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ABSTRACT: A number of empirical studies seem to reject the additive

separability of preferences that is assumed in most theoretical models of the

life cycle. We show that, when additive separability is abandoned and inter-

actions between consumptions at different dates are taken into account, an

interesting relation emerges between risk aversion and length of the planning

horizon. Specifically, we show that when consumptions at different dates are

specific substitutes, risk aversion increases with horizon length. This may

explain the surprising empirical finding that individuals seem to increase the

share of wealth held in risky assets as they become older.
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1 . Introduction

For many economic issues, such as for the design of Social Security or the

management of pension funds, it is fundamental to know how individuals’

readiness to take financial risks may change as they grow older.

Such a question has been intensively addressed in the economic litera-

ture. In the standard additive model with CRRA (constant relative risk

aversion) preferences, Merton (1969) and Samuelson (1969) find that it is

optimal to invest in risky assets a fraction of wealth that is independent

of age. Samuelson (1989) offers a clear explanation of this result, which

contradicts conventional wisdom. Later contributions try to find ways to

escape this surprising result. Bodie et al. (1992) incorporate endogenous

labor supply into the initial Merton–Samuelson model. They find that, if

labor supply is less flexible at older ages than at younger ages, then relative

risk aversion increases with age. Another important contribution is that

of Gollier and Zeckhauser (2002), who show that—because of the dynamic

aspect of portfolio choice problems—the conclusion of Samuelson does not

extend to all additively separable preferences.

This paper contributes to the literature by examining the role of nonsep-

arability of preferences. The assumption that preferences are additively sep-

arable has been consistently rejected by empirical evidence (see e.g. Muell-

bauer 1988; Carrasco, et al. 2005). Nonetheless, this assumption is still

extensively made, essentially because it is so convenient. This assumption
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is, however, crucial for discussing the impact of horizon length on attitudes

toward financial risks. In fact, we show that if additive separability is not

assumed then individuals’ relative risk aversion will generally change dur-

ing the life cycle independently of any age or wealth effects and even with

time consistent preferences. Moreover, we relate the life-cycle variations of

relative risk aversion to standard measures of complementarity and substi-

tutability of consumption occurring at different stages. Roughly speaking,

we find that if levels of consumption at different life-cycle stages are specific

substitutes then relative risk aversion indices decrease during the life cycle,

whereas such indices increase if consumptions at different stages are specific

complements.

Our results thus provide a simple explanation of why risk aversion may

change during the life cycle: individuals’ preferences may simply not be

additively separable. Moreover, our results also indicate that relaxing the

assumption of additive separability does not entail insuperable complexity.

Even when it proves difficult or impossible to solve explicitly for intertempo-

ral consumption–portfolio choices, it is still possible to deduce how relative

risk aversion varies during the life cycle by looking at intertemporal bud-

get shares, Frisch’s cross-price elasticities, and single-period indices of risk

aversion.

The remainder of this paper is organized as follows. In Section 2 we

briefly review the empirical literature on the relation between risk aversion
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and age or horizon length. In Section 3 we study, as an illustrative example,

a simple model of portfolio choice with nonseparable preferences. Section

4 defines a natural measure of intertemporal risk aversion and shows how

this measure is related to portfolio choice. In Section 5, we consider the

case of preferences that are separable but not necessarily additive in order

to stress the impact of additivity on risk aversion. In Section 6 we examine

the general case where both separability and additivity are relaxed. The

empirical implications of our results are discussed in Section 7, and Section

8 concludes.

2 . Empirical Findings

Before delving into theoretical considerations, we may wonder whether em-

pirical studies suggest any relation between horizon length (or age) and risk

aversion. The most direct way to assess such intertemporal risk aversion

would be to elicit individuals’ preferences over lotteries on their lifetime in-

come. However, it is rather difficult to observe situations where individuals

can actually choose between several lotteries on their lifetime income. This

is why most empirical papers base their estimates on “virtual” experiments.

For example, Barsky et al. (1997) find that the relation between relative risk

aversion and age has an inverse U shape, although their sample is restricted

to people older than 50. In contrast, Guiso and Paiella (2001) find a positive

relation between risk aversion and age. However, these results should be in-
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terpreted with caution since they are based on hypothetical choices rather

than actual behavior. Also, they are cross-sectional studies and therefore

do not allow for control of cohort effects.

Another approach is to look at the share of wealth held in risky assets

and then see how it changes during the life cycle. There are many studies

that follow this track, including two recent books providing international

comparisons (Guiso et al. 2002a,b) and a longitudinal study by Ameriks and

Zeldes (2001). The cross-sectional studies reported in Guiso and colleagues

provide mixed evidence on how the share of wealth held in risky assets

varies with age. In most cases, no significant relation between age and the

share of risky assets is found, although a U-shaped relation is found in the

Netherlands and a weak positive relation is found in the United States.

Longitudinal studies are rare. The well-documented study of Ameriks and

Zeldes concludes that, after controlling for cohort effects, there is a strong

positive relation in the United States between age and the share of financial

portfolios held in risky assets.

It should be stressed that the empirical studies reported in Guiso et

al. (2002a,b) and that of Ameriks and Zeldes (2001) analyze the share of

financial wealth held in risky assets. None of them reports the share of

total wealth (including human wealth) held in risky assets, which —as is

made clear in Bodie et al. (1992)— would be the relevant information for

assessing individual relative risk aversion. The share of total wealth held in
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risky assets is related to the share of financial wealth held in risky assets as

follow:

risky assets
human wealth + financial wealth

=
(

risky assets
financial wealth

)(
1

1 + (human wealth)/(financial wealth)

)
.

Because the ratio of human wealth to financial wealth tends to decline with

advancing age, studies that focus on the ratio of risky assets to financial

wealth tend to underestimate the (positive) slope of the relation between

age and the degree of aggregate risk taking.

Thus, the absence of a relation between age and portfolio composition

that is reported in cross-sectional studies —together with the positive rela-

tion between age and portfolio risk that is found in the longitudinal study

of Ameriks and Zeldes— is consistent with a positive relation between age

and relative risk tolerance if we take human wealth into account. Such a

relation cannot be attributed to life-cycle variations in wealth, for at least

two reasons. First, most studies do control for individual wealth. Second,

it is generally found that relative risk aversion decreases with wealth and

that wealth tends to decline toward the end of the life cycle. Hence relative

risk aversion should increase with age, but the data actually support the

opposite conclusion. This paper shows that nonseparability of preferences

may explain this contradiction.
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3 . Portfolio Choice with Nonseparable Preferences:

An Illustrative Example

As mentioned in the Introduction, the aim of this paper is to discuss, in

a very general framework, the relationship between risk aversion and the

planning horizon in order to explain why the optimal degree of risk taking

may change along the life cycle. For our most general result (see Section 6)

we will assume only that agents are risk averse and have preferences that

can be represented within the expected utility framework. The cost for such

generality is that it is then impossible to derive exact analytical solutions for

standard portfolio choice problems. Our results must then rely on marginal

properties of the indirect utility function and thus are only local.

