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Introduction

In the three decades since its publication, the seminal work of Poole [1970] has defined the

framework of the theoretical debate in the area of central bank targeting procedures (see

Walsh [1998]). It has also exerted a significant influence on actual monetary practices.

There has been significant cross country and time series variations in the operating

procedures adopted by central banks in the industrial world and the particular choices

are often justified by referring to the basic insights of Poole. For instance, as implied by

Poole’s analysis, the pace of financial innovation and the resulting instability in velocity

during the 70s and 80s created a presumption in favor of interest rate targeting as a

means of smoothing fluctuations in aggregate economic activity and inflation. Similarly,

the Bundesbank defended its decision to target monetary aggregates by pointing out

that velocity in Germany was remarkably stable.

The original analysis of Poole was conducted within the standard textbook IS–LM

framework and used output volatility as the sole evaluation criterion. The shortcomings

of this model are well known. Canzoneri et al. [1983] redid Poole within the imperfect

information, rational expectations model and confirmed that instability in the LM (IS)

curve favors interest rate (money supply) targeting. Moreover, within this class of mod-

els, the optimal choice of the targeting procedure tends to be ambiguous when supply

shocks are the dominant source of macroeconomic instability. The ranking depends on

the slope of the IS curve (Blanchard and Fischer [1986]).

A natural question is how Poole’s basic insights carry over to the models that are

currently used to evaluate monetary policy (computable, dynamic general equilibrium

models). And also, whether the rankings of alternative procedures would change if

an explicit welfare criterion were adopted. Interestingly, this issue remains relatively

unexplored. There have been some works that have asked Poole type of questions, but no

existing analysis evaluates the relative performance of interest rate and money targeting

for all three types of shocks, namely supply, money and fiscal shocks. Carlstrom and

Fuerst [1996] study this issue in a limited participation model with supply and fiscal

but no money demand shocks. Gal̀ı [2001] and Ireland [2000] address related questions

within the context of the New Neoclassical Synthesis (NNS) model. Gal̀ı abstracts from

money demand shocks while Ireland leaves fiscal shocks out (and he also considers a

“soft” interest rate peg, that is one with persistent but variable rates).

The objective of this paper is to examine the properties of alternative targeting

procedures in an economy that represents a faithful, general equilibrium rendition of

Poole. The model is the standard NNS one, with capital accumulation, staggered prices

and three shocks: supply, fiscal and money demand shocks. Four findings stand out.
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First, money targeting generates higher welfare point for money demand shocks in-

dependent of the degree of intertemporal substitution (also risk aversion) and the weight

attached to real balances in the utility function. This is an interesting result as there is

a strong presumption in the literature (that derives from Poole’s analysis) that money

demand shocks are best dealt with under interest rate pegging. While this is true as far

as output stability is concerned we show that it does not extend to welfare comparisons.

Second, the ranking of the two procedures for supply and fiscal shocks depends

critically on the value of risk aversion. For supply shocks, interest rate pegging produces

better results when risk aversion is high, and worse when risk aversion is low. The

opposite pattern obtains for fiscal shocks.

Third, the main insights of Poole concerning output volatility as a function of the

targeting procedure and the type of the shock survive intact in the New Keynesian —

NNS — model only when risk aversion is high. For low risk aversion, money targeting

stabilizes output even for fiscal shocks.

There are some differences between our welfare rankings and those found in the

existing literature. In section 3, we explain the sources of these differences and also

provide a description of the key determinants of the welfare properties of alternative

procedures.

The remaining of the paper is organized as follows. Section 1 presents the model.

Section 2 describes the choice of parameters and section 3 the main findings concerning

the volatility and welfare properties of the two targeting procedures.

1 The model

The set up is standard. The economy is populated by a large number of identical

infinitely–lived households and consists of two sectors: one producing intermediate goods

and the other a final good. The intermediate good is produced with capital and labor

and the final good with intermediate goods. The final good is homogeneous and can be

used for consumption (private and public) and investment purposes.

1.1 The Household

Household preferences are characterized by the lifetime utility function:1

Et

∞∑

τ=0

βτU

(
Ct+τ ,

Mt+τ

Pt+τ
, `t+τ ; ζt+τ

)
(1)

1Et(.) denotes mathematical conditional expectations. Expectations are conditional on information
available at the beginning of period t.
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where 0 < β < 1 is a constant discount factor, C denotes consumption , M/P real

balances and ` leisure. The utility function,U
(
C, M

P
, `; .
)

: IR+ × IR+ × [0, 1] −→ IR is

increasing and concave in its arguments. Finally, ζ is a stochastic money demand shock

that will be defined later.

The household is subject to the following time constraint

`t + ht = 1 (2)

where h denotes hours worked. The total time endowment is normalized to unity.

In each and every period, the representative household faces a budget constraint of

the form

Bt + Mt + Pt(Ct + It + Tt) ≤ Rt−1Bt−1 + Mt−1 + Nt + Πt + PtWtht + PtztKt (3)

where Bt and Mt are nominal bonds and money acquired during period t, Pt is the

nominal price of the final good, Rt is the nominal interest rate, Wt and zt are the

real wage rate and real rental rate of capital. The household owns Kt units of physical

capital, makes an additional investment of It, consumes Ct and supplies ht units of labor.

