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Abstract

In a model of overlapping generations with a continuum of finitely-lived indi-
viduals, the aggregate price dynamics is characterized by a functional differ-
ential equation of mixed-type. Delays and advances are exogenous when the
retirement age is mandatory while they become state-dependent when indi-
viduals are allowed to choose their age at retirement. Using Hopf bifurcation
theorem, periodic solutions in the neighborhood of the monetary steady-state
appearing with a mandatory retirement age, vanish with a chosen age.
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1 Introduction

In this article, the relationship between retirement age and macroeconomic

fluctuations is analyzed. Our purpose is to show that allowing individuals

to choose their retirement age reduces the aggregate prices volatility. The

demonstration hinges on two main assumptions. First, the economy pro-

duces a single non storable good. Second, the demographic structure is in

overlapping generations (OLG) with a continuum of finitely-lived individuals.

We study a simple economy with no capital, which produces a non stor-

able good using a linear technology with respect to aggregate labor. We also

restrict to monetary equilibria, for which the real value of the aggregate as-

set holdings remains positive forever. Under the mandatory retirement age

scheme, the framework reduces to an exchange economy. Prices fluctuations

have then only nominal and distributional effects. They modify the real con-

sumption at the individual level but not at the aggregate one. Alternatively,

when individuals choose their retirement age, the economy is of the ‘yeoman

farmer’ type. Prices fluctuations then influence the real aggregate output,

and consequently the aggregate consumption.

Our second assumption is about the age structure of the population. We

consider an OLG model that is well-known to be able to generate cycling

dynamics. These dynamics are appealing to economists because they can

be seen as business cycles and are potentially linked to sunspot equilibria

as described in Cass and Shell (1983). However, the initial proofs of the

existence of such cycles, which were proposed by Gale (1973), Benhabib

and Day (1982) and Grandmont (1985), used an OLG model composed, at
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each point of time, of only two generations. Reichlin (1986), Jullien (1988)

and Benhabib and Laroque (1988), who extended the proofs to production

economies, made the same assumption. This is worrying because the cycles

these models may generate have periods greater than or equal to the indi-

viduals’ life-span. Moreover, it has been conjectured by Sims (1986), that

increasing the frequency of trade among generations, would allow the individ-

uals to smooth the strong revenue effects which are necessary for the existence

of cycles. Hence, the initial existence theorem has recently been extended to

OLG models with either many generations (Aiyagari, 1989; Reichlin, 1992;

Swanson, 1998; Simonovits, 1999; Bhattacharya and Russell, 2003; d’Albis

and Augeraud-Véron, 2007) or, using the equivalence argument developed by

Balasko et al. (1980), with many commodities (Kehoe and Levine, 1984; Ke-

hoe et al. 1991; Ghiglino and Tvede, 1995). Among these studies, Ghiglino

and Tvede (2004) notably propose a proof of existence for a general model

with many generations and many commodities. However, all these extensions

do not include labor supply decisions as it is crucially the case in Grandmont

(1985). Hence, by introducing a retirement age choice, our purpose is to test

the robustness of these recent results.

We use a continuous-time OLG model initially developed by Cass and

Yaari (1967), modified to allow for individual retirement decisions as in

Boucekkine et al. (2002) and (2004). The inter-temporal equilibrium is

shown to be the solution of a non-linear functional differential equation of

mixed-type (MFDE). The dynamics is indeed affected by discrete delays

and advances. Delays are generated by the vintage structure of the popula-

tion while advances rely on the expectations of the individuals. Moreover,
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when retirement is endogenous, some of the delays and advances are state-

dependent. We successively characterize the monetary steady-state of our

economy and study the existence of cycles in the neighborhood of the steady-

state. To prove their existence, we follow Rustichini (1989) by looking for

solutions of the linearized MFDE that may have Hopf bifurcation values. We

find there exist sets of parameters for which a cycle exists when retirement

is exogenous while there is no cycle when retirement is endogenous. This

means that the strong revenue effects which still may yield cycles when the

frequency of trade is high, are less operative when individuals choose their

retirement age.

The sketch of the article is as follows. In section 2, we present an OLG

model with continuous trading and characterize, in section 3, the inter-

temporal equilibrium of the economy. In section 4, we study the linearized

dynamics in the neighborhood of the monetary steady state and conclude in

section 5.

