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1 Introduction

As they deal with population or social security issues, applied studies have

come to use settings that encompass an arbitrarily large number of over-

lapping generations of individuals to ease the confrontation with real world

annual data. Among them, Auerbach and Kotlikoff [3] notably propose a de-

terministic framework and Rios-Rull [19] a stochastic one. Such models are

unfortunately at odds with the benchmark structure of the theoretical liter-

ature based upon two periods overlapping generations of individuals. Recent

contributions, such as Kehoe et al. [15], have thus been aimed at developing

a fruitful analysis of large-square models and exhibited specific conditions

on the dynamic properties of equilibrium paths. However, a limit to their

use on a wide spread basis springs from the difficulties that emerge in the

course of their analytical resolution. Our paper introduces a simple method

that allows for solving models with a continuum of overlapping generations.

It also proposes a complete resolution in a specific case which provides new

insights on the existence and convergence properties of equilibrium paths.

In models with many overlapping generations, the dynamics of endoge-

nous variables depends on a finite number of their past and future realiza-

tions. This dependency creates the analytical difficulty of these models. In

discrete time frameworks, the analysis of the dynamics requires the study

of polynomials, whose order increases with the number of generations, and

which will not be tractable in the general cases. We claim that this diffi-

culty may however be circumvented using the continuous time framework

developed by Cass and Yaari [10]; in a nutshell, it eases the mathematical
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resolution without affecting the qualitative analysis. However, in continuous

time frameworks, the dynamics is characterized by a functional differential

equation of mixed type (MFDE), i.e. the dynamics is affected by distributed

delays and advances. We propose an integrated treatment of such a structure

in a simple competitive equilibrium case considering an overlapping genera-

tions model with production in which the technology exhibits constant social

returns to capital. Capital dynamics is hence described by an MFDE that

happens to be linear, and allows for a global dynamics analysis.

We prove that, upon existence of a competitive path, the growth rate has

a transitional dynamics and converges to a steady state through exponen-

tially decreasing oscillations. The oscillatory behavior is now a well known

output of dynamic systems with delays. As pointed out by Boucekkine, de

la Croix and Licandro [6], they appear as resulting from the vintage human

capital structure. Recently, Demichelis and Polemarchakis [11] and d’Albis

and Augeraud-Véron [1] have also been find a related class of fluctuations.

However, as for the existence problem, there is to our knowledge, few papers

that have studied it. Rustichini [20] has claimed that MFDE may fail to have

a solution while Burke [9] has proven that the existence of an equilibrium is

not always ensured in continuous-time overlapping generations models even

under rather standard and simple assumptions.

Our main result is a theorem of existence of an intertemporal equilibrium.

We proceed by studying the existence of a strictly positive and bounded solu-

tion to the MFDE. We show how to use the piecewise definition of the capital

dynamics to define the set of initial distributions of wealth that ensure the

existence of the equilibrium. This result points out the importance of ini-
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tial conditions: not all initial wealth distributions among the generations are

compatible with the existence of an equilibrium. Some distributions may

indeed generate short run fluctuations whose magnitude is so large that they

would lead to negative aggregate assets. As a consequence, when macroeco-

nomic variables oscillate, initial distributions matter.

The paper is organized as follows. In section 2, we present the basic

framework of the model and determine the functional equations that char-

acterize the capital dynamics at the equilibrium. In section 3, we analyze

the global dynamics and propose an existence theorem based on the initial

wealth distribution. We conclude in section 4.

2 The model

This section develops an overlapping-generations model with continuous trad-

ing and finitely-lived individuals. Assuming a technology with constant re-

turns to capital, it characterizes the capital dynamics of such an economy.

2.1 Individual behavior

Time is continuous and has a starting point denoted τ ∈ R; let t denotes the
time index such that t ≥ τ . Individuals live for an interval of time of length

ω > 0. In what follows, the lifespan is considered as finite although the

limit case of an infinite horizon (ω → +∞) can be computed for discussion
purposes. It is assumed that individuals only derive utility from consumption

and that they have isoelastic preferences and a non negative time discount

denoted ρ. Let c (s, t) ≥ 0 denotes the real consumption of an individual who
born at time s as of time t. Hence, the intertemporal utility of an individual
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who born at time s ∈ (τ − ω, t], denoted u (s, t), satisfies:

u (s, t) =

Z s+ω

t

e−ρ(z−t)v (c (s, z)) dz, (1)

where:

v (c) =

¯̄̄̄
¯̄̄ c1−

1
σ−1

1− 1
σ

if σ 6= 1,

ln c if σ = 1,
(2)

with σ > 0 standing for the elasticity of intertemporal substitution. Dur-

ing a lifetime, the labor supply is fixed and equal to 1 and w (t) , an age-

independent labor income is received. Individuals have access to competitive

capital markets that yield the risk-free interest rate r (t). Let a (s, t) denotes

the real wealth of an individual who born at time s as of time t. The instan-

taneous budget constraint is therefore for all t ≥ τ :

∂a (s, t)

∂t
= r (t) a (s, t) + w (t)− c (s, t) . (3)

Individuals enter the economy with no financial assets except those who are

alive at the initial date of the economy and which are endowed with a given

financial wealth. Therefore, initial conditions write:

a (s, τ) given if s ∈ (τ − ω, τ) ,

a (s, s) = 0 if s ≥ τ .
(4)

Finally, individuals cannot die indebted. Hence, for s > τ − ω, terminal

constraints write:

a (s, s+ ω) ≥ 0 if ω ¿ +∞,

limz→+∞ e−
z
s r(u)dua (s, s+ z) ≥ 0 if ω → +∞.

(5)

Moreover, assume that a (s, t) and c (s, t) are C1 ((τ − ω,∞)× (τ ,∞)) while
r (t) and w (t) are continuous for all t ∈ (τ ,∞).
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The individual program is to maximize (1) subject to (3), (4) and (5). The

optimal consumption behavior is given in the following lemma.

Lemma 1 For (s, t) ∈ (τ − ω, τ)× (τ , s+ ω), the optimal consumption sat-

isfies:

c (s, t) =
a (s, τ) e

t
τ r(u)du +

R s+ω
τ

w (z) e
t
z r(u)dudzR s+ω

τ
e

t
z [(1−σ)r(u)+σρ]dudz

, (6)

and for (s, t) ∈ (τ ,∞)× [s, s+ ω):

c (s, t) =

R s+ω
s

w (z) e
t
z r(u)dudzR s+ω

s
e

t
z [(1−σ)r(u)+σρ]dudz

. (7)

Proof. See the Appendix.