It pays lump sum taxes Tt, receives a transfer of money Nt from the government and

finally claims the profits, Πt, earned by the firms.

Capital accumulates according to the law of motion

Kt+1 = It −
ϕ

2

(
It

Kt
− δ

)2

Kt + (1 − δ)Kt (4)

where δ ∈ [0, 1] denotes the rate of depreciation. The second term captures the existence

of capital adjustment costs.

The household determines her consumption/savings, money holdings and leisure

plans by maximizing her utility (1) subject to the time constraint (2), the budget con-

straint (3) and taking the evolution of physical capital (4) into account.

1.2 Final sector

The final good is produced by combining intermediate goods. This process is described

by the following CES function

Yt =

(∫ 1

0
Xt(i)

θdi

) 1
θ

(5)

where θ ∈ (−∞, 1). θ determines the elasticity of substitution between the various inputs.

The producers in this sector are assumed to behave competitively and to determine their

demand for each good, Xt(i), i ∈ (0, 1) by maximizing the static profit equation

max
{Xt(i)}i∈(0,1)

PtYt −

∫ 1

0
Pt(i)Xt(i)di (6)
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subject to (5), where Pt(i) denotes the price of intermediate good i. This yields demand

functions of the form:

Xt(i) =

(
Pt(i)

Pt

) 1
θ−1

Yt (7)

and the following general price index

Pt =

(∫ 1

0
Pt(i)

θ
θ−1 di

) θ−1
θ

(8)

The final good may be used for consumption — private or public — and investment

purposes.

1.3 Intermediate goods producers

Each firm i, i ∈ (0, 1), produces an intermediate good by means of capital and la-

bor according to a constant returns–to–scale technology, represented by the production

function

Xt(i) = AtKt(i)
αht(i)

1−α with α ∈ (0, 1) (9)

where Kt(i) and ht(i) respectively denote the physical capital and the labor input used

by firm i in the production process. At is an exogenous stationary stochastic technology

shock, whose properties will be defined later. Assuming that each firm i operates under

perfect competition in the input markets, the firm determines its production plan so as

to minimize its total cost

min
{Kt(i),ht(i)}

PtWtht(i) + PtztKt(i)

subject to (9). This leads to the following expression for total costs:

PtStXt(i)

where the real marginal cost, S, is given by
W 1−α

t zα
t

χAt
with χ = αα(1 − α)1−α

Intermediate goods producers are monopolistically competitive, and therefore set

prices for the good they produce. We follow Calvo [1983] in assuming that firms set

their prices for a stochastic number of periods. In each and every period, a firm either

gets the chance to adjust its price (an event occurring with probability γ) or it does not.

We assume that the price set by the firm incorporates a nominal growth component Ξt,

that is the nominal price in period t is Pt(i) = Ξtpt(i) where pt(i) is the deflated fixed

price. A firm i sets its price, p̃t(i), in period t in order to maximize its discounted profit

flow:

max
p̃t(i)

Π̃t(i) + Et

∞∑

τ=1

Φt+τ (1 − γ)τ−1
(
γΠ̃t+τ (i) + (1 − γ)Πt+τ (i)

)
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subject to the total demand it faces

Xt(i) =

(
Pt(i)

Pt

) 1
θ−1

Yt

and where Π̃t+τ (i) = (p̃t+τ (i) − Pt+τSt+τ )X(i, st+τ ) is the profit attained when the

price is reset, while Πt+τ (i) = (Ξt+τ p̃t(i)−Pt+τSt+τ )Xt+τ (i) is the profit attained when

the price is maintained. Φt+τ is an appropriate discount factor related to the way the

household values future as opposed to current consumption. This leads to the price

setting equation

p̃t(i) =
1

θ

Et

∞∑

τ=0

(1 − γ)τΦt+τΞ
1

θ−1

t+τ P
2−θ
1−θ

t+τ St+τYt+τ

Et

∞∑

τ=0

(1 − γ)τΦt+τΞ
θ

θ−1

t+τ P
1

θ−1

t+τ Yt+τ

(10)

Since the price setting scheme is independent of any firm specific characteristic, all firms

that reset their prices will choose the same price.

In each period, a fraction γ of contracts ends, so there are γ(1−γ) contracts surviving

from period t−1, and therefore γ(1−γ)j from period t−j. Hence, from (8), the aggregate

intermediate price index is given by

Pt =

(
∞∑

i=0

γ(1 − γ)i (Ξt−ip̃t−i)
θ

θ−1

) θ−1
θ

(11)

1.4 The monetary authorities

We consider two types of policy rules. Under the first rule, the central bank simply

targets the growth rate of the money supply

µt = µ (12)

The nominal interest rate then adjusts to clear the money market.

Under the second policy, the central bank targets the nominal interest.2 In this case,

the money supply adjusts in order to clear the money market.

1.5 The government

The government finances government expenditure on the domestic final good using lump

sum taxes. The stationary component of government expenditures is assumed to follow

an exogenous stochastic process, whose properties will be defined later.