In some particular cases, however, exact solutions and global results can

be derived. We develop one such case in this section, since this will help us

examine the link between standard portfolio choice problems and our more

abstract discussion on risk aversion. The model is a discrete and simplified

version of the one in Pye (1973). Individuals live two periods and have a

lifetime von Neumann–Morgenstern utility function given by

U(C1, C2) = f(u(C1) + u(C2)),

where u(C) = lnC is the instantaneous utility function1 and f(A) = 1 −
1To neutralize age effects, we assume that the instantaneous utility is independent of

age.
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e−kA/k.

The coefficient k measures interactions between consumptions on differ-

ent dates:

∂2U

∂C1∂C2
(C1, C2) = − k

C1C2
e−k(u(C1)+u(C2)).

Thus, consumptions at dates 1 and 2 are “want independent” (additively

separable preferences)2 if k = 0, specific substitutes if k > 0, and specific

complements if k < 0. See Section 6 for the precise definitions of these

terms.

At date 0, the individual invests a fraction θ0 of her initial wealth W0 in

a risky asset, with the rest being invested in a riskless asset. At date 1 she

has wealth W1, out of which she chooses to consume C1, so her remaining

wealth is now W1−C1. She then invests a fraction θ1 of her remaining wealth

in the same risky asset. At date 2, she consumes her final wealth W2. We

denote by R̃0 and R̃1 the (random) returns of the risky asset in periods 0 and

1, returns that are presumed to be i.i.d. The riskless return is normalized

to zero, and we assume that the risky asset has a positive expected return

of R. The budget constraints are given by

W1 = W0(1 + θ0R̃0), (1)

C2 = (W1 − C1)(1 + θ1R̃1). (2)

We focus on the evolution of the share of risky assets during the life cycle

—that is, on whether or not θ0 > θ1.
2When k = 0, we adopt the usual convention that f(A) = A.
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Observe first that, in the additively separable case (k = 0), this share is

constant: θ0 = θ1. Indeed, at date 1 the individual chooses θ1 to maximize

E[ln(1+ θ1R̃1)]. The share θ1 does not depend on W1−C1, because u(C) =

lnC is CRRA. Consumption C1 is chosen to maximize ln C1 + ln(W1 −C1),

which leads to

C1 = W1 − C1 =
1
2
W0(1 + θ0R̃0).

By backward induction, θ0 is chosen at date 0 in order to maximize

E[lnC1 + ln(W1 − C1)] = constant + 2E[ln(1 + θ0R̃0)].

As a result, if R̃0 and R̃1 are identically distributed then θ0 and θ1

coincide: the share of risky assets in the portfolio of the individual is constant

across the life cycle. Of course, this is due in part to the fact that we have

neutralized age effects and wealth effects. We claim that this is due also to

intertemporal additive separability.

In order to see this, consider now the nonadditive case (k �= 0):

U(C1, C2) =
1 − e−k(ln C1+ln C2)

k
=

1 − C−k
1 C−k

2

k
.

At date 1, the individual chooses θ1 to maximize E[U(C1, (W1 − C1)(1 +

θ1R̃1))]. Again, the optimal θ1 is independent of C1 and W1 because instan-

taneous utility is CRRA (no wealth effect):

θ1 = arg max[−E (1 + θ1R̃1)−k]. (3)

As in the additively separable case, C1 is chosen to maximize ln C1 +

ln(W1 − C1), leading to C1 = W1/2, but the choice of θ0 is changed. The
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objective function becomes −E[C−k
1 C−k

2 ], which is proportional to

−E[(1 + θ0R̃0)−2k]. (4)

We thus obtain an expression similar to (3) but with a different exponent.

This is because the risk on the portfolio chosen at t = 0 affects two con-

sumption levels, C1 and C2, whereas θ1 affects only C2. When preferences

are not additively separable, this changes the portfolio decision.

Specifically, in our example it is easy to see that θ0 < θ1, when k > 0,

which means that the individual takes more risk at date 1. Indeed, this is

an easy consequence of the following comparative statics property (proved

in the Appendix).

Lemma 1. Let

θ∗(k) = arg max

{
1 − E[(1 + θR̃)−k]

k

}
.

Then θ∗ decreases in k.

If R, the expected return on the risky asset, tends to zero while its

variance σ2 remains constant, then we can derive a simple approximation of

θ0 and θ1. A second-order Taylor expansion of (3) shows that, when R → 0,

θ0 ≈ 1
1 + 2k

R

σ2
and θ1 ≈ 1

1 + k

R

σ2
. (5)

As we shall see, this approximation could have been obtained from con-

siderations of risk aversion alone and without solving the portfolio choice
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problem: the coefficients that appear before R/σ2 in (5) are the intertem-

poral risk tolerance indices of the individual, as defined in the next section.

4 . Intertemporal Risk Aversion

The example of Section 3 shows that relaxing the assumption of additive

separability may significantly affect the relation between age and financial

strategies. But so far, it is difficult to tell what drives the result. Is it

a peculiarity of our simple model of portfolio choice, or does it reflect a

fundamental aspect of nonadditive preferences? The latter hypothesis is

actually the correct one. As we explain in what follows, interactions between

levels of consumption at different dates are a key determinant of the relation

between intertemporal risk aversion and horizon length. Moreover, since

financial strategies are closely related to intertemporal risk aversion, we also

find that portfolio choice depends on horizon length when preferences are

not additively separable. Unfortunately, optimal portfolio selection with

nonseparable preferences is a formidable computational problem, with no

hope for a closed-form solution except in special cases. So our strategy will

be (i) to define an intertemporal measure of risk aversion in a neighborhood

of a deterministic consumption profile (the risk tolerance index at age n),

and (ii) to study how this index varies during the life cycle. Then we will

show that this index allows us to obtain a good approximation of the share

of risky assets in the portfolios chosen by individuals of different ages —at
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least when the excess return of the risky asset is small.

