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This paper concerns robust location and scale estimators under long-range dependence, focusing on the
Hodges–Lehmann location estimator, on the Shamos–Bickel scale estimator and on the Rousseeuw–Croux
scale estimator. The large sample properties of these estimators are reviewed. This paper includes computer
simulation in order to examine how well the estimators perform at finite sample sizes.
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1. Introduction

This paper has two parts. The first is a review of the asymptotic theory behind robust location
and scale estimators under long-range dependence. The second part involves computer simulation
to see how well the methods perform at finite sample sizes. We focus on the Hodges–Lehmann
location estimator [1], the Shamos–Bickel scale estimator [2,3] and the Rousseeuw–Croux scale
estimator [4]. All of these estimators share the following property: they can be written as empirical
quantiles of U -processes defined by

Un(r) = 1

n(n − 1)

∑
1≤i �=j≤n

1{G(Xi,Xj )≤r}, r ∈ I, (1)

where I is an interval included in R, G is a symmetric function, i.e. G(x, y) = G(y, x) for all
x, y in R, and the process (Xi)i≥1 satisfies:
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60 C. Lévy-Leduc et al.

(A1) (Xi)i≥1 is a stationary mean-zero Gaussian process with covariances ρ(k) = E(X1Xk+1)

satisfying:

ρ(0) = 1 and ρ(k) = k−DL(k), 0 < D < 1,

where L is slowly varying at infinity and is positive for large k.

For notational convenience, we shall denote by h(·, ·, r) the kernel on which the U -process Un is
based, that is,

h(x, y, r) = 1{G(x,y)≤r} ∀x, y ∈ R and r ∈ I. (2)

We are interested in the asymptotic behaviour of the quantile U−1
n (p), p ∈ [0, 1], suitably

normalized. The limit may be Gaussian or not. This will depend on the range of D and on a
parameter m called the Hermite rank. Theorem 1 describes the case D > 1/m and m = 2 and
Theorem 2 describes the case D < 1/m and m = 1 or 2. The applications we consider involve
only the cases m = 1 and 2.

2. Asymptotic behaviour of empirical quantiles

Let us first review some classical tools for the study of the asymptotic behaviour of U -statistics
and specifically for U -statistics constructed from Gaussian observations. These are the Hermite
rank of a class of functions and the Hoeffding decomposition given in Equation (8).

We start by recalling the definition of the Hermite rank of the class of functions {h(·, ·, r) −
U(r), r ∈ I } which plays a crucial role in understanding the asymptotic behaviour of empirical
quantiles of the U -process Un(·). The function {U(r), r ∈ I } is defined below. We shall expand
the kernel function (x, y) �→ h(x, y, r) in a Hermite polynomial basis. We use Hermite polyno-
mials with leading coefficients equal to one which are: H0(x) = 1, H1(x) = x, H2(x) = x2 − 1,
H3(x) = x3 − 3x, . . . . We get

h(x, y, r) =
∑

p,q≥0

αp,q(r)

p!q! Hp(x)Hq(y) for all x, y in R, (3)

where

αp,q(r) = E[h(X, Y, r)Hp(X)Hq(Y )], (4)

and where (X, Y ) is a standard Gaussian vector, that is, X and Y are independent standard
Gaussian random variables.

The constant term in the Hermite decomposition is given by α0,0(r): as we shall see below, it
is the non-random limit of Un(r), as n tends to infinity. This is why we set:

U(r) = α0,0(r) =
∫

R2
h(x, y, r)ϕ(x)ϕ(y) dx dy for all r in I, (5)

where ϕ denotes the probability distribution function (p.d.f.) of a standard Gaussian random
variable.

