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1 Introduction

Many major policy decisions involve making trade-offs between the welfare of

current and future generations. Policy guidance has then to rely on a given social

objective. The most common approach involves assuming that the social planner

aims at maximizing a social welfare function:

SW =
∞∑

t=0

γtUt

where t indicates time, Ut is the aggregate utility of cohort t and γt is the social

discount factor (the discount rate being 1− γ).

Such an approach has been extensively criticized by economists and philoso-

phers. The main point is that generations are not treated equally, since they

are assigned a weight that depends on when they were born. This is generally

considered to be unfair, a point of view most clearly expressed by philosopher

Henry Sidgwick who argued that “[...] the time at which a man exists cannot

affect the value of his happiness from a universal point of view” (Sidgwick, 1907,

p. 414).

To our knowledge, there is only one argument that has been suggested to

provide an ethical ground for using such a welfare function. Initially developed

by Dasgupta and Heal (1974, 1979), it involves assuming that between any two

dates there exists a positive probability 1− γ that the world ends. An equitable

Utilitarian objective leads then to the above social welfare function.

Still, this argument is problematic when we turn to quantitative aspects. So-

cial discount rates are usually taken between 1% and 5 % per year. But, for most

people it would seem excessively pessimistic to assume a yearly probability of the

word ending of 1% or 5%. With a 5% probability we would have more than a
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50% chance of disappearing in the next 14 years. Even with a probability of the

world ending of 1% per year, there would be the less than a 50% chance of seeing

the world lasting more than 69 years. It is hard to believe that this should reflect

the beliefs of a reasonable social planner.

The aim of this paper is to provide a theoretical foundation for a social wel-

fare function displaying time discounting, but which is ethically acceptable, in

the sense that it treats all generations equally. Our argument, just as that of

Dasgupta and Heal, relies on the idea that at any time there is a positive prob-

ability that the world ends. However, the novelty is that we suggest different

foundations that make it possible to distinguish the social discount rate from the

probability of the world ending. Indeed we are able to break down social discount

into two parts: one representing the risk of the extinction of the world, and the

other related to aversion to correlated risks. It is thus possible to believe that the

instantaneous probability of the world ending is very low, but that accounting for

such a risk leads to introduce a discount rate that significantly differs from zero.

Theoretically speaking, our work relies on an axiomatic construction of the

planner’s preferences that largely resembles the one suggested by Harsanyi (1955).

It extends Harsanyi’s approach by considering a weaker version of the Pareto

axiom, that allows us to consider preferences for “Catastrophe Avoidance”, a

notion that was initially suggested by Keeney (1980) and discussed further in

Fishburn (1984).

The remainder of the paper is organized as follows. In Section 2, we introduce

the notation. Section 3 will expose the axiomatic construction of the planner’s

preferences. Preferences for Catastrophe Avoidance are discussed in Section 4.

In Section 5, we explore the consequences when there is a positive (but tiny)

instantaneous probability of the world ending and see that it actually yields a
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rate of discount that is possibly far from zero. Last, in Section 6, we show how

the additive representation can be recovered as a limit case of the more general

representation that we derive.

2 The setting

We consider a society composed of consecutive generations. Time is discrete and

infinite, and a period is denoted by t ∈ N (with N the set of natural numbers).

Each potential generation is identified by the period at which it is supposed to

be born. We use the adjective “potential” to emphasize the fact that those gen-

erations may never exist (for example because the end of the world occurs before

their birth date). Generations do not overlap: people can live only one period.

The situation of a generation is described by a unidimensional outcome xt. This

is an element of the set of possible outcomes X = K ∪ {d}. K is an interval in

the positive real line, R+. Elements of K can be seen as comparable measures of

the standards of living of the generation. d indicates the non-existence status. X

satisfies habitual topological properties.1 In the sequel, we will assimilate gener-

ations to individuals. It is to be understood that we have in mind representative

agents of the generations.

We wish to consider uncertain prospects. Let P be the set of all simple

lotteries on X.2 For simplicity, individuals are assumed to be identical and selfish

(they have the same self-regarding preferences). Each individual’s preferences are

represented by a binary relation �I defined on P . We denote by �I the strict

preference relation and by ∼I the indifference relation.

1In particular, X is a metric space using the following metric m : X ×X → R+: m(x, x̂) =
|x− x̂| ,∀(x, x̂) ∈ K ×K; m(x, d) = +∞ ,∀x ∈ K; m(d, d) = 0.

2A simple lottery on X is a mapping p : X → [0, 1] with the property that (i) there
exists a finite subset J ⊂ X such that p(x) > 0 ∀x ∈ J and p(x) = 0 ∀x ∈ X \ J ; (ii)∑

x∈J p(x) =
∑

x∈X p(x) = 1.
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Like Harsanyi (1955) we restrict the study to the case where individual pref-

erences admit an expected utility representation on P . Stated differently, there

exists a Bernoulli utility function u(.) such that:

∀p, p̂ ∈ P : p �I p̂ ⇔
∑
x∈X

u(x)p(x) ≥
∑
x∈X

u(x)p̂(x)

By normalization, we can assume without loss of generality that u(d) = 0.

We also need the following minimal sensitivity condition: there exist x̄ and x̂ in

K such that u(x̄) > u(x̂) > 0. The differentiability of u will also be assumed in

Section 3 in order to have a well-defined notion of the social discount rate. This

assumption is not necessary to derive our representation result.