As initial conditions (4) differ, it is necessary to distinguish individuals who

were alive at time t = τ , and whose behavior is affected by the initial wealth

distribution, from those who born at time t > τ . Moreover, equations (6)

and (7) show that the optimal consumption is a function of the past and

anticipated factor prices all along the individual’s life-cycle. Hence, in the

case of an infinite lifespan obtained as ω → +∞, it is the entire path of prices
starting at the birth date that affects the individual behavior.

2.2 Aggregate dynamics

The demographic structure is in overlapping generations and the population

is stable. Each individual belongs to a cohort composed of a continuum of

identical individuals; the size of cohort born at time s as of time t ∈ [s, s+ ω),

is βN (s) where β > 0 is the birth rate and N (s) is the size of the population

at time s. At each point of time, a new cohort enters the population while
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the oldest one leaves it. For all t ≥ τ , N (t) satisfies:

N (t) =

Z t

t−ω
βN (s) ds. (8)

The demographic growth rate, denoted n, is obtained by replacing N (t) =

N (s) en(t−s) in (8) and then solving the following equation:Z ω

0

βe−nαdα = 1. (9)

The macroeconomic counterpart of any individual variable is obtained by

integrating it on the birth date over an interval of length ω. Hence, the

aggregate assets per head, denoted a (t), satisfy for all t ≥ τ :

a (t) =

Z t

t−ω
βe−n(t−s)a (s, t) ds. (10)

Differentiating (10) with respect to time and using the individual budget

constraints yields the following standard dynamics:

da (t)

dt
= [r (t)− n] a (t) + w (t)− c (t) , (11)

where c (t) denotes the aggregate consumption per head such that:

c (t) =

Z t

t−ω
βe−n(t−s)c (s, t) ds. (12)

Remark that for t ∈ (τ , τ + ω), the population is composed of cohorts born

before and after t = τ , while for t ∈ (τ + ω,∞), it only remains cohorts born
after the initial date τ . Using (6) and (7), c (t) hence writes:

c (t) =

Z τ

t−ω
βe−n(t−s)

a (s, τ) e
t
τ r(u)du +

R s+ω
τ

w (z) e
t
z r(u)dudzR s+ω

τ
e

t
z [(1−σ)r(u)+σρ]dudz

ds

+

Z t

τ

βe−n(t−s)
R s+ω
s

w (z) e
t
z r(u)dudzR s+ω

s
e

t
z [(1−σ)r(u)+σρ]dudz

ds, (13)

7



if t ∈ (τ , τ + ω) and:

c (t) =

Z t

t−ω
βe−n(t−s)

R s+ω
s

w (z) e
t
z r(u)dudzR s+ω

s
e

t
z [(1−σ)r(u)+σρ]dudz

ds, (14)

if t ≥ τ + ω. As a consequence, the aggregate dynamics is generically

piecewise-defined. Exceptions are obviously the limit case of an infinite lifes-

pan (ω → +∞) where only (13) holds, and the limit case of no initial date
for the economy (τ → −∞) where it is only (14) that characterizes the dy-
namics. Remark that the piecewise definition, which will be crucial for the

existence result presented section 3, is not considered in related works on

continuous-time OLG model such as Demichelis and Polemarchakis [11] and

d’Albis and Augeraud-Véron [1] who focus on the asymptotic dynamics.

Moreover, equations (13) and (14) show that the aggregate consumption

at time t is determined by the path of factor prices on the interval (τ , t+ ω)

when t belongs to (τ , τ + ω) and on the interval (t− ω, t+ ω) when t ≥ τ+ω.

It is important to notice that the dynamics of the aggregate consumption at

time t is also affected the same path of prices, which implies that the dynamics

is characterized by functional differential equations. Indeed, differentiating

(12) with respect to time yields:

dc (t)

dt
= [σ (r (t)− ρ)− n] c (t) + βc (t, t)− βe−nωc (t− ω, t) , (15)

where individual consumptions at the beginning and the end of the life-cycle

are immediately computed with (6) and (7) such as:

c (t, t) =

R t+ω
t

w (z) e
t
z r(u)dudzR t+ω

t
e

t
z [(1−σ)r(u)+σρ]dudz

, (16)
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and:

c (t− ω, t) =

¯̄̄̄
¯̄̄̄
¯

a(t−ω,τ)e t
τ r(u)du+ t

τ w(z)e
t
z r(u)dudz

t
τ e

t
z [(1−σ)r(u)+σρ]dudz

if t ∈ [τ , τ + ω) ,

t
t−ω w(z)e

t
z r(u)dudz

t
t−ω e

t
z [(1−σ)r(u)+σρ]dudz

if t ≥ τ + ω.

(17)

The dynamics of c (t) given by (15) decompose itself in three terms. The first

one is the usual difference between the individual consumption growth rate,

σ (r (t)− ρ), and the population growth rate, n. Aggregate consumption per

head is likely to increase when the first is greater than the second. The second

term, which was initially pointed out by Blanchard [5] and Weil [22], is the

initial consumption of the newborns, c (t, t). They enter the economy at rate

β and make the aggregate consumption increase. By considering individuals

with infinite horizons, the two authors obtain a consumption of the newborns

that reduces to a function of variables characterized for time t. This is not

anymore true when ω is finite. Differentiating (16) with respect to t yields a

dynamics that depends on future prices:

dc (t, t)

dt
=

(
σ [r (t)− ρ] +

1− e
t
t+ω [(1−σ)r(u)+σρ]duR t+ω

t
e

t
z [(1−σ)r(u)+σρ]dudz

)
c (t, t)

+
w (t+ ω) e

t
t+ω r(u)du − w (t)R t+ω

t
e

t
z [(1−σ)r(u)+σρ]dudz

, (18)

while the infinite horizon case reduce to:

dc (t, t)

dt

¯̄̄̄
ω→+∞

= σ [r (t)− ρ] c (t, t) +
c (t, t)− w (t)R +∞

t
e

t
z [(1−σ)r(u)+σρ]dudz

, (19)

provided that r (z) > max {0, σρ/ (σ − 1)} for z ∈ [t,+∞). Remark notably
with (18), that the wage at time t + ω, w (t+ ω) , affects the consumption

of the newborn of date t, while it does not influence the consumption of
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individuals born before date t. Finite horizons thus create a discrete advance

in the aggregate dynamics.

