction of Y . A simple

computation code (using matlab) allows to detect two outlying FDH points: the result is

(xk, yk) = (0.1, 0.5) for m∗ = 10 and (xk, yk) = (0.5, 0.9) for m∗ = 40.
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Figure 5: Simulated example. The graph of d(m) in solid blue line and its concave envelop-
ment in dotted red line.

To avoid the masking effect, we redid the same work on the same data set without

the detected two outliers. The second picture of Figure 5 (from left to right) provides the

resulting curve of d(m) and its concave envelopment: here also looking to the sharp “Λ”

effects of the graph of d(m) which appear at m∗ = 10 and m∗ = 50, we identify respectively

the additional outlying points (0.3, 0.7) and (0.7, 1).

When these two outliers are also deleted from the sample, we obtain the curves in the

third picture of Figure 5: clearly the graph of d(m) begins with a too smooth decreasing

slope followed by a sharp “Λ” effect which attains its maximum at m∗ = 20, and ends with

a slight “∧” oscillation. Here, the shape of the entire concave envelopment curve shows an

indisputable sharp “Λ” effect which attains its maximum at m∗ = 20, indicating that the
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FDH point (x(20), ϕ̂n(x(20))) ≡ (0.3, 0.65) is an outlier. The slight “∧” oscillation of the

graph of d(m), attaining its maximum at m = 50, indicates only the presence of a suspicious

extreme observation (not really isolated) since its maximal value d(50) is very close to d(1).

Now, when the five outliers (0.1, 0.5), (0.5, 0.9), (0.3, 0.7), (0.7, 1) and (0.3, 0.65) are

deleted from the sample, we get the curves in the last picture of Figure 5 (r-h.s): the

concave envelopment curve shows neither a sharp “Λ” effect nor a “∩” structure, which

indicates the absence of really isolated outliers. Here, the graph of d(m) begins with a

decreasing deviation followed by a slight “∧” oscillation whose maximal value d(50) is very

close to the initial value d(1) and so cannot be used for detecting outliers. Therefore only the

five points indicated by ‘*’ in Figure 1 are detected by our semi-automatic procedure, which

is quite remarkable although “no optimal procedure nor miracle procedure can be defined

to detect outliers” as stated by Simar (2003).

Application to postal data: We test our procedure on the French post offices data set

which contains several outlying points in the output-orientation. Proceeding to step [1] and

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

5000

10000

15000

value of x

va
lu

e 
of

 y

potential outliers in Output direction

17 

2 

1 

14 

11 
12 

4 

5 

13 

3 

2 

10 

9 4 

8 7 
6 

Figure 6: Potential outlying post offices detected by the semi-automatic procedure.

then step [2] of our algorithm for m = 1, [ n
10

], [2n
10

], . . . , [9n
10

], n (here n = 4000), we obtain

successively the pictures in Figure 7 from left to right and from top to bottom. Except for the

last picture, the concave envelopment curves in dotted lines show roughly “Λ” or “∩” effects

allowing to identify at most three outliers per picture indicated in Figure 6 by the number

of the corresponding picture (from #1 to #14). Looking at the last picture, #15, we see

a too smooth increasing slope (an approximately horizontal deviation) of the concave curve

followed by a sharp decreasing slope, which makes the “Λ” effect clearly more contestable

than the one appearing in the preceding picture. So we cannot proceed to step [2].
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Figure 7: The resulting pictures for m = 1, 400, 800, . . . , 4000 (French post offices).

Instead, we proceed to step [3b], i.e., the last picture is redone by using a sequence of

smaller values of m in order to detect potential masked outliers at the left-border of the

sample. Looking again to picture #15, the first value of m at which the graph of d(m)

(solid blue line) shows a decreasing deviation is m1 = 400. The resulting new graph of

d(m) and its concave envelopment, for m = 1, [m1

10
], [2m1

10
], . . . , [9m1

10
], m1, is in the first picture

of Figure 8: here we only see a slight “∧” oscillation of the concave curve whose maximal

value is close to the initial value d(1). The first value of m at which the graph of d(m)

shows a decreasing deviation being m1 = 80, the last picture is redone by using the refined

sequence m = 1, 8, 16, . . . , 80. This gives the second picture of Figure 8, which allows to

identify only one potential outlier indicated by #17 in Figure 6. When this point is deleted

from the sample, we obtain the third picture of Figure 8 which shows no more “Λ” or “∩”

effects of the concave envelopment curve and so, there are no more outlying post offices.

In summary, our semi-automatic procedure detects 22 potential outliers. Some of these

points (e.g. #1,#2,#3) are clearly outlying due to measurement errors, but other isolated

observations (e.g. #4,#9,#10,#17) might contain useful information on the process under

analysis and so, they deserve to be carefully examined.
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Figure 8: As above with m = 1, 40, . . . , 400 (l-h.s) and m = 1, 8, . . . , 80 (Middle and r-h.s).

A multivariate simulated example: Here a multi-input and multi-output (p = q = 2)

data set is simulated as in Park et al. (2000). In this setup, the function describing the

efficient frontier is given by

y(2) = 1.0845(x(1))0.3(x(2))0.4 − y(1),

where y(j), (x(j)), stands for the jth component of y, (of x), for j = 1, 2. We draw X
(j)
i

independent uniforms on (1, 2) and Ỹ
(j)
i independent uniforms on (0.2, 5). Then the gener-

ated random rays in the output space are characterized by the slopes Ki = Ỹ
(2)
i /Ỹ

(1)
i . The

generated random points on the frontier are defined by

Y
(1)
i,eff =

1.0845(X
(1)
i )0.3(X

(2)
i )0.4

Ki + 1
, Y

(2)
i,eff = 1.0845(X

(1)
i )0.3(X

(2)
i )0.4 − Y

(1)
i,eff .

The efficiencies are generated by exp(−Ui) where Ui are drawn from an exponential with

mean 1/3. Finally, we define Yi = Yi,eff ∗ exp(−Ui). We simulate 100 observations according

to this scenario and we add five outliers #1, . . . , #5, as in Daouia and Simar (2007), respec-

tively at the following values of X: (1.25,1.5), (1.25, 1.75), (1.5,1.5), (1.75, 1.25) and (1.5,

1.25); the corresponding values for the slopes in the Y space are (0.25, 0.75, 1, 3, 5).

Our working algorithm results in the successive graphs of d(m) and their concave envel-

opment curves displayed on Figure 9, with m = 1, 10, 20, . . . , 100. In the first picture (from

left to right and from top to bottom), the graph of d(m) (solid blue line) and its concave

envelopment curve (dashed red line) have a sharp structure “∩” which attains its maximal

values at m∗ = 10 and m∗ = 30 and allows to identify only the outlying observation #5.

A similar “∩” structure is obtained in the second picture after removing the first detected

outlier : here also the attained maximal values at m∗ = 10 and m∗ = 30 allow to iden-

tify the same outlier #1. When this additional outlier is deleted from the sample, the new

graphs in the third picture show a sharp “Λ” effect which appears at m∗ = 10 and results in

the identification of the outlier #2. The fourth picture provides the resulting graphs after

removing this outlier : looking here to the structure “∩” which attains its maximal values

at m∗ ∈ {20, 30, 60}, we identify the same outlying point #3. The new graphs obtained
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without this outlier are shown in the fifth picture, where a sharp “Λ” effect of the concave

envelopment curve, appearing at m∗ = 20, allows to identify the outlier #4. For the same

data set without this outlier, we get in the last picture a decreasing concave envelopment

curve, indicating the absence of any suspicious observation among the remaining simulated

100 points. Thus, only the introduced five outliers are detected by our procedure. We

repeated the same exercise with other simulated data sets with the same kind of results.
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Figure 9: The resulting pictures for m = 1, 10, 20, . . . , 100 (multivariate simulated data).