2 The model

In this section, the basic framework of the model is presented. We succes-

sively describe the individual choices and the aggregation procedure. Time

is assumed to be continuous and to have a finite starting point; let t ≥ 0

denote the time index.

2.1 The individual behavior

Individuals live for an interval of time of length ω > 1. They derive util-

ity from consumption and from the length of their retirement. Moreover,
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isoelastic preferences and no time discount are assumed. The inter-temporal

utility of an individual who born at time s ≥ 0, denoted as u (s), is given by:

u (s) =

Z s+ω

s

c (s, t)1−
1
σ

1− 1
σ

dt+
(ω − (z (s))α)1− 1

η

1− 1
η

, (1)

where c (s, t) ≥ 0 denotes the real consumption of an individual who born at
time s as of time t and z (s) ∈ [0, ω] the age of retirement. Moreover, σ > 0

stands for the elasticity of inter-temporal substitution, η > 0 and α ∈ {0, 1}.
Observe that α = 0 corresponds to the exogenous retirement case, for which

the retirement age is mandatory and normalized to 1. Alternatively, when

α = 1, the retirement age is endogenous.

During a lifetime, a wage is received provided that the individual is work-

ing; the real wage is denoted e (s, t) and satisfies:

e (s, t) =

½
1 if t ∈ [s, s+ (z (s))α] ,
0 otherwise.

(2)

Individuals have access to a competitive asset market that yields r (t), the

interest rate, which also represents the deflation rate. Let a (s, t) denotes the

real wealth of an individual who born at time s as of time t. The instanta-

neous budget constraint is:

∂a (s, t)

∂t
= r (t) a (s, t) + e (s, t)− c (s, t) . (3)

Individuals are born with no financial assets and cannot die indebted. Initial

and terminal conditions thus write a (s, s) = 0 and a (s, s+ ω) ≥ 0. It is

assumed that a (s, t) and c (s, t) are piecewise C1 ¡R2+¢, that r (t) is continuous
for all t ∈ [s, s+ ω] and that e (s, t) is L2

¡
R2+
¢
. Finally, it will be convenient

to define the relative price between time t and time 0, such that: R (t) =

exp
³
− R t

0
r (u) du

´
.
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The individual program is to maximize Eq. (1) subject to Eq. (3), and

the initial and terminal conditions. The separability of the objective allows

to solve the program in two steps. First, a family of optimal consumption

profiles parametrized by (z (s))α is derived. Then, the optimal retirement

age is computed.

Lemma 1 The optimal consumption profile satisfies:

c (s, t) =

R s+(z(s))α
s

R (v) dvR s+ω
s

(R (v))(1−σ) dv
(R (t))−σ . (4)

Proof: It is standard and available upon request. ¤

Lemma 2 There exists an optimal age of retirement that belongs to (0, ω)

and satisfies:

αR (s+ (z (s))α)

Ã R s+(z(s))α
s

R (v) dvR s+ω
s

(R (v))1−σ dv

!− 1
σ

− α (ω − (z (s))α)− 1
η = 0. (5)

The optimal age of retirement is unique if:

−r (s+ (z (s))α)− 1
σ

R (s+ (z (s))α)R s+(z(s))α
s

R (v) dv
− 1

η
(ω − (z (s))α)−1 < 0. (6)

Proof: Replacing Eq. (4) in Eq. (1) yields û (z (s)). Observe first that

z (s) = 0 is not a solution because limz(s)→0 û (z (s)) = −∞ if σ ∈ (0, 1] and
limz(s)→0 û0 (z (s)) = +∞ if σ > 1. Moreover, z (s) = ω is not a solution be-

cause limz(s)→ω û (z (s)) = −∞ if η ∈ (0, 1] and limz(s)→ω û
0 (z (s)) = −∞

if η > 1. Hence, there exists z (s) ∈ (0, ω) which is a solution to the

problem. This optimal solution satisfies dû (z (s)) /dz (s) = 0 or equiva-

lently Eq. (5). Then, a sufficient condition for a global maximum, is that
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d2û (z (s)) /d (z (s))2 < 0 at the optimal point. This condition is given by

Eq. (6). ¤

The optimal age of retirement is given by a standard consumption-leisure

arbitrage. Eq. (4) shows that a longer retirement period implies a lower level

of consumption at each age and Eq. (5) says that the optimum is obtained

when the marginal utility yield by a supplementary unit of leisure equals the

marginal desutility yield by the decrease in consumption. The optimal age

is necessarily an interior solution of the individual program but one should

not exclude multiple local maximum. If the condition given in Eq. (6) is not

satisfied, meaning that r (t) is negative, it may indeed exist multiple solutions

to Eq. (5). Nevertheless, it will be shown in section 4 that the optimal age

of retirement is unique in the neighborhood of the monetary steady-state.