Consider now the terms with p + q > 0. The Hermite rank of the function h(·, ·, r) is the
smallest positive integer m(r) such that there exist p and q satisfying p + q = m(r) and αp,q(r) �=
0. Thus, Equation (3) can be rewritten as

h(x, y, r) − U(r) =
∑
p,q≥0

p+q≥m(r)

αp,q(r)

p!q! Hp(x)Hq(y). (6)

The Hermite rank m of the class of functions {h(·, ·, r) − U(r), r ∈ I } is the smallest index
m = p + q ≥ 1 such that αp,q(r) �= 0 for at least one r in I , that is, m = infr∈I m(r).
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In the sequel, we shall assume that

m = 1 or 2

since this covers the specific estimators we are interested in.
Having defined the Hermite rank, we now turn to the so-called ‘Hoeffding’s decomposition’ [5]

which is one of the main tools used in the proof of Theorem 1. The Hoeffding decomposition
amounts to decomposing, for all r in I , the difference

Un(r) − U(r) = 1

n(n − 1)

∑
1≤i �=j≤n

[h(Xi, Xj , r) − U(r)], (7)

into two parts, as

Un(r) − U(r) = Wn(r) + Rn(r), (8)

where

Wn(r) = 1

n

n∑
i=1

{h1(Xi, r) − U(r)} + 1

n

n∑
j=1

{h1(Xj , r) − U(r)} = 2

n

n∑
i=1

{h1(Xi, r) − U(r)},
(9)

and

Rn(r) = 1

n(n − 1)

∑
1≤i �=j≤n

{h(Xi, Xj , r) − h1(Xi, r) − h1(Xj , r) + U(r)}. (10)

The function h1(x, r) which is added in Equation (9) and subtracted in Equation (10) is defined
for all x in R and r in I as

h1(x, r) =
∫

R

h(x, y, r)ϕ(y) dy. (11)

We shall focus on the empirical quantile U−1(p), p ∈ [0, 1]. Recall that if V : I −→ [0, 1] is
a non-decreasing cadlag function, where I is an interval of R, then its generalized inverse V −1 is
defined by V −1(p) = inf{r ∈ I, V (r) ≥ p}. This applies to both Un(r) and U(r) since these are
non-decreasing functions of r .

Theorem 1 gives the asymptotic behaviour of the empirical quantile U−1
n (·) in the case where

D >
1

m
and m = 2.

For a proof of Theorem 1, we refer the reader to the proofs of Theorem 1 and Corollary 3 in [6].

Theorem 1 Let I be a compact interval of R. Let p be a fixed real number in [0, 1]. Suppose
that there exists some r in I such that U(r) = p, that U is differentiable at r and that U ′(r)
is non-null. Assume that the Hermite rank of the class of functions {h(·, ·, r) − U(r), r ∈ I } as
defined in Equation (6) is m = 2 and that Assumption (A1) is satisfied with D > 1/2. Assume
that h and h1, defined in Equations (2) and (11), satisfy the three following conditions:

(i) There exists a positive constant C such that for all s, t in I, u, v in R,

E[|h(X + u, Y + v, s) − h(X + u, Y + v, t)|] ≤ C|t − s|, (12)

where (X, Y ) is a standard Gaussian vector.
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62 C. Lévy-Leduc et al.

(ii) There exists a positive constant C such that for all k ≥ 1,

E[|h(X1 + u, X1+k + v, t) − h(X1, X1+k, t)|] ≤ C(|u| + |v|), (13)

E[|h(X1, X1+k, s) − h(X1, X1+k, t)|] ≤ C|t − s|. (14)

(iii) There exists a positive constant C such that for all t , s in I , and x, u, v in R,

|h1(x + u, t) − h1(x + v, t)| ≤ C(|u| + |v|) (15)

and

|h1(x, s) − h1(x, t)| ≤ C|t − s|. (16)

Then, as n tends to infinity,

√
n(U−1

n (p) − U−1(p))
d−→ −W(U−1(p))

U ′(U−1(p))
,

where {W(r), r ∈ I } is a zero mean Gaussian process with covariance structure given by

E[W(s)W(t)] = 4 Cov(h1(X1, s), h1(X1, t))