Application to PFT (Program Follow Through) data: We examine here the popular

data set reported by Charnes, Cooper and Rhodes (1981) on an experimental education

program administrated in 70 US schools, with p = 5 inputs and q = 3 outputs. The

observations #59 and #44 are detected by the procedure of Wilson (1993) as potential

outliers. The results obtained by Simar (2003) confirm this and point out two additional

suspicious observations #54 and #1 that deserve at least careful attention. Our methodology

confirms that only the units #59 and #44 are really isolated from the sample in the output-

orientation. Moreover, it turns out that the unit #52 is more suspicious than the extreme

observations #54 and #1. Proceeding to step [1] and then to step [2] of our algorithm for

m = 1, 7, 14, 21, . . . , 70, we find successively the eight pictures displayed on Figure 10.

In the first picture, the concave envelopment curve (dashed line) indicates a clear struc-

ture “Λ”, and the graph of d(m) (solid line) shows two sharp “Λ”effects which attain

their maximal values at m∗ = 49 [with d(m∗) − d(1) = 32.9483] and at m∗ = 21 [with

d(m∗)− d(1) = 17.2833]. Both local maximum points (m∗, d(m∗)) belong to the concave en-

velopment curve, but they allow to identify the same unit #59 as a potential outlier. When

this suspicious unit is deleted from the sample, we obtain in the second picture a “Λ” (or
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Figure 10: The resulting pictures for m = 1, 7, 14, 21, . . . , 70 (PFT data).

roughly a “∩”) structure of the graph of d(m) and its concave envelopment : here also the

two maximal values attained at m∗ = 35 [with d(m∗)−d(1) = 13.7869] and at m∗ = 42 [with

d(m∗)− d(1) = 13.7506] result in one detected unit #44. When this extreme unit is deleted

from the sample, we get the third picture which allows to identify the unit #52 at m∗ = 21

[with d(m∗) − d(1) = 5.0187] and the unit #54 at m∗ = 42 [with d(m∗) − d(1) = 3.3166].

When deleting these two additional suspicious points from the data set, we obtain in the

fourth picture a structure “Λ” of the graph of d(m) and its concave envelopment, which

attains its maximum at m∗ = 42 [with d(m∗) − d(1) = 3.4307] and allows to identify the

unit #1 as a potential outlier. Likewise, our semi-automatic procedure detects,

- in picture 5, the unit #21 at m∗ = 21 [with d(m∗) − d(1) = 1.3047];

- in picture 6, the unit #10 at m∗ = 35 [with d(m∗) − d(1) = 0.9163] and the unit #27

at m∗ = 14 [with d(m∗) − d(1) = 0.5941];

- in picture 7, the unit #12 at m∗ = 21 [with d(m∗) − d(1) = 0.9554] and the unit #50

at m∗ = 28 [with d(m∗) − d(1) = 0.6958];

- in picture 8, the unit #20 at m∗ = 14 [with d(m∗) − d(1) = 0.5382] and the unit #16

at m∗ = 28 [with d(m∗) − d(1) = 0.5486].

As a matter of fact, due to the high 8-dimensional space with a small sample (n = 70),

we can identify more extreme points as potential outliers. However, we recall that before

deleting any suspicious observation from the sample, our methodology requires to first check

whether the suspicious point is really isolated in the output-orientation by comparing the

maximal value d(m∗) of the corresponding “Λ” effect with the initial value d(1). As it can be

seen from Figure 11 (l-h.s), which represents the difference d(m∗)− d(1) for each suspicious
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point, only the two units #59 and #44 can be really identified as potential outliers since, for

each one of them, d(m∗) is clearly distant above from d(1). The three suspicious units #52,

#54 and #1 cannot be viewed as isolated outliers, but they are certainly extreme/influential

observations. In contrast, the remaining units (#21, #10, #27, #12, #50, #20, #16,...)

are not even suspicious since the difference d(m∗)−d(1) is clearly negligible for all of them.
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Figure 11: (l-h.s) The difference d(m∗)− d(1) for the suspicious observations. (r-h.s) Evolu-
tion of the % of sample points outside the partial frontiers ξ̂m,3978 and ξ̃m,3978.

5.4 Practical guidelines

In view of Proposition 2.2 and Theorems 2.1-2.2, we know that a significant difference be-

tween the expected-maximum estimate ξ̂m,n and the median-maximum estimate ξ̃m,n indi-

cates the presence of influential extreme observations above the order-m frontier that could

be outlying. This suggests the following two steps in order to perform the frontier estimation:

Step 1: Apply the semi-automatic prescription (as illustrated above) in order to detect any

potential outliers. Then consider the sample without the identified anomalous data points.

For the median- and mean-maximum estimators ξ̃m,n and ξ̂m,n to provide similar con-

clusions, an intuitive idea is to seek the order m for which the percentage of sample points

above each partial frontier is approximately the same. This leads to Step 2.

Step 2: Overlay in a same picture the evolution of the percentage of observations outside

each partial frontier with respect to m. Remember that the sample still contains extreme

points (not really outlying) that influence ξ̃m,n more or less than ξ̂m,n following the values of

m. Therefore the two decreasing percentage curves shall “cross” since ξ̃m,n is less sensitive

(and so envelopes less points) than ξ̂m,n to the magnitude of extreme outputs even when

m increases, but once m attains a sufficiently large threshold, ξ̂m,n becomes more resistant
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(and so envelopes less points) than ξ̃m,n. The value of m at which the two percentage curves

cross corresponds to the most similar large order-m and order-α(m) frontiers that capture

the shape of the cloud points near its optimal boundary.

The extreme observations left outside the resulting similar frontiers ξ̃m,n and ξ̂m,n might

be useful to emulate: the managers of any decision-making unit (DMU) operating at (x, y)

and situated below these partial frontiers could study the relevant peers (Xi, Yi) above ξ̂m,n

or ξ̃m,n among those dominating (x, y) (i.e. with Xi ≤ x and Yi ≥ y) in order to learn how to

reduce inputs and/or increase outputs. Refined “relevant practices” that might be useful to

emulate could be identified as follows: the partial frontiers ξ̃m,n and ξ̂m,n being less sensitive

to the choice of the order m as m → ∞, the decrease of the percentage of points outside each

frontier becomes approximately stable as m → ∞. In particular, the first value of m from

which the two percentage curves are approximately horizontal/stable, corresponds to the

frontiers ξ̂m,n and ξ̃m,n that are sensible to the magnitude of the most extreme observations

whose outputs are highly desirable, but in the same time, they are resistant to these extremes

in the sense that they do not envelope them. Such extreme practices could be emulated by

the managers of dominated DMUs to improve their own operations.