The third term that influence the dynamics of c (t) given by (15) corre-

sponds to the last consumption, c (t− ω, t), of those who leave the economy

at rate βe−nω. This term is obviously linked to the assumption of finite

lifespan and therefore does not appear in Blanchard [5] and Weil [22]. The

level and the dynamics of c (t− ω, t) depend on past prices. Nevertheless,

it is important to remark with (17) that c (t− ω, t) can be rewritten for

t ∈ (τ , τ + ω) as a function of variables characterized at time t. After that

initial interval of time, the dynamics is affected by delayed variables. Indeed,

one has:

dc (t− ω, t)

dt
=

(
σ [r (t)− ρ] +

e
t
t−ω[(1−σ)r(u)+σρ]du − 1R t

t−ω e
t
z [(1−σ)r(u)+σρ]dudz

)
c (t− ω, t)

+
w (t)− w (t− ω) e

t
t−ω r(u)duR t

t−ω e
t
z [(1−σ)r(u)+σρ]dudz

, (20)

if t ≥ τ + ω. The wage at time t− ω, w (t− ω) , affects the consumption of

individual born at date t−ω, while it does not influence the consumption of

individuals born after date t. The finite lifespan assumption hence creates a

discrete delay in the aggregate dynamics as of time t ≥ τ + ω. Conversely,

before date τ + ω, their are only cohorts born before date τ that die, and

consequently, there is no past value of factor prices that becomes unrelevant

for the aggregate dynamics. To summarize, the aggregate dynamics is in-

fluenced by discrete advances for t ∈ (τ , τ + ω) and by both advances and

delays for t ≥ τ + ω.
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2.3 Intertemporal equilibrium

Assume there is a unique material good, whose price is normalized to 1. It

can be used for consumption or for adding to the capital stock. This good

is produced by many competitive firms whose aggregate activity is described

by a production function with labor L (t) and capital K (t) as inputs. The

aggregate production is supposed to satisfy:

Y (t) = A (K (t))α (e (t)L (t))1−α , (21)

where e (t) is an externality from the producer perspective and where A > 0

and α ∈ (0, 1). The capital depreciation rate is constant and denoted δ ≥ 0.
For all t ≥ τ , factor prices equal marginal products:

r (t) + δ = αA (K (t))α−1 (e (t)L (t))1−α , (22)

w (t) = (1− α)A (K (t))α (e (t))1−α (L (t))−α . (23)

Define the aggregate capital per head as k (t) = K (t) /L (t). To close the

model, assume that the externality is of the "learning-by-doing" type and

thus satisfies at the equilibrium the following equality: e (t) = k (t).

Definition An equilibrium with perfect foresight is a function k (t) , t ≥ τ ,

that belongs to R+, is continuous and has bounded variations on (τ ,∞) such
that (i) individuals maximize their utility subject to the budget constraints,

(ii) firms maximize their profits, (iii) markets clear, and (iv) e (t) = k (t).

It is useful to define the following variables which represent various cumula-
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tive functions of past capital stock:

y (t) =

Z t

τ

k (z) e−r(z−t)dz, (24)

v (t) =
β (1− α)A

R t
τ
k (z)

R t
z
e−γ(t−s)e−r(z−s)dsdzR ω

0
e−µzdz

, (25)

ṽ (t) = β (1− α)A

Z t

τ

k (z)

Z t

z

e−γ(t−s)e−r(z−s)R s
τ
e−µ(u−s)du

dsdz. (26)

where r = αA − δ, γ = n − σ (r − ρ) and µ = r − σ (r − ρ). Then, the

equilibrium is characterized in the next Lemma.

Lemma 2 The equilibrium is the solution of the following system:

dv (t)

dt
= −γv (t) + β (1− α)AR ω

0
e−µudu

y (t) , (27)

dṽ (t)

dt
= −γṽ (t) + β (1− α)AR τ−t

0
e−µudu

y (t) , (28)

dy (t)

dt
= ry (t) + k (t) , (29)

dk (t)

dt
= (A− δ − n) k (t)− z (t) + e−nωṽ (t)− e−σ(r−ρ)ωe−γ(t−τ)ṽ (τ + ω)

+v (t)− e−rωv (t+ ω) + e−rωe−γ(t−τ)v (τ + ω) , (30)

if t ∈ (τ , τ + ω) and of (27), (29) and:

dk (t)

dt
= (A− δ − n) k (t)+

¡
1 + e−(γ+r)ω

¢
v (t)−e−γωv (t− ω)−e−rωv (t+ ω) ,

(31)

if t ≥ τ + ω. In addition, z (t) , t ∈ (τ , τ + ω) and k (τ) > 0 are given.

Proof. See the Appendix.

As explained previously, the dynamics is piecewise-defined: as the economy

is supposed to have a finite starting point, a first system of equations char-

acterizes the capital dynamics as long as it exists individuals who were alive
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at the initial date; this system includes, in variable z (t), the initial distri-

bution of wealth among generations which constitutes the initial condition

of the system. The capital dynamics, given by (30), is characterized by a

differential equation with discrete advances. When all the individuals who

were alive at the initial date, have died, a second system of equations then

characterizes the dynamics for an infinite future. The capital dynamics, then

given by (31), is characterized by a differential of mixed type (MFDE): delays

and advances influence the dynamics. It is easy to check that the two system

are the same for t = τ + ω.

Moreover, the bounded life-span assumption is crucial: we show in the

next corollary, that when ω goes to infinity, the dynamics is define by a single

system of ordinary differential equations.

Corollary 1 Suppose that n > 0 and µ > 0. When ω → +∞, the equilib-
rium is the solution of (27), (29) and:

dk (t)

dt
= (A− δ − n) k (t)− nµe−γ(t−τ)k (τ) + v (t) , (32)

for all t ≥ τ and with k (τ) > 0 given.

Proof. See the Appendix.

It is important to notice that the linearity of the dynamics crucially de-

pends on the assumption of constant social returns to capital. The dy-

namics would be non linear by replacing the learning-by-doing assumption

by, for instance, an exogenous labor augmenting technical progress such as:

e (t) = e (τ) eg(t−τ), with g > 0. Linearizing on the neighborhood of a steady-

state would give some informations on the asymptotic behavior. Provided
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there is no Hopf bifurcations, the dynamics is likely to be qualitatively sim-

ilar to the one that is to be studied in the next section. On such issue, we

refer to the pioneer article proposed by Cass and Yaari [10] who study a non

linear dynamics in the case of a specific neoclassical production function,

and to recent developments by d’Albis and Augeraud-Véron [1] and [2] and

Hupkes and Verduyn Lunel [14]. However, when the dynamics is non linear,

the existence problem studied below, that relies on the dynamics behavior

on the initial interval of time is still an open question.