+ 4
∑
�≥1

{Cov(h1(X1, s), h1(X�+1, t)) + Cov(h1(X1, t), h1(X�+1, s))}. (17)

To study the case D < 1/m and m = 1 or 2, we do not use the Hoeffding decomposition as in
Theorem 1. We use instead a different decomposition of Un(·) based on the expansion of h in the
basis of Hermite polynomials given by Equation (3). Thus, Un(r) defined in Equation (1) can be
rewritten as follows:

n(n − 1){Un(r) − U(r)} = W̃n(r) + R̃n(r), (18)

where

W̃n(r) =
∑

1≤i �=j≤n

∑
p,q≥0

p+q≤m

αp,q(r)

p!q! Hp(Xi)Hq(Xj ) (19)

and

R̃n(r) =
∑

1≤i �=j≤n

∑
p,q≥0

p+q>m

αp,q(r)

p!q! Hp(Xi)Hq(Xj ). (20)

Introduce also the Beta function

B(α, β) =
∫ ∞

0
yα−1(1 + y)−α−β dy = �(α)�(β)

�(α + β)
, α > 0, β > 0. (21)

The limit processes which appear in the next theorem are the standard fractional Brownian
motion (fBm) (Z1,D(t))0≤t≤1 and the Rosenblatt process (Z2,D(t))0≤t≤1. They are defined through

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
D
o
u
k
h
a
n
,
 
P
a
u
l
]
 
A
t
:
 
1
8
:
2
7
 
1
0
 
M
a
y
 
2
0
1
1



Statistics 63

multiple Wiener–Itô integrals and given by

Z1,D(t) =
∫

R

[∫ t

0
(u − x)

−(D+1)/2
+ du

]
dB(x), 0 < D < 1, (22)

and

Z2,D(t) =
∫ ′

R2

[∫ t

0
(u − x)

−(D+1)/2
+ (u − y)

−(D+1)/2
+ du

]
dB(x) dB(y), 0 < D <

1

2
, (23)

where B is the standard Brownian motion, see [7]. The symbol
∫ ′ means that the domain of

integration excludes the diagonal. The following theorem treats the case

D <
1

m
where m = 1 or 2.

Theorem 2 Let I be a compact interval of R. Let p be a fixed real number in [0, 1]. Suppose
that there exists some r in I such that U(r) = p, that U is differentiable at r and that U ′(r) is
non-null. Assume that Assumption (A1) holds with D < 1/m, where m = 1 or 2 is the Hermite
rank of the class of functions {h(·, ·, r) − U(r), r ∈ I } as defined in Equation (6). Assume also
the following:

(i) There exists a positive constant C such that, for all k ≥ 1 and for all s, t in I,

E[|h(X1, X1+k, s) − h(X1, X1+k, t)|] ≤ C|t − s|. (24)

(ii) U is a Lipschitz function.
(iii) The function �̃ defined, for all s in I, by

�̃(s) = E[h(X, Y, s)(|X| + |XY | + |X2 − 1|)], (25)

where X and Y are independent standard Gaussian random variables, is also a Lipschitz
function.

Then, as n tends to infinity,

nmD/2

L(n)m/2
(U−1

n (p) − U−1(p))

converges in distribution to

−2k(D)−1/2 α1,0(U
−1(p))

U ′(U−1(p))
Z1,D(1) if m = 1,

and to

−k(D)−1{α1,1(U
−1(p))Z1,D(1)2 + α2,0(U

−1(p))Z2,D(1)}/U ′(U−1(p)) if m = 2,

where the fractional Brownian motion Z1,D(·) and the Rosenblatt process Z2,D(·) are defined in
Equations (22) and (23), respectively,

k(D) = B

(
(1 − D)

2
, D

)
, (26)

where B is the Beta function defined in Equation (21), and αp,q(·) is defined in Equation (4).
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For a proof of Theorem 2, we refer the reader to the proofs of Theorem 2 and
Corollary 4 in [6].

3. Applications

We use the results established in Section 2 to study the asymptotic properties of several robust
estimators based on empirical quantiles of U -processes in the long-range dependence setting.