Application to postal data: In order to capture in a robust way the shape and curvature

of the sample boundary, we compared in Figure 3 (top) both partial boundaries ξ̂m,n and

ξ̃m,n for a sequence of large values of m ∈ {100, 200, 1000, 4000}. We observe a distance

between the two frontiers, for each order m, due to the presence of outliers above the m-

frontiers. Following our practical guidelines, a sensible practice is to remove, in a first step,

the identified 22 potential outliers from the sample. Figure 3 (bottom) shows how ξ̂m,n and

ξ̃m,n become very close for the resulting sample of size n = 3978. Then, in a second step,

we overlay in a same picture the evolution of the percentage of sample points outside each

partial frontier with respect to m. As can be seen from Figure 11 (r-h.s), the two decreasing

percentage curves cross at m ≈ 100 and become approximately linearly stable from m ≈ 250.

The partial frontiers ξ̂m,n and ξ̃m,n for m ∈ {100, 250} are graphed in Figure 12 together

with their 95% confidence intervals Qn and Cn, respectively. ξ̂100,n and ξ̃100,n are the largest

order-m and order-α(m) frontiers which provide the most similar estimates. The extreme

post offices left outside these frontiers, whose outputs are highly desirable, might be useful to

emulate. The partial frontiers ξ̂250,n and ξ̃250,n also provide a refined identification of relevant

post offices to be emulated and satisfactory estimates of the shape of the sample boundary.
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Figure 12: 95% confidence intervals Qn (left) and Cn (right). Here n = 3978 (without
anomalous data). From top to bottom: m = 100 and m = 250 (French post offices).

6 Conclusions

We show that the two classes of partial frontiers, {qα} and {ξm}, are closely related when

α = α(m) = (1/2)1/m, in the same sense as the mean and median of a same distribution do.

This answers in particular the important question of how to choose the order α as a function

of m for a possible comparison between order-α and order-m frontiers.

Non of the two classes can be claimed to be preferable in all contexts. A sensible practice

is to check whether both partial frontier analyses point toward similar conclusions. Obtaining

different results from ξ̂m,n and q̂α(m),n, for sufficiently large values of m, indicates the presence

of suspicious extreme data points that could be outlying or perturbed by noise. Before

performing any frontier estimation, a useful empirical strategy is to first detect and remove

the anomalous data and then to determine, in a second step, the order m at which the

percentage of sample points outside the order-m and order-α(m) frontiers is approximately

the same. This value of m corresponds to the largest frontiers ξ̂m,n and q̂α(m),n having the

most similar behaviors. These extreme partial frontiers provide satisfactory estimates of the

shape of the sample boundary and identify relevant peers that might be useful to emulate.

The theoretical comparison between the reliability of {q̂α,n} and {ξ̂m,n} is exploited to

derive an appealing identification methodology, very easy and fast to implement and pro-

viding very good results. The use of partial frontiers for detecting influential observations is
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not new. A basic tool can be found in Simar (2003) and Daraio and Simar (2007) consisting

of a picture showing the evolution of the “proportion” of sample points outside either the

order-m or order-α frontier as a function of the order and of another tuning parameter.

Our prescription is rather based on the evolution of the “maximal distance” between the

related order-m and order-α(m) frontiers as a function of m. Adapting this tool to the input-

orientation is straightforward. Our robustness study provides also a theoretical justification

for the descriptive technique of Simar (2003) and Daraio and Simar (2007).

We derive, among others, an asymptotic confidence interval Cn for qα(x) not requir-

ing estimating the conditional quantile density function. We provide sufficient conditions

for ensuring the asymptotic normality of both ξ̂m,n(x) and q̂α,n(x) for the limiting cases

m = mn → ∞ and α = αn → 1 as n → ∞. Instead of the assumption involving the asymp-

totic variance σ2(x, mn) (see Proposition 4.2(ii)), a main challenge is to get the asymptotic

normality of ξ̂mn,n(x) under the more conventional condition (4.4). This problem is worth

investigating in future. When estimating the same partial frontier qα(x) = ξm(x), the em-

pirical study reveals interesting findings regarding the performances of the estimators ξ̂m,n

and q̂α,n and the performances of the confidence intervals Qn and Cn.

Appendix: lemmas and proofs

A Robustness

Lemma A.1. Let x ∈ R
p
+ such that F̂X,n(x) > 0. Then RB(ϕ̂n(x), (X, Y )n) = 1/n.

Proof Since ϕ̂n(x) = T 1,x((X, Y )n) := maxi|Xi≤x Yi, there exists j ∈ {1, . . . , n} such that

Xj ≤ x and Yj = ϕ̂n(x). Let Y ∗ be any arbitrary point such that Y ∗ > Yj . Then, if we replace

the FDH point (Xj , Yj) in the sample ((X1, Y1), . . . , (Xj, Yj), . . . , (Xn, Yn)) by (Xj , Y
∗), we

get the contaminated FDH estimator T 1,x((X1, Y1), . . . , (Xj, Y
∗), . . . , (Xn, Yn)) = Y ∗. Hence

sup
(Z)n

1

|T 1,x{(Z)n
1} − T 1,x{(Z)n}| ≥ |T 1,x{(X1, Y1), . . . , (Xj, Y

∗), . . . , (Xn, Yn)} − T 1,x{(Z)n}|

for all Y ∗ > Yj. Therefore a breakdown occurs as Y ∗ → ∞. �

Proof of Theorem 2.1 Let Nx = nF̂X,n(x) be the number of observations (Xi, Yi) with

Xi ≤ x and let Y x
1 , . . . , Y x

Nx
be the Y ′

i s such that Xi ≤ x. For i = 1, . . . , Nx, denote by Y x
(i)

the ith order statistic of the points Y x
1 , . . . , Y x

Nx
. We have ϕ̂n(x) = Y x

(Nx) and so

ξ̂m,n(x) = Sm,x((X, Y )n) := Y x
(Nx) −

∫ Y x
(Nx)

0

[F̂n(y|x)]mdy.
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If Nx = 1, ξ̂m,n(x) = ϕ̂n(x) and so RB(ξ̂m,n(x), (X, Y )n) = 1/n by Lemma A.1. Otherwise,

Sm,x((X, Y )n) = Y x
(Nx) −

Nx−1
∑

i=1

[i/Nx]
m(Y x

(i+1) − Y x
(i)).

Consider the same contaminated sample (X, Y )n
1 = ((X1, Y1), . . . , (Xj , Y

∗), . . . , (Xn, Yn))

used in the proof of Lemma A.1, obtained by replacing the FDH observation (Xj , Yj) by

(Xj, Y
∗), where Y ∗ is an arbitrary point such that Y ∗ > Y x

(Nx). Then, if Nx = 2, we

have Sm,x((X, Y )n
1 ) = (1 − (1/2)m)Y ∗ + (1/2)mY x

(1), and thus a breakdown occurs as Y ∗ →
∞. Likewise, if Nx > 2, we have Sm,x((X, Y )n

1 ) = (1 − [Nx−1
Nx

]m)Y ∗ + [Nx−1
Nx

]mY x
(Nx−1) −

∑Nx−2
i=1 [i/Nx]

m(Y x
(i+1) − Y x

(i)) and thus a breakdown occurs as Y ∗ → ∞. �

Proof of Theorem 2.2 The quantile q̂α,n(x) = T α,x((X, Y )n) of the sample (X, Y )n is given

by (2.1). Denote by N∗ the set of all positive integers. In what follows the index j is such

that T α,x((X, Y )n) = Y x
(j), i.e., j = αNx if αNx ∈ N∗ and j = [αNx] + 1 otherwise.

