
On the Causes of the Great Inflation ∗

Fabrice Collard† Harris Dellas‡

April 7, 2008

Abstract
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Introduction

The causes of the “great” inflation of the 1970s remain the subject of debate. One of the

most popular explanations has been provided by Clarida et al. (2000) (henceforth CGG).

CGG argue that the great inflation was caused by a well–meaning, non–opportunistic FED

that committed an honest, technical mistake. In particular, the FED is alleged to have

employed a policy rule that involved too weak of a reaction to expected inflation. This

triggered —inadvertently— indeterminacies and allowed self–fulfilling inflation expecta-

tions to contribute to higher inflation. CGG claim that the empirical evidence favors their

interpretation. When estimating a policy rule for the pre-Volcker period, they find that,

unlike the rule for the post-Volcker era, it indeed violates the Taylor principle.

The CGG thesis has its critics. For instance, Orphanides (2004) has repeated the CGG

exercise using real time data on inflation and output as well as a real time measure of

potential output (partly constructed by the Commerce department). His main result is

that the estimated interest rate rule does not differ significantly across the pre- and post

Volcker periods. And that it satisfies determinacy in both periods. This result seems to

owes much to the assumption that the FED in the 70s formulated monetary policy on

the basis of a very large and persistent, perceived output gap. While some part of this

gap came from measurement error in actual output, most of it arose from the estimate of

potential output published by the Department of Commerce’s in its monthly publication

Business Conditions Digest1.

An alternative test of the CGG thesis has been undertaken by Lubik and Schorfheide

(2004) (L-S). They estimate a small scale, forward looking New Keynesian model without

restricting the parameters to lie in the determinacy region. They specify a prior probability

distribution over parameters that places equal weight on determinate and indeterminate

regions of the parameter space and compute posterior odds ratios for these regions. Their

main result regarding the policy rule supports the CGG claim of indeterminacy 2.

Does the L-S analysis provide an adequate framework for evaluating the case for inde-

terminacy? A possible problem with their approach -a problem acknowledged by them-

regards its sensitivity to model mis–specification. In particular, the endogenous dynamics

are richer in the indeterminacy region of the parameter space than in the determinacy

region. Omitted propagation mechanisms under determinacy may thus bias the posteri-
1Of course, it is not known what measure of the output gap, if any, the FED actually utilized during

that period.
2Collard and Dellas (2007) too evaluate the CGG thesis in the context of a calibrated DSGE model but

find that the model can account for the 70s only in the face of an implausibly large negative productivity
shock.
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ors toward indeterminacy.3 To deal with this problem they include additional sources of

dynamics under determinacy (such as habit persistence and backward–price indexation)

and find that they do not materially affect the results.

Our view is that such rigidities are unlikely to help the NK model generate large inflation

volatility and persistence under determinacy4. Consequently, the case for determinacy

may not have received a ”fair hearing” in the L-S specification. In this paper we pro-

pose an alternative, more plausible source of inflation inertia that has been identified in

the literature as a possible important contributor to the great inflation. Namely, mis-

perceptions about the state of the economy and gradual learning, an element that has

been emphasized by Orphanides. We examine whether the CGG thesis survives against

this alternative specification.

Naturally, we are not the first ones to study the contribution of this type of misperceptions

to the great inflation. There exists a large literature that has looked at this issue5 and

which claims that misperceptions may have indeed been the driving force behind the in-

flation of the 70s. Nevertheless, we find the message from this literature rather incomplete

because of three reasons.

First, much of this literature has been conducted in the context of backward looking

models (where all or some of the agents do not employ rational expectations). Second, with

rare exceptions, the learning mechanism utilized is not rational. Typically, the monetary

authorities are assumed to make use of plausible but arbitrary forecasting rules. Both

of these features introduce extra degrees of freedom and are quite controversial. And

third, and more importantly, these works restrict the estimation to the determinacy region

of the parameter space, so they are not in a position to differentiate among competing

explanations (for instance, mis-perceptions against indeterminacy) and select the one most

consistent with the data.

Our analysis addresses all three problems. Relying on the empirical approach of L-S,

we also estimate a version of the standard, rational expectations, New Keynesian model

that includes mis-perceptions about the true state of the economy and learning. Learning

is assumed to be rational (it is based on the Kalman filter). We find that the case of

indeterminacy in the pre–Volcker period is overwhelming, independent of whether the

alternative determinate model contains measurement error or not.
3Of course, such a potential problem is present in all system-based approaches to evaluation of indeter-

minacies.
4Collard and Dellas (2004) show that standard real rigidities -such as habit persistence, investment

adjustment costs etc.- are not an important source of inflation inertia.
5See, for instance,Bullard and Eusepi (2005), Cukierman and Lippi (2005), Milani (2006), Nelson and

Nicolov (2002), Primiceri (2006).
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We also evaluate the case for indeterminacy using model specifications that closely follow

the Orphanides reasoning. In particular, we estimate a version where the signals available

to the agents/monetary authority are real time inflation and the real time output gap (the

series used by Orphanides). And another version where the monetary policy rule involves

a reaction to these signals only6. The case for indeterminacy remained overwhelming

independent of the competing determinant model with mis-perceptions. We consider these

results as providing strong support to the CGG thesis7.

The rest of the paper is organized as follows. Section 1 describes the model. Section

2 presents the solution method and the estimation strategy. Section 3.3 discusses our

results. A last section concludes.

1 The model

We consider the same standard prototype New–Keynesian model as that employed by

L-S. The model consists of three equations: a forward–looking IS–curve (equation (45)),

a New–Keynesian Phillips curve (equation (2)) and a monetary policy rule in the form

of a simple Taylor rule (equation (3)). These equations are derived from a fully–fledged

micro–founded dynamic general equilibrium model (see the Appendix for the details):

ŷt = Etŷt+1 − τ(R̂t − Etπ̂t+1) + ĝt (1)

π̂t = βEtπ̂t+1 + κ(ŷt − ẑt) (2)

R̂t = ρRR̂t−1 + (1− ρR)(ψππ̂t + ψyŷt) + εRt (3)

where ŷt, π̂t and R̂t denote output, inflation and the nominal interest rate, all measured as

percentage deviations from the steady state8. Et is the output gap expectation operator

based on information up to period t. The economy is subjected to three shocks: a demand

shock, gt, a shock which shifts the marginal costs of production, zt, and a monetary policy
6These variables cannot be treated as purely exogenous, this would render the nominal interest rate ex-

ogenous and the equilibrium indeterminate. We thus allowed them to respond to the endogenous variables
of the model via either an error correction mechanism or a simple linear feedback rule.

7Of course, there may exist other models with mis-perceptions that could conceivably ”beat” the model
with indeterminacy. For instance, a model where policy-makers formed beliefs using a backward looking
model while the agents used a forward looking model. While one can always claim that such an assumption
would better capture the way of thinking of policy-makers at that time, we –as well as many others– find
such an assumption both arbitrary and controversial.