3.1. Hodges–Lehmann robust location estimator

To estimate the location parameter θ of a long-range dependent Gaussian process (Yi)i≥1 satisfying
Yi = θ + Xi where (Xi)i≥1 satisfy Assumption (A1), [1] suggest using

θ̂HL = median

{
Yi + Yj

2
; 1 ≤ i < j ≤ n

}
= θ + median

{
Xi + Xj

2
; 1 ≤ i < j ≤ n

}
. (27)

Thus, θ̂HL may be expressed as

θ̂HL = θ + U−1
n

(
1

2

)
,

where Un(·) is defined by Equation (1) with G(x, y) = (x + y)/2 and satisfies the following
proposition.

Proposition 3 Under Assumption (A1), the Hodges–Lehmann location estimator θ̂HL defined
in Equation (27) from Y1, . . . , Yn satisfies

nD/2L(n)−1/2(θ̂HL − θ)
d−→ k(D)−1/2Z1,D(1), (28)

where k(D)−1/2Z1,D(1) is a zero-mean Gaussian random variable with variance 2(−D +
1)−1(−D + 2)−1.

Moreover, it converges to θ at the same rate as the sample mean Ȳn = n−1 ∑n
i=1 Yi with the

same limiting distribution. There is no loss of efficiency.

The proof of Proposition 3 is a consequence of Theorem 2. For further details, we refer the
reader to [6, Section 4.1].

3.2. Shamos–Bickel robust scale estimator

To estimate the scale parameter σ of a long-range dependent Gaussian process (Yi)i≥1 satisfying
Yi = σXi where (Xi)i≥1 satisfy Assumption (A1), Shamos [2] and Bickel and Lehymann [3]
propose to use

σ̂SB = b median{|Yi − Yj |; 1 ≤ i < j ≤ n} = bσ median{|Xi − Xj |; 1 ≤ i < j ≤ n}, (29)

where b = 1/
(√

2�−1
(

3
4

)) = 1.0483 to achieve consistency for σ in the case of Gaussian

distributions.
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Thus, σ̂SB may be expressed as

σ̂SB = bσU−1
n ( 1

2 ),

where Un(·) is defined by Equation (1) with G(x, y) = |x − y| and satisfies the following
proposition.

Proposition 4 Under Assumption (A1), the Shamos–Bickel robust scale estimator σ̂SB defined
in Equation (29) from Y1, . . . , Yn has the following asymptotic behaviour:

(i) If 1/2 < D < 1,
√

n(σ̂SB − σ)
d−→ N (0, σ̄ 2) (30)

where

σ̄ 2 = 2b2σ 2

ϕ2(1/(b
√

2))

[
Var

(
h1

(
Y1

σ
,

1

b

))
+ 2

∑
k≥1

Cov

(
h1

(
Y1

σ
,

1

b

)
, h1

(
Yk+1

σ
,

1

b

))]

and h1 is given by

h1(x, r) =
∫

R

1{|x−y|≤r}ϕ(y) dy = �(x + r) − �(x − r),

� being the cumulative distribution function (c.d.f.) of a standard Gaussian random variable.
(ii) If 0 < D < 1

2 ,

k(D)nDL(n)−1(σ̂SB − σ)
d−→ σ

2
(Z2,D(1) − Z1,D(1)2), (31)

where k(D) is defined in Equation (26) and the processes Z1,D(·) and Z2,D(·) are defined in
Equations (22) and (23).

The proof of Proposition 4 is a consequence of Theorem 1 in case (i) and of Theorem 2 in case
(ii). For further details, we refer the reader to [6, Section 4.4].

Let us now compare the asymptotic behaviour of σ̂SB with that of the square root of the sample
variance estimator defined by

σ̂n,Y =
(

1

n − 1

n∑
i=1

(Yi − Ȳ )2

)1/2

. (32)

Corollary 5 Under the assumptions of Proposition 4, σ̂SB defined in Equation (29) has the
following properties. In case (i), its asymptotic relative efficiency with respect to the classical
scale estimator σ̂n,Y defined in Equation (32) is larger than 86.31% and in the case (ii), there is
no loss of efficiency.