(i) First let us show that k = Nx − j + 1 points are sufficient for breakdown of q̂α,n(x): If

we replace, among the observations (Xi, Yi) with Xi ≤ x, the k largest outputs Y x
(j), . . . , Y

x
(Nx)

by an arbitrary point Y ∗ > Y x
(Nx) without replacing their corresponding inputs Xi, then the

X ′
is of the obtained contaminated sample (X, Y )n

k such that Xi ≤ x are the same as those

of the initial sample (X, Y )n and their corresponding ordered Y ′
i s are Y x

(1) ≤ . . . ≤ Y x
(j−1) ≤

Y ∗ ≤ . . . ≤ Y ∗, where Y ∗ occurs k times. Hence the αth quantile of (X, Y )n
k , defined as the

jth order statistic, is T α,x((X, Y )n
k) = Y ∗. Therefore a breakdown occurs as Y ∗ → ∞.

(ii) Let us now show that k−1 = Nx−j points are not sufficient for breakdown of q̂α,n(x):

Let (X, Y )n
k−1 = ((X∗

1 , Y
∗
1 ), . . . , (X∗

n, Y ∗
n )) be a contaminated sample by replacing k−1 points

of (X, Y )n with arbitrary values in R
p
+×R+. Let ℓx be the number of replaced points among

the observations (Xi, Yi) with Xi ≤ x. It is clear that max{0, (k−1)−(n−Nx)} ≤ ℓx ≤ k−1.

Let N∗
x be the number of points (X∗

i , Y ∗
i ) such that X∗

i ≤ x. Then it is easy to see that

N∗
x ≤ Nx + (k − 1) − ℓx. (A.1)

Let Y ∗x
1 , . . . , Y ∗x

N∗

x
be the points Y ∗

i such that X∗
i ≤ x, and for i = 1, . . . , N∗

x , denote by Y ∗x
(i)

the ith order statistic such that Y ∗x
(1) ≤ . . . ≤ Y ∗x

(N∗

x ). Then

T α,x((X, Y )n
k−1) =

{

Y ∗x
(αN∗

x ) if αN∗
x ∈ N∗

Y ∗x
([αN∗

x ]+1) otherwise.

Because k − 1 = Nx − j and k − 1 ≥ ℓx, we have Nx − ℓx ≥ j. Since αNx ≤ j, we

obtain Nx(1 − α) ≥ ℓx and so (2Nx − αNx − ℓx)α ≤ Nx − ℓx. Using αNx ≤ j, we get

(Nx + (k − 1) − ℓx)α = (2Nx − j − ℓx)α ≤ Nx − ℓx. It follows from (A.1) that

αN∗
x ≤ Nx − ℓx. (A.2)
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It is then clear that Y ∗x
(αN∗

x ) ≤ Y ∗x
(Nx−ℓx) if αN∗

x ∈ N∗, otherwise it follows from (A.2) that

[αN∗
x ] + 1 ≤ Nx − ℓx, whence Y ∗x

([αN∗

x ]+1) ≤ Y ∗x
(Nx−ℓx). Thus

0 ≤ T α,x((X, Y )n
k−1) ≤ Y ∗x

(Nx−ℓx). (A.3)

Since we only replace ℓx points among the Nx observations (Xi, Yi) with inputs Xi ≤
x, the remaining Nx − ℓx non-replaced observations (Xi, Yi) have outputs Y x

i ≤ Y x
(Nx).

Since these non-contaminated Nx − ℓx outputs Y x
i are contained in the set {Y ∗x

1 , . . . , Y ∗x
N∗

x
},

we have Y ∗x
(Nx−ℓx) ≤ Y x

(Nx). Therefore T α,x((X, Y )n
k−1) ≤ Y x

(Nx) in view of (A.3). Thus

|T α,x((X, Y )n
k−1) − T α,x((X, Y )n)| ≤ ϕ̂n(x) for any (X, Y )n

k−1. �

Proof of Proposition 2.1 Let (X, Y )n,y
k∗−1 = ((X1, Y

∗
1 ), . . . , (Xn, Y ∗

n )) be an arbitrary con-

taminated sample. Using the notations of the proof of Theorem 2.2, we have here N∗
x = Nx,

Y ∗x
(1) ≤ · · · ≤ Y ∗x

(Nx−ℓx) are the Nx − ℓx non-contaminated Y x
i ’s and Y ∗x

(Nx−ℓx+1) ≤ · · · ≤ Y ∗x
(Nx)

are the resulting ℓx outliers in the direction of Y . Since the points Y ∗x
(1) ≤ · · · ≤ Y ∗x

(j)

belong to the set of non-contaminated Y x
i ’s, the point Y ∗x

(j) is then larger than or equal

to j points among these non-contaminated Y x
i ’s. Therefore Y x

(j) ≤ Y ∗x
(j) . On the other

hand, we have T α,x((X, Y )n) = Y x
(j) and T α,x((X, Y )n,y

k∗−1) = Y ∗x
(j) since αN∗

x = αNx. Thus

T α,x((X, Y )n) ≤ T α,x((X, Y )n,y
k∗−1). The second inequality T α,x((X, Y )n,y

k∗−1) ≤ Y x
(Nx) = ϕ̂n(x)

is established in the proof of Theorem 2.2. �

Proof of Proposition 2.2 The result is immediate since by definition of the median we

have ξ̃m(x) = inf{y ≥ 0|F m(y|x) ≥ 1/2} = q(1/2)1/m(x). �

B Asymptotics

Fix m ≥ 1 and x ∈ R
p
+ such that FX(x) > 0. Define the domain Dx to be the set of

distribution functions G(·, ·) on R
p
+ × R+ such that

G(x,∞) > 0 and G−1(1|x) ≤ ϕ(x) (B.1)

where G−1(1|x) := inf{y ≥ 0| G(y|x) = 1} stands for the upper boundary of the support of

the conditional distribution function G(·|x) = G(x, ·)/G(x,∞). For any G ∈ Dx define

m,x

φ (G) =

∫ ∞

0

[1 − Gm(y|x)]dy

where the integrand is identically zero for y ≥ G−1(1|x). It follows from (B.1) that
m,x

φ

(G) =
∫ ϕ(x)

0
[1 − Gm(y|x)]dy for all G ∈ Dx. In particular, we have

m,x

φ (F ) = ξm(x) and
m,x

φ (F̂ ) =
∫ ϕ̂n(x)

0
(1− [F̂n(y|x)]m)dy = ξ̂m,n(x)

a.s.
=

∫ ϕ(x)

0
(1− [F̂n(y|x)]m)dy since ϕ̂n(x) ≤ ϕ(x)

with probability 1. The following lemma will be useful for the proof of Proposition 4.1(i).
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Lemma B.1. The map
m,x

φ : Dx ⊂ L∞(R̄p+1) −→ [0, ϕ(x)] is Hadamard-differentiable at F

with derivative

(
m,x

φ )′F : h ∈ L∞(R̄p+1) 7−→ (
m,x

φ )′F (h) =
m

FX(x)

∫ ϕ(x)

0

F m−1(y|x)[h(x,∞)F (y|x)− h(x, y)]dy.