Let us now describe social outcomes and preferences. The literature on the

evaluation of infinite utility streams initiated by Diamond (1965) makes no as-

sumption as to the asymptotic properties of feasible utility streams.3 In this

paper, we consider the risk of the world ending. We are thus led to put some

structure on possible intertemporal outcomes. We assume that the society will

end in a finite time. The termination date is however unknown.

To be more specific, if we denote XN the Cartesian product of individual

outcome spaces, the social outcome space is

χ =

{
x ∈ XN such that ∃T : ∀t ≤ T xt 6= d and xt′ = d ∀t′ > T

}

The social planner’s preferences will defined on Q, the set of all simple lotteries

on χ. Because the set χ is a strict subset of XN, we work with a smaller choice

set than the one considered by Epstein (1983). This is of particular importance:

3See Fleurbaey and Michel (2003) for a recent paper containing an extensive review of this
literature.
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to restrict attention to outcomes in χ, rather than working on XN, enables to

circumvent the necessity of impatience established by Koopmans (1960) and, in

a framework involving risk, by Epstein (1983). The specifications that will be

obtained in Proposition 1 are concrete examples of continuous social orderings

that do not exhibit impatience or, in the context of intergenerational justice,

preference for earlier generations.4 Note that the restriction we impose bears

some similarities with the one used by Ramsey (1928).5

The consideration of outcomes in χ seems appropriate if we think that the

world has a finite but uncertain time horizon. In a comment on a paper by

Koopmans, Fisher argued that the infinite horizon was primarily introduced as

a convenience to escape the problems associated with an arbitrary terminal date

(Fisher, 1965). Our approach can achieve this task without making the assump-

tion that the horizon is infinite.

We follow Harsanyi in assuming that the social planner’s preferences admit

an expected utility representation.6 There exists a Bernoulli index U defined on

χ such that:

∀q, q̂ ∈ Q : q �S q̂ ⇔
∑
x∈χ

U(x)q(x) ≥
∑
x∈χ

U(x)q̂(x)

For any subset of the set of individuals, I ⊂ N, and for any q ∈ Q, we denote qI

the marginal distribution of q on the outcomes of individuals in I.7 In particular,

4Thus our conclusions also contrast with the results obtained in the literature on the aggre-
gation of infinite utility streams. The structure of χ explains the different conclusions.

5Ramsey (1928) considered an infinite horizon but he restricted attention to paths converging
to a constant tail at the “bliss”level. We assume that all paths have a constant tail composed
of outcomes d.

6Harsanyi’s approach is not free from controversy. In particular, it has been argued that
the expected utility axioms might not be appropriate for the social planner (Diamond, 1967;
Epstein and Segal, 1992). This contention has however also been criticized, for instance in
Deschamps and Gevers (1977), Broome (1984) or Fleurbaey (2007).

7Let I = {i1, i2, · · · }. qI is a a mapping qI : XI → [0, 1] such that, for all (x̄i1 , x̄i2 , · · · ) in
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we denote qt the marginal distribution on individual t’s outcomes. Remark that

qt ∈ P for any q ∈ Q and any t ∈ N.

Last we introduce a subset of Q that will be of particular importance. Let∏
t∈NP be the set of product lotteries on XN .8 We define the set of “independent

distributions”, R, by:

R = Q∩
∏
t∈N

P

An element ofR thus describes a societal risk composed of independent individual

risks. An experiment where each individual would be asked to flip a coin could

be represented by an element of R. The case of a social planner who flips a

coin to determine all individual outcomes cannot be represented by an element

of R. This is also the case for any aggregate risk, as with the risk of an ecological

catastrophe that would deteriorate the welfare of several generations, or that

associated with the world ending.

3 Planner’s preferences

In this section, we state the assumptions made on the planner’s preferences and

then provide a representation result.

Our first axiom is a restricted Pareto axiom:

Axiom 1 Restricted Pareto (RP):

∀q, q̂ ∈ R, if ∀t ∈ N, qt �I q̂t then q �S q̂

If, furthermore, ∃t′ / qt′ �I q̂t′ then q �S q̂

XI , qI(x̄i1 , x̄i2 , · · · ) =
∑

t∈N\I

∑
x̄t∈X q

(
x ∈ χ : xi = x̄i ∀i ∈ I;xt = x̄t

)
.

8A simple lottery q belongs to
∏

t∈N P if, for any t and t′ in N and any xt and xt′ in X,
q{t,t′}(xt, xt′) = qt(xt)qt′(xt′).
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The above axiom is called Restricted Pareto, because we apply Pareto’s prin-

ciple to independent distributions only. This axiom is weaker than the standard

strong Pareto axiom, which would be obtained by replacing R by Q in the above

definition.

The reason for using a restricted version of the Pareto axiom, instead of

the standard one, is that we want the planner’s preferences to reflect individual

preferences when independent risks are concerned, but possibly to deviate from

individual preferences when collective risks come at play. This possibility was

first considered by Keeney (1980) and Fishburn (1984). More recently we also

find it in Manski and Tetenov (2007). Such a restricted axiom is necessary if we

want to allow for social judgments on how individual risks are combined.

This seems reasonable if we consider that the social planner should not only

care for individuals’ happiness but also implement some coordination between in-

dividuals’ behaviors in order to avoid undesirable social outcomes. For instance,

the social planner might want to avoid major social catastrophes. Fishburn ar-

gued that social risk diversification would be particularly “appealing if the fate

of the human race were at stake”(Fishburn, 1984, p. 904). This is precisely the

issue that is discussed in the present paper.