2.2 Aggregation

The demographic structure is in OLG. Each cohort, whose size is normalized

to 1, is composed of identical individuals. There is no population growth

and, at each point of time, a new cohort enters the economy while the oldest

one leaves it. The size of the population is consequently equal to ω.

Assume there exists a single non storable good which is produced using

a linear technology with respect to aggregate labour. Total output hence

equals the size of the active population, denoted P (t), which solves:

P (t) =

Z t

t−ω
e (t− s) ds, (7)

where e (t− s) is defined in Eq. (2). The aggregate real consumption, de-

noted C (t), is obtained by integrating over the birth date individual con-
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sumptions, c (s, t). Replacing Eq. (4) yields:

C (t) =

Z t

t−ω

R s+(z(s))α
s

R (v) dvR s+ω
s

(R (v))(1−σ) dv
(R (t))−σ ds. (8)

Similarly, the aggregate real wealth is denoted A (t). Money is available in

this economy: it is a non perishable and non consumable bond that may

constitute the counterpart of individual assets. It is assumed that a given

quantity of money was distributed at time t = 0 and that there were no

further emission since then.

3 The monetary equilibrium

In this section, the price dynamics around the monetary steady-state is char-

acterized. We prove its existence and provide some comparative statics. An

inter-temporal equilibrium is defined as follows:

Definition 1 An inter-temporal equilibrium with perfect foresight is a

function F (t) = (C (t) , A (t) , R (t) , P (t) , z (t)), F : R+ → R4+ × [0, ω],
F (t) ∈ (C1 (R+))3× (L2 (R+))2 such that (i) individuals maximize their util-
ity subject to the budget constraints, (ii) the aggregate consumption equals

the output: C (t) = P (t), and (iii) the aggregate wealth is non negative:

A (t) ≥ 0.
The existence of money allows for a positive aggregate wealth at the

equilibrium. Consider now the following particular equilibrium:

Definition 2 Amonetary steady-state is an inter-temporal equilibrium with

perfect foresight such that the aggregate wealth is a positive constant: A > 0.

Lemma 3 There exists a unique monetary steady-state which is character-

ized by the quintuple (C,A, P,R, z) that satisfies: R = 1, A = (ω − zα) zα/2,
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P = C = zα where zα is such that:

α

µ
zα

ω

¶− 1
σ

= α (ω − zα)−
1
η . (9)

Proof: At the equilibrium, the aggregate consumption equals the output, the

aggregate wealth writes dA (t) /dt = r (t)A (t). This implies that r = 0, or

equivalently, R = 1, is necessary to obtain a constant and positive aggregate

wealth. For r = 0, the condition in Eq. (6) is satisfied and, consequently,

there exists a unique age of retirement that is constant. The end of the

computation is immediate. ¤

It is well-known since Samuelson (1958) and Gale (1973), that the interest

rate equals the demographic growth rate at the monetary steady-state. By

having supposed a stationary population, we obtain constant steady-state

prices and constant individual consumptions over the life-cycle. Interestingly,

Lemma 3 states that money is always valuated. This is a direct consequence

of the introduction of retirement: in OLG economies, the money has indeed

a value if and only if the average age of the consumer is strictly greater than

the average age of the worker. Then, workers finance the retired and the

aggregate wealth is positive. Given our simple demographic structure, these

ages are easy to compute and are worth ω/2 and zα/2 respectively. With the

statement of Lemma 2 such that zα ∈ (0, ω), we conclude that the monetary
steady-state exists. In real terms, the value of money is equal to the product

of the output and the difference between the average ages of consumption

and production. At the limit such that zα → ω, the money has no value and

the economy is autarkic.