Proof Let h ∈ L∞(R̄p+1) and ht → h uniformly in L∞(R̄p+1), where F + tht ∈ Dx for

all small t > 0. Write ξmt(x) :=
m,x

φ (F + tht). Following the definition of the Hadamard

differentiability (see van der Vaart (1998), p.296), we shall show that (ξmt(x) − ξm(x))/t

converges to (
m,x

φ )′F (h) as t ↓ 0. We have

ξmt(x) − ξm(x) =

∫ ϕ(x)

0

(

[F (y|x)]m −
[

F (x, y) + tht(x, y)

FX(x) + tht(x,∞)

]m)

dy.

By Taylor’s formula, for any y ∈ [0, ϕ(x)], there exists a point ζt,x(y) interior to the interval

joining F (y|x) and (F (x, y) + tht(x, y))/(FX(x) + tht(x,∞)) such that

[F (y|x)]m −
[

F (x, y) + tht(x, y)

FX(x) + tht(x,∞)

]m

= mtζm−1
t,x (y)

(

ht(x,∞)F (y|x) − ht(x, y)

FX(x) + tht(x,∞)

)

.

Whence

ξmt(x) − ξm(x)

t
=

m

FX(x) + tht(x,∞)

∫ ϕ(x)

0

ζm−1
t,x (y)[ht(x,∞)F (y|x) − ht(x, y)]dy. (B.2)

It follows from the definition of ζt,x(y) and the uniform convergence ht → h in L∞(R̄p+1) that

ζm−1
t,x (y)[ht(x,∞)F (y|x)−ht(x, y)] converges to F m−1(y|x)[h(x,∞)F (y|x)−h(x, y)] uniformly

in y as t ↓ 0. Therefore, we obtain limt↓0(ξmt(x) − ξm(x))/t = (
m,x

φ )′F (h). �

Proof of Proposition 4.1(i) It is well known that the empirical process
√

n(F̂ − F )

converges in distribution in L∞(R
p+1

) to F, a p+1 dimensional F -Brownian bridge (see van

der Vaart and Wellner 1996, p.82). F is a Gaussian process with zero mean and covariance

function E(F(t1)F(t2)) = F (t1∧ t2)−F (t1)F (t2), for all t1, t2 ∈ R
p+1

. Then, by applying the

functional delta method (see e.g. van der Vaart 1998, Theorem 20.8, p.297) in conjunction

with Lemma B.1, we obtain
√

n(
m,x

φ (F̂ )−
m,x

φ (F )) = (
m,x

φ )′F (
√

n(F̂ − F )) + op(1). �

Let us now consider
√

n(ξ̂m,n(x) − ξm(x)) as a process indexed by x ∈ X , an arbitrarily

fixed set such that infx∈X FX(x) > 0. Here m ≥ 1 is still fixed. Define the domain DX

to be the set of distribution functions G on R
p+1
+ such that G ∈ Dx for all x ∈ X . Let ν

be the finite upper boundary of the support of Y and define, for any G ∈ DX , the map
m

φ (G) : x 7→
m,x

φ (G) as a map X −→ [0, ν]. Finally, define the functional
m

φ: G 7→
m

φ (G) as a

map DX ⊂ L∞(R̄p+1) → L∞(X ). We have
m

φ (F̂ ) := {
m,x

φ (F̂ ); x ∈ X} = {ξ̂m,n(x); x ∈ X} a.s.
=
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{
∫ ϕ(x)

0
(1 − [F̂n(y|x)]m)dy; x ∈ X} since P [ϕ̂n(x) ≤ ϕ(x), ∀x ∈ X ] = 1.The following lemma

will be useful for the proof of Proposition 4.1(ii).

Lemma B.2.
m

φ is Hadamard-differentiable at F ∈ DX with derivative (
m

φ)′F (h) : x ∈ X 7→
(
m,x

φ )′F (h), for any h ∈ L∞(R̄p+1).

Proof It suffices to make the proof of Lemma B.1 uniform in x ∈ X . We use the same

notation: let ht → h in L∞(R̄p+1), where F+tht is contained in DX for all small t. Abbreviate
m,x

φ (F + tht) to ξmt(x). By the uniform convergence of ht and the definition of ζt,x(y), we

have infx∈X |FX(x) + tht(x,∞)| → infx∈X FX(x) and supx∈X ,y∈R̄
|ζm−1

t,x (y) − F m−1(y|x)| → 0

as t ↓ 0. By using supx∈X ,y∈R̄
|ζt,x(y)| ≤ 1 and supx∈X ϕ(x) ≤ ν, it can be easily seen that

supx∈X |(ξmt(x) − ξm(x))/t − (
m,x

φ )′F (h)| → 0 as t ↓ 0, which ends the proof. �

Proof of Proposition 4.1(ii) By applying the functional delta method in conjunction with

Lemma B.2, it is immediate that
√

n(
m

φ (F̂ )−
m

φ (F )) converges in distribution in L∞(X ) to

the linear transformation Gm = (
m

φ)′F (F) of the Gaussian process F. Furthermore, the linear

operator (
m

φ)′F (·) is defined and continuous on the whole space L∞(R̄p+1) since

||(
m

φ)′F (h)||L∞(X ) = sup
x∈X

|(
m,x

φ )′F (h)| ≤ 2mν

infx∈X FX(x)
||h||L∞(R̄p+1)

for any h ∈ L∞(R̄p+1). Therefore
√

n(
m

φ (F̂ )−
m

φ (F )) = (
m

φ)′F (
√

n(F̂ − F )) + op(1) by

Theorem 20.8 in van der Vaart (1998, p.297). �

Proof of Theorem 4.1 Write Rm,n(x) :=
√

n(ξ̂m,n(x) − ξm(x)) −√
nΦm,n(x). By Taylor’s

formula, for any y ∈ [0, ϕ(x)], there exists a point ηx,n(y) interior to the interval joining

F (y|x) and F̂n(y|x) such that [F̂n(y|x)]m − F m(y|x) = mF m−1(y|x)[F̂n(y|x) − F (y|x)] +

(m/2)(m − 1)[ηx,n(y)]m−2[F̂n(y|x) − F (y|x)]2. By using the fact that ξ̂m,n(x) − ξm(x)
a.s.
=

∫ ϕ(x)

0
(F m(y|x) − [F̂n(y|x)]m)dy, we get

(ξ̂m,n(x) − ξm(x)) − m

∫ ϕ(x)

0

F m−1(y|x)[F (y|x)− F̂n(y|x)]dy (B.3)

a.s.
= −(m/2)(m − 1)

∫ ϕ(x)

0

[ηx,n(y)]m−2[F̂n(y|x) − F (y|x)]2dy.