But the restricted axiom also enables to consider the converse of Catastrophe

Avoidance, namely “Risk Equity”(the notion was introduced in Keeney, 1980).

Risk Equity may also seem appropriate because it guarantees that people do not

face too different fates. Our axiomatic makes it possible to consider this principle

as well and to study its consequences on the social discount rate.

Restricted Pareto is however not innocuous. Like Pareto’s principle it may

be criticized on the ground that it bears only on ex-ante evaluations.9 The social

9See Hammond (1981), Myerson (1981) or Fleurbaey (2007) on this problem. See also
Rabinowicz (2002) on the use of Pareto’s principle restricted to ex-post situations.
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planner may have concerns about the ex-post distribution of welfare that would

be incompatible with the acceptance of the restricted Pareto axiom. The present

paper does not tackle these issues. Restricted Pareto only permits to consider

the role of correlated generations’ fate on social welfare.

The second major axiom we use is an independence axiom called Indepen-

dence of the Utilities of the Dead.10 It stipulates that, at any given date, the

choice between two socially risky prospects does not depend on the situation of

individuals who trespassed. The principle is usually justified by the fact that we

cannot change the fate of those already dead, so that their welfare should not

matter for present choices.

Denote δx the one-point measure on x ∈ X.11 The Independence of the

Utilities of the Dead axiom is as follows:

Axiom 2 Independence of the Utilities of the Dead (IUD): Let q, q′, q̂

and q̂′ be four simple lotteries in Q for which there exists T ∈ N such that:

• qt = q′t = δxt and q̂t = q̂′t = δx̂t for all t ≤ T .

• qN\{1,··· ,T} = q̂N\{1,··· ,T} and q′N\{1,··· ,T} = q̂′N\{1,··· ,T}.

Social preferences satisfy the (IUD) axiom if, for any such q, q′, q̂ and q̂′, the

following equivalence holds:

q �S q′ ⇔ q̂ �S q̂′

Last, we would like the social planner to treat all generations impartially. In

the literature, the concept of intergenerational equity has often been represented

10The axiom was proposed by Blackorby, Bossert and Donaldson in a series of papers on
intertemporal social ethics. See for instance Blackorby, Bossert, Donaldson (2002).

11A one-point measure is a simple lottery δx ∈ P such that δx(x) = 1 and δx(y) = 0,
∀y ∈ X \ {x}. The definition of one-point measures on x ∈ χ is similar.
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using finite permutations of individual outcomes.12 A finite permutation π is a

bijection π : N → N such that, for some T ∈ N, π(t) = t for all t ≥ T . Let

Π denote the set of all finite permutations. For any x ∈ χ and any π ∈ Π,

x(π) denotes the sequence (xπ(1), xπ(2), · · · , xπ(n), · · · ). Our anonymity axiom is

as follows:

Axiom 3 Anonymity (A): ∀x ∈ χ, ∀π ∈ Π such that x(π) ∈ χ:

δx ∼S δx(π)

The axiom holds on sure prospects. This is enough to obtain our result. Its

counterpart in terms of expected utility would be stronger but is more difficult to

write. We prefer this weaker axiom which is simpler and sufficient for our purpose.

Remark also that the anonymity axiom rules out any pure time preference of the

social planner.

We are now able to state a representation result.

Proposition 1 Assume that individual preferences admit and expected utility

representation on P and that social preferences admit an expected utility rep-

resentation on Q. Then social preferences satisfy (RP), (IUD) and (A), if and

only if they can be represented by an expected utility using the Bernoulli utility

function:

U(x) =
1

ε
×

(
1−

∏
t∈N

(
1− εu(xt)

))
(1)

with ε 6= 0 such that εu(xt) < 1 for all xt ∈ X, or the Bernoulli utility function:

U(x) =
∑
t∈N

u(xt). (2)

12For some discussion of permutations as expressing impartiality, and the presentation of
different permutation conditions, see Fleurbaey and Michel (2003).
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Proof. See Appendix 1.

Note that the above representation of the social planner’s preferences is contin-

gent on the normalization assumption that has been made on u, namely u(d) = 0.

In particular, because u(d) = 0, the infinite product and sum that appear in (1)

and (2) are well defined for any x ∈ χ. Note also that ε > 0 is possible only

if u is bounded from above. Conversely, ε < 0 is possible only if u is bounded

from below. We want to consider these two cases and therefore assume that the

function u is bounded.

The additive welfare function (Equation 2) corresponds to the limit of the

multiplicative representation (Equation 1) when ε tends to zero. We will therefore

consider the multiplicative representation as the general one, remembering that

the additive one is obtained by taking ε = 0. Only the additive case would be

obtained if we were to replace (RP) by the standard strong Pareto axiom.13

The representation of preferences given by Proposition 1 resembles the one

found in Equations 9.16 and 9.17 of Meyer (1976). Our proof indeed makes use

of a standard recursivity argument, similar to the one used by Meyer (1976) and

Epstein (1983). Their axioms were adjusted to fit the intertemporal social choice

framework. The proof also had to be adapted to the choice set we consider,

which is larger than the one studied by Meyer (1976) but smaller than the one

studied by Epstein (1983) because of the structure of χ. Proposition 1 should

not be considered as the main achievement of the paper. Our contribution is of

a different nature: it involves highlighting the judiciousness of the multiplicative

representation in social choice and exploring its consequences when there is an

exogenous risk of the world ending.

First, we explain in the next section how the parameter ε that enters Equation

13Proof available upon request.
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(1) is related to Catastrophe Avoidance.