Remark, moreover, the ambiguous effect of retirement age on aggregate
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wealth. Postponing retirement has a positive effect on wealth if and only if

zα < ω/2. Increasing z increases, on the one hand, the aggregate output and

the individual savings while it increases, on the other hand, the average age of

the worker which reduces the incentive to save. Another intuition is obtained

by computing the age at which each individual begins to dissave. Simple

algebra would lead to show that this age is always equal to the retirement

age. Hence, an increase of the retirement age increases the aggregate wealth

if the age at which the dissaving begins belongs to the first half of the life.

When the retirement age is exogenous, the monetary steady-state is sim-

ply characterized by the relative size of the active population. With Lemma

3, observe that the aggregate wealth increases with the life-span ω: this in-

deed increases the length of retirement and consequently creates an extra

incentive for individual saving. Remark that the elasticity of inter-temporal

substitution has no influence on the steady-state because we consider the

particular case of a stationary population; this is no longer true when the

retirement age is endogenous. Thus, the following proposition provides some

comparative statics for the yeoman farmer economy:

Proposition 1 When the retirement age is endogenous,

(i) an increase of longevity increases the age of retirement and the aggregate

wealth. Moreover, there exists ω̄ > 1 such that z ≥ 1⇔ ω ≥ ω̄.

(ii) an increase of the elasticity of inter-temporal substitution reduces the age

of retirement and has an ambiguous effect on the aggregate wealth. Moreover,

if ω < 2, there exists σ̄ > 0 such that z ≥ 1⇔ σ ≤ σ̄; if ω ≥ 2, z > 1.

Proof: Use, for α = 1, Eq. (9) as an implicit equation. For part (i) observe
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that dz/dω ∈ (0, 1) and that dA/dω > 0 and finally, observe that ω̄ can be

computed explicitly by replacing z = 1 in the implicit equation. For part (ii)

observe that because ω − z < 1 is always true, one has dz/dσ < 0. Hence,

the sign of dA/dσ is the opposite of the one of dA/dz if and only if z > ω/2.

Finally, with the implicit equation, observe that z → ω when σ → 0 and,

replacing z = 1 compute σ̄ to conclude that σ̄ is positive only if ω < 2. ¤

The intuition for Proposition 1 is the following: because of the consump-

tion/leisure arbitrage, an increase in longevity both increases the age of re-

tirement and the length of retirement; hence, dz/dω ∈ (0, 1). The magnitude
of the latter derivative crucially depends on the parameter η that character-

izes the curvature of the utility function with respect to leisure. A lower η

means a utility more concave and consequently a higher dz/dω. At the limit

such that η → 0, one obtains a retirement age that goes to its lower bound:

ω − 1, and consequently dz/dω → 1. Equivalently, the effect of longevity on

aggregate wealth is, at a first glance, ambiguous since it both increases the

average age of the consumer and the average age of the worker. However,

since dz/dω ∈ (0, 1), the final effect is always positive. Remark that Chang
(1991) and Kalemli-Ozcan and Weil (2004) have pointed out the importance

of the assumption of certainty on individual life-span. In case of uncertain

life-span, an increase in longevity may reduce the age of retirement.

The effect of an increase of the elasticity of inter-temporal substitution

on retirement is negative. Indeed, at the monetary steady-state such that

the interest rate is equal to zero, the elasticity does not influence the individ-

ual consumption growth rate. It then only modifies the arbitrage between

consumption and leisure in favor of the second, which ultimately means less
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human wealth and consequently less consumption. The effect of the elasticity

on aggregate wealth is then the opposite of the one, described above, of the

retirement age on wealth.

4 Monetary cycles

In this section, the linearized dynamics in the neighborhood of the mone-

tary steady-state given by Lemma 3 is studied. We successively analyze the

exogenous and endogenous retirement cases and look for particular long-run

fluctuations defined as follows:

Definition 3 A monetary cycle is a periodic solution of the inter-temporal

equilibrium in the vicinity of the monetary steady-state.

4.1 Exogenous retirement

Assume that the retirement age is mandatory; replacing (2) in (7) yield

the size of the active population: P (t) = 1 for all t. The inter-temporal

equilibrium is hence characterized by the following functional differential

equation:

(R (t))σ =

Z t

t−ω

R s+1
s

R (v) dvR s+ω
s

(R (v))(1−σ) dv
ds. (10)

The dynamics of R (t) is indeed dependent on the entire set of realizations

of R on the interval [t− ω, t+ ω]. Past realizations, that yield delays in

the dynamics, are generated by the vintage structure of human capital as

in Boucekkine, de la Croix and Licandro (2002), while future realizations

that yield advances in the dynamics, come from the assumption of perfect

foresight. Remark that Eq. (10) is non linear for any σ 6= 1, meaning that
revenue and substitution effects do not compensate each others.
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Following Rustichini (1989), the proof of the existence of periodic solu-

tions uses the Hopf bifurcation theorem. We consider the local dynamics

around R = 1: it is the one of x (t) defined such that R (t) = 1 + εx (t).