8In this specification, potential output is deterministic and the misperception of the output gap arises
exclusively from the measurement error in actual output. We have also used ŷt−ẑt as the measure of output
gap that is targeted by the policymakers. We will show later that the relative merits of the competing
specifications do not vary with the measure of perceived output gap employed.
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shock, εRt . The two real shocks are assumed to follow AR(1) processes of the form:

ẑt = ρz ẑt−1 + εzt , (4)

ĝt = ρg ĝt−1 + εgt (5)

where |ρz| < 1 and |ρg| < 1. εzt and εgt are two gaussian white noise processes with mean

zero and respective standard deviation σz and σg. Following Lubik and Schorfheide (2004),

we allow for non–zero contemporaneous correlation ρgz between these two innovations. The

monetary policy shock, εRt , is assumed to be iid and normally distributed with mean zero

and standard deviation σR.

As is well known in the literature, this model can be indeterminate over some region of

the parameter space and sunspots may play a role. In this case we solve the model as

explained in L-S. In the case of determinacy we consider two possibilities. In the first one,

agents are assumed to have perfect information about the state of the economy. In the

second one agents are assumed to have imperfect information in the sense that they do

not observe the actual state of the economy, but only a signal. In this case the agents face

a signal extraction problem which is solved using the Kalman filter. For more details, see

the Appendix.

The case of perfect information is identical to that in L-S so we only discuss the case of

imperfect information. Let the state of the economy be represented by two vectors X̂b
t

and X̂f
t . The first one includes the predetermined (backward looking) state variables,

i.e. X̂b
t = (R̂t−1, ẑt, ĝt, ε̂Rt )′, whereas the second one consists of the forward looking state

variables, i.e. X̂f
t = (ŷt, π̂t)′. The model then admits the following representation

M0

(
X̂b
t+1

EtX̂f
t+1

)
+M1

(
X̂b
t

X̂f
t

)
= M2εt+1 (6)

5



where

M0 =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
−τ 0 0 0 1 τ
0 0 0 0 0 β



M1 =



−ρR 0 0 −1 −(1− ρR)ψy −(1− ρR)ψπ
0 −ρz 0 0 0 0
0 0 −ρg 0 0 0
0 0 0 0 0 0
0 0 1 0 −1 0
0 −κ 0 0 κ −1



M2 =



0 0 0
1 0 0
0 1 0
0 0 1
0 0 0
0 0 0


εt+1 = {εzt+1, ε

g
t+1, ε

R
t+1}

Thus the first row corresponds to the Taylor rule, the second, third and forth row to the

demand, cost push shock and policy shock, the fifth row to the IS-curve and the sixth

row to the Phillips curve. Let us denote the signal process by {St}. The measurement

equation relates the state of the economy to the signal:

St = C

(
X̂b
t

X̂f
t

)
+ vt. (7)

Agents receive a four dimensional signal on the cost push, demand shock, monetary policy

shock and nominal interest rate. Hence C equals:

C =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
ρR 0 0 1 (1− ρR)ψy (1− ρR)ψπ


The noise sequence {vt} is assumed to be a Gaussian white noise process which is uncorre-

lated and all leads and lags with {εt}. Moreover the signals are assumed to be uncorrelated

so their contemporaneous covariance matrix is diagonal, Σv = diag(σ2
1, σ

2
2, σ

2
3, σ

2
4). We do

not find it plausible to assume that nominal interest rates are observed with noise, so we

will set σ2
4 = 0.

The agents use the signals to infer the state of the economy. The solution concept is based

on the Kalman filter and is explained in detail in the appendix to this paper. Let us
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denote X̂t = (X̂b′
t , X̂

b′
t|t)
′ where X̂b

t|t is the estimate of X̂b
t given the information up to and

including period t. The solution to the model is a state equation of the form:

X̂t+1 = MX

(
X̂b
t

X̂b
t|t

)
+ME

(
εt+1

vt+1

)
(8)

The state vector is then related to the observations Ŷt by

Ŷt = MY X̂t (9)

The observations consist of real GDP, yt, (GDP deflator) inflation rate, πt, and the federal

fund rate, Rt, Ŷt = {ŷt, π̂t, R̂t}. The matrix MY selects the corresponding entries of X̂t

and relates them to the observations.

2 Estimation procedure

The observation equation is:

Yt = Y ? +HŶt (10)

where the vectors Yt and Y ? denote the time series and Y ? the steady state values. In our

case the observations consist of HP detrended output, inflation and the real interest rate

so that

Yt =

ytπt
Rt

 and Y ? =

 0
π?

r? + π?

 . (11)

The matrix H is given by 1 0 0
0 4 0
0 0 4

 .

The 4 reflects the fact that we use annualized inflation and interest rates.

2.1 The Prior Distribution

In order to make our results comparable to those of L-S we use their priors. The specifi-

cation with the corresponding parameters is reported in Table 1. In the case of imperfect

information Σv appears as an additional parameter (see equation(48)). When we assumed

that the elements of Σv were distinct we were not able to identify σ2
1, σ

2
2, σ

2
3) separately.

Thus we imposed σ2
1 = σ2

2 = σ2
3. Note that this implies that the noise to signal ratio dif-

fers across shocks. We later discuss an alternative specification. As we have no particular

information concerning this parameter, we take the same prior as for σz, the standard

deviation of the marginal cost shock.
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The parameters µζ,R µζ,g µζ,z are extra parameters that appear in the solution under

indeterminacy and modify the transmission mechanism of the fundamental shocks (they

correspond to µζ,R µζ,g µζ,z in L-S). If they are zero then the endogenous expectation

formation does not abruptly change as the economy moves across the boundary between

the determinacy and the indeterminacy region.

We collect all parameters into the vector θ and assume that the parameters are distributed

a priori independently from each other. That is, the prior distribution of θ, p(θ), is just

the product of the prior distributions for each parameter θi separately:

p(θ) =
∏
i

pi(θi).