Corollary 5 is proved in Section 5.
As claimed in [4, p. 1277], however, one of the main drawbacks of the Shamos–Bickel estimator

is its very low finite sample breakdown point (around 29%). We recall that the finite sample
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breakdown point of an estimator θ̂n obtained from any observations x = {x1, . . . , xn} is defined,
see [4] by

ε

n(θ̂n, x) = min{ε+

n (θ̂n, x), ε−
n (θ̂n, x)},

where

ε+
n (θ̂n, x) = min

{
m

n
: sup

x′
θ̂n(x′) = ∞

}
, ε−

n (θ̂n, x) = min

{
m

n
: inf

x′ θ̂n(x′) = 0

}

and x′ is obtained by replacing anymobservations of x by arbitrary values. Intuitively, following [8,
p. 61], the finite sample breakdown point of θ̂n at x is the largest proportion of data points that can
be arbitrarily replaced by outliers without θ̂n diverging to 0 or infinity. Large breakdown points are
desirable. In the context of estimation of the mean, for example, the sample mean has a breakdown
point of 0 and the median has a breakdown point of 50% which is the highest breakdown point
that one can expect.

In order to increase the value of the finite sample breakdown point, Rousseeuw and Croux [4]
propose another robust scale estimator which is presented and studied in the next section. Their
estimator has the advantage of having a breakdown point of 50% [4, Theorem 5] which is the
highest breakdown point that one can expect.

3.3. Rousseeuw–Croux robust scale estimator

To estimate the scale parameter σ in the framework described in Section 3.2, Rousseeuw and
Croux [4] suggest using

σ̂RC = c{|Yi − Yj |; 1 ≤ i < j ≤ n}(kn) = c σ {|Xi − Xj |; 1 ≤ i < j ≤ n}(kn), (33)

where kn = �n(n − 1)/4
, c = 1/(
√

2�−1(5/8)) = 2.21914. That is, up to the multiplicative
constant c, σ̂RC is the knth order statistic of the n(n − 1) distances |Xi − Xj | between all the pairs
of observations such that i < j .

Proposition 6 Under Assumption (A1), the Rousseeuw–Croux robust scale estimator σ̂RC

defined in Equation (33) from Y1, . . . , Yn has the following asymptotic behaviour:

(i) If D > 1
2 ,

√
n(σ̂RC − σ)

d−→ N (0, σ̃ 2),

where

σ̃ 2 = σ 2
E[IF(Y1/σ)2] + 2σ 2

∑
k≥1

E

[
IF

(
Y1

σ

)
IF

(
Yk+1

σ

)]
,

with

IF(x) = c

(
1/4 − �(x + 1/c) + �(x − 1/c)∫

R
ϕ(y)ϕ(y + 1/c) dy

)
,

� and ϕ denoting the c.d.f. and the p.d.f. of the standard Gaussian random variable,
respectively.

(ii) If D < 1
2 ,

k(D)nDL(n)−1(σ̂RC − σ)
d−→ σ

2
(Z2,D(1) − Z2

1,D(1)),

where k(D) is defined in Equation (26) and the processes Z1,D(·) and Z2,D(·) are defined in
Equations (22) and (23).
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The proof of Proposition 4 is a consequence of Theorem 1 in case (i) and of Theorem 2 in case
(ii). For further details, we refer the reader to Theorem 6 of [9]. The following corollary is proved
in Section 5.

Corollary 7 Under the assumptions of Proposition 6, σ̂RC defined in Equation (33) has the
following properties. In case (i), its asymptotic relative efficiency with respect to the classical
scale estimator σ̂n,Y defined in Equation (32) is larger than 82.27% and in the case (ii), there is
no loss of efficiency.