Property 1 The characteristic function of x (t), denoted H (λ), satisfies:

H (λ) =

Z 0

−ω

µZ s+1

s

eλvdv

¶
ds− ωσ − (1− σ)

ω

Z 0

−ω

µZ s+ω

s

eλvdv

¶
ds. (11)

Proof: Replace R (t) = 1 + εx (t) in Eq. (10) and do a Taylor expansion

in the neighborhood of ε = 0. Finally, H (λ) is obtained by the following

change of variable: x (t) = eλt and some algebra. ¤

It can be shown that the characteristic function H (λ) has an infinity

of complex roots with negative real parts and an infinity of complex roots

with positive real parts. This implies that the linearized dynamics is initially

characterized by oscillations that eventually disappear. These fluctuations

are consequently of few interest because it is the dynamics in the neighbor-

hood of the steady-state which is studied. The following lemma hence focuses

on permanent fluctuations yielded by the pure imaginary roots of H (λ).

Lemma 4 There exist (ω, σ) such that H (λ) has pure imaginary roots which

are Hopf bifurcation values.

Proof: The proof proceeds in two steps: 1) it supposes λ = iq and proves

there exists a least one q > 0 such thatH(iq) = 0; it hence defines (ω0, σ0 (ω0))

the pair of parameters for which such a root exists. 2) It uses σ as a bifurca-

tion parameter and shows that there exists a neighborhood of σ0 such that

dRe (H (λ)) /dσ is not equal to zero while d Im (H (λ)) /dσ = 0.
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1) Replace λ = iq in Eq. (11) to obtain H (iq) = Re (H (iq)) + i Im (H (iq))

with:

Re (H (iq)) = −
µ
cos (q)− 1− cos (q (ω − 1)) + cos (qω)

q2

¶
−ωσ + 2 (1− σ)

ω

µ
cos (qω)− 1

q2

¶
, (12)

Im (H (iq)) = −
µ
sin (q) + sin (q (ω − 1))− sin (qω)

q2

¶
. (13)

The first step of the proof proceed as follows: (i) it shows there exist, for

any σ, some (ω0, q (ω0)) such that Im (H (iq (ω0))) = 0. (ii) it shows that

Re (H (iq (ω0))) = 0 is compatible with some σ > 0.

(i) Observe that Eq. (13) rewrites:

Im (H (iq)) = −
4 sin

³
q(ω−1)
2

´
sin
¡
q
2

¢
sin
¡
qω
2

¢
q2ω

. (14)

Roots of Im (H (iq)) are then q = 2kπ, q = 2kπ/ω and q = 2kπ/ (ω − 1) for
k ∈ Z. Equation Re (H (iq)) = 0 rewrites:

σ =
−4 sin2 ¡qω

2

¢
+ 2ω

£
sin2

¡
qω
2

¢
+ sin2

¡
q
2

¢¤− ω + ω cos (q (ω − 1))
−4 sin2 ¡qω

2

¢
+ (ωq)2

. (15)

Consider now the roots q = 2kπ/ (ω − 1) for k ∈ Z, replace them in Eq. (15)
and rearrange to obtain:

σ =
(ω − 1)
(qω)2

4 sin2( q2)
− 1

. (16)

With ω > 1, conclude that the RHS of Eq. (16) is positive. Then for any

(ω, 2kπ/ (ω − 1)) , k ∈ Z, Im (H (iq)) = 0 is satisfied and there exists a σ > 0

such that Re (H (iq)) = 0. Notice that Re (H (iq)) 6= 0 for q = 2kπ.
2) Let λ = p+ iq. Using Eq. (11), one has:

dRe (H (λ))

dσ
= −ω + cos (qω)

ω

Z 0

−ω

µZ s+ω

s

epvdv

¶
ds. (17)
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Then, compute Eq. (17) for p = 0 and observe it is not zero because q 6=
2kπ/ω. ¤

The following lemma gives an indication on the space of parameters that

yield a cycle.

