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Abstract: We study the effects of completing the legal framework of matchmakers with a 

rule designating which party must pay the commission. The paper examines the two rules 

currently open to debate at the international level in sport: the "player-pays" principle and the 

"club-pays" principle. We find that the most appropriate measure entails designating the party 

with the lesser bargaining power to pay the intermediary’s fee. However, our main result 

indicates that the appropriateness of imposing an additional rule in the legal framework is a 

preliminary issue. Indeed, even if the best rule is chosen, welfare may be decreased by this 

legal initiative. 
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1- INTRODUCTION 

In the main sport leagues throughout the world, the sport talent market is widely 

intermediated. The main feature of this intermediation is that the supply side of the market is 

fairly concentrated. In the United States in 2010, of the 1728 National Football League 

professional players, 664 were represented by one of the 7 top agents (an average of 94 

players per agent).1 In Europe, half of the 1945 footballers of the main European leagues are 

represented by only the 83 top football agents and one quarter are represented by only 24 of 

them (an average of 20 players per agent) (Poli and Rossi, 2012). Considering other sports, 

86% of the 3456 labor contracts signed between 2002 and 2010 in French professional 

basketball leagues involved one of the only 72 licensed agents (Brocard, 2012). Those 

stylized facts show that sports agents play a central role in the sport talent market and that 

they have a significant market power. As an example, during the 2010-11 season, the 

payments made by English Premier League football clubs to agents reached a record 71,87M£ 

(86M€).2 

This paper first analyzes the role of these middlemen negotiators in bilateral search 

economies such as the labor market of professional athletes. Then, we address the currently 

debated issue of the appropriateness of regulating the way sports agents are remunerated. 

A substantial theoretical literature has considered different roles that middlemen can 

play and examined the conditions under which middlemen emerge. Yavas (1992) first 

clarified between two types of intermediaries: marketmakers and matchmakers. A 

marketmaker corresponds to the traditional definition of intermediaries such as retailers who 

set an ask price and a bid price, at which they sell and buy for their own account. A 

matchmaker, on the other hand, does not buy or sell, but rather matches two agents, a buyer 

with a seller. Common examples are employment agencies or real estate brokers. Those two 

concepts can be brought together as Yavas (2001) considers that matchmakers are 

marketmakers that can provide the service of immediacy. The literature analyzes the reasons 

of the emergence of middlemen with reference to two features of search markets: transaction 

costs and adverse selection problems. One branch of the literature justifies intermediation by 

the presence of trading frictions when actors must search. In Rubinstein and Wolinsky (1987) 

and Gehrig (1993), middlemen extract a surplus by reducing the time period that actors wait 

for a transaction to occur thanks to an initial advantage given by their ability to match. 

Shevchenko (2000) and Johri and Leach (2002) have enriched the basic Rubinstein and 



 
 

Wolinsky model through the introduction of heterogeneous goods and idiosyncratic 

preferences. They show that middlemen pull some revenues by holding inventories. Another 

series of papers explains that the role of middlemen is based upon the adverse selection 

problem that arises when product quality is not immediately observable. In this context, 

middlemen emerge by acquiring, at some cost, the ability to verify the quality of goods. In 

Biglaiser (1993), a middleman takes part in a larger number of transactions and stays in the 

market for several time periods, so that he has more incentive to become an expert in 

detecting and revealing the real quality of goods. Li (1998) shows that this ability to hold 

better information has a reputation effect that leads to a situation where the quality of the 

middleman’s goods is more predictable. 

In the aforementioned literature, no interest is given to the regulation of middlemen, and 

especially to the legal framework of contracts they sign with their constituents. However, 

sport is a field where the regulation of intermediaries is highly developed and currently 

debated. FIFA defines sports agents as intermediaries who, for a fee, introduce players to 

clubs with a view to negotiating or renegotiating an employment contract.3 Their 

remuneration is governed by the different local regulations which, in particular, contain the 

rules that lay down the party which is supposed to pay the commission to the middleman.  

At the international level, the comparison between the current rules which enable clubs 

or players to pay the commission indicates an extreme heterogeneity. Rosner (2004) points 

out that in the United States, the principal-agent relationship is considered under the risk of 

conflicts of interest as the Law of Agency indicates: "Unless otherwise agreed, an agent is 

subject to a duty to his principal to act solely for the benefit of the principal in all matters 

connected with this agency".4 As an illustration, in the North-American closed sport leagues, 

players associations have succeeded in introducing in the Collective Bargaining Agreements 

(CBA) which include sports agents regulation, a rule prohibiting payments from clubs to the 

intermediaries (Shropshire and Davis, 2008). In particular, the NBA CBA states that "No 

team shall make any direct or indirect payment of any money, property, investments, loans, or 

anything else of value for fees or otherwise to an agent, attorney, or representative of a 

player"5 and the NFL CBA provides by the same recommendation.6 Thus, in North American 

professional leagues, we can consider that intermediaries are paid by their main constituent, 

the players.7 

In Europe, the study ordered by the European Commission in 2009 shows that the 

existing mechanisms for remunerating sports agents are fairly heterogeneous (agents paid by 

the player, agents paid by the club, or a mixed commission payment) and concluded that 



 
 

harmonization is necessary in presence of international transactions.8 In fact, in terms of the 

number of sports agents concerned, the "agent-paid-by-club" mechanism has proved to be the 

most common in Europe, even when the principal represented by the middleman is the player, 

and whatever the provisions contained in the various regulations. As an interesting European 

example, the evolution of the regulation in France shows that the question of which party 

should pay the agent has been at the core of the discussions for a long time. The French 

legislation used to establish that the agent might only be paid by the party that has given him a 

mandate to act on its behalf. But this rule was circumvented with clubs paying intermediaries 

instead of players.9 This situation led two parliamentary reports aimed at enhancing sports 

agents regulation to address the question of their remuneration and those reports both 

concluded that enabling clubs to pay would make sense, convincing regulators to adapt the 

rules in 2010.10 In fact, the Code of Sport now provides for the possibility of an agreement 

between the agent and the parties mentioned in the contract to have the commission entirely 

or partially paid by the clubs.11 Nevertheless, this evolution has, ever since, been highly 

questioned. The French Ministry of Sport stated in the latest sport-related parliamentary report 

in 2011: "It seems inadmissible to me that clubs pay agents who are players’ constituents".12 

This position is clearly shared at the European level by the General Secretary of the Board of 

Directors of UEFA who stated in 2011: "I agree on who should pay the agent: the player that 

uses the agent".13 Therefore, in Europe, we can consider that, in practice, middlemen are paid 

by clubs, even when they represent players, but that this situation could change in the near 

future. 

The paper examines the two rules currently open to debate: the "player-pays" principle 

and the "club-pays" principle. We evaluate how each of these rules affects social welfare. In 

fact, depending on the context, we can identify the most desirable measure even if we show 

that imposing the best rule is not necessarily welfare-improving and that the best decision for 

the regulator can in certain circumstances be the laissez-faire. Therefore, the paper also 

addresses the question of the appropriateness of setting a legal framework specifying the 

payer in contracts signed by intermediaries.  

Our benchmark model (without regulation) is in line with Yavas (1994). We use a two-

stage game with three participants. The middleman is a matchmaker. Intermediation may arise 

because middleman has a more effective matching technology than the two primary agents, 

the player searching for a club and the club seeking to sign a player. At the first stage, the 

middleman selects his pricing policy. At the second stage, facing the fees charged by the 

intermediary, the player and the club simultaneously select either to begin individual 



 
 

searching on their own account, or to go directly to the middleman. Matching is certain if and 

only if both primary agents choose to go directly to the middleman. If this is not the case, the 

likelihood of a successful match depends on the individual search intensities of both agents 

(the time spent on the search, the expenses incurred…). If the match fails in this first step, the 

agents can still go to the middleman after they have already searched. In this case, each of the 

three participants incurs the cost of the lag period and their respective surpluses get 

discounted. It follows that the discount factor is a key parameter in the decision to avoid or 

choose the middleman in the first step. This parameter also matters in the middleman’s choice 

of pricing policy. Indeed, if the intermediary is impatient to receive his remuneration (if his 

discount factor is low), he may decide to charge lower prices in order to induce agents not to 

search on their own account. The second parameter that plays a significant role in the model is 

the distribution of the bargaining power between the player and the club which depends on the 

sport, on the league’s structure and on the segment of the talent market considered. This 

parameter determines the gross profit of each side when the two agents share the gain from 

the match. It follows that a change in the bargaining power distribution affects the choice of 

each agent to skip or not the middleman at the first step. When an agent does skip the 

intermediary at stage one, the change in turn affects the agent’s search intensity.  

Setting rules that determine who should pay the middleman’s commission will simply 

result in choosing constraints to be imposed on the policy choice of the latter at the first stage. 