Before introducing theoretical considerations on intertemporal risk aver-

sion, a natural question arises: How can we compare risk aversions of in-

dividuals who have different planning horizons? Individuals with differ-

ent horizons do indeed have preferences over different consumption sets.

Comparative risk aversion was originally developed by Arrow (1971) and

Pratt (1964) for preferences over a single commodity. It was extended by

Kihlstrom and Mirman (1974) to the case where people consume several

goods but have the same ordinal preferences. Clearly, this cannot be ap-

plied to individuals who consume over different numbers of periods. Karni

(1979, 1983) suggested alternative approaches to multivariate comparative

risk aversion; once again, however, no clear comparison can be obtained

when applying these approaches to individuals who care for different goods.

Thus, strictly speaking there is no theoretical foundation for comparing risk

aversions of individuals with different horizon lengths.

Yet it may be possible to compare the degree of risk aversion individuals’

indirect utility functions. Again, there are various options. The comparison

can be in terms of relative or absolute risk aversion. Also, since individuals

of different ages may possess different amounts of wealth, it is not clear

whether we should control for wealth variations or not. We will define an

intertemporal index of risk tolerance and explain it as a natural measure

for analyzing how an individual’s attitude toward risk varies during the life
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cycle.

Consider then an individual with a lifetime utility function U(C1, C2, ..., CN ),

and assume that these utilities are “time consistent”. More formally, this

means that an agent of age n with past consumption (C∗
1 , C∗

2 , ..., C∗
n−1) has

preferences over (Cn, ..., CN ) that are represented by the utility function

Un(Cn, ..., CN ) = U(C∗
1 , C∗

2 , ..., C∗
n−1, Cn, ..., CN ).

The price of the composite good consumed in period i is denoted pi. In

the absence of uncertainty, individuals with initial wealth W initially choose

the consumption path (C∗
1 , C∗

2 , . . . , C∗
N ) that maximizes U(C1, . . . , CN ) un-

der the budget constraint
∑N

i=1 piCi = W . At any age n, the remaining

wealth is Wn = W −∑n−1
i=1 piC

∗
i and individuals then choose (Cn, . . . , CN )

so as to maximize Un(Cn, . . . , CN ) under the budget constraint
∑N

i=n piCi =

Wn. The time consistency assumption implies that the solution to the max-

imization program at age n is given by (C∗
n, . . . , C∗

N ) and hence that indi-

viduals stick to their initial choices.

Definition 1. The intertemporal risk tolerance index at age n along con-

sumption path C∗ = (C∗
1 , . . . , C∗

N ) is defined as

Tn (C∗
1 , . . . , C∗

N ) = − V ′
n(Wn)

WnV ′′
n (Wn)

,

where Wn = W −∑n−1
i=1 piC

∗
i is the wealth held at age n and Vn(·) is the

14



value function of an individual of age n with utility function U :

(Pn)

⎧⎪⎪⎨⎪⎪⎩
Vn(Wn) = maxCn,...,CN

{U(C∗
1 , . . . , C∗

n−1, Cn, . . . , CN )},∑N
i=n piCi = Wn.

(6)

To illustrate why this index of risk tolerance is informative about how

attitudes toward risk change during the life cycle, we now consider two cases

in which some marginal uncertainty is added to the deterministic setting

already described.

For the first illustrative case, imagine that at age n the individual is

offered a choice between giving up a share αn of his wealth (leaving him

with wealth (1−αn)Wn) and participating in a fair lottery that provides him

with wealth (1+ ε)Wn or (1− ε)Wn with equal probability. Now ask: What

is the share αn(ε) that leaves the individual indifferent between the two

alternatives? This is similar to computing a risk premium in one-dimensional

analysis. It is easy to show that

αn(ε) =
ε2

2Tn(C∗)
+ o(ε2).

This formula means that, as a first approximation, the relative risk premium

for a lottery on the individual’s wealth at age n is inversely proportional to

the intertemporal tolerance index at age n, in conformity with the classical

analysis of Arrow and Pratt.

Our second case consists of introducing a risky asset into the economy

and then looking at the limit behavior of portfolio choices at different ages
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when the return on the risky asset tends to zero, so that the fraction of

wealth held in risky assets is small. We thus extend our model of Section

3 to the N -period case. The return of the riskless asset is still assumed

to be zero, but there is no loss of generality here since we assume that

consumption at different dates may have different prices. Individuals have

an initial wealth W0. At date 0 individuals choose θ0, the fraction of W0

that is invested in the risky asset. The return on the risky asset is R0, which

provides them, at date 1, with wealth W1 = W0(1+θ0R0). Then individuals

choose C1, and the fraction θ1 of their remaining wealth W1−p1C1, invested

in the risky asset. The return on the risky asset is R1, which provides them

at date 2 with a wealth W2 = (W1 − p1C1)(1 + θ1R1). The consumption C2

is chosen, and so on until period N, when individuals end up consuming all

their wealth.

Assume that the risky returns Ri are i.i.d. with E[Ri] = R and Var(Ri) =

σ2. Denote by C∗ the consumption path that is chosen when there is no

risky asset (or when R = 0).

Lemma 2. When R is close to zero, the share of wealth invested in the

risky asset at date n is given by

θn(R) =
R

σ2
Tn+1(C∗) + o(R),

where o(R) is a function such that limR→0 o(R)/R = 0.

Proof. We use Vn(C∗
1 , ..., C∗

n−1, Wn) to denote the indirect utility function
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at age n. By definition

Vn(C∗
1 , ..., C∗

n−1, Wn) = {max
θn,Cn

E[Vn+1(C∗
1 , ..., Cn, (Wn − pnCn)(1+ θnRn))]}.

The first-order condition of this problem with respect to θn gives

E[(Wn − pnCn)RnV ′
n+1(C

∗
1 , ..., Cn, (Wn − Cn)(1 + θnRn))] = 0,

where the derivative is taken with respect to the last argument. If E[Rn] and thus θn

is small then, after simplifying by (Wn − pnCn), a Taylor expansion yields

E[Rn]V ′
n+1(Wn − pnCn) + θnE[R2

n](Wn − pnCn)V ′′
n+1(Wn − pnCn) ≈ 0.

Because E[Rn] = R is small, we can replace E[R2
n] by σ2 and so obtain the

desired result.

�

The share of wealth invested in the risky asset at date n is therefore pro-

portional, as a first-order approximation, to the intertemporal risk tolerance

index Tn+1(C∗). We next study how Tn(C∗) changes with n; this will give

us a first approximation of how an individual’s optimal financial strategy

varies during the life cycle.