4 Catastrophe avoidance

Keeney (1980), who discusses the social evaluation of fatality risks, defines Catas-

trophe Avoidance as follows: social preferences are said to exhibit a preference

for Catastrophe Avoidance if the probability π1 of having n1 fatalities is preferred

to a probability π2 of having n2 fatalities when n1 < n2 and π1n1 = π2n2. Stated

otherwise, under the assumption of a preference for Catastrophe Avoidance, for

a given number of expected fatalities, the social planner prefers the case of an

accident that kills few people to a less likely accident that kills more people.

In our setting, we are not concerned by fatality risks, but by the mere existence

of individuals. Still, the transposition of Keeney’s definition to our framework

is trivial. The planner’s utility exhibits preferences for Catastrophe Avoidance

if and only if, in the case where all existing individuals are provided with the

same positive utility level, the planner prefers the lottery where the number

of individuals that will ever exist is M with probability (1 − π1) and M − n1

with probability π1, to the lottery where the number of individuals is M with

probability (1 − π2) and M − n2 with probability π2, when π1n1 = π2n2 and

n1 < n2.

With the representation in Equation (1), a preference for Catastrophe Avoid-

ance occur if for all u > 0 and all n1, n2, π1, π2 such that π1n1 = π2n2 and n1 < n2

we have:

(1− π1)(1− εu)M + π1(1− εu)M−n1 > (1− π2)(1− εu)M + π2(1− εu)M−n2

Simplifying the above inequality by (1− εu)M and using π1n1 = π2n2, this leads
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to:

(1− εu)−n1 − 1

n1

>
(1− εu)−n2 − 1

n2

Thus preferences for Catastrophe Avoidance exist if and only if f(n) = (1−εu)−n−1
n

is a decreasing function. But f ′(n) = (1−εu)−n

n

[
log(1− εu) + (1−εu)n−1

n

]
which is

negative for all n > 0 if and only ε > 0. Assuming preference for Catastrophe

Avoidance is therefore equivalent to taking ε > 0.

Indeed, as shown by the second theorem of Keeney (1980), preference for

Catastrophe Avoidance is equivalent to risk aversion with respect to the number

of existing individuals (when all existing individuals are provided with the same

utility level). To measure the strength of the preference for Catastrophe Avoid-

ance, we can therefore use an Arrow-Pratt coefficient of risk aversion with respect

to the number of existing individuals. More precisely, assume that all individuals

that ever exist are provided with the same amount of commodity x , which yields

the same utility level u(x). For any N denote

U(N, x) = U(x, · · · , x︸ ︷︷ ︸
N times

, d, · · · )

the social utility when the number of individuals that will ever exist is N . Also

denote ∆U(N, x) = U(N + 1, x) − U(N, x) and ∆2U(N, x) = ∆U(N + 1, x) −

∆U(N, x). We can define the Index of Catastrophe Avoidance as the following

Arrow-Pratt coefficient:

ICA(x) = −∆2U(N, x)

∆U(N, x)

It is a matter of simple computation to show that, when the social welfare function

takes the form shown in (1), we have U(N, x) = 1
ε
− 1

ε
(1−εu(x))N and ICA(x) =

εu(x). In particular the Index of Catastrophe Avoidance equals zero when ε =
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0 . This means that Utilitarian preferences (which fulfill the unrestricted Pareto

axiom) cannot exhibit preferences for Catastrophe Avoidance.

The appeal of the Catastrophe Avoidance principle has been disputed. For

instance, Fleurbaey (2007) notices that Catastrophe Avoidance implies a prefer-

ence for ex-post inequalities. Catastrophe Avoidance also means that we prefer

to sacrifice the last generation for sure than to give the last two generations half

a chance of existing. One might rather want social preference to satisfy Risk

Equity. Risk Equity corresponds to the idea that equalizing independent risks is

socially desirable (see Keeney, 1980). In our framework, this is possible only if

ICA(x) < 0. Accordingly, the criterion obtained in Proposition 1 can accommo-

date Risk Equity if we choose ε < 0.

There are evidences (quoted in Keeney, 1980) that many people would endorse

Catastrophe Avoidance in the case of large risks such as the end of the world.

On the other hand, Risk Equity seems also ethically appealing. Without taking

side for any of these principles, we will now see that preferences (or distaste) for

Catastrophe Avoidance as expressed in the ICA play a key role when looking at

time discounting arising from the risk of the world ending.

5 The risk of the world ending and the social

discount rate

For the sake of simplicity we consider the case where uncertainty only bears on

the timing of the world’s disappearance. The planner’s problem involves ranking

infinitely long consumption plans, knowing that for a reason that is independent of

his behavior, the world will stop existing at a finite date (consumption becoming

then impossible). This problem is similar to the one considered by Dasgupta and
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Heal (1979). To simplify matters further, we assume that at each period there is

a probability p that the end of the world occurs and a probability (1 − p) that

the world survives. We also consider infinitely long consumption plans x ∈ KN

such that u(xt) > 0 for all t ∈ N.

The situation that we consider involves a countably infinite number of events,

one for each possible ending date. It can be described by a discrete lottery but

not by a simple lottery. It is however possible to extend the representations in

Equations (1) and (2) from the set of all simple lotteries to a convex set of discrete

lotteries. We encounter one problem though: the Bernoulli utility functions in

(1) and (2) are not bounded, except when ε > 0 and u(xt) > 0 for all t. When

the Bernoulli utility function is not bounded, we may have a problem with the

convergence of the expected utility for some discrete lotteries, so that the choice

criterion is not well-defined.14 Social preferences using Bernoulli functions in

Equations (1) and (2) therefore admit an expected utility representation only on

the set of discrete lotteries for which the expected utility is finite. For any ε we

denote Qε denote this set. The set Qε necessarily contains all simple lotteries on

χ.