As a result, the equilibrium behaviors of agents will adjust accordingly. We assess the 

consequences using welfare enhancing criterion. Our main results are as follows. In the 

process of choosing between the "player-pays" principle and the "club-pays" principle, the 

most appropriate measure consists in designating the party with the lesser bargaining power to 

pay the middleman’s commission. Yet, it is not strictly dominant that setting the best rule will 

improve welfare. In fact, the welfare is improved only if the discount factor is relatively high, 

or if the relative bargaining powers of the player and the club are very asymmetric.  

The paper is organized as follows. Section 2 presents the model. Using a backward 

reasoning, Sections 3 and 4 describe the equilibrium behaviors of the three participants in the 

benchmark situation. Section 5 introduces a legal rule designating the payer of the middleman 

and evaluates the effects of such regulation, using the welfare as the criterion. Finally, 

Section 6 concludes the paper and proposes directions for future work. All proofs of the 

lemma and the propositions are in the Appendix A. 

 

 



 
 

2- THE MODEL 

We consider a problem of matching between two agents, namely a seller and a buyer. The 

seller refers to a player searching for a club and the buyer is a club seeking to sign a player. 

Each agent can access the service of an intermediary, called the middleman.14 

We use a two-stage model of complete information. At the first stage, the middleman 

selects his pricing policy. At the second stage, the seller and the buyer learn the cost of the 

intermediation services. Each agent then has to choose between beginning individual 

searching on his own account or going directly to the middleman. With the latter option, the 

agent is no longer allowed to search on his own account. Each agent makes his decision 

unaware of the decision of the other agent. Depending on the decisions made by both agents, 

the second stage can include one or two steps. More specifically: 

- if both agents directly sign a contract with the middleman, the game ends at the first step; 

- if both agents skip the middleman, the game is concluded at the first step if the individual 

searches lead to a successful matching whereas if the individual searches are not fruitful, the 

agents can still use the middleman’s services in a second step; 

- if one agent chooses to start the search on his own account while the other signs with the 

middleman, the game ends at the first step if the matching is successful and the middleman 

collects his commission from the only agent he is under contract with, whereas if the agent’s 

individual search does not lead to a match, this agent can in turn access the service of the 

intermediary in a second step. 

In the absence of a match, the profits of both agents equal zero. The match has a value 

V for the buyer. This surplus is shared depending on the relative bargaining power of each 

agent. The seller gets the portion ωSV (i.e. the buyer pays ωSV to the seller) and the buyer 

keeps the portion ωBV = V – ωSV. In order to alleviate the technical aspects of the paper, we 

consider that V equals one monetary unit. It follows that the respective profits of the seller 

and the buyer are ωS and ωB monetary units with 0 < ωi < 1, i = S,B and ωS + ωB = 1 monetary 

unit.  

The remuneration of the intermediary can be based on the amount ωS of the transaction 

but other options are possible. For example, Yavas (1994) considers that the middleman takes 

the amount käωS to the seller and the amount käωB to the buyer. In our model, we choose a 

simple yet general formulation: the middleman takes the amount KS to the seller and the 

amount KB to the buyer. This formulation is general since once the amounts KS and KB are 



 
 

chosen by the middleman, the latter can, for example, draft a contract in which these 

commissions are presented as function of the amount of the transaction ωS.15 

 

Let eS ≥ 0 and eB  ≥ 0 refer to the individual search intensities of the seller and of the 

buyer. The likelihood of a match without the involvement of the middleman depends on the 

individual search intensities of both agents. Let Φ(eS,eB) denote this probability and assume 

that 

 

Φ(eS,eB) = eS + eB  if  0 ≤ (eS + eB) ≤ 1   and   Φ(eS,eB) = 1  if  (eS + eB) >1 . (1) 

 

The matching function we retained enables one agent who is not searching to be contacted 

with a positive probability by the second agent who is searching. We can also notice that the 

additive form of the function Φ(eS,eB) makes the efforts eS and eB strategically independent.  

This hypothesis leads to tractable explicit solutions and makes it easier to present economic 

intuitions for the results. Let us point out that despite the hypothesis, the seller and the buyer 

are still in a strategic interaction. Indeed, each agent benefits from the positive externality 

induced by the individual search of the other agent, so that the expected payoff of an agent 

depends on the option chosen at the first step by the other agent (between an individual search 

and the use of intermediation services). However, there is no strategic interaction when agents 

decide about search intensities. In Appendix B, we consider a matching technology involving 

mutual interdependences so that the optimal search intensity of one agent depends on the 

search intensity of the other agent. The results show that the conclusions of the paper are not 

conditional on the additive form of the function Φ(eS,eB). 

 

The individual search yields a cost to each agent 

 

C(ei) = ei
2    i = S,B. (2) 

 

If both agents go to the middleman, the latter holds enough information to succeed in 

matching the agents with certainty. The cost of this operation is way lower than the cost of 

individual searches. In order to simplify, we assume that the cost of such a matching for the 

middleman is equal to zero.  

 

The convenient way to deal with multi-stage games is to use discounted payoffs. Then, 

let δ, 0 < δ ≤ 1, refer to the discount factor, common to the three agents. The usual 

interpretation for the discount factor is as follows. The player has a time preference by which 



 
 

he ascribes less importance to the payoff in the second step. If δ tends to 0 the player is very 

impatient and vice versa if δ tends to 1 a lag period does not bother the player so that he 

ascribes the same weight to the payoff in the second step and to the payoff in the first step. 

Another possible interpretation is the following: believing that "tomorrow is uncertain" the 

player thinks that there exists a probability (1 – δ) that the strategic encounter will end after 

the first step and that the second step will take place with a probability δ less than 1. 

 

The two following sections address the determination of the equilibrium behaviors of 

the three participants. We use a backward reasoning. First, we analyze the different possible 

configurations of the second stage and we identify the ones which are likely to belong to an 

equilibrium path. Then, we undertake the first stage from the middleman’s point of view and 

determine the fees KS and KB solution. Finally, unwinding the game gives the subgame 

perfect equilibria. 

 

3- THE POSSIBLE CONFIGURATIONS AT THE SECOND STAGE 

Let Y refer to the individual choice of an agent to sign directly with the middleman and N the 

choice to search on one’s own account. Four configurations are possible at the first step of the 

second stage: the configuration (N,N) where both agents skip the services of the intermediary 

and choose to begin with an individual search, the configurations (Y,N) and (N,Y) where one 

of the agents directly signs a contract with the middleman (the seller in the first configuration, 

the buyer in the second) while the other agent searches on his own account, and lastly the 

configuration (Y,Y) where both agents choose to directly sign a contract with the middleman.  

In the configuration (Y,Y), the game ends at the first step since agents are matched by 

the middleman. In the three other configurations, the matching may be unsuccessful in the 

first step and, in turn, there is a second step where an agent who is not yet under contract has 

to decide to sign with the middleman or to refuse its services. So, in case of an unsuccessful 

matching, we must consider different scenarios at the second step for each configuration 

obtained at the first step: (a) (N,N) is followed by (N,N),(Y,N),(N,Y) or (Y,Y), (b) (Y,N) is 

followed by (Y,N) or (Y,Y), (c) (N,Y) is followed by (N,Y) or (Y,Y). Such a high number of 

subgames involving two asymmetric players would imply fastidious analysis that, 

additionally, should be conducted twice (in the absence of legal rules and under a regulation 

policy). In order to simplify, we consider that if the individual searches are not fruitful at the 

first step, the matching is possible at the second step only through the services of the 



 
 

intermediary. Naturally, if the cost of the intermediation is too high, agents can still skip the 

middleman. A necessary and sufficient condition for them not to skip the middleman - at the 

last step of the game - is that the offered contract increases their wealth. This implies that the 

fees KS and KB set up in the contract satisfy the individual rationality constraints:16 

 

(IRS) : ωS – KS ≥ 0   and   (IRB) : ωB – KB ≥ 0. (3) 

 

We will see that the threshold values of the fees KS = ωS and KB = ωB lead to the defection of 

both agents at the first step of the second stage. In spite of this, the middleman may have 

interest in choosing this policy because it would lead to high payoffs in case of a failure of the 

individual searches. However, the middleman has no interest in setting higher fees. Indeed 

setting a fee Ki > ωi leads to the defection of agent i at the last step of the game even if the 

individual searches were unsuccessful. This policy would lead to a shortfall in revenue for the 

middleman. In other words, setting KS > ωS or KB > ωB is a dominated strategy. It follows that 

looking for equilibrium paths, we can restrict the attention to the subgames where Ki ≤ ωi 

i = S,B and, consequently, to the subgames where after an unsuccessful matching at the first 

step, both agents sign with the middleman at the second step so that the game ends with the 

configuration (Y,Y).  