2In order to avoid the well known indeterminacy problems, we have specified this rule as follows

R̂t = ρR̂t−1 + (1 − ρ)kππ̂t with ρ = 0.999 and kπ = 1.001

where πt is the rate of inflation and âstands for log–deviations from the deterministic steady state.
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1.6 The equilibrium

We now turn to the description of the equilibrium of the economy.

Definition 1 An equilibrium of this economy is a sequence of prices {Pt}
∞
t=0 = {Wt, zt, Pt, Rt,

Pt(i), i ∈ (0, 1)}∞t=0 and a sequence of quantities {Qt}
∞
t=0 = {{QH

t }∞t=0, {Q
F
t }

∞
t=0} with

{QH
t }∞t=0 = {Ct, It, Bt, Kt+1, ht, Mt}

{QH
t }∞t=0 = {Yt, Xt(i), Kt(i), ht(i); i ∈ (0, 1)}∞t=0

such that:

(i) given a sequence of prices {Pt}
∞
t=0 and a sequence of shocks, {QH

t }∞t=0 is a solution

to the representative household’s problem;

(ii) given a sequence of prices {Pt}
∞
t=0 and a sequence of shocks, {QF

t }
∞
t=0 is a solution

to the representative firms’ problem;

(iii) given a sequence of quantities {Qt}
∞
t=0 and a sequence of shocks, {Pt}

∞
t=0 clears the

markets

Yt = Ct + It + Gt (13)

ht =

∫ 1

0
ht(i)di (14)

Kt =

∫ 1

0
Kt(i)di (15)

Gt = Tt (16)

and the money market.

(iv) Prices satisfy (10) and (11).

2 Calibration

The model is parameterized on US quarterly data for the period 1960:1–2000:4. The

data are taken from the Federal Reserve Database.3 The parameters are reported in

table 1.

The nominal growth of the economy is set equal to the sample average of the rate of

growth of M1 over the period, implying µ = 2.6% per quarter. The quarterly depreciation

rate, δ, is 0.025 implying an annual depreciation of about 10%. θ is set such that markups

in the economy are 20%. α, the elasticity of the production function to physical capital,

3URL: http://research.stlouisfed.org/fred/
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Table 1: Calibration: Benchmark case

Technology

Capital elasticity of intermediate output α 0.2500
Capital adjustment costs parameter ϕ 10.0000
Depreciation rate δ 0.0250
Parameter of markup θ 0.8000
Probability of price resetting q 0.2500

Preferences

Discount factor β 0.9880
Relative risk aversion σ 1.5000
Parameter of CES in utility function η -1.5600
Weight of money in the utility function ζ 0.0649
CES weight in utility function ν 0.3405

Shocks

Persistence of technology shock ρa 0.9500
Standard deviation of technology shock σa 0.0079
Persistence of government spending shock ρg 0.9696
Volatility of government spending shock σg 0.0098
Persistence of money demand shock ρζ 0.9500
Volatility of money demand shock σζ 0.0180

is set such that the model reproduces the US labor share — defined as the ratio of labor

compensation over GDP — over the sample period (0.575). at = log(At/A) is assumed

to follow a stationary AR(1) process of the form

at = ρaat−1 + εa,t

with |ρa| < 1 and εa,t  N (0, σ2
a). We set σa = 0.0079 and ρa = 0.95.

The standard NNS model has the propensity to generate a negative relationship

between supply shocks and output when prices are very sticky, risk aversion is high and

capital adjustment costs low. We do not want our model to have this property under any

of the parameter configurations used here. We set ϕ = 10 which means that increasing

the investment capital ratio from its steady state value by one percentage point requires

that about 1% of the new investment be used to pay for capital adjustment. This value of

ϕ is sufficient to generate a positive relationship between supply shocks and output even

under the least favorable configuration employed, namely σ = 3.5 and γ = 0.25. Note

that much larger values have been used in the literature. For instance, Ireland [2000]

sets ϕ = 40, following the suggestion by King and Watson [1996] that high adjustment

costs are necessary in order to generate sensible response of output to monetary shocks.
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The government spending shock4 is assumed to follow an AR(1) process

log(gt) = ρg log(gt−1) + (1 − ρg) log(g) + εg,t

with |ρg| < 1 and εg,t ∼ N (0, σ2
g). Estimating this process over the sample period leads

to a persistence parameter, ρg, of 0.9696 and a standard deviation of innovations of

σg = 0.0098. The government spending to output ratio is set to its observed sample

average, 0.22.

The instantaneous utility function takes the form

U

(
Ct,

Mt

Pt
, `t

)
=

1

1 − σ



((

Cη
t + ζt

Mt

Pt

η
) ν

η

`1−ν
t

)1−σ

− 1




where ζ is the money demand shock. This leads to the following money demand equation

ζt

(
Mt

PtCt

)η−1

=
Rt − 1

Rt
(17)

σ, the coefficient ruling risk aversion, is set equal to 1.5 in the benchmark case. But

we also carry out the analysis for alternative values (namely 0.5 and 3.5) as a means of

assessing its role in the performance of monetary policy rules. It has been pointed out

in the literature (for instance, Gal̀ı [2001]) that variations in the value of this parameter

makes a difference for the properties of alternative rules. η is borrowed from Chari et al.