Consider a consumption plan x =(xt) ∈ KN. For any T ≥ 0 there is a

probability p(1 − p)T that the world will last exactly T periods. In such a case

the consumption plan x yields a social utility 1
ε
×
(
1−

∏T
t=1

(
1− εu(xt)

))
if

T > 0 and zero if T = 0. The expected utility associated with x is therefore:

W (x) =
1

ε

∞∑
T=1

p(1− p)T

(
1−

T∏
t=1

(
1− εu(xt)

))
(3)

Since the social planner aims at maximizing expected utility, W (x) is a social

14On this issue, see Hammond (1998, p. 187).
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welfare function representing the planner’s preferences over consumption plans.

A consumption plan x will be preferred to an alternative plan x̂ if and only if

W (x) > W (x̂).

The infinite sum in Equation (3) converges whatever p > 0 for all admissible

ε ≥ 0. The lottery that we consider therefore belongs to Qε for these values of ε.

In the case of risk-equity preferences (ε < 0) however, the sum may not converge

when p is sufficiently low. In that case, we must restrict attention to values p

large enough so that the discrete lottery belong to Qε. All the results in this

section are given for values p satisfying this condition.

As it emerges from Equation (13) in Appendix 2, the social welfare function

in Equation (3) can be rewritten:15

W (x) = (1− p)
+∞∑
T=1

u(xT )
T−1∏
t=1

[(
1− εu(xt)

)
(1− p)

]
(4)

We recognize here stationary recursive preferences. Indeed, if we denote tx =

(xt, xt+1, · · · ) the infinite sequence of generations’ consumptions from period t

on, we have the recursive relation:

W (tx) = u(xt) +
[(

1− εu(xt)
)
(1− p)

]
W (t+1x) (5)

Stationary recursive preferences have been studied at length in the economic

literature ever since Koopmans (1960). The particular form obtained here was

originally introduced by Uzawa (1968) in continuous time and Epstein (1983) in

discrete time. As is well-known, recursive preferences generally display endoge-

nous discounting.

Like Koopmans (1960) or Epstein (1983), we define the rate of time discount-

15We use the habitual convention that
∏0

t=1 g(xt) = 1 for all functions g.
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ing along a constant consumption path by looking at how the marginal utility

of consumption changes with time. Formally, if we denote conx the constant

consumption program for which xt = x ∈ K for any t ∈ N, the rate of time

discounting is defined by:

ρ(x) = 1−
∂W
∂x2

∂W
∂x1

|x=conx (6)

When preferences are given by the social welfare function W shown in Equa-

tion (3) we have the following result:

Proposition 2 The social rate of discount is

ρ(x) = p + (1− p)εu(x) = p + (1− p)ICA(x)

Proof. See Appendix 2.

Note that when ε = 0, that is in the standard Utilitarian case, we find that

the rate of discount equals the instantaneous probability of the world ending,

which is consistent with the results of Dasgupta and Heal. From Proposition 2

we also have the immediate consequences:

Corollary 1

1) The rate of discount is greater than the hazard rate of the world disappearing

whenever social preferences exhibit preferences for Catastrophe Avoidance (i.e.

ρ > p whenever ε > 0).

2) The rate of discount is lower than the hazard rate of the world disappear-

ing whenever social preferences exhibit preferences for Risk Equity (i.e. ρ < p

whenever ε < 0).
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3) In the case ε > 0, when the probability of the world ending is infinitesimally

small, the rate of discount approximately equals ICA(x) = εu(x).

These three points deserve some comments. First we see that preference for

Catastrophe Avoidance makes the social planner discount the future more heavily.

The reason is that the planner wants to avoid the worst catastrophe in which:

(1) only few individuals ever come to life; (2) those few individuals sacrifice most

of their resources for the sake of future generations that will actually never exist.

Conversely and for symmetrical reasons, preference for Risk Equity lowers the

social discount rate. This is true only for sufficiently large value of p, for, when

ε < 0, the lottery we consider does not belong to Qε when p tends to zero..

Lastly, even if the instantaneous probability of the world ending is very small,

the rate of discount may be quite large. This may seem counterintuitive, as one

might expect that when p is infinitesimally small, the planner would not exhibit

pure time preference, as a consequence of the anonymity axiom. There is however

a simple intuition that explains why the rate of discount does not tend to zero

when p tends to zero. The point is that when p tends to zero the expected

number of individuals that will ever exist (which equals 1
p
) tends to infinity. As a

consequence, the smaller p, the greater the loss when the world ends. Thus, when

p tends to zero, the probability of a catastrophe occurring does tend to zero, but

the magnitude of the catastrophe tends to infinity. Both factors compensate and

lead the social planner to use a non-negligible social discount even if p is very

small. At the limit p → 0, the discount rate is equal to the Index of Catastrophe

Avoidance.

Recursive preferences have been increasingly used in optimal growth theory

with seminal contributions by Uzawa (1968), in continuous time, and Beals and
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Koopmans (1969) in discrete time. Several papers have provided interesting de-

velopments on the existence and convergence of optimal paths in many settings,

for instance Epstein (1983), Lucas and Stockey (1984), Epstein (1987) or Palivos,

Wang and Zhang (1997). They obtain results similar to the standard neoclassical

growth model with exogenous discounting when social preferences display ‘in-

creasing marginal time preference’; that is when the discount rate ρ(x) is increas-

ing in x. With preferences displayed in Equation (4), this is the case whenever

u(x) is increasing in x, a conventional assumption.