For the rest of the paper, in order to alleviate the notations, we design a particular 

scenario by its configuration at the first step without mentioning that, in case of an 

unsuccessful matching, both agents use the service of the middleman at the second step - e.g., 

the notation "(N,N) followed by (Y,Y)" is reduced to (N,N). 

 

3.1- BOTH AGENTS BEGIN WITH INDIVIDUAL SEARCH (CONFIGURATION (N,N)) 

Both agents search individually at the first step and, if they fail to match, use the 

intermediation services in a second step.  

The agents face the respective search costs eS
2 and eB

2. The matching is successful at the 

first step with a probability (eS + eB). In case of a failure, both agents have to wait for the 

second step to get some revenue which is then reduced by the amount of the commission paid 

to the middleman. We note ПS
(N,N) and ПB

(N,N) the profits of the seller and of the buyer in this 

configuration (N,N): 

 

Пi
(N,N)(eS,eB,Ki) = (eS + eB) ωi + δ (1 – (eS + eB)) (ωi – Ki) – ei

2    i = S,B.  (4) 

 



 
 

The variables eS and eB are strategically independent, so that the equilibrium is a 

dominant-strategy equilibrium: 

 

ei
(N,N)(Ki) = ܽݔܽ݉݃ݎПi

(N,N)(eS,eB,Ki) = [(1 – δ)ωi + δ Ki] / 2    i = S,B. (5) 

 

Unsurprisingly, the bigger the potential gain ωi of the agent i and the higher the commission 

Ki paid to the middleman in case of a failure, the higher is the search intensity of this agent. 

On the other hand, search efforts correlate negatively with the discount factor. Indeed, a 

higher discount factor indicates that waiting for the second step to receive the individual 

payoff ωi – Ki is less costly. We note that for any Ki ≤ ωi we have 0 < ei
(N,N)(Ki) ≤ ωi/2. This 

leads to 0 < Φ(eS
(N,N) + eB

(N,N)) ≤ 1/2 (recall that ωS + ωB = 1). Under the participation 

constraints (IRS) and (IRB), we thus identify an interior solution for the agents’ search efforts. 

 

Reporting (5) in (4) and using ωS + ωB = 1 give the equilibrium profits in the 

configuration (N,N) for i,j = S,B and i ≠ j  

 

Пi
(N,N)(Ki,Kj) = [1 – ωj

2 + 2δ(ωi – Ki – ωi(ωj – Kj)) + δ2(ωi – Ki)(ωi – Ki + 2(ωj – Kj))]/4.  (6) 

 

For each agent i = S,B, the equilibrium profits depend on the fees paid to the middleman and 

also on the fees paid by the other agent. The reason is that the search intensity of the latter is 

increasing in the fees that he pays. Hence, a high fee imposed to agent j increases the 

probability of a successful matching at the first step. Agent i can then receive his payoff with 

a higher probability from the first step. As a result, his expected profit is increased.17 

 

3.2- ONE AGENT DIRECTLY SIGNS WITH THE MIDDLEMAN AND THE OTHER 

SEARCHES ON HIS OWN ACCOUNT (CONFIGURATION (Y,N) OR (N,Y)) 

Consider the configuration in which the agent i, i = S or B, directly goes to the middleman 

and agent j, j ≠ i, begins searching on his own account. We note this configuration (Yi,Nj). 

The matching is successful at the first step with the probability (0 + ej) and then the 

payoff of agent j that searches is ωj – ej
2. In case of a failure, agent j opts for the middleman’s 

services in a second step and obtains the payoff ωj – Kj. Agent i pays the fee Ki as soon as the 

matching is successful, yet this agent does not bear any search costs. More precisely, the 

profits are (for i,j = S,B and i ≠ j) 

 

Пi
(Yi,Nj)(ej,Ki) = (0 + ej) (ωi – Ki) + δ (1 – (0 + ej)) (ωi – Ki). (7) 

 



 
 

Пj
(Yi,Nj)(ej,Kj) = (0 + ej) ωj + δ (1 – (0 + ej)) (ωj – Kj) – ej

2. (8) 

 

Solving for the agent j’s search intensity: 

 

ej
(Yi,Nj)(Kj) = ܽݔܽ݉݃ݎೕПj

(Yi,Nj)(ej,Kj) = [(1 – δ)ωj + δ Kj] / 2. (9) 

 

Reporting (9) in (7) and (8) and using ωS + ωB = 1 give the equilibrium profits in the 

configuration (Yi,Nj) for i,j = S,B and i ≠ j 

 

Пi
(Yi,Nj)(Ki,Kj) = (ωi – Ki)[ωj + δ(1 + ωi – (1 – δ)(ωj – Kj))]/2. (10) 

 

Пj
(Yi,Nj)(Kj) = [ωj

2 + 2δ (ωj – Kj)(2 – ωj) + δ2
 (ωj – Kj)2]/4. (11) 

 

Observe that the profit of agent i who goes directly to the middleman depends on the fees Kj 

paid by the agent j who searches on his own account (see (10)). Again, the reason is that a 

high Kj increases the search intensity of agent j, and hence the probability of a successful 

match at the first step. As a result, the agent who directly goes to the middleman has an 

expected profit increasing in Kj. Yet, the profit of agent j, who begins searching on his own 

account depends only on the fees intended for him (see (11)). Indeed, the probability of a 

successful match at the first step only depends on agent j’s own search intensity. 

 

3.3- BOTH AGENTS DIRECTLY GO TO THE MIDDLEMAN (CONFIGURATION (Y,Y)) 

Both agents directly sign a contract with the middleman, aware that the latter will then 

succeed in matching them with certainty. In this context, the second stage consists of only one 

step. 

In this configuration (Y,Y) the respective profits of the seller and of the buyer are  

 

ПS
(Y,Y)(KS) = ωS – KS   and   ПB

(Y,Y)(KB) = ωB – KB. (12) 

 

4- THE EQUILIBRIUM BEHAVIORS 

A necessary condition for a configuration to belong to an equilibrium path is that the 

individual choices of the seller and the buyer at the second stage are mutual best responses. 

The comparison between the individual profits in each of the four possible configurations 

leads to the three following lemmas.  

 

 



 
 

Lemma 1  

The configurations in which one of the agent directly goes to the middleman and the other 

searches on his own account (configuration (Y,N) or (N,Y)) cannot belong to an equilibrium 

path. 

 

Lemma 2  

The configuration in which both agents begin searching by themselves and then go to the 

middleman in the event of failure (configuration (N,N)) belong to an equilibrium path if and 

only if the individual rationality constraints (IRi): ωi – Ki ≥ 0, i = S,B are satisfied.  

 

Lemma 3  

The configuration in which both agents directly use the middleman’s services (configuration 

(Y,Y)) belong to an equilibrium path if and only if the two following incentive constraints are 

satisfied :  

 

(ICS): ПS
(Y,Y)(KS) ≥ ПS

(N,Y)(KS)      KS ≤ KS
max  (13) 

 

(ICB): ПB
(Y,Y)(KB) ≥ ПB

(Y,N)(KB)      KB ≤ KB
max  (14) 

 

with Ki
max ≡ [– (1 – δ)(2 + δωi) + 2(1 – δ)1/2(1 – δ(1 – ωi))1/2] / δ2 < ωi   for i = S,B. 

 

Following Lemmas 1 to 3, an equilibrium with the configuration (N,N) on the 

equilibrium path always exists (under the individual rationality constraints) and a second 

equilibrium with the configuration (Y,Y) on the equilibrium path may exist, depending of the 

middleman’s decision at the first stage. The middleman then has to choose between two 

policies. (i) A resignation policy. Such policy consists of, for the middleman, implementing a 

unique equilibrium in which both agents search by themselves before using his services in the 

event of failure (configuration (N,N)). (ii) An incentive policy. In such a case, the middleman 

decides to implement a second equilibrium configuration in which both agents directly use his 

services (configuration (Y,Y)). 

 

4.1- THE RESIGNATION POLICY 

Under this policy, the fees KS and KB which maximize the middleman’s profit are determined 

by (see lemma 2 for the related constraints) 

 



 
 

,ా ПM݁ݖ݅݉݅ݔܽܯ
(N,N)(KS,KB) = δ [1 – (eS

(N,N)(KS) + eB
(N,N)(KB))] (KS + KB) 

st.  (IRS): ωS – KS ≥ 0   and   (IRB): ωB – KB ≥ 0 

 

Solving for KS and KB gives KS = ωS and KB = ωB.18 The resulting profit is  

 

ПM
(N,N)* = δ/2. (15) 

 

Unwinding the game, we obtain the search intensities of the agents and their respective profits 

on the equilibrium path: ei
(N,N)* = ωi/2 and Пi

(N,N)* = ωi(1 + ωj)/4 for i,j = S,B and i ≠ j. 