On the other hand, we have by the law of the iterated logarithm (LIL) for empirical processes

sup
x

|F̂X,n(x)−FX(x)| = O

(

log log n

n

)1/2

, sup
(x,y)

|F̂ (x, y)−F (x, y)| = O

(

log log n

n

)1/2

(B.4)

with probability 1. It follows that supy |F̂n(y|x)−F (y|x)| = O
(

(log log n/n)1/2
)

with proba-

bility 1, whence supy{
√

n[F̂n(y|x)−F (y|x)]2} a.s.−→ 0 as n → ∞. Finally, since 0 ≤ ηx,n(y) ≤ 1
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for all y, we arrive at
√

n{(ξ̂m,n(x)−ξm(x))−m
∫ ϕ(x)

0
F m−1(y|x)[F (y|x)− F̂n(y|x)]dy} a.s.−→ 0.

This gives Rm,n(x)
a.s.−→ 0 since F̂X,n(x)/FX(x)

a.s.−→ 1. By applying again the classical LIL

(see e.g. Serfling 1980, Theorem A, p.35), we obtain for either choice of sign

lim sup
n→∞

±
√

nΦm,n(x)

(2 log log n)1/2
= lim sup

n→∞
± (m/FX(x))

(2n log log n)1/2

n
∑

i=1

∫ ϕ(x)

0

F m−1(y|x) [1I(Xi ≤ x)F (y|x)

−1I(Xi ≤ x, Yi ≤ y)] dy = σ(x, m)

with probability 1. Moreover Rm,n(x)/(2 log log n)1/2 a.s.−→ 0 as n → ∞. Thus, by combining

these results, we get the desired LIL. �

The following lemma will be needed to prove Theorem 4.2.

Lemma B.3. Assume that the condition of Theorem 4.2 hold. For any α ∈]α1, α2[ and any

c ∈ R, let αn = α + c/
√

nF̂X,n(x) + o(1/
√

n). Then

q̂αn,n(x)
a.s.−→ qα(x) and

√
n(q̂αn,n(x) − q̂α,n(x))

p−→ c/
√

FX(x)f(qα(x)|x) as n → ∞.

Proof Following Serfling (1980, p.6), an equivalent condition for the convergence Zn
a.s.−→ Z

to hold is limn→∞ P(supm≥n |Zm − Z| > ε) = 0 for every ε > 0, where Z1, Z2, · · · and Z

are random variables on (Ω,A, P). Let ε > 0. By the smoothness of F (·|x) at qα(x) we

have F (qα(x) − ε|x) < α < F (qα(x) + ε|x). Since αn
a.s.−→ α, we then have by applying the

equivalent condition for the almost sure convergence

P[αm < α +
F (qα(x) + ε|x) − α

2
, ∀m ≥ n] → 1,

P[α − α − F (qα(x) − ε|x)

2
< αm, ∀m ≥ n] → 1 as n → ∞.

On the other hand, since F̂n(qα(x) ± ε|x)
a.s.−→ F (qα(x) ± ε|x), we have

P[α +
F (qα(x) + ε|x) − α

2
< F̂m(qα(x) + ε|x), ∀m ≥ n] → 1,

P[F̂m(qα(x) − ε|x) < α − α − F (qα(x) − ε|x)

2
, ∀m ≥ n] → 1 as n → ∞.

It follows P[αm < F̂m(qα(x)+ε|x), ∀m ≥ n] → 1 and P[F̂m(qα(x)−ε|x) < αm, ∀m ≥ n] → 1

as n → ∞. Whence P[F̂m(qα(x) − ε|x) < αm < F̂m(qα(x) + ε|x), ∀m ≥ n] → 1 as n → ∞.

Thus, by applying the fundamental property that the event {F̂m(y|x) ≥ αm} is equivalent

to {y ≥ q̂αm,m(x)}, we get P[qα(x) − ε < q̂αm,m(x) ≤ qα(x) + ε, ∀m ≥ n] → 1 as n → ∞.

Therefore P[|q̂αm,m(x)− qα(x)| ≤ ε, ∀m ≥ n] → 1, which is equivalent to q̂αn,n(x)
a.s.−→ qα(x).
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Let us now turn to the second result. Since q̂α,n(x) and q̂αn,n(x)
a.s.−→ qα(x) and αn

a.s.−→ α,

the interval [a, b] contains both q̂α,n(x) and q̂αn,n(x) and the interval [α1, α2] contains αn, for

n sufficiently large, with probability 1. Hence we have almost surely, for n large enough,

√
n(q̂αn,n(x) − q̂α,n(x)) =

√
n{F (q̂αn,n(x)|x) − F (q̂α,n(x)|x)}/f(qδn(x)|x)

where min{F (q̂αn,n(x)|x), F (q̂α,n(x)|x)} < δn < max{F (q̂αn,n(x)|x), F (q̂α,n(x)|x)}. Define

the random function gn : L∞([α1, α2]) 7→ R by gn(z) = z(αn) − z(α). Putting zn(·) =
√

n{F (q̂·,n(x)|x) − F (q·(x)|x)}, we obtain with probability 1, for all n large enough,

√
n(q̂αn,n(x) − q̂α,n(x)) = [gn(zn) −√

n(α − αn)]/f(qδn(x)|x). (B.5)

Let us show that zn converges in distribution in L∞([α1, α2]) to a process z with continuous

paths at α: let D1 be the set of all restrictions of distribution functions on R to [a, b], and

for any G ∈ D1, let G−1 : ]0, 1[−→ R denotes the generalized inverse map α 7→ G−1(α) :=

inf{y|G(y) ≥ α}. Then by Lemma 3.3 in Daouia (2005), the inverse map φ1 : G 7→ G−1 as

a map D1 ⊂ D([a, b]) −→ L∞([α1, α2]) is Hadamard differentiable at F (·|x) tangentially to

C([a, b]) with derivative φ′
1,F (·|x) : h 7−→ −h(F−1(·|x))/f(F−1(·|x)|x). We also have

zn =
√

n{F (φ1(F̂n(·|x))|x) − F (φ1(F (·|x))|x)} =
√

n{φ2 ◦ φ1(F̂n(·|x)) − φ2 ◦ φ1(F (·|x))},
(B.6)

where φ2 : G−1 7−→ F (·|x) ◦ G−1. Let us show that φ2 as a map φ1(D1) ⊂ L∞([α1, α2]) −→
L∞([α1, α2]) is Hadamard differentiable at φ1(F (·|x)) = F−1(·|x) = q·(x) tangentially to

φ′
1,F (·|x)(C([a, b])). Let H = φ′

1,F (·|x)(h) with h ∈ C([a, b]) and take an arbitrary converging

path Ht → H in L∞([α1, α2]) such that F−1(·|x) + tHt ∈ φ1(D1) for all small t > 0. By the

smoothness of F (·|x), it can be easily seen that

[F (F−1(β|x) + tHt(β)|x) − F (F−1(β|x)|x)]/t −→ H(β)f(F−1(β|x)|x) as t → 0

uniformly in β ∈ [α1, α2]. Then φ2 is Hadamard differentiable at φ1(F (·|x)) with derivative

φ′
2,φ1(F (·|x)) : H 7−→ H × f(q·(x)|x) = −h(q·(x)). Hence by the chain rule (see van der Vaart

1998, Theorem 20.9, p.298), we have φ2◦φ1 : D1 −→ L∞([α1, α2]) is Hadamard differentiable

at F (·|x) tangentially to C([a, b]) with derivative (φ2 ◦ φ1)
′
F (·|x) = φ′

2,φ1(F (·|x)) ◦ φ′
1,F (·|x). With

this result and the representation (B.6) of zn, we can apply immediately the functional delta

method (van der Vaart 1998, Theorem 20.8, p.297) in conjunction with Theorem 3.1 in