5 . Risk Aversion with Separable but Not Neces-

sarily Additive Preferences

To stress the role played by the additivity assumption that is made in most

studies, we consider in this section the simplest extension of the additively
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separable model. The (ordinal) assumption of separability of preferences

is maintained,3 but we do not assume that the von Neumann–Morgenstern

utility function is additive. From Gorman (1968) we know that ordinal sepa-

rability implies that the lifetime von Neumann–Morgenstern utility function

is of the form

U(C1, . . . , CN ) = f

(
N∑

i=1

ui(Ci)

)
.

The function f(·) and the instantaneous utility functions ui(·) are assumed

to be twice continuously differentiable and to have positive first-order deriv-

atives. The shape of f captures the interactions between consumption at

different dates: nil if f is linear, complementarities if f is convex, substi-

tutabilities if f is concave.

Proposition 1. In the additively separable case (i.e., when f is linear),

the intertemporal risk tolerance index at date n along the consumption path

C∗ = (C∗
1 , . . . , C∗

N ) is a weighted sum of instantaneous risk tolerance indices:

Tn(C∗) =
N∑

i=n

αn
i ti(C∗

i ), (7)

where αn
i = piC

∗
i /(
∑N

j=n pjC
∗
j ) is the share of (remaining) intertemporal

budget spent at date i and ti(C∗
i ) = −u′

i(C
∗
i )/C∗

i u′′
i (C

∗
i ) is the instantaneous

index of relative risk tolerance at date i.
3This means that the indifference curves between consumption during two different

periods do not depend on consumption during other periods.
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This is a standard result. We do not provide a proof here because this

result is a particular case of Proposition 3, which is stated in Section 6 and

proven in the Appendix.

Equation (7) already shows different reasons why the risk tolerance in-

dex may vary during the life cycle. It may be that the functions ti(·), which

measure instantaneous risk tolerance, change with age; we would then have

“age effects”. This would be the case, for example, if (say, for some psycho-

logical reasons) older individuals prove to be more or less risk averse than

younger ones with respect to instantaneous consumption. Another possibil-

ity is that the functions ti(·) are all identical (no age effects) but that they

are not constant in C∗ and that consumption changes during the life cycle;

then we would have “wealth effects”. However, since the weights αn
i in (7)

sum to unity, it is clear that —except for these age and wealth effects—

there is no other element that could cause risk aversion to change during

the life cycle: if ti(C∗
i ) is independent of i, then Tn(C∗) is independent of n

and there are no horizon effects.

If instantaneous utility functions are all identical (no age effect) and

CRRA (so that there is no wealth effect), then relative risk tolerance is

constant over the life cycle. This explains why there is no relation between

horizon length and relative risk aversion in the model of Merton (1969) and

Samuelson (1969).
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From now on, we consider the effect on risk tolerance of relaxing additive

separability. To do this, we neutralize age effects by assuming that, up to

a time preference factor, the instantaneous utility functions are identical

across dates, (ui ≡ δiu with δi > 0). We also neutralize wealth effects by

considering stationary consumption paths. Proposition 2 shows that, when

f is nonlinear, risk tolerance indices vary during the life cycle.

Proposition 2. Along any stationary consumption path (C∗, C∗, . . . , C∗),

the sequence of intertemporal risk tolerance indices T1, . . . , TN is increasing

if f ′′ < 0, decreasing if f ′′ > 0, and constant if f ′′ ≡ 0.

Proof. In order to sustain a stationary consumption path, prices must be

proportional to δi; we normalize them so that
∑

i≥n pi = 1. Then W = C∗,

and Vn is explicit:

Vn(W ) = f

⎡⎣∑
i<n

δiu(C∗) +

⎛⎝∑
i≥n

δi

⎞⎠u(W )

⎤⎦ . (8)

Thus, we can immediately find V ′
n as follows:

V ′
n(W ) = f ′(A)

⎛⎝∑
i≥n

δi

⎞⎠u′(W ),

where A denotes the term within brackets in (8), as computed at the sta-

tionary consumption path (W, W, . . . , W ) (notice that A is independent of

n). Similarly, we have

V ′′
n (W ) = f ′(A)

⎛⎝∑
i≥n

δi

⎞⎠u′′(W ) + f ′′(A)

⎛⎝∑
i≥n

δi

⎞⎠2

u′2(W ).
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Therefore,

Rn =
1
Tn

= −C∗u′′(C∗)
u′(C∗)

− C∗ f ′′(A)
f ′(A)

⎛⎝∑
i≥n

δi

⎞⎠u′(C∗). (9)

When f is linear (f ′′ = 0), risk aversion is constant along any stationary con-

sumption path (C∗, C∗, . . . , C∗) and is equal to the static risk aversion index

−C∗(u′′/u′)(C∗). However, if f ′′ �= 0 then there is a correcting term, which

is positive and decreasing in n when f ′′ < 0 but negative and increasing in

n when f ′′ > 0. �

It remains to extend this analysis to the case where preferences are nei-

ther additive nor separable. This is our task in the next section.

6 . The Impact of Consumption Interactions on
Risk Aversion

The previous section made it clear that relaxing the assumption of additive

separability may lead one to revise significantly the relation between horizon

length and risk aversion. It would, however, be excessively optimistic to

say that empirical studies have so far clearly established how consumption

at different moments in time interacts with consumer preferences. Most

papers that challenge the additivity assumption have proposed particular

extensions of the additively separable model and then tested whether such

extensions fit the data better. For example, this is the case with papers on

“habit formation”, which extend the standard additive model by allowing
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the marginal utility of current consumption to depend on past consumption

(see e.g. Muellbauer 1988; Dynan 2000). However, the choice of these

extensions is guided by intuitive arguments or by technical reasons, not by

empirical evidence. The additive model is probably unrealistic, but equally

doubtful is the validity of these simple extensions and of the separable but

nonadditive model examined in Section 5.

Given these doubts, we consider it important to derive results that do

not rely on any particular specification. In the following we therefore study

the general case in which preferences are represented by a concave, and twice

continuously differentiable von Neumann–Morgenstern utility function,

U(C) = U(C1, C2, ..., CN ),

without making any further assumptions. With this general formulation, we

must resort to the fundamental concepts of utility theory in order to describe

individual preferences. Since we are interested in the cardinal properties of

the utility function, we will naturally refer to the seminal contributions of

Frisch (1959) and Houthakker (1960) and will use their terminology.