[2000], who estimated it on postwar US data. ν is set such that the model generates a

total fraction of time devoted to market activities of 31%. β, the discount factor is set

such that households discount the future at a 4% annual rate.

The average value of ζ is set such that the model mimics the average ratio of M1

money to nominal consumption expenditures5 in the US data (M1/PC = 1.245), which

gives ζ = 0.0649. The money demand shock also follows an AR(1) process

log(ζt) = ρζ log(ζt−1) + (1 − ρζ) log(ζ) + εζ,t

with |ρζ | < 1 and εζ,t ∼ N (0, σ2
ζ ). We use parameter values estimated by Ireland [2001],

namely, ρζ = 0.95 and σζ = 0.018.

γ, the probability of price resetting is set in the benchmark case at 0.25, implying

that the average length of price contracts is 4 quarters.

4The logarithm of the government expenditures are first detrended using a linear trend.
5This ratio exhibits a strong negative trend after 1980. The sample average over the latter period is

M1/PC = 0.75. Using this lower value does not affect any of our results, and only brings about a very
small reduction in welfare. The results reported are also robust to using any M1/PC value from the
sample period.
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3 The results

The model is solved using a second order perturbation method as described in Sims

[1998] and Schmitt–Grohe and Uribe [2001]. Indeed, the quadratic approximation, by

breaking the certainty equivalence property that characterizes the standard log–linear

approximation, delivers more accurate welfare results. In both cases, the level of welfare

is computed relying on Monte–Carlo experiments. We simulate series for consumption

(c), real balances (M/P ), leisure (`) and the money demand shock (ζ) and then feed

them into the utility function in order to compute welfare. Each series has a length

T=10000.6 Each experiment is repeated 2500 times and the results are averaged. Table

3 reports the elasticities of the key variables with regard to the individual shocks. Tables

4–5 describe the properties of the two targeting rules for γ = 0.25, which corresponds to

an average duration of the price contracts of 4 quarters, and various values of σ. Table

4 reports welfare as well as the variability of the three components of utility, namely,

consumption, real balances and leisure. Table 5 gives the volatilities for output and

inflation.

The main patterns are (i) that rankings based on output stability and welfare do not

always coincide, and (ii) that the degree of intertemporal substitution matters for both

macroeconomic performance and welfare. Table 2 sums up the welfare results.

Table 2: Monetary policy delivering higher welfare

σ Shock γ = 0.25

Supply mt

0.5 Fiscal rt

Money demand mt

Supply rt

1.5 Fiscal mt

Money demand mt

Supply rt

3.5 Fiscal mt

Money demand mt

Note: mt: Money targeting, rt: Nominal interest rate
targeting.

In order to understand these results we now describe the sequence of events that follow

a particular shock in the benchmark case (σ = 1.5 and γ = 0.25). Let us first consider a

positive supply shock. The first and fourth columns of table 3 report the impact elasticity

of output, consumption, the nominal interest rate and money growth under respectively

6Simulating longer series does not affect our welfare ranking.
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M–targeting and R–targeting. Figure 1 reports the dynamics of output, inflation, the

nominal interest rate and money growth following a positive supply shock.

Figure 1: IRF to a supply shock
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A positive supply shock increases output (first row of each case in table 3) and leads

to a persistent, humped shaped increase in consumption. Therefore, the real interest

rate increases. At the same time, expected inflation is below its steady state value.

If intertemporal substitution is low —as it is the case in our benchmark calibration

(σ = 1.5)— then the latter effect dominates, leading to a lower nominal interest rate7.

Under R–targeting, the monetary authority must prevent the decrease in the nominal

interest rates by decreasing the growth rate of the supply of money.8. Monetary policy

is thus conducted countercyclically, which restraints output and consumption variability.

As reported in table 5, output variability is 2.55 under R–targeting and 2.59 under M–

targeting. The corresponding figures for consumption are 2.86 and 2.91 (see table 4). At

the same time, the negative correlation between output and nominal interest rates under

M–targeting implies that this procedure also contributes to less stable real balances (3.03

7If intertemporal substitution is high (say, σ = 0.5) the former effect dominates making the nominal
interest rate increase.

8Note that while a money demand shock has LM–type of effects on output and the nominal interest
rate (it moves output and interest rates in opposite directions), a money supply shock does not, at least
in the benchmark specification. For instance, a positive money supply shock is always expansionary but
does not result in lower nominal interest rates unless risk aversion, adjustment costs and persistence in
the money supply growth is low .
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Table 3: Elasticities: q = 0.25

M–Targeting R–Targeting

A g ζ A g ζ

σ = 0.50

y 0.196 0.248 -0.216 0.316 0.215 -0.013
c 0.395 -0.061 -0.178 0.491 -0.088 -0.017
R 0.008 -0.002 0.013 – – –
µ – – – 0.227 -0.060 0.371

σ = 1.50

y 0.159 0.255 -0.226 0.039 0.288 -0.010
c 0.262 -0.030 -0.199 0.159 -0.001 -0.014
R -0.008 0.002 0.011 – – –
µ – – – -0.221 0.059 0.375

σ = 3.50

y 0.101 0.265 -0.241 -0.508 0.434 -0.005
c 0.060 0.017 -0.230 -0.515 0.177 -0.008
R -0.032 0.007 0.007 – – –
µ – – – -1.113 0.297 0.384

vs 2.89 under R–targeting). Indeed, R–targeting shuts down the interest rate effect on

the demand for money, which in this case could have simply amplified the positive effect

of higher consumption (equation 17). On the other hand, employment is more variable

under R–targeting. Nevertheless, the net effect is that R–targeting fares better.