 

4.2- THE INCENTIVE POLICY 

Under this policy, the fees KS and KB which maximize the middleman’s profit are determined 

by (see lemma 3 for the related constraints) 

 

,ా ПM݁ݖ݅݉݅ݔܽܯ
(Y,Y)(KS,KB) = KS + KB 

st.   (ICS): KS ≤ KS
max   and   (ICB): KB ≤ KB

max 

 

Clearly, the solution is KS = KS
max and KB = KB

max. The resulting profit is  

 

ПM
(Y,Y)* = [– 4 + 3δ + δ2 + 2(1 – δ)1/2((1 – δ ωS)1/2 + (1 – δ ωB)1/2)] / δ2. (16) 

 

Unwinding the game, we obtain the respective profits of the agents on the equilibrium path: 

Пi
(Y,Y)* = [2(1 – δ) + δ ωi – 2(1 – δ)1/2(1 – δ(1 – ωi))1/2] / δ2    i = S,B. 

 

4.3- THE POLICY CHOICE OF THE MIDDLEMAN 

At the first stage, the middleman chooses between the resignation policy and the incentive 

policy by comparing the profits ПM
(N,N)* et ПM

(Y,Y)*. Examining the sign of the difference 

Δ(δ,ωS,ωB) ≡ ПM
(N,N)* – ПM

(Y,Y)* leads to the following proposition. 

 

Proposition 1 

Whatever the relative bargaining powers of agents, the middleman resigns himself to 

letting the parties begin searching by themselves if δ > 0.94; yet, he incites both agents to 

directly use his services if δ < 0.88. If the discount factor is such that 0.88 < δ < 0.94, the 

incentive policy is still preferred as long as the distribution of the bargaining powers is not 

too asymmetric. 

 



 
 

The figure 1 illustrates the proposition 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The economic rationale of the results is as follows. The middleman can implement a 

second equilibrium configuration in which both agents forgo searching by themselves and 

decide to directly go to the middleman (configuration (Y,Y)). This requires the setting of the 

fees at KS
max and KB

max. Those fees are low enough for any agent’s best response to be to 

directly sign with the middleman if the other agent chooses this option. The relevance of such 

a policy is evaluated through the comparison between the shortfall which stems from the 

decrease of the fees KS and KB and the benefit related to the absence of individual searches. 

The result crucially depends on the discount factor δ. Indeed, as is illustrated below, two 

effects combine in order for the difference ПM
(N,N)* – ПM

(Y,Y)* to be increasing in δ. 

First of all, we consider the configuration (N,N) in which both agents search on their 

own account at the first step and, if they failed to match, use the intermediation services in a 

second step. We showed that the search intensities of agents are decreasing in the discount 

factor δ. The likelihood of a failure at the first step, which leads to a payoff for the middleman 

at the second step, is then increasing in δ. We note that this positive effect of a high δ on 

ПM*
(N,N) is strengthened by the fact that a high discount factor means a high discounted 

expected payoff for the middleman.  

δ = 0.94 
1 1/2 

0 

The middleman chooses 

the Resignation policy 

The middleman chooses 

the Incentive policy 

Figure 1: The policy choice of the middleman 

ωS

δ < 0.88 

δ = 0.88 

Δ(δ,ωS,(1 - ωS)) 



 
 

We now consider the configuration (Y,Y), subject to compliance with the incentive 

constraints (ICS) et (ICB). The role of these constraints is to assure that the profits 

Пi
(Y,Y)(Ki) = ωi – Ki, i = S,B (which are independent of δ) are respectively higher than the 

profits ПS
(N,Y)(KS) and ПB

(Y,N)(KB) given at (11). In fact, these profits are each increasing in 

δ.19 This leads the fees KS
max and KB

max able to incite agents to sign directly with the 

middleman to be decreasing in the discount factor. For the middleman, this means that the 

shortfall which stems from the decrease of the fees KS and KB is increasing in the discount 

factor. 

In sum, ПM
(N,N)* is increasing in δ and ПM

(Y,Y)* is decreasing in δ. This explains why 

the incentive policy is not relevant for the middleman if the discount factor is too high. 

Finally, we point out that the policy choice of the middleman also depends on the 

relative bargaining powers of agents. For a given δ, the curve Δ(δ,ωS) is U-shaped formed. 

The explanation of this result is as follows: an increase dωS of the seller’s bargaining power 

raises his profit ПS
(Y,Y)(KS) by dωS and increases his profit ПS

(N,Y)(KS) of a lower amount 

since, with a positive probability, the seller needs to wait for the second step to be 

successfully matched (see (8)). It follows that the bigger the bargaining power ωS of the seller 

the easier is the respect of the incentive constraint (ICS). Hence, an increase of ωS from 0 to ½ 

tips the scale in favor of the incentive policy. However, as ωS increases, ωB decreases and a 

symmetric reasoning applies for the buyer. The lower the buyer’s bargaining power ωB, the 

more difficult is the respect of the incentive constraint (ICB). A decrease of ωB from ½ to 0, 

i.e. an increase of ωS from ½ to 1, tips the scale in favor of the resignation policy. 

 

5- THE INTRODUCTION OF A LEGAL RULE 

We first analyze the impact on the equilibrium behaviors of a legal rule that lays down the 

party which is compelled to pay the commission to the intermediary. Then, we assess the 

consequences of such a rule with regards to its impact on the collective surplus of the three 

participants. 

 

5.1- THE EFFECTS OF THE RULE ON THE EQUILIBRIUM BEHAVIORS 

Setting a rule that determines who should pay the middleman’s commission will simply result 

in imposing a constraint KS = 0 or KB = 0 to the fees to be chosen by the middleman at the 

first stage of the game. The lemma 1 was established for any KS and KB; the results then still 



 
 

hold. It follows that the resignation and the incentive policies still are the two policies to be 

examined.  

 

5.1.1- THE RESIGNATION POLICY UNDER THE LEGAL CONSTRAINT 

We consider the legal rule "the agent i (i = S or B) must be the payer of the middleman". 

Setting Kj = 0 (j = S or B and j ≠ i) in (5) gives the search intensities of both agents under this 

legal rule 

 

e୧ೕୀ
ሺே,ேሻ(Ki) = [(1 – δ)ωi + δ Ki]/2   and   e୨ೕୀ

ሺே,ேሻ = (1 – δ)ωj/2   i,j = S or B and j ≠ i. (17) 

 

Notice that agent j retains a positive search intensity despite the fact that he can use the 

middleman’s services at no cost. Indeed, retaining ej > 0 enables this agent to reduce the 

probability to obtain his payoff only at the second step. Thus, the more impatient agent j (the 

lower δ), the higher is this search intensity.  

For the resignation policy under legal rule, the amount Ki which maximizes the 

middleman profit is determined by (see lemma 2 for the first constraint)  

 

 Пೕୀ݁ݖ݅݉݅ݔܽܯ
ሺே,ேሻ(Ki) = δ [1 – (e୧ೕୀ

ሺே,ேሻ(Ki) + e୨ೕୀ
ሺே,ேሻ)] Ki  

st.  (IRi): ωi – Ki ≥ 0   and    Kj = 0    i,j = S or B and j ≠ i. 

 

The solution is Ki = ωi.20 The resulting profit is  

 

Пೕୀ
ሺே,ேሻ* = (δ/2) – δ[ωj (1 – δωi)]/2   for i,j = S or B and j ≠ i. (18) 

 

The result (18) is not surprising. The legal constraint reduces the set of contracts 

available to the middleman and thus penalizes the latter: Пೕୀ
ሺே,ேሻ* < ПM

(N,N)* = δ/2. 

Unwinding the game with Ki = ωi and Kj = 0 gives the search intensities of the agents, 

e୧ೕୀ
ሺே,ேሻ* = ωi/2  and  e୨ೕୀ

ሺே,ேሻ* = ωj(1 – δ)/2, and their respective profits: П୧ೕୀ
ሺே,ேሻ* = ωi[ωi + 

2(1 – δ)ωj]/4  and  П୨ೕୀ
ሺே,ேሻ* = ωj[1 + ωi + δ(2 + δωj)]/4  for i,j = S or B and j ≠ i. 

 

5.1.2- THE INCENTIVE POLICY UNDER THE LEGAL RULE 

The incentive constraints without legal rule are given at Lemma 3. Let us examine the 

incentive constraints ሺܥܫሻೕୀ and ሺܥܫሻೕୀ under the legal rule. Observe that Ki
max given at 



 
 

Lemma 3 is independent of Kj. So, for agent i who pays the middleman, the constraint 

ሺܥܫሻೕୀ is similar to the constraintሺܥܫሻ. Likewise, Kj
max only depends on Kj. So, the 

incentive constraint ሺܥܫሻೕୀ of agent j is similar to the constraint ሺܥܫሻ and this constraint 

always holds if Kj = 0.  