Definition 2. Consumptions at dates i and j are specific substitutes if

and only if [D2U ]−1
ij > 0. They are specific complements if and only if

[D2U ]−1
ij < 0, and they are want independent if and only if [D2U ]−1

ij = 0.

With additively separable preferences, all consumptions at different pe-

riods are “want independent” because [D2U ] (and thus [D2U ]−1) is diagonal

(or block diagonal if several goods are consumed during each period).
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Definition 3. The coefficient of specific substitutability between consump-

tions at dates i and j (for a consumption profile C) is given by

κij(C) =
uiuj [D2U ]−1

ij

Ciui + Cjuj
, (10)

where ui = ∂U/∂Ci for i = (1, . . . , N).

This coefficient is positive if consumptions at dates i and j are specific

substitutes and is negative if they are specific complements. It is related to

the notion (see Frisch 1959) of “want elasticity” of consumption at date i

with respect to consumption at date j:

xij ≡ uj

Ci
[D2U ]−1

ij for i �= j.

However, we prefer to use the κij rather than the xij , because the for-

mer more clearly show the symmetry of our results (the κij are symmetric

whereas the xij are not).

The following result gives a general formula linking risk tolerance indices

during the life cycle to coefficients of specific substitutability between con-

sumption at different dates (the κij , as defined in (10)). Our formula is valid

when interactions are small —that is, when κ ≡ maxi�=j |κij | is small.

Proposition 3. When interactions between consumption at different dates

are small, the intertemporal risk tolerance index at age n (along consumption

path C∗) can be approximated by a weighted sum of instantaneous risk tol-

erance indices plus a correcting term. This correcting term is negative when
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consumptions at different dates are specific substitutes. More specifically,

the relative risk tolerance at age n is given by

Tn(C∗) =
∑
i≥n

αn
i ti(C∗) −

∑
i,j≥n
i�=j

(αn
i + αn

j )κij + κo(κ), (11)

where

ti(C∗) = −
∂U
∂Ci

(C∗)

C∗
i

∂2U
∂C2

i
(C∗)

is the instantaneous risk tolerance index at date i,

αn
i =

C∗
i

∂U
∂Ci

(C∗)∑
j≥n C∗

j
∂U
∂Cj

(C∗)

is the budget share spent at date i (relative to the budget to be spent in the

remaining periods of life), κ = maxi�=j |κij |, and o(κ)/κ → 0 when κ → 0.

Proposition 3 (see Appendix for proof) allows one to measure the bias

introduced by neglecting intertemporal interactions. If U is additively sepa-

rable (i.e., if U(C) =
∑

i ui(Ci)), then all the κij are zero and the intertem-

poral risk tolerance index Tn(C∗) reduces to a weighted sum of instantaneous

indices, as stated in Proposition 1. However, if consumptions at different

dates are specific substitutes (κij > 0) but such interactions remain small

(κ small), then the relative risk tolerance at age n is decreased by a factor

that roughly equals a weighted sum of coefficients of specific substitutability

between consumption at different dates. The adjustment for risk tolerance is

therefore negative when consumptions at different dates are specific substi-

tutes and positive when such consumptions are specific complements. More
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generally: if some goods are specific complements to themselves (at other

dates) but others are specific substitutes, then the sign of the bias is given

by the sum of these coefficients weighted by the budget shares.

Equation (11) suggests that, barring additive separability, there may be

a gap between relative risk tolerance with respect to instantaneous consump-

tion and relative risk tolerance with respect to wealth. If consumptions at

different periods of time are specific complements, then agents may be highly

risk averse with respect to instantaneous consumption and moderately risk

averse with respect to wealth. This is what happens with the specification

chosen by Constantinides (1990) to solve the equity premium puzzle. On

the other hand, if consumptions at different dates are specific substitutes,

then relative risk aversion with respect to wealth may be much larger than

relative risk aversion with respect to instantaneous consumption. This is the

case in the model proposed by Ahn (1989) for solving the equity premium

puzzle. It is troubling, however, to see that both specific complementarity

and specific substitutability were used to solve the same empirical puzzle.

The key to understanding the relationship between risk aversion and

planning horizons, is to notice that the size of the correcting term that

accounts for the nonseparability of preferences varies with horizon length.

Indeed, this term, which is given by

−
∑
i,j≥n
i�=j

(αn
i + αn

j )κij , (12)
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is a sum restricted to indices i and j that are equal to or greater than the

current age n. There are (N −n)(N −n+1)/2 terms in that sum. However,

the relative budget shares αn
i are (on average) lower when the horizon length

is large, since
∑

i≥n αn
i = 1 by definition. Roughly speaking (i.e., omitting

the variations in the κij and in the αn
i ), there are (N − n)(N − n + 1)/2

terms of size 2κ/(N −n+1) in the sum shown in (12), which gives a term of

size κ(N −n). Hence, the correcting term increases (in absolute value) with

the strength of the interaction between consumption at different dates and

with horizon length. The bias due to the assumption of additive separability

is therefore typically larger for younger individuals —who still have many

periods to live— than for older individuals.

The reason why complementarity or substitutability of consumption at

different dates affects intertemporal risk tolerance is rather intuitive. For

individuals who smooth their consumption during the life cycle, a negative

shock to wealth at date n will yield negative shocks to consumption in all

remaining periods of life; likewise, a positive shock to wealth will generate

positive shocks to consumption. The point we stress is that, regardless of

whether the shock to wealth is positive or negative, it generates a sequence

of shocks on instantaneous consumption that are positively correlated. Risk

aversion with respect to wealth is therefore akin to risk aversion with respect

to positively correlated risks on instantaneous consumption. If consump-

tions at different periods are neither complements nor substitutes (as in the
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additive model), then it does not matter that the risks on instantaneous

consumption are positively correlated. However, as soon as there are substi-

tutabilities or complementarities between consumption at different periods,

the positive correlation does matter: it increases the degree of risk aversion

when consumptions at different periods are substitutes and decreases that

risk when they are complements. This explains the sign of the correcting

term in (11). The magnitude of the correction depends on the number of

correlations at play, and it is therefore increasing (in absolute value) with

the number of remaining periods of life. This explains the horizon effect

that we obtain.

7 . Are Consumptions at Different Ages Specific
Substitutes or Specific Complements ?

Equation (11) shows that the relation between relative risk aversion and hori-

zon length depends on the sign of the coefficients of specific substitutability.

It would thus appear important to see if there are any empirical findings or

theoretical arguments that suggest a particular sign for the κij .