When intertemporal substitution is high (say, σ = 0.5), monetary policy is conducted

procyclically in order to prevent the nominal interest rate from changing. This amplifies

the initial impact effect of a supply shock on both output (2.45 under R– vs 2.40 under

M–targeting) and consumption (2.91 versus 2.84) under R–targeting (see table 5). At the

same time, real balances are also more stable under M-targeting because of the positive

correlation between nominal interest rates and consumption. While employment is more

stable under R–targeting, the net effect is that M–targeting fares better for supply shocks

when risk aversion is low.

We now turn to the effects of a positive fiscal shock. The impact elasticities of

output, consumption, the nominal interest rate and money growth for M–targeting and

R–targeting respectively are reported in the second and fifth columns of table 3. Figure

2 reports the dynamics of output, inflation, the nominal interest rate and money growth

following a positive fiscal shock.

We continue to focus on the benchmark case σ = 1.5 and γ = 0.25. As in the

textbook case, an increase in government expenditures brings about an increase in both

output and the nominal interest rate under M–targeting.
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Table 4: Welfare, log–linear approx. q = 0.25

M–Targeting R–Targeting
Shock σ sd(c) sd(M/P) sd(`) Welfare sd(c) sd(M/P) sd(`) Welfare

Supply 0.50 2.84 2.71 0.54 -41.361544 2.91 2.93 0.47 -41.361799
Fiscal 0.45 0.40 0.39 -41.381399 0.48 0.48 0.37 -41.381362
Money 0.48 1.17 0.32 -41.380604 0.07 2.18 0.03 -41.381107

Supply 1.50 2.91 3.03 0.55 -55.021443 2.86 2.89 0.61 -55.020534
Fiscal 0.47 0.52 0.38 -55.049856 0.46 0.46 0.40 -55.049895
Money 0.52 1.16 0.33 -55.048057 0.07 2.18 0.03 -55.049064

Supply 3.50 3.04 3.56 0.55 -105.493740 2.89 2.94 0.87 -105.481442
Fiscal 0.53 0.72 0.36 -105.543272 0.51 0.52 0.46 -105.543397
Money 0.57 1.15 0.34 -105.536088 0.06 2.19 0.02 -105.539639

Note: sd: standard deviation.

Table 5: Money and interest rate targeting: Volatility q = 0.25

M–Targeting R–Targeting

Shock σ sd(y) sd(π) sd(y) sd(π)

Supply 0.50 2.40 0.31 2.45 0.27
Fiscal 0.69 0.05 0.66 0.04
Money 0.53 0.17 0.05 0.01
All 2.55 0.36 2.54 0.27

Supply 1.50 2.59 0.34 2.55 0.38
Fiscal 0.63 0.06 0.66 0.07
Money 0.54 0.18 0.04 0.00
All 2.72 0.39 2.63 0.39

Supply 3.50 2.93 0.37 2.80 0.58
Fiscal 0.54 0.07 0.72 0.15
Money 0.57 0.19 0.04 0.00
All 3.04 0.42 2.89 0.60

Note: sd: standard deviation.
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Figure 2: IRF to a fiscal shock
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Hence, under R–targeting, the monetary authorities must increase the supply of

money in order to prevent the nominal interest rate from rising. This therefore implies

procyclical monetary policy, which raises output volatility (0.63 under M– vs 0.66 under

R–targeting, see table 5). Notwithstanding its effect on output volatility, R–targeting

contributes to more stable consumption and real balances. Indeed, under R–targeting,

monetary policy is procyclical with regard to output but countercyclical with regard to

consumption. To see this notice that higher government expenditure increases output

but crowds out private consumption (table 3). Note also that with lower consumption,

expansionary policy not only weakens fluctuations in consumption, but by preventing in-

terest rates from rising, it also stabilizes real balances9. On the other hand, R–targeting

amplifies fluctuations in leisure. Indeed, as consumption and real balances are less re-

sponsive, the negative income effect created by the fiscal shock leads the household to use

leisure as a shock absorber to smooth out fluctuations. The latter effect, together with

the fact that consumption and leisure move in the same direction under R–targeting,

makes this procedure inferior to M–targeting.

It should be noted that the welfare ranking for fiscal and supply shocks derives from

differences in the volatility of consumption and leisure across regimes. That is, it would

9In general, if a supply or fiscal shock under passive money leads to a negative correlation between
consumption and nominal interest rates, then R–targeting stabilizes real balances. If it leads to a positive
correlation, then R–targeting contributes to real balance instability.
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remain valid even when the weight on money in the utility function went to zero (see

table 10).

As in the case of a supply shock, high intertemporal substitution alters these results.

High intertemporal substitution implies that the nominal interest rate decreases following

the positive fiscal shock, which triggers a contraction in the money supply under R–

targeting. Hence, monetary policy becomes is countercyclical and the patterns obtained

are the opposite of those described above.