3 The results

This section proposes a complete study of the global dynamics. In a first

part, we use rather standard tools to analyze the dynamic behavior after

some initial interval of time. The results obtained are then similar to those

proposed by recent related contributions. The real novelty of the paper lies

in the second part of the section, where we propose an existence theorem

that uses the dynamics during the initial interval of time.

3.1 Capital dynamics for t ≥ τ + ω

Let us first ignore the initial dynamics and study the capital behavior for t ≥
τ +ω. We proceed by analyzing the roots of the corresponding characteristic

equation.

Lemma 3 Let r = αA − δ. The characteristic equation associated to the

system of equations (27), (29) and (31) has:

1) a unique real root denoted ḡ, that satisfies ḡ < σ (r − ρ);

14



2) no complex roots with real part that belong to the closed strip:

[min {r − n, ḡ} ,max {r − n, ḡ}] ,

except ḡ itself;

3) an infinity of complex roots with real parts greater than max {r − n, ḡ};
4) an infinity of complex roots with real parts lower than min {r − n, ḡ}.

Proof. See the Appendix.

The interpretation of these results lies in two corollaries. Let us first define

g (t) the growth rate of capital per head at time t such that:

k (t) = k (τ) e
t
τ g(u)du. (33)

Then,

Corollary 2 A balanced growth path exists along which the growth rate of

capital per head is lower than the individual’s consumption growth rate.

Proof. See the Appendix.

As usual, the "learning-by-doing" assumption yields some endogenous growth.

It exists a steady-state for such a growth rate whose value corresponds to the

unique real root of the characteristic function studied in Lemma 3. Corollary

2 hence claims that the steady-state value for the endogenous growth rate

has the exogenous individual’s consumption growth rate for upper bound.

This condition is indeed necessary to obtain some positive aggregate assets

in the economy. With (7), compute the individual’s initial consumption on

the balanced growth path as follows:

c (s, s) =
w (s)

R ω
0
e−(r−ḡ)zdzR ω

0
e−[(1−σ)r+σρ]zdz

. (34)
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The condition ḡ < σ (r − ρ) implies c (s, s) < w (s) and is then necessary to

obtain a positive asset accumulation along the life-cycle. Were ḡ be higher

than σ (r − ρ), individuals would be indebted all along their life and the

aggregate assets would be negative. Remark also that the aggregate capi-

tal growth rate ḡ + n may be higher than the interest rate, which however,

following the arguments in Saint-Paul [21], does not implies that the equi-

librium path is dynamically inefficient. Consider now the other roots of the

characteristic equation.

Corollary 3 The capital growth rate, g (t), has a saddle-point trajectory.

Proof. See the Appendix.

Due to delays and advances, the characteristic equation associated to the

capital dynamics is transcendental. There is an infinite number of roots that

have been characterized in Lemma 2. Notably, complex roots with real part

larger than ḡ create some instability: any solution including a complex root

with a real part larger than ḡ would therefore diverge. Then, since there is

no permanent cycle, the dynamics of the growth rate is saddle-point. Let us

now characterize the dynamics on the stable manifold.

Lemma 4 There exists T > τ + ω such that:

k (t) = δ1e
ḡ(t−τ) +

X
pn+iqn∈ΓS

δne
pn(t−τ) cos (qn (t− τ)) , (35)

for all t ≥ T and where ΓS is the subset of complex roots of the characteristic

equation with real part lower than ḡ, and where the δn are residues computed

in the proof.
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Proof. See the Appendix.

In the proof of Lemma, it is shown that the MFDE that characterizes the

dynamics for t ≥ τ + ω, rewrites, on the stable manifold, as a delay differ-

ential equation with only the complex roots whose real part are lower than

ḡ. Following Mallet-Paret and Verduyn-Lunel [18], this result is due to the

absence of roots in a given strip, which has been proved in Lemma 3. Then,

standard results for delay differential equations may be applied and notably

the one that permit to write the solution as a series of exponential. As in

Boucekkine and al. [6] and in the Vintage Capital literature, we therefore

observe that the capital dynamics exhibits oscillations that decrease in mag-

nitude and finally disappear. Concerning the endogenous growth rate, its

solution can be written, using (35), as follows:

g (t) =
δ1ḡ +

P
pn+iqn∈ΓS δne

(pn−ḡ)(t−τ) (pn cos (qn (t− τ))− qn sin (qn (t− τ)))

δ1 +
P

pn+iqn∈ΓS δne
(pn−ḡ)(t−τ) cos (qn (t− τ))

,

(36)

It has been said that the growth rate has a saddle-point trajectory. Moreover,

on the stable manifold, it converges with exponentially decreasing oscillations

to its steady-state. Since pn < ḡ in (36), we indeed have:

lim
t→+∞

g (t) = ḡ. (37)

Hence, introducing a demographic structure in a simple one-sector model

with constant returns to capital is sufficient to eliminate its most unpleasant

conclusion, namely, the absence of transitional dynamics. Our results on

equilibrium growth complement in this latter regards those of Boucekkine,

Licandro, Puch and del Río [7] on optimal growth. These oscillations that
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generically emerge with delay differential equations are now shown to be

crucial for the existence of an equilibrium.

3.2 Existence of a competitive equilibrium

Rustichini [20] pointed out that the Cauchy problem for an MFDE is not

well set up because of the advanced terms, and therefore that the differential

equation may fail to have a solution. In our framework, we are going to show

that the dynamic system always has a solution, but that this solution may

not constitute a valid equilibrium. Our argument relies on the interaction

between the oscillating dynamics and the initial wealth distribution.

The importance of the initial conditions can be apprehended by first fig-

uring out that if the initial wealth distribution were the stationary one, there

will be obviously no dynamics out of the balanced growth path. A similar sit-

uation would occur in a economy with no initial conditions. Following Burke

[8] and Demichelis and Polemarchakis [11] who have stressed the importance

of the date at which the economy begins, consider the following result:

Lemma 5 If τ → −∞, the endogenous growth rate solves: g (t) = ḡ, for all

t ∈ R.

Proof. See the Appendix.

Hence, if there is no initial condition, the economy is immediately on the

balanced growth path. The key point of the result is that the solution k (t)

must have bounded variations on (τ ,∞). If time extends from an infinite

past, the condition of bounded variations extends to R. This imposes to not

only eliminate the exponentially increasing oscillating solutions as it has been
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done in Lemma 4, but also the exponentially decreasing oscillating solutions

whose real part satisfy pn < ḡ. We conclude with Lemma 3, that the only

valid solution has therefore the following form: k (t) = δ1e
ḡt. Remark also

that such a solution is the only one which would satisfy the non-negativity

constraint on k (t). The existence result we now present relies on a similar

reasoning.