To our knowledge, the only4 paper to provide estimates of cross “want

elasticities” is Browning (1991). For reasons of parsimony, Browning con-

siders such elasticities to be nonzero only for expenditures in adjacent time

periods (expenditures at date t interact only with expenditures at dates
4There is, however, an empirical literature on the estimation of Frisch intertemporal

demand functions initiated by the influential study of labor supply by MaCurdy (1981).
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t − 1, t, and t + 1). He finds that such interactions are small but non-

negligible. Most types of expenditures seem to be want independent, but

expenditures on durables are found (as expected) to be specific substitutes

with themselves in adjacent periods.5

Hayashi (1985) also provides some support for the presumption that con-

sumptions at different moments in time are substitutes. Although Hayashi

does not estimate “want elasticities”, his findings indicate that changes in

consumption are strongly negatively autocorrelated. Hayashi attributes such

a result to the “durability of consumption”. This is actually another way of

expressing that consumptions at different moments in time are substitutes.

Theoretical arguments can also be given for why consumptions at differ-

ent dates can be specific substitutes. This involves the notion of “temporal

risk aversion” or “intertemporal correlation aversion” introduced by Richard

(1975). To illustrate this notion, consider for example two dates (n = 1, 2)

and two intertemporal lotteries:

L1 =

⎧⎪⎪⎨⎪⎪⎩
(C1, C2)

(c1, c2)
and L2 =

⎧⎪⎪⎨⎪⎪⎩
(C1, c2)

(c1, C2)
,

where each outcome (in both lotteries) occurs with equal probability. As-

sume that c1 < C1 and c2 < C2. An individual with additively separa-

ble preferences (i.e., U(C1, C2) = U1(C1) + U2(C2)) is indifferent between
5Browning also finds that fuel is a specific complement with itself, but the coefficient

is smaller.
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L1 and L2, since both lotteries give the same sum of expected utilities

(1/2)(U1(c1) + U1(C1)) + (1/2)(U2(c2) + U2(C2)). But this is generally not

the case when preferences are not additively separable. Now we say that an

individual is “averse to intertemporal correlation” if he prefers L2 to L1. In-

tuitively, she prefers having some of the worst and some of the best to taking

a chance on all of the worst or all of the best. Such a pattern happens when

∂2U/∂C1∂C2 < 0 and hence when goods 1 and 2 are specific substitutes.

In the N -period model, it is no longer true that aversion to intertemporal

correlation and positive specific substitutability are equivalent properties.

However, the equivalency holds locally when we consider weak interactions.

Indeed, from Lemma 3 (see Appendix) we know that, when interactions are

weak, we have

[D2U ]−1
ij ≈ −

∂2U

∂Ci∂Cj

∂2U

(∂Ci)2
∂2U

(∂Cj)2

. (13)

Thus, when interactions are weak, preferences that exhibit aversion to in-

tertemporal correlation also exhibit positive specific substitutability.

Another point can be made by comparing relative risk aversion and in-

tertemporal elasticity of substitution. It is well known that the standard

specification of the life-cycle model with additive preferences and isoelastic

instantaneous utility functions implies that relative risk aversion equals the

inverse of intertemporal elasticity of substitution. The most popular way

to break this unpleasant relation between two apparently distinct concepts
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is to relax the von Neumann–Morgenstern axioms and follow the theory

developed by Kreps and Porteus (1978) on temporal lotteries (see e.g. Ep-

stein and Zin 1989; Farmer 1990; Weil 1990; Campbell 1993). However

the relation can also be broken while remaining within the standard von

Neumann–Morgenstern framework on atemporal lotteries. Actually, within

this framework the (local) relative risk aversion always equals the inverse of

the (local) intertemporal elasticity of substitution if and only if the utility

function is additively separable (see Bommier 2003). Moreover, the differ-

ence between (local) relative risk aversion and (local) intertemporal elas-

ticity of substitution is precisely determined by aversion to intertemporal

correlation. Because aversion to intertemporal correlation and specific sub-

stitutability are closely related (at least when interactions are weak), the

coefficients of specific substitutability considered in this paper can be re-

lated to the difference between local measures of intertemporal elasticity of

substitution and local indices of relative risk aversion. By definition, the

elasticity of substitution between consumptions at dates i and j (holding

consumption in other periods constant) is given by6

σij =

(
Ci

∂U
∂ci

)−1
+
(
Cj

∂U
∂cj

)−1

−∂2U/(∂Ci)2

(∂U/∂Ci)2
+ 2 ∂2U/∂Ci∂Cj

(∂U/∂Ci)(∂U/∂Cj)
− ∂2U/(∂Cj)2

(∂U/∂Cj)2

.

It follows easily from (10) and (13) that, to a first-order approximation, the
6Note that, with additively separable preferences and an isoelastic instantaneous utility

function, the σij equal a constant —the “intertemporal elasticity of substitution”.
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coefficients of specific substitutability are also given by

κij ≈ 1
2rirj

[
αj

αi + αj

(
ri − 1

σij

)
+

αi

αi + αj

(
rj − 1

σij

)]
,

where

ri = −
Ci

∂2U
(∂Ci)2

∂U
∂Ci

is the relative risk aversion index with respect to consumption in period i

and αi is the budget share spent in period i. Thus, if all local coefficients of

relative risk aversion are greater than the inverse of intertemporal elasticity

of substitution between any two periods, then preferences exhibit positive

specific substitutability. Empirical measures of local relative risk aversion

indices and intertemporal elasticities of substitution could then be used to

determine whether consumptions at different dates are specific complements

or rather specific substitutes —and ultimately to elucidate the relation be-

tween horizon length and intertemporal risk aversion.7 Unfortunately, both
7Equation (11) can be rewritten as

Tn(C∗) =
�

i≥n

αn
i ti(C

∗) −
�

i,j≥n
i�=j

αn
j (ri − 1/σij)

rirj
+ κo(κ).

It is therefore clear that the correcting term that appears in (11) and accounts for

interactions between consumption at different dates can also be written, to a first-order

approximation, as a weighted sum of differences between local relative risk aversion indices

and the inverse of local intertemporal elasticities of substitution. In particular, when all

local relative risk aversion indices are greater than inverse elasticities of substitution, the

correction is negative. Moreover, for the same reasons as given after (12), the magnitude

of the correction typically increases with horizon length.
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risk aversion and intertemporal elasticities of substitution are particularly

difficult to measure, and the empirical literature remains inconclusive about

the sign and the magnitude of these differences.