Daouia (2005) to obtain the convergence in distribution of zn in L∞([α1, α2]) to

z = (φ2 ◦ φ1)
′
F (·|x)

(

W ◦ F (·|x)/
√

FX(x)
)

= −W/
√

FX(x)

where W (·) denotes the standard Brownian bridge. Moreover the process z has continuous

paths. Since gn(zn)
d−→ 0 whenever zn

d−→ z in L∞([α1, α2]) for a process z with continuous
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paths at α (see van der Vaart 1998, Proof of Lemma 21.7, p.308), we conclude that gn(zn)

in (B.5) converges in distribution to 0. On the other hand, by the smoothness of F (·|x), we

have δn
a.s.−→ α and f(qδn(x)|x)

a.s.−→ f(qα(x)|x). Finally, since
√

n(α − αn)
a.s.−→ −c/

√

FX(x),

we get
√

n(q̂αn,n(x) − q̂α,n(x))
p−→ c/

√

FX(x)f(qα(x)|x). �

Proof of Theorem 4.2 Write
√

n{q̂αn1,n(x) − (q̂α,n(x) − zσ(α, x)/
√

n)} =
√

n(q̂αn1,n(x) −
q̂α,n(x)) + zσ(α, x). It follows from Lemma B.3 that

√
n{q̂αn1,n(x) − (q̂α,n(x) − zσ(α, x)/

√
n)} p−→ 0 as n → ∞. (B.7)

Likewise
√

n{q̂αn2,n(x) − (q̂α,n(x) + zσ(α, x)/
√

n)} p−→ 0 as n → ∞. Hence
√

n{(q̂αn2,n(x) −
q̂αn1,n(x)) − 2zσ(α, x)/

√
n} p−→ 0 as n → ∞. On the other hand, we have

P[qα(x) ∈ Cn] = 1 − {P(qα(x) ≤ q̂αn1,n(x)) + P(qα(x) ≥ q̂αn2,n(x))}.

By using (B.7), we obtain P(qα(x) ≤ q̂αn1,n(x)) = P{√n(q̂α,n(x)−qα(x))+op(1) ≥ zσ(α, x)}.
By the asymptotic normality, we have limn→∞ P(qα(x) ≤ q̂αn1,n(x)) = 1 − Φ(z). Likewise

limn→∞ P(qα(x) ≥ q̂αn2,n(x)) = 1−Φ(z). Therefore limn→∞ P[qα(x) ∈ Cn] = 2Φ(z)−1. �

Proof of Proposition 4.2 (i) Let σn = σ(αn, x)/
√

n =
√

αn(1 − αn)/f(qαn(x)|x)
√

nFX(x).

We shall prove for any real y ∈ R that P[σ−1
n (q̂αn,n(x)− qαn(x)) ≤ y] → Φ(y) as n → ∞. Let

n be large enough so that q̂αn,n(x) belongs to the left neighborhood of ϕ(x) on which F (·|x)

is differentiable with a strictly positive derivative f(·|x). We have P[σ−1
n (q̂αn,n(x)−qαn(x)) ≤

y] =P[q̂αn,n(x) ≤ qαn(x) + σny] = P[F̂ (qαn(x) + σny|x) ≥ α] = P[An ≥ an], where

an =

√

nFX(x)
√

αn(1 − αn)
{αn − F (qαn(x) + σny|x)},

An =

√

nFX(x)
√

αn(1 − αn)
{F̂ (qαn(x) + σny|x) − F (qαn(x) + σny|x)}

=
FX(x)

F̂X(x)

(

F (qαn(x) + σny|x)[1 − F (qαn(x) + σny|x)]

αn(1 − αn)

)1/2 n
∑

i=1

Wn,i√
nσ(Wn,i)

with Wn,i = 1I(Xi ≤ x, Yi ≤ qαn(x) + σny) − F (qαn(x) + σny|x)1I(Xi ≤ x) and σ2(Wn,i) =

FX(x)F (qαn(x) + σny|x)[1 − F (qαn(x) + σny|x)]. We first need to prove that An
d→ N (0, 1)

and second we shall show that an → −y as n → ∞. It is easy to see from (4.4) that

qαn(x) = ϕ(x)−
(

1−αn

ℓ(x)

)1/ρx

for n large enough. Likewise since f(y|x) = ρxℓ(x){ϕ(x)−y}ρx−1

as y ↑ ϕ(x), we get f(qαn(x)|x) = ρxℓ(x){ϕ(x)−qαn(x)}ρx−1 = ρxℓ(x)1/ρx(1−αn)
(ρx−1)/ρx for

n large enough. Then σn/(ϕ(x)−qαn(x)) =
√

αn/ρx

√

n(1 − αn)FX(x) → 0 since n(1−αn) →

36



∞. It follows that [1−F (qαn(x)+σny|x)]/[1−F (qαn(x)|x)] = 1−σny/(ϕ(x)− qαn(x)) → 1.

Therefore F (qαn(x) + σny|x)[1− F (qαn(x) + σny|x)] ∼ αn(1 − αn) as n → ∞. We also have

FX(x)/F̂X(x)
a.s.→ 1. Hence to check that An

d→ N (0, 1), it is enough to show according

Loève’s criterion (1963, p.295) that limn→∞ n
∫

|z|≥ε
z2dFn,1(z) = 0 for all ε > 0, where Fn,1

is the common distribution function of the random variables Wn,i/
√

nσ(Wn,1). We have

ε

∫

|z|≥ε

z2dFn,1(z) ≤
∫

R

|z|31I(|z| ≥ ε)dFn,1(z) = E

[

∣

∣

∣

∣

Wn,i√
nσ(Wn,1)

∣

∣

∣

∣

3

1I

(
∣

∣

∣

∣

Wn,i√
nσ(Wn,1)

∣

∣

∣

∣

≥ ε

)

]

≤ P[|Wn,1| ≥ ε
√

nσ(Wn,1)]

{√nσ(Wn,1)}3
≤ 1/nε2{√nσ(Wn,1)}3

by Chebyshev’s inequality. Since σ2(Wn,1) ∼ αn(1 − αn)FX(x) and n(1 − αn) → ∞, we

get n
∫

|z|≥ε
z2dFn,1(z) → 0 and so

∑n
i=1

Wn,i√
nσ(Wn,i)

d→ N (0, 1). Whence An
d→ N (0, 1).

Therefore the monotone function Sn(·) = P[An ≥ ·] converges pointwise to 1 − Φ(·) which

is continuous. By Dini’s Theorem, Sn also converges uniformly to 1 − Φ. Finally it

suffices to show that an → −y to conclude that P[An ≥ an] → Φ(y). First we have

an = −yσn

√

nFX(x)f(δn|x)/
√

αn(1 − αn) = −yf(δn|x)/f(qαn(x)|x) for a real δn lying be-

tween qαn(x) and qαn(x)+σny. Second, since f(δn|x)
f(qαn (x)|x)

=
{

1 + qαn(x)−δn

ϕ(x)−qαn (x)

}ρx−1

for all n large

enough, and
∣

∣

∣

qαn(x)−δn

ϕ(x)−qαn(x)

∣

∣

∣
≤ |y|σn

ϕ(x)−qαn (x)
→ 0, we get f(δn|x)/f(qαn(x)|x) → 1 and an → −y.