Theorem 1 For any a (s, τ) given, there exists a unique solution to the sys-

tem of equations defined Lemma 2. Such a solution do not always constitute

an equilibrium since it may imply k (t) ≤ 0 for some t ∈ [τ ,∞).

Proof. See the Appendix.

To prove the existence of a bounded solution we use two preliminary result

developed above: from Lemmas 2 and 4, the dynamics is described by func-

tional equations with discrete advances on [τ , τ + ω] and with discrete delays

on [τ + ω,∞). The delay differential equation may then be initialized for
any set of initial conditions and there consequently exists a unique solution

on [τ ,∞). This solution has a dynamic behavior which is similar to the one
of (35): oscillations, whose magnitude decreases with time, characterize the

dynamics. However, these oscillations may lead to a negative capital for some

finite interval of time, even with a positive stock for times t = τ and t→∞.
Such a solution is of course not a valid equilibrium.

It is the initial distribution of assets that play the crucial role. To under-

stand this, suppose that an economy is on its balanced growth path and faces

an unanticipated increase of the interest rate. Each individual has therefore

to choose a new and lower level of consumption to be compatible with the
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exogenous increase of its consumption growth rate. This additional saving

induces a strong increase in the capital growth rate that overshoots its new

long-run value. Then, generations who born after the shock benefit from

an higher human wealth. This relatively reduces their propensity to save

and consequently reduces the capital growth rate. This process continues for

a long time while it decreases in magnitude. It is however possible that a

saving reduction is strong enough to lead to a negative aggregate asset accu-

mulation. Optimal behaviors are then not compatible with an intertemporal

equilibrium.

The presence of bounded life-span generates a transitional dynamics of

the growth rate if the economy has a starting point. It indeed creates a

persistent dependence of endogenous variables to initial conditions as it is the

case in some models of vintage capital. This dependence is usually designated

as a replacement echoes effect. If the magnitude of the echo is sufficiently

important, the equilibrium does not exist. Conversely, were the individual’s

life-span unbounded, the oversaving from individuals contemporaneous to

the shock would not be possible since it would last forever. The dynamics is

then monotonic and, whatever the initial distribution of wealth, there exists

an equilibrium.

We now present some numerical illustrations of the impact of the initial

wealth distribution on the capital dynamics. Let us consider the simplest

possible case such that the economy begins at time τ = 0 and that the length

of individual lifespan are normalized: ω = 1. Hence the initial dynamics

cover the interval [0, 1] while the second dynamics hold for t ≥ 1. Moreover,
assume that preferences are logarithmic (σ = 1) and that there is no time
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discount (ρ = 0); the population is stationary (n = 0 and consequently

β = 1) and there is no capital depreciation (δ = 0). Parameter of the

production function have been chosen to be A = 100 and α = 0.01 such that

the interest rate is normalized (r = αA = 1). In figure 1, we have plotted

two initial distributions of wealth among generations at time τ = 0 that yield

to the same initial aggregate capital per capita k (0) = 1. The solid line is

the stationary distribution while the dashed line represents another initial

distribution.

Figure 1: Initial wealth distribution.

Using a procedure described in the Appendix, we have computed the dy-

namics initiated by the two distributions. In Figure 2, we have plotted these

dynamics. The solid line represents the behavior of the aggregate capital per

capita when the growth rate is at its steady-state. The dynamics is hence

exponential. The dashed line represents the solution of the dynamic system

when the initial condition is the one given above. It first displays some echo

effects around the balanced solution, but then fluctuations increase and the

solution crosses the vertical axis. Such a path can therefore not constitute

21



an equilibrium path.

Figure 2. Aggregate dynamics.

4 Conclusion

In this paper, we have theoretically studied the intertemporal equilibrium

path of an overlapping-generations model with finitely-lived individuals and

constant returns to capital. We have shown that its existence lies on the ini-

tial wealth distribution and that its dynamics to a balanced growth path is

governed by exponentially decreasing oscillations. Such oscillations may be

incompatible with the existence of an equilibrium. Economies with neoclas-

sical production functions shall exhibit the same properties. Their dynamics

are however characterized by a non linear MFDE which limit the theoreti-

cal analysis to local dynamics and does not permit to solve analytically the

initial conditions problem. Applied to exchange economies, the method we

have presented in this paper could also be used to study the issue of the in-

determinacy of equilibrium path following the recent contributions of Kehoe

et al. [16], Burke [8], and Ghiglino and Olszak-Duquenne [13].
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Appendix

Proof of Lemma 1. The optimal consumption path satisfies for all t ≥ τ :

∂c (s, t)

∂t
= σ [r (t)− ρ] c (s, t) , (38)

and: Z s+ω

t

c (s, z) e−
z
t r(u)dudz = a (s, t) +

Z s+ω

t

w (z) e−
z
t r(u)dudz. (39)

Equation (38) is the standard Euler condition while condition (39) is the

intertemporal budget constraint obtained integrating forward condition (3)

and using the optimal terminal conditions on assets:

a (s, s+ ω) = 0 if ω ¿ +∞,

limz→+∞ e−
z
s r(u)dua (s, s+ z) = 0 if ω → +∞.

(40)

Using (38) and (39) allow to rewrite the optimal consumption such that:

c (s, t) =
a (s, t) +

R s+ω
t

w (z) e−
z
t r(u)dudzR s+ω

t
e−

z
t [(1−σ)r(u)+σρ]dudz

. (41)

For individuals born at time s ∈ (τ − ω, τ) and still alive at time t ∈
(τ , τ + ω), the optimal consumption path is obtained using (41) to first define

c (s, τ); then with (38) one obtains:

c (s, t) =
a (s, τ) +

R s+ω
τ

w (z) e−
z
τ r(u)dudzR s+ω

τ
e−

z
τ [(1−σ)r(u)+σρ]dudz

eσ
t
τ [r(u)−ρ]du, (42)

and then (6). Conversely, for individuals born at time s > τ, the initial

consumption c (s, s) is obtained using the second equation of (4) and (41);

then, with (38), one has:

c (s, t) =

R s+ω
s

w (z) e−
z
s r(u)dudzR s+ω

s
e−

z
s [(1−σ)r(u)+σρ]dudz

eσ
t
s [r(u)−ρ]du, (43)
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and then (7). ¤