Table 1: Summary of the prior distribution of parameters

Parameter Support Density Mean
Standard
deviation

95-percent
HPD interval a

ψπ R+ Gamma 1.10 0.50 [0.35,2.27]
ψy R+ Gamma 0.25 0.15 [0.05,0.62]
ρR [0, 1) Beta 0.50 0.20 [0.13,0.87]
π? R+ Gamma 4.00 2.00 [1.10,8.76]
r? R+ Gamma 2.00 1.00 [0.55,4.37]
κ R+ Gamma 0.50 0.20 [0.19,0.96]
τ−1 R+ Gamma 2.00 0.50 [1.14,3.09]
ρg [0, 1) Beta 0.70 0.10 [0.49,0.87]
ρz [0, 1) Beta 0.70 0.10 [0.49,0.88]
σζ R+ Inv. Gamma 0.25 0.13 [0.12,0.57]
µζ,R R Normal -0.01 1.00 [-1.96,1.95]
µζ,g R Normal -0.01 1.00 [-1.97,1.96]
µζ,z R Normal -0.00 1.00 [-1.97,1.94]
σR R+ Inv. Gamma 0.31 0.17 [0.15,0.72]
σg R+ Inv. Gamma 0.38 0.19 [0.18,0.86]
σz R+ Inv. Gamma 1.00 0.51 [0.48,2.30]
ρg,z [−1, 1] Normal 0.00 0.38 [-0.75,0.75]
σ1 R+ Inv. Gamma 1.00 0.51 [0.48,2.30]

Note: The parameters are distributed independently from each other. a 95-percent highest
probability density (HPD) credible intervals (see Geweke (2005), p.57)

2.2 Likelihood function

The computation of the likelihood function is an application of the Kalman filter to the

state–space representation given by the state equation (8) and the measurement equa-

tions (9) and (11). Collecting all parameters in a vector θ and assuming normality, the
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observations Yt given the past are normally distributed:

Yt|Yt−1 ∼ N
(
MY (θ)Xt|t−1,MY (θ)Pt|t−1MY (θ)′

)
where Yt−1 = {Yt−1, Yt−2, . . . } represents the entire history of the data. Xt|t−1 denotes the

linear projection of Xt on Yt−1. Associated with this forecast is the mean squared error

matrix Pt|t−1 = E(Xt − Xt|t−1)(Xt − Xt|t−1)′. Both Xt|t−1 and Pt|t−1 can be computed

recursively starting with some initial values X1|0 and P1|0. As the model was obtained

by linearization around the deterministic steady state, it seems natural to assume that

the systems starts at the steady state which implies that X1|0 = 0. Likewise, we assume

that P1|0 corresponds to the steady state covariance matrix P ?. This matrix can found by

solving the matrix equation

P ? = MX(θ)P ?MX(θ) +ME(θ)Σ(θ)ME(θ)

where Σ(θ) = E(ε′t, v
′
t)
′(ε′t, v

′
t).

Given these preliminaries, the likelihood function, L(θ|YT ), of the data YT , T being the

sample size, given the parameter vector θ is

L(θ|YT ) =
T∏
t=1

f(Yt|Yt−1)

where f is the density function of the normal distribution given above. Clearly the log-

likelihood function `(θ|YT ) is

`(θ|YT ) = logL(θ|YT ) =
T∑
t=1

log f(Yt|Yt−1).

The density function of the posterior distribution of θ, g(θ|YT ), is then given by

g(θ|YT ) =
L(θ|YT )× p(θ)∫
L(θ|YT )p(θ)dθ

where p(θ) is the prior distribution of θ.

3 Estimation Results

3.1 The Data

The data consists of quarterly observations of the inflation rate, the Federal Funds rate

and the HP–filtered real GDP

—Figure 2 about here—

9



Figure 2 depicts the evolution of these three time series over the period 1960:I–1997:IV.

This figure shows that the great inflation period started in the middle of the sixties,

more precisely in 1967:1, and ended somewhere in the beginning of the eighties. There is

actually no consensus on the exact ending date of the great inflation period. Some argue

that it ended with the arrival of Paul Volcker as chairman of the Federal Reserve Board

in 1979:II, while others date the end in 1982:IV. We have carried out the estimation with

either break point. The results were the same, so we only report those corresponding to

the 1979:II break point.

3.2 Discussion of the Empirical Results

For each of the three cases (indeterminacy, determinacy with perfect information and

determinacy with imperfect information) we summarize the posterior distribution of the

parameters by presenting some key statistics in a table and by plotting its marginal dis-

tributions. In addition we plot the impulse responses to the various shocks.

3.2.1 Case I: Indeterminacy

The key finding here regards ψπ, the coefficient measuring the response of policy to in-

flation. As in L-S, it is distributed around a value well below one. The other coefficients

take values that are similar to those reported in the literature.

The distributions of the indeterminacy parameters σζ , µζ,R, µζ,g, and µζ,z are substan-

tially shifted away from zero, which provides evidence against the continuity assumption

(namely, the assumption that expectation formation does not abruptly change as the

economy moves across the boundary between the determinacy and the indeterminacy re-

gion). Note also that the estimation provides considerable information with respect to the

standard deviations of the shocks (see Figure 3).

The response of the economy to the shocks is summarized by the impulse response func-

tions plotted in Figure 4. Monetary tightening, that is, an increase in the nominal interest

rate, leads to a reduction in output and inflation. The adjustment of the economy after

the shock is monotone, there is no hump. The demand shock has the expected effect:

it increases output, inflation, and the nominal interest rate. The adjustment again is

monotone with the exception of the interest rate. The marginal cost shock also exhibits

the expected effects. A negative shock increases output and decreases inflation and the

nominal interest rate.There is a hump–shaped adjustment of output and the interest rate.

The effect of the sunspot shock is pretty much the same as the effect to the marginal cost

shock.
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Table 2: Summary of the posterior distribution in the case of indeterminacy

Parameter Mode Mean Median
Standard
deviation

95-percent
HPD interval a

ψπ 0.76 0.65 0.65 0.12 [0.43,0.89]
ψy 0.20 0.24 0.23 0.07 [0.12,0.38]
ρR 0.62 0.67 0.68 0.07 [0.54,0.81]
π? 4.75 4.43 4.49 1.10 [2.23,6.57]
r? 0.88 1.06 1.03 0.35 [0.39,1.74]
κ 0.46 0.37 0.35 0.13 [0.15,0.63]
τ−1 2.05 1.78 1.73 0.45 [1.01,2.69]
ρg 0.82 0.76 0.77 0.06 [0.65,0.87]
ρz 0.72 0.74 0.75 0.06 [0.63,0.85]
σζ 0.29 0.23 0.22 0.07 [0.11,0.37]
µζ,R -0.23 -0.56 -0.54 0.48 [-1.49,0.37]
µζ,g 0.03 1.50 1.50 0.63 [0.41,2.81]
µζ,z -0.16 -0.67 -0.66 0.27 [-1.24,-0.20]
σR 0.20 0.20 0.20 0.02 [0.16,0.24]
σg 0.21 0.27 0.26 0.05 [0.18,0.37]
σz 1.20 1.36 1.32 0.21 [1.01,1.80]
ρg,z 0.98 0.52 0.49 0.19 [0.23,0.90]
marginal log-data density: -267.804

a 95-percent highest probability density (HPD) credible intervals (see Geweke (2005), p.57)
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—Figure 4 about here—

Note also that all impulse response function are qualitatively similar to those of L-S.