To conclude this section on intertemporal interactions, we discuss the re-

lation between specific interactions and habit formation. For technical rea-

sons, most papers on habit formation assume that the intertemporal utility

function has some form of additive structure. Namely, the N -period utility

function is generally specified as the sum of instantaneous utility functions:

UH(C1, ..., CN ) =
N∑

i=1

Vi(Ci, Xi), (14)

where Xi (the stock of habits in period i) is positively related to consump-

tions in the previous periods. The cross-derivatives ∂2Vi/∂Ci∂Xi are as-

sumed to be positive. Of course, since Xi depends on consumption in previ-

ous periods, such preferences are not additively separable. Still, the struc-

ture of (14) imposes strong restrictions. In particular, since ∂Xi/∂Cj > 0 for

any j < i and since ∂2Vi/∂Ci∂Xi > 0 for any i, we have ∂2UH/∂Ci∂Cj > 0

for any i �= j. Hence, preferences as represented by (14) exhibit negative

intertemporal correlation aversion, and the coefficients of specific substi-

tutability are therefore negative. Thus, it appears that most papers on

habit formation do assume that consumptions at different dates are specific

complements, which implies that there is a positive relationship between

risk tolerance and horizon length. However, this follows only because these

papers rely on the specific structure of (14). For a general (not additively
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separable) specification, there is no systematic relation between habit for-

mation and specific substitutability. Habit formation (as defined in Becker

and Murphy 1988) is equivalent to the notion of adjacent complementar-

ity introduced by Ryder and Heal (1973). Preferences are said to exhibit

adjacent complementarity if

∂

∂Ci

( ∂U

∂Ci+1

∂U

∂Ci+2

)
> 0 forall i ≤ N − 2

(i.e., if marginal rate of substitution between present and future consump-

tion increases with past consumption). This is an ordinal notion that is

preserved under any increasing transformation. In other words, if a utility

function U exhibits adjacent complementarity then any monotonic transfor-

mation Ũ = f(U) will also exhibit adjacent complementarity. However, for

f sufficiently concave, consumptions at different dates become specific sub-

stitutes. Preferences involving habit formation can therefore exhibit specific

complementarity as well as specific substitutability.

8 . Concluding Remarks

We have shown in this paper that interactions between consumptions at

different dates could generate variations of relative risk aversion during the

life cycle, even if tastes do not vary with age and even if we control for

wealth effects. More specifically, Proposition 2 has shown that, if the von

Neumann–Morgenstern utility of an individual is a concave transformation
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of an additively separable function, then relative risk aversion decreases with

age along any stationary consumption path. Proposition 3 extends this re-

sult to a more general form of interactions and to nonstationary consumption

paths, and this enables us to evaluate the bias introduced by the additive

separability assumption in the estimation of intertemporal risk aversion.

This bias is approximately equal to minus the sum of specific substitutabil-

ity coefficients as weighted by budget shares. The bias is typically larger

(in absolute values) for young individuals —who still have many periods to

live— than for older ones.

Our results can be used in different ways. We can apply them to models

that assume simple specifications for the utility function. Take, for example,

an exponential transformation of a sum of CRRA utilities:

U(C) = −1
k

exp

{
−k

N∑
i=1

C1−γ
i − 1
1 − γ

}
, (15)

where k is positive. A simple application of equation (9) immediately yields

the relative risk aversion coefficient Rn of an individual of age n along any

constant consumption path:

Rn =
1
Tn

= γ + k(N − n + 1)C1−γ . (16)

As expected, Rn decreases with n because k > 0.

The utility function that we used for our illustrative example in Section

3 is obtained for γ = 1 and N = 2. From (16) we obtain T1 = 1/(1 + 2k)

and T2 = 1/(1 + k), which (when combined with Lemma 2), leads to the
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result obtained in Section 3; see (5). We have thus found two ways to obtain

the same results. The first way, which we followed in Section 3, consists of

providing an explicit solution to the portfolio choice problem and deriving

some of its properties; this is indisputably the most popular approach in the

finance literature. The second way consists of looking at marginal properties

of the utility function and in particular at our measure of intertemporal risk

tolerance indices. The first method has an obvious advantage: it works even

when the share of risky assets is relatively large and portfolio risks are not

small. But it has also a major drawback: it can only work when it is possible

to derive a closed-form solution to the portfolio choice problem. Needless

to say, the number of specifications for which such closed-form solutions are

available is extremely limited. The literature has naturally focused on these

particular specifications, but there is no reason to suppose they should fit

observed behavior particularly well.

The alternate route that we have followed in this paper does not suffer

from such technical constraints. In fact, our results make it possible to

derive estimates of how risk aversion varies with age—even if we only have

only a limited and local knowledge of individual preferences. Consider, for

example, equation (11):

Tn(C∗) =
∑
i≥n

αn
i ti(C∗) −

∑
i,j≥n
i�=j

(αn
i + αn

j )κij + κo(κ).

Budget shares αn
i usually are relatively well observed. The other ingredients
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needed to obtain intertemporal risk tolerance indices as a function of age

are local estimates of the instantaneous risk tolerance indices, ti(C∗), and

the coefficients of specific substitutability, κij . Imagine for instance that

all the budget shares are observed to be equal. Also assume that, at the

optimal consumption path, there is no variation in the instantaneous indices

of relative risk tolerance during the life cycle (ti(C∗) = 1/γ) and that the

coefficients of specific substitutability are of the form κij = κρ|i−j|−1. Then

the parameter κ gives the strength of the interactions while ρ determines

their shape (specific substitution decreases with time distance if ρ < 1 and

increases with time distance if ρ > 1). In such a case, (11) leads to

Tn(C∗) ≈ 1
γ
− 2κ

N − n + 1

∑
i,j≥n
i�=j

ρ|i−j|−1

=
1
γ
− 4κ

N − n + 1

[
ρ(ρN−n − 1) + (N − n)(1 − ρ)

(1 − ρ)2

]
. (17)

This relation between relative risk tolerance and horizon length is shown in

Figure 1; the corresponding picture for the relative risk aversion is displayed

in Figure 2. In particular, we observe that the relation between relative risk

tolerance and horizon length is convex (concave) if specific substitutability

between consumption levels at different dates decreases (increases) with time

distance between these dates.