 

It follows that the fee Ki set by the middleman for the incentive policy under the legal 

rule Kj = 0 is determined by 

 

 Пೕୀ݁ݖ݅݉݅ݔܽܯ
ሺ,ሻ (Ki) = Ki     st.  ሺܥܫሻೕୀ: Ki ≤ Ki

max 

 

Clearly, the solution is Ki = Ki
max. The resulting profits are for i,j = S or B and i ≠ j 

 

Пೕୀ
ሺ,ሻ* = Ki

max = [– (1 – δ)(2 + δωi) + 2(1 – δ)1/2(1 – δ(1 – ωi))1/2] / δ2. (19) 

 

Unwinding the game, we obtain the respective profits of each agent (for i,j = S or B and 

i ≠ j): П୧ೕୀ
ሺ,ሻ* = [2(1 – δ) + δωi – 2(1 – δ)1/2(1 – δ(1 – ωi))1/2] / δ2  and  П୨ೕୀ

ሺ,ሻ* = ωj.  

 

5.1.3- THE EFFECTS OF THE LEGAL RULE ON THE POLICY CHOICE OF THE 

MIDDLEMAN 

Finally, we consider the choice of the middleman at the first stage. The middleman opts for 

the resignation policy or the incentive policy depending on the sign of the difference 

Δೕୀ(δ,ωS,ωB) ≡ Пೕୀ
ሺே,ேሻ* – Пೕୀ

ሺ,ሻ*.  

From the comparison of the sign of Δೕୀ(δ,ωS,ωB) with the sign of Δ(δ,ωS,ωB) ≡ 

ПM
(N,N)* – ПM

(Y,Y)*, we can establish the following Lemma. 

 

Lemma 4  

Introducing the legal constraint Kj = 0 (j = S or B) reduces the parameter space from which 

the middleman chooses an incentive policy able to induce agents to directly use his services.  

 

The intuition of this result is as follows. Imposing Kj = 0 (j = S or B), the legal rule reduces 

the commission taken out by the middleman. The drop of his revenue is Kj = ωj in the 

resignation policy case and Kj = Kj
max in the incentive policy one. We have Kj

max ≤ ωj. The 

result of the Lemma 4 may then seem surprising. However, the drop of Kj also has an indirect 

effect within the resignation policy framework as it reduces the search intensity of agent j. 



 
 

Here, the drop of Kj from ωj to zero reduces the search intensity of agent j of δωj/2.21 The 

probability of a failure of the matching at the first step increases accordingly. As a result, the 

middleman obtains Kj with a higher probability. This indirect positive effect cannot recoup the 

drop of Kj (the legal rule reduces the profit of the middleman). Yet, when the latter chooses 

between the two policies, this effect can compensate for the fact that the revenue drop within 

the resignation policy (Kj = ωj) is higher than the revenue drop within the incentive policy 

(Kj = Kj
max). It follows that, starting from a situation where ПM

(Y,Y)* > ПM
(N,N)*, introducing 

the legal rule can lead to a situation where Пೕୀ
ሺ,ሻ* < Пೕୀ

ሺே,ேሻ* for an unchanged parametric 

space. 

This possibility is illustrated in the figure 2. The middleman opts for the incentive 

policy in the absence of a regulation and switches to the resignation policy when the legal rule 

is introduced. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2- THE WELFARE IMPLICATIONS OF THE INTRODUCTION OF A LEGAL RULE 

The benchmark situation is that in which the middleman is not subject to any regulation. We 

analyze the changes in collective surplus generated by the introduction of a legal rule 

designating the payer of the middleman. 

0 

ПM
(N,N) 

ПM
(Y,Y) 

ПM 

KS + KB 

Ki
max KS

max + KB
max ωi ωS + ωB 

Figure 2: The effect of the rule on the middleman’s policy 

Legal rule 

No rule



 
 

5.2.1- THE EFFECTS OF THE LEGAL RULE ON THE INCENTIVE POLICY 

The incentive policy implements the match from the first step. Agents don’t bear any search 

costs as they directly go to the middleman. The match provides a payoff of one monetary unit 

shared between the seller, the buyer, and the middleman. As a result, the social welfare 

associated to this incentive policy is maximum:22 

 

W(Y,Y)* = 1 (20) 

 

If the legal rule does not lead the middleman to give up the incentive policy (when he 

did opt for this policy), the maximum level of welfare W(Y,Y)* = 1 is not affected by the 

introduction of the rule. The legal rule only affects the sharing of the maximum surplus. Yet, 

introducing a legal rule which restrains the set of policies available to the middleman may 

change the policy choice of the latter. This is the result pointed out in the Lemma 4. Using the 

Lemma, the following proposition is straightforward 

 

Proposition 2 

Introducing a legal constraint reduces the parameter space for which a subgame 

perfect equilibrium that implements the maximal social welfare exists.  

 

The interpretation of Proposition 2 and that of Propositions 3 and 4 in the next sub-

section is postponed to Section 5.2.3. 

 

5.2.2- THE EFFECTS OF THE LEGAL RULE ON THE RESIGNATION POLICY 

Under the resignation policy, the matching is successful with a probability (eS + eB). In case 

of a failure, the three participants need to wait for the second step to obtain the collective 

payoff of one monetary unit. In addition, the agents bear the search costs eS
2 and eB

2. Hence, 

the social welfare associated to the resignation policy can then be written:23 

 

W(N,N) = (eS + eB) + δ (1 – (eS + eB)) – eS
2 – eB

2.  (21) 

 

Using ei
(N,N)* = ωi/2 for i = S,B gives the social welfare in the absence of a legal rule 

 

W(N,N)* = [1 + 2δ + 2 ωS ωB] / 4. (22) 

 



 
 

Using e୧ೕୀ
ሺே,ேሻ* = ωi/2 and e୨ೕୀ

ሺே,ேሻ* = ωj(1 – δ)/2 gives the social welfare under the legal 

rule "the agent i must be the payer of the middleman" 

 

Wೕୀ
ሺே,ேሻ* = [1 + 2δ + 2 ωS ωB + δωj(δ(1 + ωi) – 2ωi)] / 4    for i,j = S or B and i ≠ j. (23) 

 

Observe that Wೕୀ
ሺே,ேሻ* = W(N,N)* + [δωj (δ(1 + ωi) – 2ωi) ]/4. Hence, the legal rule "the 

agent i must be the payer of the middleman" is welfare improving if the term between 

brackets is positive i.e. if  

 

δ > δೕୀ
 (ωi) ≡ 2ωi / (1 + ωi)    for i,j = S or B and i ≠ j. (24) 

 

We consider the best legal rule as the one which leads to a welfare increase for the 

largest parameter space. This parameter space is defined by the minimum acceptable value of 

the discount factor δ. Note that this minimum value δೕୀ
 (ωi) increases with ωi. As a result, 

the smaller ωi (the smaller the bargaining power of the agent designated as the payer) the 

larger is the parameter space for which the welfare is increased. Then the following 

proposition is straightforward. 

 

Proposition 3 

In the process of choosing between the two rules: "the seller pays the commission" and 

"the buyer pays the commission", the best legal rule is to designate the agent with the lesser 

bargaining power to pay the middleman’s commission. 

 

However, imposing the best policy does not ensure that social welfare is increased. 

First, we know from Proposition 2 that introducing a legal constraint reduces the parameter 

space for which the middleman chooses an incentive policy and as a result reduces the 

parameter space for which there exists a subgame perfect equilibrium that implements the 

maximal social welfare. Moreover, we see below that the welfare can be reduced even when 

the middleman uses the resignation policy which implements a unique equilibrium with the 

configuration (N,N) on the equilibrium path. More precisely, we must distinguish: 

 

- When 0 < ωS < ½, the best policy is to set KB = 0. The welfare is increased if δ > δಳୀ
 (ωS). 

The lower bound is an increasing function of ωS, and takes the maximal value δ = 2/3 at the 



 
 

upper value of ωS (ωS = 1/2). It follows that setting KB = 0 is welfare improving if δ > 2/3. If 

δ < 2/3, the welfare is improved if and only if δ > δಳୀ
 (ωS)  ωS < δ/(2 – δ).   

 

- When ½ < ωS < 1, the best policy is to set KS = 0. The welfare is increased if δ > δೄୀ
 (ωB). 

The lower bound is an increasing function of ωB, that is to say a decreasing function of ωS 

(recall that ωS + ωB = 1), and takes the maximum value δ = 2/3 at the lower value of ωS 

(ωS = 1/2). It follows that setting KS = 0 is welfare improving if δ > 2/3. If δ < 2/3, the welfare 

is improved if and only if δ > δೄୀ
 (ωB)  ωB < δ/(2 – δ)  ωS > 2(1 – δ)/(2 – δ). 

 

The following proposition covers these results. 