3.2.2 Case II: Determinacy with perfect information

The determinate model with perfect information has the least number of parameters and

is therefore the most restrictive of all three cases. A summary of the corresponding a

posteriori distribution is given in Table 3. Compared to the prior and to the previous

case, the distribution of ψπ is shifted to the right with a mean of 1.21 and 90–percent

confidence interval of [1.00, 1.43]. Thus the monetary authority responds much stronger

to an increase in inflation than under the previous specification. The response to the

output gap is lower and in line with that reported in the literature. The distribution of

the other parameters does not change much. The only noteworthy exception regards the

equilibrium inflation rate, whose mean increases from 4.50 to 5.73 percent. The remaining

parameters are also pretty much in line with the priors and similar to the indeterminacy

case.

Table 3: Summary of the posterior distribution in the case of determinacy with perfect
information

Parameter Mode Mean Median
Standard
deviation

95-percent
HPD interval a

ψπ 1.01 1.07 1.05 0.07 [1.00,1.21]
ψy 0.26 0.24 0.23 0.08 [0.10,0.40]
ρR 0.71 0.67 0.67 0.07 [0.54,0.80]
π? 5.25 5.54 5.54 0.67 [4.21,6.88]
r? 0.84 0.93 0.92 0.29 [0.37,1.50]
κ 0.37 0.42 0.40 0.16 [0.14,0.73]
τ−1 1.95 2.06 2.05 0.44 [1.16,2.89]
ρg 0.87 0.86 0.87 0.03 [0.81,0.91]
ρz 0.73 0.75 0.76 0.04 [0.68,0.83]
σR 0.20 0.23 0.23 0.02 [0.18,0.27]
σg 0.18 0.21 0.21 0.03 [0.15,0.27]
σz 1.16 1.21 1.19 0.17 [0.92,1.54]
ρg,z 0.92 0.92 0.93 0.04 [0.83,0.98]
marginal log-data density: -280.184

a 95-percent highest probability density (HPD) credible intervals (see Geweke (2005), p.57)

Figure 7 provides information on the dynamics of the system following a shock. As is

well known, the model cannot generate any humps in the absence of price indexation and
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various real rigidities.

—Figure 7 about here—

3.2.3 Case III: Determinacy with imperfect information

Consider finally the case of determinacy with imperfect information on the part of the

agents concerning the true state of the economy. The nominal interest rate is the only

variable that is assumed to be perfectly observed. The shocks are observed with noise

and so are output and inflation. In this specification we have one additional parameter

-relative to the case with determinacy described in the previous section-, σ1, the standard

deviation of the signal on the imperfectly observed variables.

Table 4 gives a summary of the posterior distribution. Compared to the case with per-

fect information, there are some small differences regarding the parameters of the policy

rule. In particular, the reaction to inflation is somewhat weaker while policy inertia and

the response to the output gap greater. Moreover, the data provide information on the

key parameter of interest, the variance of the signal. The posterior distribution of σ1

is different from the prior one (see Figure ??). Consequently, the addition of imperfect

information makes a difference. Note also that the size of the standard deviation of σ1

is quite plausible. For instance, the standard deviation of the measurement error in the

inflation rate computed using real time data from the Philadelphia FED (the difference

between the initial and final release) is about ... over the period ... Note also that it is

lower than the value typically assumed in calibrated models in the literature (see Svensson

and Woodford, 2003).

Despite the similarities in the central tendencies of the posterior distributions between

the determinacy models with and without perfect information, there exists an important

difference regarding the implied dynamics of inflation, in particular, following the demand

shock. Comparison of Figures 7 and 10 shows that the impact effect is less strong and

that there is hump–shaped response in the adjustment of inflation. Similarly, the effect of

a marginal cost shock is less pronounced in the case of imperfect information compared to

the case with perfect information. Both of these findings are consistent with the argument

of Collard and Dellas (2006) who argue that mis–perceptions can be a major source of

inertial behavior in the New Keynesian model. Note that the response of inflation to

a monetary policy shock is short lived. This is a common finding in the literature (see

Canova (2005)).

—Figure 10 about here—
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Table 4: Summary of the posterior distribution in the case of determinacy with imperfect
information

Parameter Mode Mean Median
Standard
deviation

95-percent
HPD interval a

ψπ 1.00 1.07 1.05 0.07 [0.99,1.21]
ψy 0.30 0.30 0.29 0.08 [0.16,0.48]
ρR 0.78 0.76 0.76 0.05 [0.66,0.85]
π? 4.91 5.70 5.65 0.71 [4.45,7.04]
r? 1.13 1.07 1.03 0.38 [0.37,1.77]
κ 0.32 0.33 0.31 0.11 [0.14,0.57]
τ−1 2.28 2.03 1.99 0.54 [1.12,3.05]
ρg 0.90 0.87 0.87 0.03 [0.81,0.93]
ρz 0.79 0.75 0.75 0.04 [0.67,0.83]
σR 0.20 0.22 0.22 0.02 [0.18,0.27]
σg 0.18 0.27 0.26 0.05 [0.19,0.37]
σz 1.22 1.29 1.25 0.19 [0.96,1.67]
ρg,z 0.87 0.77 0.78 0.09 [0.60,0.92]
σ1 0.50 0.72 0.69 0.19 [0.38,1.08]
marginal log-data density: -280.927

a 95-percent highest probability density (HPD) credible intervals (see Geweke (2005), p.57)

3.2.4 Comparing the three cases

In addition to the plots and summary statistics of the posterior distribution of the pa-

rameters, it is instructive to compare the marginal log–data densities. These numbers are

computed via the modified harmonic mean estimator proposed by Geweke (1999). They

can be used to calculate the posterior probability of indeterminacy against determinacy

(5). In the comparison of the determinacy model with perfect information to that with

indeterminacy, the probability is 0.999 is favor of indeterminacy. Similar results obtain

when we compare the specification with indeterminacy to that with imperfect information

case. In this case too the probability in favor of indeterminacy is 0.999.

Table 5: Probabilities

Indet. vs Det. Perf. Info. 0.9999
Indet. vs Det. Imp. Info. 0.9999
Det. Imp. Info. vs Det. Perf. Info. 0.3223
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3.3 Extensions

In models with measurement errors, the informational structure typically plays a crucial

role for the results. Due to identification problems, we assumed in section that σ1 = σ2 =

σ3. Given the differences in the assumed priors of the standard deviation of the various

shocks, this assumption implies that the signals about the monetary and demand shocks

are more noisy than that about the technology shock (in relative terms). In order to

investigate the role of this assumption we consider an alternative specification involving a

similar signal to noise ratio across shocks. Namely, we set σ1 = kσR, σ2 = kσg, σ3 = kσz

and impose a prior on the coefficient k. We re-estimated the models without finding any

difference in the results relative to those reported in the previous section. In particular,

as shown in table 6, the indeterminacy case still overwhelmingly dominates the two other

alternative specifications.