Let us now consider a positive money demand shock. The impact elasticities of

output, consumption, the nominal interest rate and money growth are reported in table

3 (third and sixth columns). Figure (3) reports the dynamics of output, inflation, the

nominal interest rate and money growth following the shock.

Figure 3: IRF to a money demand shock
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Again, as in the textbook case, under M–targeting such a shock would lower output

and consumption and raise nominal interest rates. R–targeting then requires counter-

cyclical monetary policy and hence leads to more stable output and consumption. But

the increased consumption stability comes at a cost. By insulating consumption from

the effects of the money shock, R–targeting forces real balances to absorb a greater

share of the shock than they would have otherwise done (see equation 17). This results

in greater real balance volatility. In spite of its greater stability of consumption and
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employment, R–targeting is still dominated by M–targeting. Interestingly, this superi-

ority does not come from the real balance term as it holds even for values of ζ in the

neighborhood of zero (see table 4). It rather comes from the strong negative covariance

between consumption and leisure under M–targeting.

The preceding analysis suggests that one particular relationship plays an important

role in the comparing of the performance of the two policy rules. Namely, the cyclical

behavior of the nominal interest rate with regard to consumption under passive mon-

etary policy. This relationship contains information on whether R–targeting stabilizes

consumption and/or real balances. Countercyclical nominal interest rates — under pas-

sive monetary policy — create a presumption in favor of R–targeting because such a

policy stabilizes both consumption and real balances. It can also be inferred from the

tables that the cyclicality of nominal interest rate depends on the type of shock and the

degree of risk aversion (σ). Only for money demand shocks there is a trade off between

consumption and real balance volatility across the two targeting procedures and hence

this is the only case in which the value of ζ might matter. But as shown in the appendix,

even in a close neighborhood of the “cash-less” version of the model, M–targeting re-

mains superior for money demand shocks (table 10). That is, even with very small but

non-zero values of ζ, M–targeting fares better under money shocks.

The patterns of inflation volatility mirror those of output volatility with the exception

of supply shocks. As suggested by the previous analysis, in this case the lower output

volatility under R–targeting comes at the cost of higher inflation variability.

The differences in volatility across targeting procedures tend to be modest (except

for money demand shocks) when risk aversion is close to unity, but they increase with

σ. As is typically the case in this class of models, these differences translate into even

smaller welfare differences. (see tables 13 and 14)

How do our findings compare to those of Poole? The comparison can be made along

two dimensions: output volatility and welfare. Concerning the former criterion and for

demand shocks (the case considered by Poole), our rankings are identical to his when

risk aversion is greater than unity: M–targeting brings about greater output stability

for fiscal (IS) shocks while R–targeting fares better for money demand (LM) shocks. In

this case, however, our welfare rankings do not perfectly match those based on output

stability alone. In particular, while R–targeting brings about greater output stability for

money shocks it does not generate higher welfare.

For low risk aversion, the output stability ranking for money demand shocks differ

from those of Poole, and the welfare rankings go in the “wrong” direction: R–targeting

16



fares better for fiscal and worse for money demand shocks.

In order to check the robustness of our findings against different parameterizations, we

report, in appendix B, results with experiments involving an almost “cash-less” version

of the model (a very small value for ζ) as well as different values for η and σ. As already

discussed, the value of ζ makes almost no differences for welfare, even when ζ belongs to

a close neighborhood of zero. Other than that there is no other difference in the results

(see table 11). Moreover, when the utility function approaches the separable case (we set

σ = 1.001 and η = −0.1) the differences between the two procedures become negligible

for supply and fiscal shocks10. They remain important for money demand shocks, and

favor R–targeting with a sufficiently high utility weigh for real balances (table 13).

How do our results compare to those reported in similar recent work? In a model

similar to ours but without capital and real balances and with separable utility, Gal̀ı

[2001] finds that M–targeting is welfare superior under both supply and fiscal shocks

when σ > 1. And that for the former type of shocks, this superiority increases with the

degree of risk aversion. As long as we maintain the assumption that a positive supply

shock is expansionary, our model does not deliver superiority for M–targeting under

supply shocks no matter what value we use for ζ. As explained above, this result owes

to the fact that in our model, nominal interest rates move countercyclically (for σ > 1).

Naturally, different stochastic processes for technology shocks could generate different

combinations of real interest rate and expected inflation movements, and hence different

cyclical behavior for nominal interest rates. This is the main source of the difference

between our results and those of Gal̀ı for supply shocks (Gal̀ı assumes an AR(1) process

for productivity growth).

Ireland [1999] compares M–targeting to a Taylor rule with a high degree of interest

rate smoothing (ρ = 0.774) and a non-negligible reaction coefficient to inflation (κπ =

0.24) under supply and money demand shocks. His results on the cyclicality of monetary

policy and hence volatility are similar to ours. The main difference from our results is

his reporting that R–targeting generates higher welfare for money demand shocks. This

seems to reflect the lower weight he attaches to real balances in the utility function (0.002

vs 0.05 in our case), the much larger capital adjustment costs he assumes (40 vs 10 in

10Separability between money and consumption matters for the relationship between money and eco-
nomic activity. In a model related to ours but without investment, Ireland [2001] argues that money
does not enter directly the AS and IS curves if utility is separable. He was not able though to esti-
mate precisely the degree of separability. Note though that money can matter for welfare directly –e.g
through the transaction services it provides and so on – even in the absence of an indirect effect. That
is, independently of whether utility is separable or not.
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our case), and most importantly, the fact that he considers a “soft” peg (ρ = 0.77 vs our

value of 0.999) which transfers a substantial amount of volatility from real balances to

the interest rate.