 

Proposition 4 

Under the resignation policy which implements a unique equilibrium where both agents 

begin individual searching on their own account, we have: (a) Imposing a legal rule which 

corresponds to the best policy is welfare improving if δ > 2/3 or if δ < 2/3 and if the 

distribution of bargaining powers is very asymmetric. (b) If δ < 2/3 and if the bargaining 

powers are comparable, that is to say if δ/(2 – δ) < ωS < 2(1 – δ)/(2 – δ), the best legal policy 

is welfare decreasing. 

 

The figure 3 illustrates the proposition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2.3- INTERPRETATION OF THE RESULTS 

Proposition 2 states that the introduction of a legal constraint reduces the parameter space for 

which a subgame perfect equilibrium that implements the maximum social welfare exists. 

This result is not surprising if we compare what would be the aim of a welfare maximizer to 

the objective of the middleman. A welfare maximizer is better off when agents do not search 

by themselves in order to avoid the social costs of the individual search. For a given 

parameter space, the middleman prefers to motivate the two agents not to search by 

themselves by setting low fees since this policy generates a higher profit in spite of the costs 

of the incentives. In this context, the welfare maximizer and the middleman share the same 

aim, even if the motives differ. Limiting the possible policy choices of the middleman with a 

δೄୀ
 (1 - ωS) δಳୀ

 (ωS) 

1/2 

2/3 

δ 

1 

1 0 

ωS 

            The seller pays principle increases the welfare. 

            The buyer pays principle increases the welfare. 

            Setting any principle decreases the welfare. 

 
Figure 3: The effect of the legal rule on welfare 



 
 

legal constraint can lead the latter to abandon the incentive policy. This can only result in a 

drop of welfare. 

 

Let us now provide the intuition behind proposition 3. Within the resignation policy, the legal 

rule which designates agent i (i = S or B) to pay the middleman’s commission reduces the 

search effort of agent j who is exempted from payment. The impact on social welfare is 

twofold. Indeed, the search costs drop, but the probability that the matching is only successful 

at the second step increases.  

The legal rule reduces the search intensity of agent j from ωj/2 to (ωj/2 – δωj/2). So the 

probability that the matching is only successful at the second step increases of δωj/2. The 

negative impact on social welfare is then (1 – δ)δωj/2. We note that this social loss is linearly 

increasing with ωj. On the other hand, the fall of ej from ωj/2 to (ωj/2 – δωj/2) reduces the 

search costs of agent j of (2 – δ)δωj
2/4. We check that, with increasing marginal search cost, 

the higher the initial search intensity ej
(N,N)* = ωj/2, the greater is the cost decrease for the 

same "drop" δωj/2 of ej. But the initial search intensity is increasing with ωj. As a 

consequence, the best policy is that which implements a drop to the search intensity of the 

agent with the higher bargaining power. In other words, the best policy consists in designating 

the agent with the lesser bargaining power to pay the middleman’s commission. 

 

Finally, we interpret proposition 4. We assume ωi < ωj (which implies ωj > ½). In this case, 

the best policy designates the agent i to pay. Using the results just above, we know that this 

policy is welfare increasing if the social loss (1 – δ)δωj/2 due to the fall in the probability of a 

successful match at the first step is compensated by the search costs savings (2 – δ)δωj
2/4. 

This is the case if ωj > 2(1 – δ)/(2 – δ).24 The aforementioned analysis still applies. The social 

loss is linearly increasing with ωj whereas the cost drop increases at an increasing rate with ωj. 

The bargaining power ωj of agent j needs to be high enough for the cost drop to compensate 

the social loss related to the matching probability. If it is not the case, that is to say if the 

difference in the relative bargaining powers is not sufficiently large (recall that ωj > ½), 

welfare is reduced. In other terms, welfare is reduced if the distribution of bargaining powers 

of the agents is not asymmetric enough.  

The role played by the discount factor remains decisive. Let us consider the condition 

ωj > 2(1 – δ)/(2 – δ) under which the legal rule is welfare improving (see footnote 23). The 

higher δ, the less binding is this condition since the minimal bound is decreasing with δ. The 

explanation is as follows. Agent j who is not compelled to pay the middleman, yet chooses a 



 
 

positive search intensity. Indeed, retaining ej > 0 enables this agent to reduce the probability 

to receive his payoff only at the second step. The higher the discounted value of the payoff in 

the second step (the higher δ), the lower is the level of ej chosen by agent j. It follows that the 

reduction of the search intensity of agent j and its positive impact on social welfare are 

increasing with δ. On the other hand, the reduction of the search intensity of agent j leads to 

an increase of the probability that the matching is only successful at the second step and in 

turn a reduction of social welfare. However, the higher the discount factor, the lesser is the 

negative impact generated by a lag period. Hence, if the value δ is high enough the two effects 

combine in order for the best policy to increase the welfare. As quoted above, this is the case 

if ωj > 2(1 – δ)/(2 – δ) or, equivalently, if δ > 2(1 – ωj)/(2 – ωj). 

The minimal bound of δ is decreasing with ωj and takes the value 2/3 when ωj takes its 

lower bound ωj = ½ (recall that ωi < ωj implies ωj > ½). It follows that for δ > 2/3 the 

condition is always satisfied. Hence, using the best policy increases the social welfare 

regardless the bargaining powers of agents if δ > 2/3, that is to say if agents are not too 

impatient to conclude the transaction. 

 

6- CONCLUSION  

We addressed the current debate regarding the principle which should prevail in the way sport 

middlemen are remunerated: "agent-paid-by-player" or "agent-paid-by-club". This paper 

shows that the question of the appropriateness of imposing an additional rule in the legal 

framework is a preliminary issue. More precisely, our results indicate that the most 

appropriate measure consists in designating that the party with the lesser bargaining power be 

the payer of the sports agent’s commission. However, imposing the best rule is welfare 

improving only if the discount factor is relatively high or if the distribution of bargaining 

powers between the club and the player is very asymmetric. So, completing the legal 

framework may not be relevant. It follows that the question has to be addressed at each 

leagues level, taking into account the prevailing conditions on the labor market of 

professional athletes. This would go beyond the scope of our article, though it seems that we 

can observe a shift of the bargaining power in favor of players, both in the US and in Europe. 

Indeed, in the North-American leagues, stronger player unions and the advent of salary 

disclosure improved the bargaining power of players (Mason, 2006). In Europe, the removal 

of transfer fees and the potential severance notice consecutive to the "Bosman" case have 

given players significant bargaining power to increase their earnings (Magee, 2002). 



 
 

Nevertheless, we argue that this bargaining power shift has to be put into perspective given 

the duality of the supply side of the labor market. In fact while superstars can extract great 

salaries thanks to the new structure of sport markets, average interchangeable players are still 

dominated by clubs in the negotiation of playing contracts. 

It is worth pointing out that we considered a very stylized matching problem involving 

only two agents and one intermediary. The simplicity of the framework is attractive because it 

helps explicitly characterizing all equilibrium solutions and giving for each of them the 

underlying economic intuitions. But this simplicity might be criticized on a main point. In 

fact, the only role we offer to the intermediary in our model is the matchmaking of the two 

parties. Nevertheless, empirically, a sport agent faces several clubs and several players. Thus, 

the latter not only matches players and clubs but also determines the allocation of the different 

players to the different clubs. Imposing an additional rule in the legal framework will also 

affect the intermediary’s incentives in this allocation process. Thus, this particular aspect of 

the problem needs to be addressed in future research. 

 

_______________________________________ 

 1 http://www.nationalfootballpost.com/Agents-by-the-numbers.html, Retrieved November 25, 2016. 
 2 For more recent figures: http://www.thefa.com/news/2016/Apr/21/agents-intermediaries-220416, Retrieved 
November 25, 2016. 
 3 FIFA Regulations Players’ Agents, 2008, Definition p4. 
 4 Restatement (second) of Agency (1958). 
 5 Article 2, Uniform Player Contract Section 12 General, subsection d) of the 2005 NBA CBA. 
 6 Article 4, NFL Player Contract, Section 5 Notices, Prohibitions, subsection c) of the 2006 NFL 
CBA. 
 7 One may believe that the role of sports agents in the States is to negotiate contracts for players, not 
to facilitate matching of players with teams. However, as pointed out in Drew Rosenhaus’ (one of the 
most famous NFL agent) book A shark never sleeps: wheeling and dealing with the NFL’s most 
ruthless agent, and contrary to what the regulation anticipates, agents play a matching role before the 
negotiation of the contracts. 
 8 "Study on sports agents in the European Union". A study commissioned by the European 
Commission (Directorate-General for Education and Culture), November 2009. 
 9 "Unlike the regulation suggests, in a majority of cases, agents represent players in the negotiations 
but get paid by clubs". Philippe Diallo (Director of the French Professional Clubs Union) in the 
Information report n°3741, 2007. 
10 Decree n°2011-686, June 16th 2011 which stems from the Information report n°3741, February 
2007 and Information report n°2345, February 2010. 
11 Code du Sport, Article L222-17. 
12 Information report n°3805, October 2011. 
13 The Guardian, December 28th 2011. 
14 In common language the third party who facilitates the sports contract negotiation is called an 
"agent".  However that terminology is confusing in the context of formal principal agent models, 
where the agent is a direct party of the contract. Therefore for the purpose of our formal model we 
denote the sport agent the intermediary or the middleman. 
15 The commission asked to the agent i, i = S,B can be expressed as, for example, a percentage αi of the 
amount of the transaction, i.e. αiäωS with αi = Ki/ωS. 