Proof of Lemma 2. Replacing the assumption e (t) = k (t) in (22) and (23)

yields factor prices: r (t) = αA − δ and w (t) = (1− α)Ak (t). Moreover,

at the equilibrium of the capital market, one has: a (t) = k (t). Hence (11)

rewrites:
dk (t)

dt
= [A− δ − n] k (t)− c (t) , (44)

where c (t) is computed using (42), (43) and the factor prices to obtain:

c (t) = β

Z τ

t−ω

a (s, τ) e−n(t−s)eσ(αA−δ−τ)(t−τ)R s+ω
τ

e−[(1−σ)(αA−δ)+σρ](z−τ)dz
ds

+β (1− α)A

Z τ

t−ω

e−n(t−s)eσ(αA−δ−ρ)(t−τ)
R s+ω
τ

k (z) e−(αA−δ)(z−τ)dzR s+ω
τ

e[(1−σ)(αA−δ)+σρ](t−z)dz
ds

+
β (1− α)A

R t
τ
e[−n+σ(αA−δ−ρ)](t−s)

R s+ω
s

k (z) e−(αA−δ)(z−s)dzdsR ω
0
e−[(1−σ)(αA−δ)+σρ]zdz

, (45)

if t ∈ (τ , τ + ω) and:

c (t) =
β (1− α)A

R t
t−ω e

[−n+σ(αA−δ−ρ)](t−s) R s+ω
s

k (z) e−(αA−δ)(z−s)dzdsR ω
0
e−[(1−σ)(αA−δ)+σρ]zdz

,

(46)

if t ≥ τ +ω. Let r = αA− δ, γ = n−σ (r − ρ) and µ = r−σ (r − ρ). Then,

applying Fubini’s theorem and rearranging, (45) rewrites:

c (t) = z (t)− β (1− α)Ae−nω
Z t

τ

k (z)

Z t

z

e−γ(t−s)e−r(z−s)R s
τ
e−µ(u−s)du

dsdz

+β (1− α)Ae−σ(r−ρ)ωe−γ(t−τ)
Z τ+ω

τ

k (z)

Z τ+ω

z

e−γ(τ+ω−s)e−r(z−s)R s
τ
e−µ(u−s)du

dsdz

−β (1− α)A
R t
τ
k (z)

R t
z
e−γ(t−s)e−r(z−s)dsdzR ω

0
e−µzdz

−β (1− α)Ae−rωe−γ(t−τ)
R τ+ω
τ

k (z)
R τ+ω
z

e−γ(τ+ω−s)e−r(z−s)dsdzR ω
0
e−µzdz

+
β (1− α)Ae−rω

R t+ω
τ

k (z)
R t+ω
z

e−γ(t+ω−s)e−r(z−s)dsdzR ω
0
e−µzdz

, (47)
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where z (t) is a function of time and initial conditions such that:

z (t) = βe−γ(t−τ)
Z τ

t−ω

a (s, τ) e−n(τ−s)R s+ω
τ

e−µ(z−τ)dz
ds. (48)

Using (25) and (26) yields (30). Concerning (46), apply Fubini’s theorem

and rearrange to obtain:

c (t) = −β (1− α)A
¡
1 + e−(γ+r)ω

¢R ω
0
e−µzdz

Z t

τ

k (z)

µZ t

z

e−γ(t−s)e−r(z−s)ds
¶
dz

+
β (1− α)Ae−γωR ω

0
e−µzdz

Z t−ω

τ

k (z)

µZ t−ω

z

e−γ(t−ω−s)e−r(z−s)ds
¶
dz

+
β (1− α)Ae−rωR ω

0
e−µzdz

Z t+ω

τ

k (z)

µZ t+ω

z

e−γ(t+ω−s)e−r(z−s)ds
¶
dz.(49)

Using (25) yields (31). ¤

Proof of Corollary 1. For ω → +∞, it is only equation (30) which is relevant
for the dynamics. Remark with (9) that limω→+∞ β = n if n > 0 and with

(48) that limω→+∞ z (t) = nµe−γ(t−τ)k (τ) if µ > 0. Moreover, define

φ (ω) = e−nωṽ (t)− e−σ(r−ρ)ωe−γ(t−τ)ṽ (τ + ω)

−e−rωv (t+ ω) + e−rωe−γ(t−τ)v (τ + ω) , (50)

where v (.) and ṽ (.) are respectively given by (25) and (26). Then compute

limω→+∞ φ (ω) = 0 to conclude. ¤

Proof of Lemma 3. For all t ≥ τ +ω, the dynamics of capital is given by (44)

and (46). It will be useful to define the following variable:

x (t) = e−(αA−δ−n)tk (t) . (51)

Then:

dx (t)

dt
= (1− α)Ax (t)− β (1− α)A

Z t

t−ω

R s+ω
s

x (z) e−n(z−s)dzR ω
0
e−µzdz

e−µ(t−s)ds,

(52)
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where µ = (1− σ) (αA− δ) + σρ. The characteristic equation Q (λ) is ob-

tained by replacing x (t) by egt in (52). Hence:

Q (λ) = λ− (1− α)A

"
1−

R ω
0
e−µs

R ω
0
eλ(z−s)e−nzdzdsR ω

0
e−nzdz

R ω
0
e−µzdz

#
. (53)

At the exception of λ = 0, all roots of Q (λ) = 0 are relevant for the dynamics

of x (t). Roots, denoted g, of the characteristic equation associated to the

dynamics of k (t), denoted P (g), are then simply derived using g = λ+αA−
δ − n. In what follows we characterize the roots of (53).

1) Real roots. Observe that Q (0) = 0, limλ→+∞Q (λ) = +∞ and:

Q00 (λ) =
(1− α)A

R ω
0
e−µs

R ω
0
(z − s)2 eλ(z−s)e−nzdzdsR ω

0
e−nzdz

R ω
0
e−µzdz

> 0. (54)

Hence, apart from λ = 0, there exists a unique real root denoted λ̄. Moreover,

since Q (n− µ) = n− µ, we have λ̄ < n− µ.

As a consequence, there exists a unique real root to P (g) denoted ḡ that

satisfies ḡ < σ (αA− δ)− σρ.