Lemma 5 There exists a monetary cycle of period q only if σ < q/ω.

Proof: In what follows, we prove the lemma for ω < 2, which is the realistic

case for a retirement age which equals 1. The proof for ω ≥ 2 is similar and
available upon request. We aim at showing that σ−q/ω < 0 when σ is defined

by Eq. (16) and q = 2kπ/ (ω − 1). Observe first that σ−q/ω < φ (k, ω) with

φ (k, ω) =
(ω − 1)³
ωkπ
(ω−1)

´2
− 1
− 2kπ

ω (ω − 1) . (18)

Now, it is sufficient to show that φ (k, ω) < 0. Because ∂φ (k, ω) /∂k < 0, we

have to prove that φ (1, ω) < 0. Then, just observe that ∂φ (1, ω) /∂ω > 0

for ω > 1 and that φ (1, 2) ' −3. ¤
Sufficiently strong revenue effects are then necessary to obtain monetary

cycles. The magnitude of these effect depends on the periodicity of the price

cycle or, equivalently, of the inflation rate cycle, relative to the individual

life-span: to obtain a cycle with a lower periodicity, a stronger revenue effect

is needed. Remark, nevertheless, that we obtain this result with a discount

rate equal to zero while it is quite established in the literature that cycles

are more likely to occur when individuals heavily discount the future.

4.2 Endogenous retirement

Assume now that the retirement age is endogenous. To define the inter-

temporal equilibrium, it is necessary to characterize the size of the active
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population and consequently to know how cohorts leave the labor market. It

is then useful to define the “last in, last out” property.

Definition 4 For all t ≥ 0, let s0 be the greatest s ∈ [t− ω, t] such that

s0 + z (s0) = t. Then, cohorts satisfy the “last in, last out” property if and

only if for all s < s0, s+ z (s) ≥ t.

According to definition 4, when there is “last in, last out”, cohorts leave

the labor market in the same order they have entered it; consequently,

P (t) = z (t− P (t)). Otherwise, it may exist some date t0 such that there is

no cohort that leave the labor market and some date t1 such that different

cohorts leave it simultaneously. If such situations were to occur, the analyt-

ical characterization of the inter-temporal equilibrium would be drastically

complicated. However, the following lemma eliminates such situations in the

neighborhood of the steady-state.

Lemma 6 In the neighborhood of the monetary steady-state, the “last in,

last out” property holds.

Proof: Observe first that optimal age of retirement, defined as the z (.) that

solve Eq. (5), is continuously differentiable with respect to s. Indeed, as

R (.) ∈ C1 (R+), then z (s) is C1 (R+). Consequently, there is “last in, last

out” if and only if 1 + dz (s) /ds > 0. In the neighborhood of the monetary

steady-state this condition is satisfied because dz (s) /ds = 0. ¤

It is now possible to characterize the inter-temporal equilibrium in the

neighborhood of the monetary steady-state. It is the solution of the following

system of non linear functional differential equations with state-dependent
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delays and advances:⎧⎪⎨⎪⎩
P (t) (R (t))σ =

R t
t−ω (R (s+ z (s)))σ (ω − z (s))

σ
η ds,R t+z(t)

t
R (v) dv = (R (t+ z (t)))σ (ω − z (t))

σ
η
R t+ω
t

(R (v))1−σ dv,
P (t) = z (t− P (t)) .

(19)

The first equation of system (19) is the equilibrium condition in the good

market which has been modified by replacing the optimal condition on in-

dividual retirement (the second equation). Remark that the dynamics of

R is governed by distributed delays and advances while the dynamics of z

depends on the future realizations of R only. Finally, the third equation

characterizes the size of the population when there is “last in, last out”. The

main difference between system (19) and Eq. (10) relies on the presence of

state-dependent delays and advances.

Consider the local dynamics around the steady-state defined by Eq. (9).

Following Cooke and Huang (1996), it is the one of (x (t) , y (t) , h (t)) defined

such that: ⎧⎨⎩ R (t) = 1 + εx (t) ,
z (t) = z + εy (t) ,
P (t) = z + εh (t) ,

(20)

where z satisfies
¡
z
ω

¢− 1
σ−(ω − z)−

1
η = 0. Remark that state-dependent delays

and advances vanish in the linearized system and that it is consequently

possible to apply Rustichini (1989).