 
 

16 These constraints are independent of the search costs incurred at the first step since those costs are 
sunk at the second step. The agent agrees with the middleman if this decision leads to a nonnegative 
wealth variation. 
17 We have ߲Пi

(N,N)(Ki,Kj)/߲Kj = δ[ωi – δ(ωi – Ki)]/2 > 0  for i,j = S,B and i ≠ j. 
18 Using eS

(N,N)(KS) and eB
(N,N)(KB) given in (5), the objective function can be written: 

ПM
(N,N)(KS,KB) = δ (KS + KB) [1 + δ (1 – (KS + KB))] / 2.  

We have for i = S,B: ߲ПM
(N,N)/߲Ki = δ[1 + δ(1 – 2(KS + KB))]/2 which is positive for all KS ≤ ωS and 

KB ≤ ωB (recall that ωS + ωB = 1). It follows that (IRS) and (IRB) are binding at the solution. 
19 ߲Пj

(Yi,Nj)(Kj)/߲δ = (ωj – Kj)(2 – ωj + δ(ωj – Kj))/2 ≥ 0 under (IRj): ωj – Kj ≥ 0 for j = S,B. 
20 Using (17) and ωS + ωB = 1, the objective function can be written: 
Пೕୀ

ሺே,ேሻ(Ki) = δ Ki [1 + δ (1 – Ki)] / 2. We have ߲Пೕୀ
ሺே,ேሻ(Ki)/߲Ki = δ[1 + δ(1 – 2Ki)]/2 which is 

positive for all Ki ≤ ωi < 1. So, the constraint (IRi) is binding at the solution. 
21 Recall that ej

(N,N)* = ωj/2 and e୨ೕୀ
ሺே,ேሻ* = ωj(1 – δ)/2. 

22 More conventionally: W(Y,Y)* = ПS
(Y,Y)* + ПB

(Y,Y)* + ПM
(Y,Y)* = 1. 

23 Again, more conventionally: W(N,N) = ПS
(N,N) + ПB

(N,N) + ПM
(N,N). 

24 Welfare is increased if (2 – δ)δωj
2/4 > (1 – δ)δωj/2  ωj > 2(1 – δ)/(2 – δ). Note that if agent j with 

ωj > ½ is the seller, we are back to the condition ωS > 2(1 – δ)/(2 – δ). If he is the buyer, we are back to 
the condition ωB > 2(1 – δ)/(2 – δ)  ωS < δ/(2 – δ). 
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APPENDIX A 
 

1- PROOF OF LEMMA 1 

Recall that, as we explained at the beginning of section 3, setting fees that do not 

comply with individual rationality constraints (IRi) i = S,B is a dominated strategy for the 

middleman. It follows that looking for equilibrium paths, we can restrict the attention to the 

subgames where Ki ≤ ωi i = S,B. 

- The configuration (Y,N) can belong to an equilibrium path only if the choice Y of the seller 

and the choice N of the buyer are mutual best responses, that is to say only if 

ПS
(Y,N)(KS,KB) ≥ ПS

(N,N)(KS,KB)   and   ПB
(Y,N)(KB) ≥ ПB

(Y,Y)(KB). 

In order to prove that this configuration does not belong to an equilibrium path, we just need 

to prove that the first condition is not satisfied at the equilibrium i.e. that 

 

ΩS(KS,KB) ≡ ПS
(N,N)(KS,KB) – ПS

(Y,N)(KS,KB) > 0 for all (KS,KB) satisfying (IRi) i = S,B. (25) 

 

Using ПS
(N,N)(KS,KB) given in (6) and ПS

(Y,N)(KS,KB) given in (10), we have 

 

ΩS(KS,KB) = [1 – ωB(ωB + 2(ωS – KS)) – 2δ(ωS(ωS – KS) + KS(ωB – KB)) + δ2(ωS – KS)2]/4 and 

 

∂ΩS(KS,KB)/∂δ = [KS KB – KS ωB – ωS(ωS – KS) + δ(ωS – KS)2]/2.  

 

We replace the product KSKB by the product KSωB, with ωB ≥ KB according to (IRB). It 

follows that ∂ΩS(KS,KB)/∂δ is lower than 

 



 
 

[KS ωB – KS ωB – ωS(ωS – KS) + δ(ωS – KS)2]/2 = – [ωS(ωS – KS) – δ(ωS – KS)2]/2 < 0. 

 

So ΩS(KS,KB) is decreasing in δ. At the upper bound of δ (δ = 1), ΩS(KS,KB) takes the 

value [KS(KS + 2 KB)]/4 > 0. It follows that ΩS(KS,KB) > 0 for all (KS,KB) satisfying (IRi) 

i = S,B. 

 

- The configuration (N,Y) can belong to an equilibrium path only if  

ПS
(N,Y)(KS) ≥ ПS

(Y,Y)(KS)   and   ПB
(N,Y)(KS,KB) ≥ ПB

(N,N)(KS,KB). 

In order to prove that this configuration does not belong to an equilibrium path, we only have 

to prove that the second inequality cannot hold at the equilibrium i.e. that 

 

ΩB(KS,KB) ≡ ПB
(N,N)(KS,KB) – ПB

(N,Y)(KS,KB) > 0 for all (KS,KB) satisfying (IRi) i = S,B.  (26) 

 

ΩB(KS,KB) is given by permuting the subscripts S and B into ΩS(KS,KB). Then, using 

the same method as above, the proof is straightforward. 

 

2- PROOF OF LEMMA 2 

The configuration (N,N) can belong to an equilibrium path if and only if  

ПS
(N,N)(KS,KB) ≥ ПS

(Y,N)(KS,KB)   and   ПB
(N,N)(KS,KB) ≥ ПB

(N,Y)(KS,KB). 

By (25) and (26) we know this is the case for all (KS,KB) under (IRi): ωi – Ki ≥ 0, i = S,B. 

 

3- PROOF OF LEMMA 3  

The configuration (Y,Y) can belong to an equilibrium path if and only if  

ПS
(Y,Y)(KS) ≥ ПS

(N,Y)(KS)   and   ПB
(Y,Y)(KB) ≥ ПB

(Y,N)(KB). 

We note these conditions  

Ψi(Ki) ≡ Пi
(Y,Y)(Ki) – Пi

(Ni,Yj)(Ki) ≥ 0 for i = S and B, and j = S,B with j ≠ i. 

 

Using Пi
(Y,Y)(Ki) given in (12) and Пi

(Ni,Yj)(Ki) given in (11), we have 

 

Ψi(Ki) = (ωi – Ki) – [ωi
2 + 2δ (ωi – Ki)(2 – ωi) + δ2

 (ωi – Ki)2]/4  and 

 

∂Ψi(Ki)/∂Ki = – [(1 – δ)(2 + δ ωi) + δ2
 Ki] / 2 < 0. 

 

So Ψi(Ki) is decreasing in Ki. When Ki takes its lower bound, we have Ψi(Ki = 0) = 

ωi(1 – δ)(4 – ωi(1 – δ))/4 > 0. Hence, the conditions Ψi(Ki) ≥ 0 for i = S,B can be written 



 
 

Ki ≤ Ki
max where Ki

max is the solution of Ψi(Ki
max) = 0. The values Ki

max for i = S,B are given 

in the lemma. 

Note that when Ki takes its upper bound we have Ψi(Ki = ωi) = – ωi
2/4 < 0. It follows 

that Ki
max < ωi for i = S and B and, consequently, the individual rationality constraints (IRS) 

and (IRB) are not binding in the configuration (Y,Y). 

 

Now, we want to prove a useful result for the remaining proofs of the appendix 

 

∂Ki
max/∂δ < 0 for i = S and B. (27) 

 

Totally differentiating the equation Пi
(Y,Y)(Ki

max) – Пi
(Ni,Yj)(Ki

max) = 0 and noting that 

∂Пi
(Y,Y)(Ki)/∂δ = 0, we obtain ∂Ki

max/∂δ = – [– ∂Пi
(Ni,Yj)/∂δ / ∂Ψi(Ki)/∂Ki]. We have 

∂Пi
(Ni,Yj)/∂δ = (ωi – Ki

max)(2 – ωi + δ(ωi – Ki
max)) / 2 > 0 and we have proved just above that 

∂Ψi(Ki)/∂Ki < 0, hence ∂Ki
max/∂δ < 0. 