An unresolved issue is whether considering risk aversion suffices to pro-

vide a relatively good approximation of the life-cycle financial strategy of

individuals. We have shown that this is the case when the share of risky
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assets are small, but one may wonder whether it remains true when agents

take noninfinitesimal risks. In this case, an individual’s wealth follows a

random path, and the dynamic aspects of the problem (as emphasized in

Gollier and Zeckhauser 2002) must be considered. In particular, it matters

whether risk tolerance indices are convex or concave with respect to wealth.

Whether these considerations are likely to generate larger effects than those

discussed in this paper is difficult to tell. However, one can reasonably pre-

sume that the fundamental properties of preferences that drive the result

of Gollier and Zeckhauser (and are related to the fourth derivative of the

utility function) will be more difficult to test empirically than the comple-

mentarities and substitutabilities that we have discussed here, which depend

on second derivatives only. In particular, the impact of nonseparability an-

alyzed in this paper is already present when instantaneous preferences are

CRRA, whereas the phenomenon studied by Gollier and Zeckhauser would

vanish in this case.
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9 Appendix

Proof of Lemma 1. We have

θ∗(k) = arg max{ϕ(θ, k)},

where

ϕ(θ, k) =
1 − E[1 + θR̃]−k

k
.

To establish that θ∗(·) is decreasing, it is enough to show that (∂2ϕ/∂θ∂k)(θ∗(k), k) <

0 (single crossing property).

Indeed,

∂ϕ

∂θ
= E[R̃(1 + θR̃)−i−1]

and

∂2ϕ

∂k∂θ
= −E[R̃ ln(1 + θR̃)(1 + θR̃)−k−1].

Now, for all θ > 0 and all R̃ we have R̃ ln(1 + θR̃) > 0. Thus ∂2ϕ/∂k∂θ <

0. That θ∗(k) > 0 follows from our assumption that E[R̃] > 0 (since

(∂ϕ/∂θ)(0, k) = E[R̃]). �

Proof of Proposition 3. The proof relies on two simple ingredients.

1. A formula due to Hanoch (1977) that relates T (C), the intertempo-

ral risk tolerance index along a consumption path C, to the matrix

[D2U ]−1(C) and the utility gradient ∇U(C):

T (C) =
t∇U [D2U ]−1∇U

tC∇U
.
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2. The following linear algebra lemma about the inverse of nonsingular

matrices that are almost diagonal.

Lemma 3. Consider a matrix M = [mij ] with mii �= 0 for all i, and note

that m = supi�=j |mij |. Then, when m is small enough, M is nonsingular

and the (i, j)th elements of M−1 are given by

[M−1]ii =
1

mii
+ mo(m) and

[M−1]ij = − mji

miimjj
+ mo(m) if i �= j

where o(m)/m → 0 when m → 0.

Proof. Take M nonsingular, with m = supi�=j |mij | close to zero, and

define ϕij [M ] = [M−1]ij , the generic term of M−1. The value of ϕij [M ] is

given explicitly by the classical formula

ϕij [M ] =
(−1)i+j det[Mji]

det[M ]
, (A1)

where det[A] denotes the determinant of any square matrix A and Mij is

the submatrix obtained by deleting the ith row and the jth column of M .

Define Δ = diag[M], the matrix obtained from M by deleting off-diagonal

terms. Because ϕij is differentiable on its domain (we note its derivative by

Dϕij), we can write a Taylor expansion around Δ that is valid for m small:

ϕij [M ] = ϕij [Δ] + Dϕij [Δ](M − Δ) + mo(m),

where o(m)/m → 0 when m → 0.
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Since ϕii(Δ) = (mii)−1 and ϕij(Δ) = 0 for i �= j, Lemma 3 is proven

if we can establish that Dϕii(Δ)(M − Δ) = 0 and Dϕij(Δ)(M − Δ) =

(−1)i+jmji/miimjj for i �= j. To do so, let us first compute the partial

derivatives of ϕij by differentiating (A1) with respect to mkl (for arbitrary

k, l). This yields

∂ϕij

∂mkl
(Δ) =

(−1)i+j

det(Δ)
∂(det(Mji))

∂mkl

∣∣∣∣
M=Δ

− (−1)i+j det(Δji)
det 2(Δ)

∂(det(M))
∂mkl

∣∣∣∣
M=Δ

.

Now

∂(det(Mji))
∂mkl

∣∣∣∣
M=Δ

= (−1)i+j−1 det(Δ)
miimjj

if k = i and l = j,

= 0 otherwise;

and

∂[det[M ]]
∂mkl

=
det([Δ]

mkk
if k = l,

= 0 otherwise.

Since (M − Δ)kl = mkl if k �= l and zero otherwise, if follows that

Dϕij(Δ)(M − Δ) =
−nij

miimjj
if i �= j,

= 0 if i = j.

Thus we have established the desired result:

Dϕij(Δ)(M − Δ) = 0 if i = j,

= − mji

miimjj
if i �= j.
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Proof of Proposition 3. We are now in a position to prove Proposition 3.

For any past consumption (C∗
1 , ..., C∗

n−1), we define

Un(Cn, ..., CN ) = U(C∗
1 , ..., C∗

n−1, Cn, ..., CN ),

Using Hanoch’s formula (see Hanoch 1977, p. 416) in developed form yields

Tn(C) = −
N∑

i=n

[D2Un]−1
ii u2

i
tc∇Un

−
∑
i�=j

n≤i,j≤N

[D2Un]−1
ij uiuj

tc∇Un
, (A2)

where ui = ∂Un/∂Ci = ∂U/∂Ci. Recall the expressions of the relative

budget shares αn
i = Ciui/

tc∇Un, specific substitutability coefficients κij =

[D2U ]−1
ij uiuj/ciui + cjuj , and instantaneous risk tolerance coefficients ti =

−ui/Ci(∂2U/∂C2
j ). Lemma 3 shows that, when κ = maxi�=j |κij | is small,

[D2Un]−1
ii =

(
∂2Un

∂C2
i

)−1

+ κo(κ) =
(

∂2U

∂C2
i

)−1

+ κo(κ)

and thus

− [D2Un]−1
ii u2

i
tc∇Un

= αn
i ti + κo(κ).

Moreover, for i �= j we have [D2Un]−1
ij = [D2U ]−1

ij + κo(κ) by Lemma 3,

so

[D2Un]−1
ij uiuj

tc∇Un
= (αn

i + αn
j )κij + κo(κ).

Therefore, (A2) can be written as

Tn(C) =
N∑

i=n

αn
i ti −

∑
i�=j

n≤i,j≤N

(αn
i + αn

j )κij + κo(κ),

and the proof of Proposition 3 is complete. �
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