Property 2 The characteristic function of the linearized system is denoted

Q (λ) and satisfies:

Q (λ) = 2ω +
σzω

η (ω − z)
+
(ω − z) ηω

σz
−
µ
1 +

σz

(ω − z) ηω

Z 0

−ω
eλ(s+z)ds

¶
∗
µ
(ω − z) ηω

σz
+

ω

zσ

Z z

0

eλ(v−z)dv − (1− σ)

σ

Z ω

0

eλ(v−z)dv
¶
. (21)
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Proof: Replace system (20) in system (19) and do a Taylor expansion in

the neighborhood of ε = 0. This yields h (t) = y (t− z) and a system of

two equations. Write the Jacobian matrix J and then Q (λ) = detJ. Some

algebra yield Eq. (21). ¤

As in the previous case, only pure imaginary roots are now considered.

Lemma 7 Q (λ) has no pure imaginary roots.

Proof: The proof shows that |Q (iq)| > 0. Using Eq. (21), one has:

|Q (iq)| =
¯̄̄̄
2ω +

σzω

η (ω − z)
+
(ω − z) ηω

σz
−
¯̄̄̄µ
1 +

σz

(ω − z) ηω

Z 0

−ω
eiq(s+z)ds

¶
∗
µ
(ω − z) ηω

σz
+

ω

zσ

Z z

0

eiq(v−z)dv − (1− σ)

σ

Z ω

0

eiq(v−z)dv
¶¯̄̄̄¯̄̄̄

.(22)

Consequently, |Q (iq)| ≥ |φ (σ)| where:

φ (σ) = 2ω +
σzω

η (ω − z)
+
(ω − z) ηω

σz

−ω
σ

µ
1 +

σz

(ω − z) η

¶µ
(ω − z) η

z
+ (1 + ε) + |1− σ|

¶
. (23)

with ε > 0. Showing that φ (σ) < 0 for all σ > 0 is then sufficient to conclude.

One indeed has: φ0 (σ) > 0 while φ (1) < 0 and limσ→+∞ φ (σ) < 0. ¤

The main result of this section is presented in the following proposition:

Proposition 2 When the retirement age is optimally chosen by the individ-

uals, the occurrence of monetary cycles is ruled out.

Proof: Given lemmas 4 and 7, the proof is immediate. ¤

Let us now turn to the general comment of this section’s results. In

the exogenous retirement case, we have shown that increasing the frequency
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of trade within generations, is not sufficient to smooth the strong revenue

effects that may yield cycles in OLGmodels. Conversely, introducing a simple

leisure choice modelled as a retirement decision has been proved to be crucial

for the occurrence of monetary cycles. The intuition is the following: for

mandatory retirement age, an anticipation of high prices, which corresponds

to low interest rate, increases the individual savings when the elasticity of

inter-temporal substitution is small. This increases the aggregate wealth and

increases the prices. But if individuals are allowed to choose their retirement

age, an anticipation of high prices is an incitation to retire later because high

prices implies high nominal wages. This consequently lower the incitation

to save and the final effect on aggregate wealth is then lower than in the

mandatory retirement case.

Proposition 2 should extend to more general economies. First, allowing

for endogenous entree in the labor market, with a schooling decision as in

de la Croix and Licandro (1999), would produce the same result: cycles

would be more likely with a mandatory age for the end of education than

with an optimally chosen one. In production economies, some non linearities

are added, and then endogenous cycles are possible even with endogenous

labour supply. This was notably shown by Whitesell (1986) and Matsuyama

(2005). However, Cazzavillan and Pintus (2004) and Nourry and Venditti

(2006) prove, in a two-period framework, that the occurrence of cycles is

reduced if individuals are supposed to consume during their youth.
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5 Conclusion

In this article, we analyze the existence of long-run fluctuations in OLG

economies. We show that when individuals choose their retirement age,

some periodic solutions of the inter-temporal equilibrium dynamics vanish. It

should be now interesting to study the existence and uniqueness of the inter-

temporal equilibrium. For linear MFDE, the existence problem was studied

by d’Albis and Augeraud-Véron (2004) while the indeterminacy issue was

analyzed by Demichelis and Polemarchakis (2007). However, the problem is

increased with state-dependent delays because of the characterization of the

initial conditions.
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