Table 6: Probabilities

Indet. vs Det. Perf. Info. 0.9999
Indet. vs Det. Imp. Info. 0.9999
Det. Imp. Info. vs Det. Perf. Info. 0.5617

The specification of the signals so far has been standard. In order to bring our informa-

tional structure closer to that described by Orphanides, we re-estimated the model under

the assumption that in addition to the perfect signal on R, the agents and the mone-

tary authority receive as signals the real time values of inflation and output gap used

by Orphanides in his assessment of the FED policy at the time. Table 7 represents the

counterpart to table 5 under this specification. As can be seen, the case for indeterminacy

remains overwhelming.

Table 7: Probabilities

Indet. vs Det. Perf. Info. 0.9999
Indet. vs Det. Imp. Info. 0.9999
Det. Imp. Info. vs Det. Perf. Info. 0.0000

Nonetheless, one may still argue that there is not enough misperception even under this

specification. This is because the monetary authority does not respond exclusively to the

signals. In particular, the monetary authority combines the signals with other information

it has on the state of the economy in order to form perceptions about actual inflation and

the output gap. And then it formulates policy on the basis of these perceptions. As can
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be seen in Figure 1, while the perception about inflation generated by the model is very

similar to its real time –Orphanides– counterpart, that of the output gap is not. There

Figure 1: Real time inflation and Output Gap (Model vs Data)

Inflation Output gap
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exists an alternative formulation of the policy rule that incorporates the amount of mis-

perceptions claimed by Orphanides. Namely, it involves reactions only to the real time

inflation and output gap signals. That is, the policy rule now takes the form

R̂t = ρRR̂t−1 + (1− ρR)(ψππ̂o
t + ψyŷ

o
t ) + εRt (12)

where π̂o
t and ŷo

t ) are the Orphanides series. Of course, it is well known that an inter-

est rule that contains only exogenous variables on the right hand side cannot support

a determinate equilibrium. Consequently, we have augmented the model with equations

relating Orphanides’ perceived inflation and output gap to the model generated inflation

and output gap. We did so in the context of either an error correction specification where

the Orphanides series responds to its lagged value as well as to the model generated se-

ries. Or, within a specification where the Orphanides and model generated series differ

by a random term. Again, as can be seen from table 8, utilizing the inflation and output

gap data that may have been available to the FED as the sole drivers of policy does not

decrease the odds in favor of indeterminacy9.

We have also experimented with a large number of specifications involving different pri-

ors, signals, variables in the policy rule etc. In no case, was the indeterminate version

threatened by any of its rivals.
9In this case, we estimate the model without learning as the path of output and inflation are exogenous

as far as the monetary authority’s policy is concerned.
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Table 8: Probabilities

Indet. vs Det. Perf. Info. 0.9999
Indet. vs Det. Imp. Info. 0.9999
Det. Imp. Info. vs Det. Perf. Info. 0.0000

Where does this leave us? Based on our findings we think that one faces two alternatives.

If one accepts that a forward looking, rational agents-expectations model (with sticky

prices) provides the best description of the behavior of agents (private and policymakers

alike) during that period, then one must necessarily also accept the CGG explanation of

the great inflation. If one is willing to contemplate alternative specifications allowing for

the presence also of backward looking agents, then alternative explanations may get a

chance to rival the CGG thesis. As we stated in the introduction, we have not pursued

the latter any further because we doubt that doing so represents -from a methodological

point of view- as a compelling modelling exercise as the former one.

4 Conclusions

Inflation in the US reached very high levels during the 1970s, to a large extent due to what

proved to be excessively loose monetary policy. A popular explanation of the great inflation

attributes this looseness to inadvertent policy mistakes committed by a central bank that

followed a rule. Such mistakes may arise even when the central bank is sufficiently averse

to inflation if it does not fully understand the properties of the rule it uses ( Clarida et al.

(2000)). Lubik and Schorfheide (2004) have investigated this possibility and found that

the data support a policy specification where monetary policy inadvertently destabilizes

the economy, that is, an a policy associated with indeterminacy.

Our analysis has extended the Lubik and Schorfheide (2004) approach in order to address

the possibility that it was imperfect information about the true state of the economy

rather than lack of understanding of the properties of the policy rule that fueled the great

inflation. This represents the view of Orphanides (2004). We found that, independent

of the degree of mis-perceptions, the CGG thesis that the great inflation was caused by

indeterminacy inducing policy was favored strongly by the data. We believe that if one

is willing to accept that a forward looking NK model with rational agents and monetary

authority is a reasonable representation of the US economy in the 70s, then one must also

necessarily accept the CGG position.
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Figure 2: Data: Whole Sample Period
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Figure 3: Prior vs Posterior Distributions (indeterminacy)
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Figure 4: IRFs under indeterminacy
IRF to a 1 s.d. monetary policy shock
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Figure 5: Prior vs Posterior Distributions (Determinacy)
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Figure 6: Prior vs Posterior Distributions (Determinacy)
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Figure 7: IRFs under determinacy
IRF to a 1 s.d. monetary policy shock
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Figure 8: Prior vs Posterior Distributions (imperfect information)
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Figure 9: Prior vs Posterior Distributions (imperfect information)
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Figure 10: IRFs under imperfect information
IRF to a 1 s.d. monetary policy shock
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5 Appendix (Not intended for publication)

5.1 The Model

Household: The household solves the following maximization problem

maxEt
∞∑
s=0

βs

c1− 1
τ

t+s − 1
1− 1

τ

− αh
h1+χ
t+s

1 + χ


subject to ∫

%(t+ 1|t)qt+1 +Bt + Ptct = qt + Ptwtht +Rt−1Bt−1 + Πt + τ gt

τ gt denote government expenditures.

We have the following set of first order conditions

c
− 1
τ

t = ΛtPt (13)

αhh
χ
t = ΛtPtwt (14)

Λt = βRtEtΛt+1 (15)

%(t+ 1|t)Λt = βΛt+1ft+1|t (16)

Final good: There exists a final good, yt, which is produced by perfectly competitive

firms by combining intermediate goods, yt(j), according to the following technology

yt =
(∫ 1

0
yt(j)

θ−1
θ dj

) θ
θ−1

This yields the following demand function

yt(j) =
(
Pt(j)
Pt

)−θ
yt

and free entry yields the aggregate price

Pt =
(∫ 1

0
Pt(j)1−θdj

) 1
1−θ

Intermediate good: The intermediate good is produced by means of labor according

to the following constant returns to scale technology

yt(j) = atnt(j)

at is a macroeconomic technological shock.
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Each intermediate good firm has monopoly power and sets its price. Price changes are

subject to quadratic adjustment costs. The firm solves:

max
∞∑
s=0

∫
%(t+ s|t)

(
Pt+s(j)atnt+s(j)− Pt+swt+snt+s(j)

− Pt+s
ϕ

2

(
Pt+s(j)
Pt+s−1(j)

− π
)2

yt+s

)

subject to

atnt(j) 6

(
Pt(j)
Pt

)−θ
yt (ν̃t(j))

which yields the following set of first order conditions

(Pt(j)− ν̃t(j)) at = Ptwt (17)