6 Recovering the additive social welfare func-

tion

An indisputable drawback of the multiplicative representation is that the expected

utility is not additive. For most applications, this is a source of substantial

increase in complexity. Still, additivity can be recovered by considering the limit

case where the difference in welfare between existing or not existing is assumed

to be much greater than the difference in welfare between having a low or a high

level of consumption. More precisely, assume that the xt (when different from d)

remain in a bounded domain [xmin, xmax] and that the function u is such that:

u(xt) = 0 when xt = d

u(xt) = 1 + λv(xt) when xt 6= d

where λ is very small and v is a bounded function over [xmin, xmax]. In such a case

the difference in welfare between existence and non-existence is approximately

equal to 1, while the difference in welfare between having xmin or xmax equals
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λ (v(xmax)− v(xmin)), which is assumed to be much smaller than 1.

Consider now one of the lotteries we have studied in Section 5. Assume that

the lottery belongs to Qε and consider the limit case where λ is infinitesimally

small. Note that in such a case, the Index of Catastrophe Avoidance is indepen-

dent of x and equals ε.

We obtain following result:

Proposition 3 In the limit where λ → 0 the social planner’s preferences are

represented by the social welfare function

Wε(x) =
∞∑

t=0

γtv(xt)

where γ = (1− p)(1− ε).

Proof. See Appendix 3.

We therefore obtain the standard additive representation, with a discount

rate that equals p + (1− p) ε. Thus, we end up with a formulation that is the

same as that of Dasgupta and Heal, though with the fundamental difference that

the rate of discount is now augmented by a factor that depends on the Index

of Catastrophe Avoidance. Thus, there is no contradiction between assuming

that the probability that the world disappears is very low, and that the rate of

discount is significantly greater than zero. Nor is there any inequitable bias in

favor of present generations.

Despite its simplicity, the additive approximation may be controversial, for

we have to assume that the difference in welfare between existence and non-

existence is much larger than the difference in welfare between possible lives.

This is of course disputable. Blackorby, Bossert and Donaldson (1995) argue for

example there are some states of extreme poverty that are, from the planner’s
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point of view, worse than non-existence. If one is reluctant to use the additive

approximation, there is no other solution than to rely on the recursive formula

given by Equation (4).

Preferences for Catastrophe Avoidance permits to reconcile intergenerational

equity with endogenous time discounting. The simplifying assumption of exoge-

nous discounting can be seen as a limit case that corresponds to the additive

approximation detailed above. Whether or not this limit case may be considered

as relevant depends on how wide we think the welfare gap is between existence

and non-existence.

7 Conclusion

We have extended the standard Utilitarian aggregation of preferences à la Harsanyi

to account for a possible planner’s taste for Catastrophe Avoidance. This was

done by replacing the usual Pareto axiom by a weaker axiom. This axiom stipu-

lates that there is no divergence between the social planner’s and the individuals’

preferences as long as uncorrelated risks are considered, but that some divergence

may occur when correlated risks are at play. The axiom allows planners to express

their own views on collective consequences.

Preferences for Catastrophe Avoidance were found to play a key role when

accounting for the probability that the world may end. We showed that an

equitable social planner who has no pure time preference, but preferences for

Catastrophe Avoidance, discounts the welfare of future generations with a rate

that is greater than the instantaneous probability of the world coming to an end.

More importantly this rate does not vanish when the instantaneous probability of

the world ending tends towards zero. In other words, substantial time discounting
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does not necessarily reflect the planner’s lack of equity, or the planner’s belief that

the world will soon end. There is a third source of social discounting that results

from the combination of preference for Catastrophe Avoidance with the belief

that there is indeed a positive (but, possibly very small) probability that the

world will end.

The end of the world is a very stylized representation of an event with durable

consequences. Its key characteristics, for our analysis of time discounting, is that

it durably and negatively impacts individuals’ utilities and marginal utilities16. In

fact, it can be shown that, when the planner exhibits preferences for Catastrophe

Avoidance, the planner’s discount rate increases with the likelihood of an event

having these characteristics occurring. Natural extensions of this paper therefore

involve considering less caricatured risks, such as the possibility of an ecological

catastrophe, and see how they may affect time discounting.

Appendices

In all the proofs we use the convention that
∏0

t=1 g(xt) = 1 for all functions g.

Appendix 1: Proof of Proposition 1

It is straightforward to check that if the planner’s preferences are represented by

the multiplicative or additive utility function shown in (1) and (2) they satisfy

(RP), (IUD) and (A). We will therefore focus on showing that (RP), (IUD) and

(A) imply these particular specifications.

16 When the world ends, the utilities and marginal utilities of future individuals are irre-
versibly set to zero.
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Consider a Bernoulli utility function that represents the planner’s preferences:

Ũ(x) = Ũ(x1, x2, x3, · · · )

Let q and q̂ be two lotteries in Q such that q1 6= q̂1 and qt = q̂t = δd for all t > 1.