 

4- PROOF OF PROPOSITION 1 

Consider the difference Δ(δ,ωS,ωB) ≡ ПM
(N,N)* – ПM

(Y,Y)* where ПM
(N,N)* is given in (15) and 

ПM
(Y,Y)* is given in (16). Using ωS + ωB = 1 we obtain Δ(δ,ωS) 

 

Δ(δ,ωS) = (δ/2) – [– 4 + 3δ + δ2 + 2(1 – δ)1/2((1 – δ ωS)1/2 + (1 – δ(1 – ωS))1/2)] / δ2  and 

 

∂Δ(δ,ωS)/∂ωS = (1 – δ)[1/((1 – δ)(1 – δωS))1/2 – (1/((1 – δ)(1 – δ(1 – ωS)))1/2)] / δ. 

 

The derivative is negative [positive] if (1 – δ)(1 – δωS) is higher [lower] than (1 – δ)(1 – 

δ(1 – ωS)) i.e. if ωS is lower [higher] than 1/2. It follows that for δ given, the curve Δ(δ,ωS) is 

U-shaped formed and takes its minimum value at ωS = ½. 

Note that for δ = 0.94 we have Δ(δ,ωS = ½) = 0 and that for δ = 0.88 we have 

Δ(δ,ωS = 0) = Δ(δ,ωS = 1) = 0. 

Let us now consider the role played by the discount factor δ in the difference Δ(δ,ωS). 

We have ∂ПM
(N,N)*/∂δ = ½ > 0 and ∂ПM

(Y,Y)*/∂δ = ∂(KS
max + KB

max)/∂δ < 0 according to (27). 

So, the difference Δ(δ,ωS) increases in δ. It follows that for δ > 0.94, Δ(δ,ωS) > 0 for all ωS 

and that for δ < 0.88, Δ(δ,ωS) < 0 for all ωS. 

 

 

 



 
 

5- PROOF OF LEMMA 4 

Consider the difference Δೕୀ(δ,ωS,ωB) ≡ Пೕୀ
ሺே,ேሻ* – Пೕୀ

ሺ,ሻ* where Пೕୀ
ሺே,ேሻ* is given in 

(18) and Пೕୀ
ሺ,ሻ* is given in (19). We have ∂Пೕୀ

ሺே,ேሻ*/∂δ = (1 – ωj + 2δωiωj)/2 > 0 and 

∂Пೕୀ
ሺ,ሻ*/∂δ = ∂Ki

max/∂δ < 0 by (27). So the difference Δೕୀ(δ,ωS,ωB) increases in δ. Again, 

using ωS + ωB = 1, we obtain Δೕୀ(δ,ωS).  

 

In the absence of regulation, from the proof of Proposition 1, we know that  

- If ωS = ½, Δ(δ,ωS) ≤ 0 for all δ ≤ 0.94.  

- If δ = 0.88, Δ(δ,ωS) ≤ 0 for all ωS.  

 

When the legal rule Kj = 0 is introduced, we have  

- If ωS = ½, Δೕୀ(δ,ωS) = [16 – 12δ – 4δ2 + 2δ3 + δ4 – 8.21/2(2 – 3δ + δ2)1/2]/8δ2 which is 

negative only if δ < 0.86 < 0.94. 

- If δ = 0.88, Δೕୀ(δ,ωS) = 0.29 – 0.87(0.11 + 0.88ωS)1/2 + 0.96ωS – 0.39 ωS
2 which is 

negative only if ωS < 0.17. 

 

So, introducing a legal constraint reduces the parameter space for which Δ(δ,ωS) < 0 i.e. the 

parameter space in which the middleman chooses an incentive policy.  

 

 

APPENDIX B 

Matching technology involving strategic interaction 

Let us consider the matching technology where the probability (eS,eB) of a match without 

the involvement of the middleman is (for ei ≥ 0 i = S,B) 

(eS,eB) = eS + eB + (eSäeB)/2  if  0 ≤ eS + eB + (eSäeB)/2 ≤ 1 and (eS,eB) = 1  if not. 

 

In the configuration (N,N) where both agents begin with individual search, the profits of 

the seller and of the buyer are: 

Пi
(N,N)(eS,eB,Ki) = (eS,eB) ωi + δ (1 – (eS,eB)) (ωi – Ki) – ei

2    i = S,B.  

The variables eS and eB are strategically interdependent in the sense that the optimal 

search intensity of one agent depends on the search intensity of the other agent. Specifically, 

the best response functions are: 

ei
(N,N)(Ki,ej) = ܽݔܽ݉݃ݎПi

(N,N)(eS,eB,Ki) = (2 + ej)[(1 – δ)ωi + δ Ki]/4  i,j = S,B and i ≠ j. 



 
 

These functions are upward sloping because an increase in ej increases the productivity of ei 

and, consequently, gives an incentive to agent i to increase its effort. In other words, with the 

matching technology (eS,eB) efforts are strategic complements. 

Solving the system of best response functions, we obtain the Nash equilibrium in efforts 

for i,j = S,B and i ≠ j 

ei
(N,N)(Ki,Kj) = 2[(1 - δ)ωi + δKi][4 + (1 - δ)ωj + δKj] / [16 – [(1 - δ)ωi + δKi][(1 - δ)ωj + δKj]] 

 

For the resignation policy, the fees KS and KB which maximize the middleman’s profit are 

determined by (see lemma 2 for the related individual rationality constraints):  

,ా ПM݁ݖ݅݉݅ݔܽܯ
(N,N)(KS,KB) =  

 δ [1 – (eS
(N,N)(KS,KB) + eB

(N,N)(KS,KB) + eS
(N,N)(KS,KB) ä eB

(N,N)(KS,KB) / 2)] (KS + KB) 

st.  (IRS): ωS – KS ≥ 0   and   (IRB): ωB – KB ≥ 0 

 

The solution is not easy to characterize due to the shape of the objective function which 

is parametrized by the value of the discount factor δ. More precisely, if for low values of δ the 

shape of the objective function is such as both individual rationality constraints are binding, it 

is not the case for high values of the discount factor.  

We only present the results for the case where agents are symmetric (ωS = ωB = ½).  

 

- For low values of δ (δ < 0.52) the two constraints (IRi) i = S,B are binding and the 

middleman sets the fees KS = ½ and KB = ½ at the first stage of the game. The search 

intensities of the agents are (using ei
(N,N)(Ki,Kj) above): ei

(N,N)* = 2/7, i = S,B. 

 

- For δ > 0.52 two symmetric solutions exist: KS = ½ and KB = KB*(δ) or KS = KS*(δ) and 

KB = ½ where Ki*(δ) (i = S or B) decreases with the discount factor δ from the value ½ when 

δ = 0.52 to the value 0.27 when δ = 1. The search intensities of the agents ei
(N,N)*(δ), i = S,B 

are decreasing functions of δ. The related analytical expressions are too cumbersome to be 

written down here. 

 

For the resignation policy under the legal rule Kj = 0 (j = S or B), the middleman sets 

the fees Kj = 0 and Ki = ωi = ½ (indeed, the shape of the objective function is such as the (IRi) 

constraint is binding for all values of δ when Kj = 0). The search intensities of the agents then 

become 

e୧ೕୀ
ሺே,ேሻ*(δ) = 2(9 – δ) / (63 + δ)   and   e୨ೕୀ

ሺே,ேሻ*(δ) = 18(1 – δ) / (63 + δ).  



 
 

 

As we explained in the equation (21) in the text, the social welfare associated to the 

resignation policy can then be written 

W(N,N) = (eS,eB) + δ (1 – (eS,eB)) – eS
2 – eB

2. 

Using ei
(N,N)*(δ) for i = S,B gives the social welfare W(N,N)*(δ) in the absence of a legal 

rule (for δ < 0.52 and for δ > 0.52). Alternatively, using e୧ೕୀ
ሺே,ேሻ*(δ) and e୨ೕୀ

ሺே,ேሻ*(δ) gives the 

social welfare Wೕୀ
ሺே,ேሻ*(δ) under the legal constraint Kj = 0. In the case considered here where 

agents are symmetric (ωS = ωB = ½), the best legal rule - which must designate the agent with 

the lesser bargaining power as the payer of the middleman’s commission - can dictate 

indifferently that the buyer or the seller should be the payer of the middleman.  

We must analyze the impact of such a policy on the collective surplus of the three 

participants. We obtain Wೕୀ
ሺே,ேሻ*(δ) > W(N,N)*(δ) whenever δ > 0.69. 

With a matching technology involving strategic interaction, we obtain the same result as 

with the additive function Φ(eS,eB): setting a regulation on matchmakers is welfare improving 

for high values of δ but the policy is welfare decreasing if the discount factor is low (see 

Figure  3 in the text). 

 