2) Complex roots in the closed strip
£
min

©
0, λ̄
ª
,max

©
0, λ̄
ª¤
. Let λ = p+ iq

be a complex root of (53). We first prove there is no roots such that p ∈¡
min

©
0, λ̄
ª
,max

©
0, λ̄
ª¢
by showing that Re (Q (p+ iq)) < 0 in the open

strip. Computation yields:

Re (Q (p+ iq)) = p−(1− α)A

"
1−

R ω
0
e−µs

R ω
0
ep(z−s) cos (q (z − s)) e−nzdzdsR ω
0
e−nzdz

R ω
0
e−µzdz

#
.

(55)

Then, we have Re (Q (p+ iq)) ≤ Q (p) and we conclude using step 1 to state

that Q (p) < 0 for any p ∈ ¡min©0, λ̄ª ,max©0, λ̄ª¢. Consider now the

complex root λ̄+ iq. If it were a root of (53), it would satisfy:

λ̄− (1− α)A

"
1−

R ω
0
e−µs

R ω
0
eλ̄(z−s) cos (q (z − s)) e−nzdzdsR ω
0
e−nzdz

R ω
0
e−µzdz

#
= 0, (56)
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This would imply that:

(1− α)A ≤ ¯̄λ̄¯̄+(1− α)A

R ω
0
e−µs

R ω
0
eλ̄(z−s) |cos (q (z − s))| e−nzdzdsR ω
0
e−nzdz

R ω
0
e−µzdz

. (57)

Suppose |cos (q (z − s))| < 1 for some (z, s) ∈ [0, ω]2, then

(1− α)A <
¯̄
λ̄
¯̄
+ (1− α)A

R ω
0
e−µs

R ω
0
eλ̄(z−s)e−nzdzdsR ω

0
e−nzdz

R ω
0
e−µzdz

, (58)

which is not possible since Q
¡
λ̄
¢
< 0. Suppose now |cos (q (z − s))| = 1 for

all (z, s) ∈ [0, ω]2; it would imply q = 0. Apply the same procedure to show
that the pure imaginary root iq is not a root of (53).

As a consequence, P (g) has no complex root with real part that belong to

[min {αA− δ − n, ḡ} ,max {αA− δ − n, ḡ}] except ḡ itself.
3) and 4) Complex roots of large modulus. They can be localized using the

geometrical method proposed by Bellman and Cooke [4] p. 410. Their

method is based on a distribution diagram. Compute equation (53) to obtain:

Q (λ) = λ− (1− α)A

"
1− nµ

¡
1− e−(λ+µ)ω

¢ ¡
e(λ−n)ω − 1¢

(λ− n) (λ+ µ) (1− e−nω) (1− e−µω)

#
. (59)

Define Q̃ (λ) = (λ− n) (λ+ γ) eλωQ (λ) such that:

Q̃ (λ) = λ (λ− n) (λ+ µ) eλω − (1− α)A (λ− n) (λ+ µ) eλω

+(1− α)A
nµ
¡
eλω − e−γω

¢ ¡
e(λ−n)ω − 1¢

(1− e−nω) (1− e−µω)
. (60)

Hence Q̃ (λ) is expressed as
P3

i=0

P2
j=0 λ

iejλ. Then, plot the points xij with

coordinates
¡
ejλ, λi

¢
such that:
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Asymptotic roots are those of the convex envelop of the diagram. Here, the

distribution diagram is composed of two segments L1 and L2 whose slopes

are respectively positive and negative. To L1 and L2 correspond two locus V1

and V2, which belong to C and where lie asymptotically the zeros of Q̃ (λ).

The zeros of L1 are those of function:

λ3eλω +
(1− α)Anµe−µω

(1− e−nω) (1− e−µω)
= 0, (61)

which asymptotically have a negative real part. The zeros of L2 are those of

function:

λ3e−λω +
(1− α)Anµe−nω

(1− e−nω) (1− e−µω)
= 0, (62)

which asymptotically have a positive real part. ¤

Proof of Corollary 2. On the balanced growth path, the capital growth rate,

defined as (dk (t) /dt) /k (t), is constant. It is therefore given by the pure real

root of the characteristic equation, namely ḡ. ¤

Proof of Corollary 3. Let λn ∈ C, be the roots of equation (53) and gn =

λn + r − n, with r = αA− δ. Following Rustichini [20], define the following

subsets:
ΓS = {gn, Re(gn) < min {r − n, ḡ}} ,
ΓU = {gn, Re(gn) > max {r − n, ḡ}} ,
ΓC = {ḡ} .
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Now defineMS (resp. MU , MC) the subset spanned by the roots that belong

to ΓS (resp. ΓU , ΓC). There exists three families of operators:

TS(t) :MS −→MS for t > 0,
TU(t) :MU −→MU for t < 0,
TC(t) :MC −→MC for t ∈ (−∞,∞) .

and there exists x > 0 such that for all φ ∈ MS, kTS(t)φk ≤ x kφk , for
all t > 0. Therefore elements of MS ∪MC define the solutions kn (t) that

converge to the balanced growth path. To conclude on the dynamics of g (t)

use the second point of Lemma 3, which demonstrate there is no cycle. ¤

Proof of Lemma 4. Equation (52) does not generate a semi group. However,

we will consider it as an equation on the state space C [−ω, ω] , and in the
following, we will consider kt (θ) = k (t+ θ) for θ ∈ [−ω, ω]. Let us hence
first establish two preliminary results:

Claim 1. There exists µ > 0 such that κ (t) = e−µtk (t) solves an hyperbolic

differential equation of mixed type.

Proof of Claim 1. This is a direct consequence of the result established in

the proof of Lemma 3 such that there is no complex roots in the closed strip

[min {αA− δ − n, ḡ} ,max {αA− δ − n, ḡ}]. ¤
Claim 2. Solutions that converge to the balanced growth path solve:

dk (t)

dt
=

Z 0

−ω
k (t+ θ) dη− (θ) , (63)

for t ≥ i+ ω where dη− (θ) is a Lebegues-Stieljes measure on [−ω, 0].
Proof of Claim 2. According to Theorems 3.1 and 3.2 of Mallet-Paret and

Verduyn Lunel [18], we have the direct sum decomposition C ([−ω, ω] ,C) =
P ⊕ Q, and we can define (as in the proof of Lemma 3) semi groups TQ (t)
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and TP (−t) for all t ≥ 0. Applying then Theorems 5.1 and 5.3 we show that
these semi group can be represented, up to a finite mode, by delay differential

equations. We will write the delay equation as:

dκ (t)

dt
=

Z 0

−ω
κ (t+ θ) dη− (θ) . (64)

Then, use Claim 1 to obtain (63). ¤

Let A: D (A) → C ([−ω, 0]) be the generator of the semi group associated
with (64). As in Diekman et al. [12] page 111, we give the explicit represen-

tation of the resolvant of A. Let ζ = (zI −A)−1 ϕ, where ϕ ∈ C [τ + ω,∞).
Then: zζ − ζ̇ = ϕ. Integrating this equation yields:

ζ (θ) = ezθζ (0) +

Z 0

θ

ez(θ−s)ϕ (s) ds. (65)

Using the following boundary condition:

zζ (0)−
Z 0

−ω
ζ (s) dη− (s) = ϕ (0) , (66)

equation (65) rewrites:

zζ (0)−
Z 0

−ω
ezsζ (0) +

Z 0

s

ez(s−u)ϕ (u) dudη− (s) = ϕ (0) , (67)

and thus:

∆− (z) ζ (0) = ϕ (0) +

Z 0

−ω

Z 0

s

ez(s−u)ϕ (u) dudη− (s) . (68)

Conclude that the resolvant of A has the following representation:

¡
(zI −A)−1 ϕ

¢
(θ) = ezθ

Ã
∆−1− (z)

"
ϕ (0) +

R 0
−ω
R 0
s
ez(s−u)ϕ (u) dudη− (s)

+
R 0
θ
e−zsϕ (s) ds

#!
.