ϕ
Pt

Pt−1(j)

(
Pt(j)
Pt−1(j)

− π
)
yt =

(
Pt(j)− θν̃t(j)

Pt(j)

)
atnt(j)

+
∫
%t+1|tϕ

Pt+1Pt+1(j)
P 2
t (j)

(
Pt+1(j)
Pt(j)

− π
)
yt+1 (18)

Equilibrium The labor market equilibrium is given by∫ 1

0
nt(j)dj = ht

The goods market equilibrium is

yt = ct + τ gt +
∫ 1

0

ϕ

2

(
Pt(j)
Pt−1(j)

− π
)2

ytdj

Government expenditures are assumed to be proportional to output, τ gt = ζtyt, where ζt
is assumed to be an exogenous shock. Hence, the goods market equilibrium reduces to

(1− ζt)yt = ct +
∫ 1

0

ϕ

2

(
Pt(j)
Pt−1(j)

− π
)2

ytdj
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Let us define λt = PtΛt, νt(j) = ν̃t(j)/Pt, πt = Pt/Pt−1, πt(j) = Pt(j)/Pt−1(j) and

pt(j) = Pt(j)/Pt. The equilibrium satisfies

(1− ζt)yt = ct +
∫ 1

0

ϕ

2
(πt(j)− π)2ytdj

ht =
∫ 1

0
nt(j)dj

yt =
(∫ 1

0
yt(j)

θ−1
θ dj

) θ
θ−1

yt(j) = atnt(j)

1 =
(∫ 1

0
pt(j)1−θdj

) 1
1−θ

c
− 1
τ

t = λt

αhh
χ
t = λtwt

λt = βRtEt
λt+1

πt+1

%(t+ 1|t)λt = β
λt+1

πt+1
ft+1|t

(pt(j)− νt(j)) at = wt

ϕ
πt(j)
pt(j)

(πt(j)− π) yt = (1− θνt(j)) atnt(j) + βEt
λt+1

λt
ϕ
πt+1(j)
pt(j)

(πt+1(j)− π) yt+1
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The equilibrium can then be reduced to

(1− ζt)yt = ct +
∫ 1

0

ϕ

2
(πt(j)− π)2ytdj

ht =
∫ 1

0
nt(j)dj

yt =
(∫ 1

0
yt(j)

θ−1
θ dj

) θ
θ−1

yt(j) = atnt(j)(∫ 1

0
pt(j)1−θdj

) 1
1−θ

= 1

αhh
χ
t = c

− 1
τ

t wt

(pt(j)− νt(j)) at = wt

c
− 1
τ

t = βRtEt
c
− 1
τ

t+1

πt+1

ϕ
πt(j)
pt(j)

(πt(j)− π) yt = (1− θνt(j)) atnt(j) + βEt
c
− 1
τ

t+1

c
− 1
τ

t

ϕ
πt+1(j)
pt(j)

(πt+1(j)− π) yt+1

Note that we also have

πt

(∫ 1

0
(πt−1(j)pt−1(j))1−θdj

) 1
1−θ

= 1

Log–linear Representation

ŷt = ĉt +
ζ

1− ζ
ζ̂t (19)

ĥt =
∫ 1

0
n̂t(j)dj (20)

ŷt =
∫ 1

0
ŷt(j)dj (21)

ŷt(j) = ât + n̂t(j) (22)∫ 1

0
p̂t(j)dj = 0 (23)

χĥt = − ĉt
τ

+ ŵt (24)

ν̂t(j) = θp̂t(j) + (θ − 1) (ât − ŵt) (25)

− ĉt
τ

= R̂t + Et
(
− ĉt+1

τ
− π̂t+1

)
(26)

ϕπ2π̂t(j) = −ν̂t(j) + βϕπ2Etπ̂t+1(j) (27)

We also have

32



5.2 Perfect Information Case

Plugging (25) in (27), we have in a symmetric equilibrium

ϕπ2π̂t = (θ − 1) (ŵt − ât) + βϕπ2Etπ̂t+1

Making use of the fact that ŷt = ĉt+ ζ
1−ζ ζ̂t, the equilibrium of the economy may be written

as

ŷt = Etŷt+1 − τ(R̂t − Etπ̂t+1) +
ζ

1− ζ

(
ζ̂t − Etζ̂t+1

)
(28)

ŵt =
1 + χτ

τ
ŷt − χât −

ζ

τ(1− ζ)
ζ̂t (29)

π̂t =
(θ − 1)(1 + χτ)

τϕπ2

(
ŷt −

τ(1 + χ)
1 + χτ

ât −
τζ

τ(1− ζ)(1 + χτ)
ζ̂t

)
+ βEtπ̂t+1 (30)

Let us then define κ ≡ (θ−1)(1+χτ)
τϕπ2 , ĝt ≡ ζ

1−ζ

(
ζ̂t − Etζ̂t+1

)
and ẑt ≡ τ(1+χ)

1+χτ ât+
τζ

τ(1−ζ)(1+χτ) ζ̂t.

This system can be rewritten as

ŷt = Etŷt+1 − τ(R̂t − Etπ̂t+1) + ĝt (31)

π̂t = κ (ŷt − ẑt) + βEtπ̂t+1 (32)

5.3 Imperfect Information Case

There are –at least– two alternative specifications of the imperfect information (signal

extraction) problem. One specification involves the distinction between idiosyncratic and

aggregate shocks. Suppose that the agents are subject to shocks that contain both id-

iosyncratic and common –aggregate– components and that the agents can only observe

the combined shocks. If these two components have different stochastic processes then the

agents need to solve a signal extraction problem (see Lorenzoni (2006)).

An alternative and simpler specification involves the assumption that all shocks are com-

mon but they are measured with error. Of course, this statement is technically equivalent

to assuming that a suitable subset of the endogenous variables is measured with error.

Otherwise, knowledge of the model would allow the agents to solve out for the true values

of the shocks, eliminating the signal extraction problem. This is the standard practice

in the literature (for instance, see Svensson and Woodford (2003)). Some may find the

assumption that the individuals may lack perfect knowledge of some of their own variables

questionable. But it can be defended on the basis that, for instance, even at the firm level

the output and/or the inputs may not be measured contemporaneously without any er-

ror. This is precisely the assumption made in models of sticky information or inattentive

agents (or in Svensson and Woodford (2003)). We have opted for this specification because
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of two reasons: First, its empirical implementation is straightforward as it only requires

the specification of the signals and the noise in the measurement of the variables. And

second, given the existence of real time data (for instance, at the Philadelphia FED) one

can assess the plausibility of the estimated amount of noise in the model by comparing

it to that present, say, in data revisions. A specification with idiosyncratic shocks, on

the other hand, may require knowledge about (or assumptions on) the relative variance of

idiosyncratic and aggregate shocks in the estimation of the model.