The (RP) axiom implies that, for any such q and q̂:

∑
x∈X

Ũ(x, d, d, ...)q1(x) ≥
∑
x∈X

Ũ(x, d, d, ...)q̂1(x) ⇔
∑
x∈X

u(x)q1(x) ≥
∑
x∈X

u(x)q̂1(x)

Thus Ũ(x, d, d, · · · ) must be an individual Bernoulli utility function. There exist

real numbers a > 0 and b such that Ũ(x, d, · · · ) = au(x)+b for all x ∈ X. Denote

U the function on XN such that U(x) = Ũ(x)−b
a

. U is a Bernoulli utility functions

for the planner that satisfies the condition:

U(x, d, d, · · · ) = u(x) for all x ∈ X (7)

Our sensitivity condition implies that there exists x̄ ∈ K such that u(x̄) > 0. For

any T ∈ N \ {1}, define VT (xT , xT+1, · · · ) ≡ U(x̄, · · · , x̄, xT , xT+1, · · · ). Consider

q and q̂ in Q such that qT 6= q̂T , qt = q̂t = δx̄ for all t < T , and qt = q̂t = δd for

all t > T . The (RP) axiom implies that:

∑
x∈X

VT (x, d, d, ...)qT (x) ≥
∑
x∈X

VT (x, d, d, ...)q̂T (x) ⇔
∑
x∈X

u(x)qT (x) ≥
∑
x∈X

u(x)q̂T (x)

Thus VT (x, d, d, · · · ) must be a Bernoulli utility function for generation T , which

means that there exist real numbers aT > 0 and bT such that VT (x, d, · · · ) =

aT u(x) + bT for all x ∈ X. Denote UT (xT , xT+1, · · · ) ≡ VT (xT ,xT+1,··· )−bT

aT
. UT is
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such that:

UT (x, d, d, · · · ) = u(x) for all x ∈ X (8)

We also take U1(x1, x2, · · · ) ≡ U(x1, x2, · · · ).

Consider now q, q′, q̂ and q̂′, four probability measures in Q satisfying the

following conditions for some T ∈ N:17

• qt = q′t = δx̄ for all t ≤ T − 1, qT = q′T = δxT
, and q̂t = q̂′t = δx̄ for all t ≤ T .

• qN\{1,··· ,T} = q̂N\{1,··· ,T} and q′N\{1,··· ,T} = q̂′N\{1,··· ,T}.

According to the (IUD) axiom, q �S q′ ⇔ q̂ �S q̂′. Using the definition of UT

we obtain:

∑
T+1x∈χ

UT (xT , xT+1, ...)qN\{1,...,T}(xT+1, ...) ≥
∑

T+1x∈χ

UT (xT , xT+1, ...)q
′
N\{1,...,T}(xT+1, ...)

⇐⇒∑
T+1x∈χ

UT+1(xT+1, ...)qN\{1,...,T}(xT+1, ...) ≥
∑

T+1x∈χ

UT+1(xT+1, ...)q
′
N\{1,...,T}(xT+1, ...)

The equivalence is true for any xT ∈ K and for any qN\{1,··· ,T} and q′N\{1,··· ,T}.

Denote UT,xT
(xT+1, · · · ) ≡ UT (xT , xT+1, · · · ). The equivalence implies that UT,xT

and UT+1 are two Bernoulli utility functions representing the same preference

ordering on the uncertain future after period T . The function UT,xT
must therefore

be obtained from UT+1 by a positive affine transformation. In other words, for

any xT ∈ K there exist vT (xT ) and wT (xT ) > 0 such that

UT (xT , xT+1, · · · ) = vT (xT ) + wT (xT )× UT+1(xT+1, · · · ) (9)

17In the case T = 1, the first condition can be written q1 = q′1 = δx1 , and q̂1 = q̂′1 = δx̄.
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The normalization condition (8) implies that:

vT (xT ) = u(xT ), ∀xT ∈ X, ∀T ∈ N (10)

Remark that the (A) axiom imposes that UT (x, y, d, · · · ) = UT (y, x, d, · · · ).

Using (9) and (10), this implies that for any x, y ∈ K we must have:

u(x) + wT (x)u(y) = u(y) + wT (y)u(x)

or equivalently:

1− wT (x)

u(x)
=

1− wT (y)

u(y)

The ratio 1−wT (x)
u(x)

is therefore constant for any x ∈ K. Let denote it by εT . We

have

wT (x) = 1− εT u(x) ∀x ∈ K (11)

Since wT (x) > 0 we must have εT u(x) < 1.

Gathering the results in (9), (10) and (11) for t = 1, · · · , T , we obtain that:

U(x1, · · · , xT , d, d, · · · ) =
T∑

t=1

u(xt)
t−1∏
τ=1

(
1−ετu(xτ )

)
+UT+1(d, d, · · · )

T∏
τ=1

(
1−ετu(xτ )

)

We also know that UT+1(d, d, · · · ) = 0, so that:

U(x1, · · · , xT , d, d, · · · ) =
∑
t∈N

u(xt)
t−1∏
τ=1

(
1− ετu(xτ )

)
(12)

We need to prove that εT = ε for all T ∈ N. First consider the out-

comes (x1, x2, x3, d, d, · · · ) and (x3, x2, x1, d, d, · · · ). Axiom (A) requires that

U(x1, x2, x3, d, d, · · · ) = U(x3, x2, x1, d, d, · · · ). Using Equation (12) and after
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some simplifications, we get: ε1

(
u(x1) − u(x3)

)
= ε2

(
u(x1) − u(x3)

)
. Recall

that our sensitivity requirement imposes that there exist x̄ and x̂ in K such that

u(x̄) > u(x̂) > 0. Taking x1 = x̄ and x3 = x̂, we end up with ε1

(
u(x̄)− u(x̂)

)
=

ε2

(
u(x̄)− u(x̂)

)
. This implies ε1 = ε2.