The monetary policies considered in this paper are “ad hoc”. The new Keynesian

(NK) model has been used extensively as a vehicle for studying optimal monetary policy

(Clarida, Gal̀ı and Gertler, 1999, Goodfriend and King, 2001, Woodford, 2000). The

optimal monetary policy literature has favored a particular version of the NK model,

namely, one that abstracts from capital accumulation, where money does not provide any

direct services (a “cashless” economy), and where the imperfect competition distortion

has been eliminated via a production subsidy. The last assumption makes the flexible

price equilibrium first best. As a result, with only the price rigidity distortion remaining,

the optimal policy is to perfectly stabilize the price level (or the inflation rate when there

exists price indexation of the type employed in our model) because this way the relative

price distortion is eliminated and the resulting allocation coincides with that under

flexible prices.

The situation, however, is more complex when the economy under consideration is

not “cashless” (for instance, when money enters the utility function) and/or no subsidy

is used to eliminate the imperfect competition distortion. Abstracting from steady state

effects, one can see that in the former case, monetary policy ought to also aim at stabiliz-

ing real balances and this requires a deviation from perfect price stabilization (Woodford

[2000] Collard and Dellas [2001]). Nevertheless, for a small enough utility weigh on real

balances, the deviation from perfectly constant prices is likely to be small (Woodford

[2000]).

The properties of optimal monetary policy in the absence of a production subsidy

remain an open issue. In a model with one period price contracts and no capital, Adao,

Correia and Teles [2000] show that there exist fixed price equilibria which dominate the

–inefficient– flexible price equilibrium for reasons related to the zero nominal interest

rate bound. However, Khan, King and Wolman [2000] argue that the introduction of

overlapping price contracts to the economy studied by Adao, Correia and Teles creates

a concern for the relative price distortion caused by price rigidity, and restores the

optimality of perfect price stabilization. Moreover, Goodfriend and King [2001] also

speculate that this results is not likely to be affected significantly by the presence of

capital. However, Collard and Dellas [2002] demonstrate that this is not necessarily the

case. That is, that policies tolerating large inflation variability (for instance, monetary

targeting) can be welfare superior to a policy of strict inflation targeting in the presence

of investment. Nevertheless, these results are only indicative as welfare may not be
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monotone in the variability of inflation (unlike the case considered by Woodford [2000]

and others) so it is important to first characterize optimal monetary policy (which has

not been accomplished yet) before drawing any firm conclusions about the size of the

optimal deviations from perfect price stability.

4 Conclusions

The modern literature on monetary policy has been almost exclusively preoccupied with

the properties of Taylor type of rules. Nevertheless, given the amount of noise character-

izing observations of current inflation and the output gap, we think that useful insights

can still be gained by renewing attention to the approach pioneered by Poole. We have

used the standard New Neoclassical Synthesis model to revisit Poole’s analysis of how

the stochastic structure of the economy influences the properties of “pure,” passive rules

that simply target money or interest rates. The main result is that Poole’s insights con-

cerning the relationship between targeting procedures and shocks survive intact when

risk aversion exceeds unity. They do not, however, translate into comparable relation-

ships between targeting procedures and welfare. Interest rate targeting fares better for

supply shocks while money targeting does better for fiscal and money demand shocks.

This latter pattern is exactly the opposite pattern from that one would have inferred on

the basis of output stability criteria.

Our analysis has also highlighted the role played for these rankings by the presence of

investment decisions, capital adjustment costs, the relative importance of utility services

generated by money and the degree of price stickiness. It has, thus, shed light on

the sources of differences in welfare rankings across the various works in the existing

literature.

In reality, pure procedures such as perfect money or interest rate targeting are rare.

Central banks typically use a policy instrument (the monetary base or the interest rate)

to respond to observed or perceived shocks. It is then of interest to study what form

“optimal” reaction functions for these instruments (as a function of observed state vari-

ables) take, what properties they induce into macroeconomic activity and prices and

how they are ranked in terms of welfare. We are currently investigating this issue.
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A Alternative parameterizations

Table 6: Elasticities: q = 0.250, σ=1.50, ζ = 10−10

M–Targeting R–Targeting

A g ζ A g ζ

y 0.156 0.255 -0.224 0.039 0.289 -0.000
c 0.256 -0.029 -0.191 0.156 -0.000 -0.000
R -0.008 0.002 0.012 – – –
µ – – – -0.223 0.060 0.391

Table 7: Welfare, q = 0.250, σ = 1.5, ζ = 10−10

M–Targeting R–Targeting
Shock sd(c) sd(M/P) sd(`) Welfare sd(c) sd(M/P) sd(`) Welfare

Supply 2.90 3.02 0.55 -53.321271 2.86 2.89 0.61 -53.320729
Fiscal 0.47 0.52 0.38 -53.347478 0.46 0.46 0.40 -53.347521
Money 0.47 1.20 0.32 -53.345499 0.00 2.25 0.00 -53.346236

Note: sd: standard deviation.