In what follows, we assume that productivity and fiscal expenditures are measured imper-

fectly. The agents are given noisy signals on some variables and make decisions based on

this information set. We denote by Et the expectation operator in this case. The log–linear

representation of the equilibrium is given by

ỹt = c̃t +
ζ

1− ζ
ζ̃t (33)

h̃t =
∫ 1

0
ñt(j)dj (34)

ỹt =
∫ 1

0
ỹt(j)dj (35)

ỹt(j) = ãt + ñt(j) (36)∫ 1

0
p̃t(j)dj = 0 (37)

χh̃t = − c̃t
τ

+ w̃t (38)

ν̃t(j) = θp̃t(j) + (θ − 1) (ãt − w̃t) (39)

− c̃t
τ

= R̃t + Et

(
− c̃t+1

τ
− π̃t+1

)
(40)

ϕπ2π̃t(j) = −ν̃t(j) + βϕπ2Etπ̃t+1(j) (41)

x̃t ≡ x̂t + ξxt denotes observed variables, where x̂t denotes the true value of xt and ξxt is

the associated measurement error.

Making use of the fact that ỹt = c̃t+ ζ
1−ζ ζ̃t, the equilibrium of the economy may be written

as

ỹt = Etỹt+1 − τ(R̃t − Etπ̃t+1) +
ζ

1− ζ

(
ζ̃t − Etζ̃t+1

)
(42)

w̃t =
1 + χτ

τ
ỹt − χãt −

ζ

τ(1− ζ)
ζ̃t (43)

π̃t =
(θ − 1)(1 + χτ)

τϕπ2

(
ỹt −

τ(1 + χ)
1 + χτ

ãt −
τζ

τ(1− ζ)(1 + χτ)
ζ̃t

)
+ βEtπ̃t+1 (44)

Let us define κ ≡ (θ−1)(1+χτ)
τϕπ2 , g̃t ≡ ζ

1−ζ

(
ζ̃t − Etζ̃t+1

)
and z̃t ≡ τ(1+χ)

1+χτ ãt + τζ
τ(1−ζ)(1+χτ) ζ̃t.
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The system rewrites as

ỹt = Etỹt+1 − τ(R̃t − Etπ̃t+1) + g̃t (45)

π̃t = κ (ỹt − z̃t) + βEtπ̃t+1 (46)

These two equations together with the following interest rate policy rule comprise the

entire model

R̃t = ρRR̃t−1 + (1− ρR)(ψππ̃t + ψyỹt) + εRt

Let the state of the economy be represented by two vectors X̃b
t and X̃f

t . The first one

includes the predetermined (backward looking) state variables, i.e. X̃b
t = (̃Rt−1, z̃t, g̃t, ε̃

R
t )′,

whereas the second one consists of the forward looking state variables, i.e. X̃f
t = (ỹt, π̃t)′.

The model admits the following representation

M0

(
X̃b
t+1

EtX̃f
t+1

)
+M1

(
X̃b
t

X̃f
t

)
= M2εt+1 (47)

where

M0 =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
−τ 0 0 0 1 τ
0 0 0 0 0 β



M1 =



−ρR 0 0 −1 −(1− ρR)ψy −(1− ρR)ψπ
0 −ρz 0 0 0 0
0 0 −ρg 0 0 0
0 0 0 0 0 0
0 0 1 0 −1 0
0 −κ 0 0 κ −1



M2 =



0 0 0
1 0 0
0 1 0
0 0 1
0 0 0
0 0 0


εt+1 = {εzt+1, ε

g
t+1, ε

R
t+1}

Thus the first row corresponds to the Taylor rule, the second, third and forth row to the

demand, cost push shock and policy shock, the fifth row to the IS-curve and the sixth

row to the Phillips curve. Let us denote the signal process by {St}. The measurement

equation relates the state of the economy to the signal:

St = C

(
X̃b
t

X̃f
t

)
+ vt. (48)
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Finally u and v are assumed to be normally distributed covariance matrices Σuu and Σvv

respectively and E(uv′) = 0.

Xt+i|t = E(Xt+i|It) for i > 0 and where It denotes the information set available to the

agents at the beginning of period t. The information set available to the agents consists

of i) the structure of the model and ii) the history of the observable signals they are given

in each period:

It = {St−j , j > 0,M0,M1,M2, C,Σuu,Σvv}

The information structure of the agents is described fully by the specification of the signals.

6 Solving the system

Step 1: We first solve for the expected system:

M0

(
Xb
t+1|t

Xf
t+1|t

)
+M1)

(
Xb
t|t

Xf
t|t

)
= (49)

which rewrites as (
Xb
t+1|t

Xf
t+1|t

)
= W

(
Xb
t|t

Xf
t|t

)
(50)

where

W = −M−1
0 M1

After getting the Jordan form associated to (50) and applying standard methods for elim-

inating bubbles, we get

Xf
t|t = GXb

t|t

From which we get

Xb
t+1|t = (Wbb +WbfG)Xb

t|t = W bXb
t|t (51)

Xf
t+1|t = (Wfb +WffG)Xb

t|t = W fXb
t|t (52)

Step 2: We go back to the initial system to get and write

Then, (??) rewrites

M0

(
Xb
t+1

Xf
t+1|t

)
+M1

(
Xb
t

Xf
t

)
= M2ut+1

Taking expectations, we have

M0

(
Xb
t+1|t

Xf
t+1|t

)
+M1

(
Xb
t|t

Xf
t|t

)
= 0
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Subtracting, we get

M0

(
Xb
t+1 −Xb

t+1|t
0

)
+M1

(
Xb
t −Xb

t|t
Xf
t −X

f
t|t

)
= M2ut+1 (53)

which rewrites (
Xb
t+1 −Xb

t+1|t
0

)
= W c

(
Xb
t −Xb

t|t
Xf
t −X

f
t|t

)
+M−1

0 M2ut+1 (54)

where, W c = −M−1
0 M1. Hence, considering the second block of the above matrix equation,

we get

W c
fb(X

b
t −Xb

t|t) +W c
ff (Xf

t −X
f
t|t) = 0

which gives

Xf
t = F 0Xb

t + F 1Xb
t|t

with F 0 = −W c
ff
−1W c

fb and F 1 = G− F 0.