Consider (x̄, · · · , x̄, xt, xt+1, xt+2, d, d, · · · ) and (x̄, · · · , x̄, xt+2, xt+1, xt, d, d, · · · ),

for any t ∈ N \ {1}. The same argument as above, using xt = x̄ and xt+2 = x̂,

proves that εt = εt+1. This completes the proof that εT = ε for all T ∈ N so that

Equation (12) becomes:

U(x1, · · · , xT , d, d, · · · ) =
∑
t∈N

u(xt)
t−1∏
τ=1

(
1− εu(xτ )

)

If ε = 0, we get the additive Bernoulli function:

U(x) =
∑
t∈N

u(xt)

When ε 6= 0 we compute:

1− εU(x1, · · · , xT , d, d, · · · ) = 1−
T∑

t=1

εu(xt)
t−1∏
τ=1

(
1− εu(xτ )

)
= 1 +

T∑
t=1

(
1− εu(xt)

) t−1∏
τ=1

(
1− εu(xτ )

)
−

T∑
t=1

t−1∏
τ=1

(
1− εu(xτ )

)
= 1 +

T∑
t=1

t∏
τ=1

(
1− εu(xτ )

)
−

T∑
t=1

t−1∏
τ=1

(
1− εu(xτ )

)
=

T∏
t=1

(
1− εu(xt)

)
=
∏
t∈N

(
1− εu(xt)

)
We eventually get the multiplicative specification:

U(x) =
1

ε

(
1−

∏
t∈N

(
1− εu(xt)

))
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Appendix 2: Proof of Proposition 2

For any x ∈ KN and T > 0 denote

U(x, T ) =
1

ε
×

(
1−

T∏
t=1

[1− εu(xt)]

)

and, for T = 0,

U(x, 0) = 0

We have, for any T ≥ 0:

U(x, T + 1)− U(x, T ) =
1

ε
×
(
1−

[
1− εu(xT+1)

])
×

T∏
t=1

[
1− εu(xt)

]
= u(xT+1)×

T∏
t=1

[
1− εu(xt)

]

When the lottery belongs to Qε, we can write:

W (x) =
∑+∞

T=0 p(1− p)T U(x, T ) =
∑+∞

T=0

[
(1− p)T − (1− p)(1− p)T

]
U(x, T )

=
∑+∞

T=0(1− p)T U(x, T )−
∑+∞

T=0(1− p)T+1U(x, T )

=
∑+∞

T=0(1− p)T U(x, T )−
∑+∞

T=0(1− p)T+1U(x, T + 1)

+
∑+∞

T=0(1− p)T+1 [U(x, T + 1)− U(x, T )]

=
∑+∞

T=1(1− p)T u(xT )
∏T−1

t=1 [1− εu(xt)]

(13)

Now, we can easily compute the partial derivative of W (x) with respect to xt:

∂W (x)

∂xt

= u′(xt)(1− p)t

t−1∏
τ=1

[1− εu(xτ )]

−εu′(xt) [1− εu(xt)]
−1

+∞∑
T=t

(1− p)T+1u(xT+1)
T∏

τ=1

[1− εu(xτ )]

Along a constant consumption path x =con x, denoting u(x) and u′(x) by u

26



and u′, the above expression reduces to:

∂W (x)

∂xt

= u′(1− p)t(1− εu)t−1

−εu′ [1− εu]−1
+∞∑
T=t

(1− p)T+1u(1− εu)T

= (1− p)t(1− εu)t−1

(
u′ − εuu′ [1− εu]−1

+∞∑
T=t

(1− p)T−t+1 [1− εu]T−t+1

)

= (1− p)t(1− εu)t−1

(
u′ − εuu′ [1− εu]−1

+∞∑
T=0

((1− p) (1− εu))T

)

We eventually obtain that:

ρ(x) = 1−
∂W (x)

∂x2

∂W (x)
∂x1

|x=conx = 1− (1− p)(1− εu) = p + (1− p)εu

Appendix 3: Proof of Proposition 3

Consider a lottery that belongs to Qε. The planner’s preferences over consump-

tion plans are represented by:

W (x) =
1

ε

+∞∑
T=1

p(1− p)T

(
1−

T∏
t=1

[1− εu(xt)]

)

Substitute u(x) = 1 + λv(x) in the above formula and write that:

W (x) ' W (x)|λ=0 + λ
∂W

∂λ
|λ=0
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to obtain

W (x) ' 1

ε

+∞∑
T=1

p(1− p)T
(
1− [1− ε]T

)
+λ

+∞∑
T=1

p(1− p)T [1− ε]T−1

(
T∑

t=1

v(xt)

)

The first term is a constant and does not affect preferences. Switching the sum-

mation signs, the second term equals

λ
+∞∑
t=1

v(xt)
+∞∑
T=t

p(1− p)T [1− ε]T−1

= λp [1− ε]−1
+∞∑
t=1

v(xt)
+∞∑
T=t

[(1− p)(1− ε)]T

=
λp [1− ε]−1

1− (1− p)(1− ε)

+∞∑
t=1

γtv(xt)

where γ = (1− p)(1− ε). The term λp[1−ε]−1

1−(1−p)(1−ε)
is a positive multiplicative factor

which does not affect preferences. We therefore see that the planner’s preferences

can be represented by
+∞∑
t=1

γtv(xt).
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