(ii) We know by the proof of Theorem 4.1 (see Equation (B.3)) that

√
n(ξ̂m,n(x) − ξm(x))

a.s.
= (FX(x)/F̂X,n(x))

√
nΦm,n(x)

−√
n(m/2)(m − 1)

∫ ϕ(x)

0

[ηx,n(y)]m−2[F̂n(y|x) − F (y|x)]2dy

and that supy |F̂n(y|x) − F (y|x)| a.s.
= O

(

(log log n/n)1/2
)

in view of (B.4). For y ∈]0, ϕ(x)[

we have 0 < ηx,n(y) < 1 and [ηx,n(y)]m(n)−2 a.s.→ 0 when n → ∞, so using the domi-

nated convergence theorem we get
∫ ϕ(x)

0
[ηx,n(y)]m−2dy

a.s.→ 0. Since
√

nm(m − 1)/σ(x, m) =

O(n/ log log n), we obtain
√

n

σ(x, m)
(m/2)(m − 1)

∫ ϕ(x)

0

[ηx,n(y)]m−2[F̂n(y|x) − F (y|x)]2dy

a.s.

≤
√

n

σ(x, m)
m(m − 1)O(log log n/n)

∫ ϕ(x)

0

[ηx,n(y)]m−2dy
a.s.−→ 0.

On the other hand, √
nΦm,n(x)

σ(x, m)
=

n
∑

i=1

Zn,i√
nσ(Zn,i)

where Zn,i = (m/FX(x))1I(Xi ≤ x)
∫ ϕ(x)

0
F m−1(y|x)[F (y|x) − 1I(Yi ≤ y)]dy and its variance

σ2(Zn,i) = σ2(x, m). We have nE[|Zn,1|3]/{nσ2(Zn,1)}3/2 ≤ mϕ(x)/FX(x)
√

nσ(Zn,1) →

37



0 since m/
√

nσ(x, m) → 0. Hence Lyapounov’s Theorem gives
√

nσ−1(x, m)Φm,n(x)
d→

N (0, 1). Therefore
√

nσ−1(x, m)(ξ̂m,n(x) − ξm(x))
d→ N (0, 1). �
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Table 1: The values n × RB(ξ̃m,n(x)) with n = 105.
x m = 1 m = 5 m = 10 m = 15 m = 20 m = 25

0.1 5 2 1 1 1 1
0.3 15 4 2 2 1 1
0.5 26 7 4 3 2 2
0.7 37 10 5 4 3 2
0.9 49 13 7 5 4 3

Table 2: 1000 Monte-Carlo simulations, n = 1000 (l-h.s) with 5 outliers added (r-h.s).
n = 1000

MSE Bias

x ξ̂10,n(x) ξ̃10,n(x) ξ̂10,n(x) ξ̃10,n(x)
0.15 0.0001 0.0001 -0.0011 -0.0009
0.35 0.0001 0.0001 -0.0010 -0.0007
0.55 0.0001 0.0001 -0.0002 0
0.75 0.0001 0.0001 -0.0009 -0.0007
0.95 0.0001 0.0001 -0.0008 -0.0007

x ξ̂15,n(x) ξ̃15,n(x) ξ̂15,n(x) ξ̃15,n(x)
0.15 0.0001 0.0001 -0.0012 -0.0008
0.35 0.0001 0.0001 -0.0009 -0.0008
0.55 0.0001 0.0001 -0.0011 -0.0009
0.75 0.0001 0.0001 -0.0006 -0.0004
0.95 0 0.0001 -0.0004 0.0002

x ξ̂20,n(x) ξ̃20,n(x) ξ̂20,n(x) ξ̃20,n(x)
0.15 0.0001 0.0001 -0.0011 -0.0008
0.35 0.0001 0.0001 -0.0011 -0.0008
0.55 0.0001 0.0001 -0.0004 -0.0001
0.75 0 0.0001 -0.0007 -0.0006
0.95 0.0001 0.0001 -0.0007 -0.0006

n = 1005
MSE Bias

ξ̂10,n(x) ξ̃10,n(x) ξ̂10,n(x) ξ̃10,n(x)
0.0002 0.0001 0.0105 0.0023
0.0002 0.0001 0.0103 0.0045
0.0001 0.0001 0.0066 0.0040
0.0001 0.0001 0.0058 0.0021
0.0001 0.0001 0.0022 0.0017

ξ̂15,n(x) ξ̃15,n(x) ξ̂15,n(x) ξ̃15,n(x)
0.0003 0.0001 0.0147 0.0032
0.0002 0.0001 0.0128 0.0037
0.0001 0.0001 0.0087 0.0045
0.0001 0.0001 0.0076 0.0029
0.0001 0.0001 0.0028 0.0022

ξ̂20,n(x) ξ̃20,n(x) ξ̂20,n(x) ξ̃20,n(x)
0.0004 0.0001 0.0186 0.0030
0.0003 0.0001 0.0159 0.0047
0.0001 0.0001 0.0099 0.0036
0.0001 0.0001 0.0085 0.0025
0.0001 0.0001 0.0033 0.0031

Table 3: Average Lengths (avl) and Coverages (cov) of the 95% confidence intervals Cn and
Qn, sample sizes n = 100 and n = 1000.

n = 100 m = 5 and α = .8557
x covQn

covCn
avlQn

avlCn

0.4 0.9120 0.9540 0.0903 0.1347
0.5 0.9310 0.9510 0.0903 0.1302
0.6 0.9360 0.9500 0.0907 0.1291
0.7 0.9440 0.9560 0.0910 0.1299
0.8 0.9450 0.9470 0.0913 0.1283
0.9 0.9400 0.9540 0.0914 0.1273
1 0.9380 0.9540 0.0913 0.1295

n = 1000 m = 5 and α = .8557
x covQn

covCn
avlQn

avlCn

0.4 0.9540 0.9560 0.0293 0.0401
0.5 0.9470 0.9360 0.0293 0.0397
0.6 0.9570 0.9540 0.0293 0.0402
0.7 0.9490 0.9530 0.0293 0.0400
0.8 0.9450 0.9470 0.0294 0.0400
0.9 0.9360 0.9510 0.0294 0.0401
1 0.9420 0.9640 0.0293 0.0403

n = 100 m = 10 and α = .9242
x covQn

covCn
avlQn

avlCn

0.65 0.9200 0.9640 0.0889 0.1392
0.70 0.9080 0.9460 0.0883 0.1324
0.75 0.9310 0.9510 0.0888 0.1274
0.80 0.9140 0.9550 0.0878 0.1257
0.85 0.9110 0.9510 0.0881 0.1300
0.90 0.9110 0.9500 0.0886 0.1298
0.95 0.9250 0.9490 0.0891 0.1239

n = 1000 m = 10 and α = .9242
x covQn

covCn
avlQn

avlCn

0.65 0.9560 0.9480 0.0290 0.0394
0.70 0.9280 0.9410 0.0291 0.0393
0.75 0.9350 0.9390 0.0291 0.0395
0.80 0.9320 0.9500 0.0290 0.0390
0.85 0.9380 0.9420 0.0290 0.0393
0.90 0.9280 0.9470 0.0290 0.0392
0.95 0.9480 0.9470 0.0290 0.0393
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