Table 8: Volatility: q = 0.250, σ=1.50, ζ = 10−10

M–Targeting R–Targeting

shock sd(y) sd(π) sd(y) sd(π)

Supply 2.58 0.34 2.55 0.38
Fiscal 0.63 0.06 0.66 0.07
Money 0.52 0.19 0.00 0.00
All 2.71 0.39 2.63 0.39

Note: sd: standard deviation.
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Table 9: Elasticities: q = 0.25, σ = 1.01, η = −0.1

M–Targeting R–Targeting

A g ζ A g ζ

y 0.176 0.252 -0.364 0.174 0.252 -0.026
c 0.323 -0.044 -0.310 0.322 -0.044 -0.034
R -0.000 0.000 0.020 -0.000 0.000 -0.000
µ 0.000 0.000 0.000 0.003 0.000 0.870

Table 10: Welfare, log–linear approx. q = 0.250, σ=1.01, η = −0.1

M–Targeting R–Targeting
Shock sd(c) sd(M/P) sd(`) Welfare sd(c) sd(M/P) sd(`) Welfare

Supply 2.87 2.88 0.54 -59.688891 2.87 2.94 0.54 -59.688787
Fiscal 0.46 0.46 0.38 -59.712876 0.46 0.47 0.38 -59.712874
Money 0.82 1.90 0.53 -59.725438 0.16 5.07 0.06 -59.726831

Table 11: Money and interest rate targeting: Volatility q = 0.25, σ = 1.01, η = −0.1

M–Targeting R–Targeting

shock sd(y) sd(π) sd(y) sd(π)

Supply 2.50 0.33 2.50 0.33
Fiscal 0.66 0.06 0.66 0.06
Money 0.88 0.29 0.10 0.01
All 2.73 0.44 2.59 0.33

Note: sd: standard deviation.
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B Second–order Perturbation Method: A brief summary

In this section, we provide with a sketchy description of the way we solved the model.

Further details can be found in Schmitt–Grohé and Uribe [2001]. Our model takes the

form

EtF (yt+1, yt, xt+1, xt) = 0

where xt denotes the (nx × 1) state vector xt and yt is a (ny × 1) containing all co–state

and measurement variables. Therefore, F : R
ny × R

ny × R
nx × R

nx −→ R
n denotes the

model. The total number of variables is given by n = nx + ny. We assume that the

state vector may be partitioned as xt = [x1
t ; x

2
t ], where x1 consists of endogenous state

variables, whereas x2 consists of exogenous state variables. In order to simplify, let us

assume that x2 follows the process

x2
t+1 = Mx2

t + ηΣεt+1

where εt+1 is (nε × 1) and is distributed as a N (0, I). All eigenvalues of M are assumed

to have modulus less than one.

The solution to this model is of the form:

yt = g(xt, η) (18)

xt+1 = h(xt, η) + ηΩεt+1 with Ω =

(
0
Σ

)
(19)

where g maps R
nx × R+ into R

ny and h maps R
nx × R+ into R

nx . Making use of the

solution, the model can be rewritten as (a prime denotes t + 1)

EtF(x, η) = 0

where

F(x, η) ≡ F
(
g
(
h(x, η) + ηΩε′, η

)
, g(x, η), h(x, η) + ηΩε′, x

)

Since neither g(.) nor h(.) can be computed analytically, we take advantage of their

properties to infer the properties of their slopes and curvatures. The second–order ap-

proximation is given by

EtF
i(x, η) ' Et

(
F i(x?, 0) + ∇xF

i(x?, 0)(x − x?) + ∇ηF
i(x?, 0)η

+
1

2
(x − x?, η)Hi

F

(
x − x?

η

))
= 0

for all i = 1 . . . , n.

The constant terms,g(x?, 0) and h(x?, 0), correspond to the deterministic steady state

of the model. The first order terms (gx(x?, 0) and hx(x?, 0)) can be obtained by solving
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a matrix polynomial equation and imposing the requirement that the system returns

asymptotically to equilibrium in the absence of other future shocks. This essentially

amounts to solving a linear RE model, so any method of the Blanchard and Kahn [1980]

type can be used. Furthermore, Schmitt–Grohé and Uribe [2001] showed that both

gη(x
?, 0) and hη(x

?, 0) are nil. The second order terms, gxx(x?, 0) and hxx(x?, 0), can

be obtained by solving a linear system and the same procedure applies to gηη(x
?, 0)

and hηη(x
?, 0). As both gxη(x

?, 0) and hxη(x
?, 0) are nil (see Schmitt–Grohé and Uribe

[2001]) the approximated decision rule, used to simulate the model, take the form

g(x?, 0) + gx(x?, 0)(xt − x?) +
1

2
(xt − x?)′gxx(x?, 0)(xt − x?) +

1

2
gηη(x

?, 0)η2

h(x?, 0) + hx(x?, 0)(xt − x?) +
1

2
(xt − x?)′hxx(x?, 0)(xt − x?) +

1

2
hηη(x

?, 0)η2
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