Now considering the first block we have

Xb
t+1 = Xb

t+1|t +W c
bb(X

b
t −Xb

t|t) +W c
bf (Xf

t −X
f
t|t) +M2ut+1

from which we get, using (51)

Xb
t+1 = M0Xb

t +M1Xb
t|t +M2ut+1

with M0 = W c
bb +W c

bfF
0, M1 = W b −M0 and M2 = M−1

0 M2.

We also have

St = CbX
b
t + CfX

f
t + vt

from which we get

St = S0Xb
t + S1Xb

t|t + vt

where S0 = Cb + CfF
0 and S1 = CfF

1

7 Filtering

Since our solution involves terms in Xb
t|t, we would like to compute this quantity. However,

the only information we can exploit is a signal St that we described previously. We

therefore use a Kalman filter approach to compute the optimal prediction of Xb
t|t.
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In order to recover the Kalman filter, it is a good idea to think in terms of expectation

errors. Therefore, let us define

X̃b
t = Xb

t −Xb
t|t−1

and

S̃t = St − St|t−1

Note that since St depends on Xb
t|t, only the signal relying on S̃t = St − S1Xb

t|t can be

used to infer anything on Xb
t|t. Therefore, the policy maker revises its expectations using

a linear rule depending on S̃et = St − S1Xb
t|t. The filtering equation then writes

Xb
t|t = Xb

t|t−1 +K(S̃et − S̃et|t−1) = Xb
t|t−1 +K(S0X̃b

t + vt)

where K is the filter gain matrix, that we would like to compute.

The first thing we have to do is to rewrite the system in terms of state–space representation.

Since St|t−1 = (S0 + S1)Xb
t|t−1, we have

S̃t = S0(Xb
t −Xb

t|t) + S1(Xb
t|t −X

b
t|t−1) + vt

= S0X̃b
t + S1K(S0X̃b

t + vt) + vt

= S?X̃b
t + νt

where S? = (I + S1K)S0 and νt = (I + S1K)vt.

Now, consider the law of motion of backward state variables, we get

X̃b
t+1 = M0(Xb

t −Xb
t|t) +M2ut+1

= M0(Xb
t −Xb

t|t−1 −X
b
t|t +Xb

t|t−1) +M2ut+1

= M0X̃b
t −M0(Xb

t|t +Xb
t|t−1) +M2ut+1

= M0X̃b
t −M0K(S0X̃b

t + vt) +M2ut+1

= M?X̃b
t + ωt+1

where M? = M0(I −KS0) and ωt+1 = M2ut+1 −M0Kvt.

We therefore end–up with the following state–space representation

X̃b
t+1 = M?X̃b

t + ωt+1 (55)

S̃t = S?X̃b
t + νt (56)

For which the Kalman filter is given by

X̃b
t|t = X̃b

t|t−1 + PS?′(S?PS?′ + Σνν)−1(S?X̃b
t + νt)
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But since X̃b
t|t is an expectation error, it is not correlated with the information set in t−1,

such that X̃b
t|t−1 = 0. The prediction formula for X̃b

t|t therefore reduces to

X̃b
t|t = PS?′(S?PS?′ + Σνν)−1(S?X̃b

t + νt) (57)

where P solves

P = M?PM?′ + Σωω

and Σνν = (I + S1K)Σvv(I + S1K)′ and Σωω = M0KΣvvK
′M0′ +M2ΣuuM

2′

Note however that the above solution is obtained for a given K matrix that remains to be

computed. We can do that by using the basic equation of the Kalman filter:

Xb
t|t = Xb

t|t−1 +K(S̃et − S̃et|t−1)

= Xb
t|t−1 +K(St − S1Xb

t|t − (St|t−1 − S1Xb
t|t−1))

= Xb
t|t−1 +K(St − S1Xb

t|t − S
0Xb

t|t−1)

Solving for Xb
t|t, we get

Xb
t|t = (I +KS1)−1(Xb

t|t−1 +K(St − S0Xb
t|t−1))

= (I +KS1)−1(Xb
t|t−1 +KS1Xb

t|t−1 −KS
1Xb

t|t−1 +K(St − S0Xb
t|t−1))

= (I +KS1)−1(I +KS1)Xb
t|t−1 + (I +KS1)−1K(St − (S0 + S1)Xb

t|t−1))

= Xb
t|t−1 + (I +KS1)−1KS̃t

= Xb
t|t−1 +K(I + S1K)−1S̃t

= Xb
t|t−1 +K(I + S1K)−1(S?X̃b

t + νt)

where we made use of the identity (I + KS1)−1K ≡ K(I + S1K)−1. Hence, identifying

to (57), we have

K(I + S1K)−1 = PS?′(S?PS?′ + Σνν)−1

remembering that S? = (I + S1K)S0 and Σνν = (I + S1K)Σvv(I + S1K)′, we have

K(I+S1K)−1 = PS0′(I+S1K)′((I+S1K)S0PS0′(I+S1K)′+(I+S1K)Σvv(I+S1K)′)−1(I+S1K)S0

which rewrites as

K(I + S1K)−1 = PS0′(I + S1K)′
[
(I + S1K)(S0PS0′ + Σvv)(I + S1K)′

]−1

K(I + S1K)−1 = PS0′(I + S1K)′(I + S1K)′−1(S0PS0′ + Σvv)−1(I + S1K)−1

Hence, we obtain

K = PS0′(S0PS0′ + Σvv)−1 (58)
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Now, recall that

P = M?PM?′ + Σωω

Remembering that M? = M0(I + KS0) and Σωω = M0KΣvvK
′M0′ + M2ΣuuM

2′, we

have

P = M0(I −KS0)P
[
M0(I −KS0)

]′ +M0KΣvvK
′M0′ +M2ΣuuM

2′

= M0
[
(I −KS0)P (I − S0′K ′) +KΣvvK

′
]
M0′ +M2ΣuuM

2′

Plugging the definition of K in the latter equation, we obtain

P = M0
[
P − PS0′(S0PS0′ + Σvv)−1S0P

]
M0′ +M2ΣuuM

2′ (59)

8 Summary

We finally end–up with the system of equations:

Xb
t+1 = M0Xb

t +M1Xb
t|t +M2ut+1 (60)

St = S0
bX

b
t + S1

bX
b
t|t + vt (61)

Xf
t = F 0Xb

t + F 1Xb
t|t (62)

Xb
t|t = Xb

t|t−1 +K(S0(Xb
t −Xb

t|t−1) + vt) (63)

Xb
t+1|t = (M0 +M1)Xb

t|t (64)

to describe the dynamics of our economy.

This may be recast as a standard state–space problem

Xb
t+1|t+1 = Xb

t+1|t +K(S0(Xb
t+1 −Xb

t+1|t) + vt+1)

= (M0 +M1)Xb
t|t +K(S0(M0Xb

t +M1Xb
t|t +M2ut+1 − (M0 +M1)Xb

t|t) + vt+1)

= KS0M0Xb
t + ((I −KS0)M0 +M1)Xb

t|t +KS0M2ut+1 +Kvt+1

Then (
Xb
t+1

Xb
t+1|t+1

)
= Mx

(
Xb
t

Xb
t|t

)
+Me

(
ut+1

vt+1

)
where

Mx =
(

M0 M1

KS0M0 ((I −KS0)M0 +M1)

)
and Me =

(
M2 0

KS0M2 K

)
and

Xf
t = Mf

(
Xb
t

Xb
t|t

)
where

Mf =
(
F 0 F 1

)
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