(69)
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Then, since δn (λ) = resz=λ
¡
(zI −A)−1 ϕ

¢
, one has:

δn (λ) = eλ.
µ
H (λ)

∙
ϕ (0) +

Z 0

−ω

Z 0

s

ez(s−u)ϕ (u) dudη− (s)
¸¶

, (70)

whereH (λ) is defined by∆ (z)−1 = H (z) / (z − λ) withH analytic at z = λ.

¤

Proof of Lemma 5. If τ → −∞, the dynamic system is given by equations

(27), (29) and (31) only, which can be rewritten as an MFDE. Then, follow-

ing Mallet-Paret [17], only pure real roots and pure imaginary roots of the

characteristic equation are, if they exist, yield a solution which is bounded

on R. Remark that the result can also be immediately derived from equation

(36). ¤

Proof of Theorem 1. Consider the case such that ω and τ are finite. It has

been shown in the proof of Lemmas 2 and 4 that the dynamics on the stable

manifold writes as a functional equation with advances for t ∈ [τ , τ + ω] and

with delays for t ≥ τ + ω. Let us consider the dynamics:

dk (t)

dt
=

Z t

t−ω
k (u) dη_ (t− u) for t ∈ [τ + ω, τ + 2ω] . (71)

If k (u) is given for u ∈ [τ , τ + ω], equation (71) is an ordinary differential

equation which is non homogenous and linear. Let us denotes by k̂ (u), the

path k (u) for u ∈ [τ , τ + ω]. Applying the constant variation formula, we

can compute k (t) for t ∈ [τ + ω, τ + 2ω]. Let us denotes the solution as

follows:

k (t) = ϕ
³bk (u) ;u ∈ [τ , τ + ω]

´
. (72)

The dynamics of k (t) for t ∈ [τ , τ + ω] is given by the differential equation

(44) with (47) and (48). If k (u) is given for u ∈ [τ + ω, τ + 2ω], equation (44)
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also becomes an ordinary differential equation which is non homogenous and

linear. By simply applying the constant variation formula, we can compute

k (t) for t ∈ [τ , τ + ω]. The solutions writes:

k (t) = φ (ϕ (k (u) , u ∈ [τ , τ + ω]) , z (s) ; s ∈ [τ − ω, τ ]) . (73)

where z (s) is a function of the initial wealth distribution given by (48).

Differentiating (73) with respect to time yield to an ordinary differential

equation that can be solved. The equation has an unique solution which

depends on the initial condition.

We now illustrate this Theorem by computing the dynamics in a particular

case. We will characterize the stationary distribution of wealth among gener-

ation and the solution for any wealth distribution. To avoid tedious calculus,

let us solve the dynamics in the simplest case such that τ = 0, ρ = 0, σ = 1,

ω = 1, δ = 0 and n = 0 (and consequently β = 1). Define:

x (t) = k (t) e−αAt. (74)

Then, equation (44) rewrites:

dx (t)

dt
= −

Z 0

t−1

a (s, 0)

(s+ 1)
ds+ (1− α)A

µ
ln (t)

Z t

0

x (z) dz −
Z 1

t

x (z) ln (z) dz

¶
− (1− α)A

µZ t

0

zx (z) dz −
Z t+1

t

x (z) (t− z + 1) dz

¶
, (75)

for t ∈ [0, 1] and:

dx (t)

dt
= (1− α)A

µ
x (t)−

Z t

t−1
(1− t+ z)x (z) dz −

Z t+1

t

(1 + t− z)x (z) dz

¶
,

(76)

for t ≥ 1.
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Let us first compute the steady-state distribution of wealth among the gen-

erations. Differentiating (76) two times yields:

d3x (t)

dt3
= (1− α)A

∙
d2x (t)

dt2
+ 2x (t)− x (t+ 1)− x (t− 1)

¸
, (77)

for t ≥ 1 and let x (t) = x (1) e(ḡ−αA)(t−1) where ḡ is the growth rate at

steady-state. Replace x (t) in (75), to obtain:

x (θ) = e(ḡ−αA)(θ+1)
"
(ḡ − αA)2 + 2− e(ḡ−αA) − (ḡ − αA)3

(1− α)A

#
, (78)

for θ ∈ [0, 1] and :

a (t− 1, 0) = tη
£
(ḡ − αA)2 + (1− α)A (1 + t)

¤
e(ḡ−αA)(t+1)

−t (1− α)Aη

µZ t

0

e(ḡ−αA)(z+1)

t
dz +

Z 1

t

e(ḡ−αA)(z+1)dz
¶

−t (1− α)A

µZ t+1

1

e(ḡ−αA)zdz
¶
, (79)

for t ∈ [0, 1] and with:

η =

"
(ḡ − αA)2 + 2− e(ḡ−αA) − (ḡ − αA)3

(1− α)A

#
. (80)

To characterize the dynamics, we use Lemma 5.7 of Mallet Parret and Ver-

duyn Lunel [18] to compute the following equation:

dx (t)

dt
= (1− α)A

x (t)

2
− (1− α)A

Z t

t−1
x (z) (z − t+ 1) dz

+(1− α)A (λ− ḡ + αA)x (t)

Z t

t−1
(1− t+ s)

Z t

s

e(ḡ−αA)(z−t)dzds

− (1− α)A (λ− ḡ + αA)

Z t

t−1
x (θ)

Z θ

t−1

Z θ

s

e(ḡ−αA)(z−θ)dzdsdθ,(81)

whose roots of the characteristic equation are very close to the roots with

negative real parts of (76). Remark that λ is the real root of the characteristic
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equation of:

x (t) =

Z t

t−1
(1− t+ s)

Z t

s

x (z) dzds. (82)

Then compute ϕ and φ as described in the first part of the proof. It is then

possible to find an initial distribution such that k (t) < 0 on the interval

[0, 2]. ¤
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