4. Numerical experiments

In this section, we investigate the robustness properties of the previous estimators using Monte
Carlo experiments. We shall regard the observations Xt , t = 1, . . . , n, as a stationary series Yt ,
t = 1, . . . , n, corrupted by additive outliers of magnitude ω. Thus, we set

Xt = Yt + ωWt, (34)

where Wt are i.i.d. random variables. In Section 4.1, Wt are Bernoulli(p/2) random variables. In
Section 4.2, Wt are such that P(Wt = −1) = P(Wt = 1) = p/2 and P(Wt = 0) = 1 − p, hence
E[Wt ] = 0 and E[W 2

t ] = Var(Wt) = p. Observe that, in this case,W is the product of Bernoulli(p)
and Rademacher independent random variables; the latter equals 1 or −1, both with probability
1
2 . (Yt )t is a stationary time series and it is assumed that Yt and Wt are independent random
variables. The empirical study is based on 5000 independent replications with n = 600, p = 10%
and ω = 10. We consider the cases where Yt are Gaussian ARFIMA(0, d, 0) processes, that is,

Yt = (I − B)−dZt =
∑
j≥0

�(j + d)

�(j + 1)�(d)
Zt−j (35)

where B denotes the backward operator and d = 0.2 and 0.45, corresponding, respectively, to
D = 0.6, 0.1, where D is defined in (A1) and {Zt } are i.i.d N (0, 1).

4.1. Hodges–Lehmann robust location estimator

In Figure 1, the empirical density functions of nD/2L(n)−1/2θ̂HL and nD/2L(n)−1/2X̄n are dis-
played when Xt has no outliers with d = 0.2 (left) and d = 0.45 (right). Following [10, p. 21],
we take L(n) = �(1 − 2d)/(�(d)�(1 − d)). In these cases both shapes are similar to the limit
indicated in Proposition 3, that is, a Gaussian density with mean zero and variance 3.5714 when
d = 0.2 and 1.1696 when d = 0.45. The empirical variance of the Hodges–Lehmann estimator
and of the sample mean are equal to 3.6397 and 3.6249, when d = 0.2 and to 1.2543, 1.2538
when d = 0.45. These results are thus a good illustration of Proposition 3.

Figure 2 displays the same quantities as in Figure 1 when Xt has outliers with d = 0.2 (left)
and d = 0.45 (right). As expected, the sample mean is much more sensitive to the presence of
outliers than the Hodges–Lehmann estimator. Observe that when the long-range dependence is
strong (large d), the effect of outliers is less pronounced.

4.2. Shamos–Bickel robust scale estimator

In Figure 3, the empirical densities of
√

n(σ̂SB − σ) and
√

n(σ̂n,X − σ) are displayed when d =
0.2 without outliers (left) and with outliers (right). In the left part of this figure, we illustrate the
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Figure 1. Empirical densities of the quantities nD/2L(n)−1/2 θ̂HL (‘*’) and nD/2L(n)−1/2X̄n (‘o’) for the
ARFIMA(0, d, 0) model with d = 0.2 (left), d = 0.45 (right), n = 600 without outliers and the p.d.f. of a zero mean
Gaussian random variable with a variance 2(−D + 1)−1(−D + 2)−1 (dotted line).
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Figure 2. Empirical densities of the quantities nD/2L(n)−1/2 θ̂HL (‘*’) and nD/2L(n)−1/2X̄n (‘o’) for the
ARFIMA(0, d, 0) model with d = 0.2 (left), d = 0.45 (right), n = 600 with outliers (p = 10% and ω = 10).
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Figure 3. Empirical densities of the quantities
√

n(σ̂SB − σ) (’*’) and
√

n(σ̂n,X − σ) (‘o’) for the ARFIMA(0, d, 0)

model with d = 0.2, n = 600 without outliers (left) and with outliers p = 10% and ω = 10 (right).

results of part (i) of Corollary 5 since both shapes are similar to that of Gaussian density with
mean zero. A lower bound for the theoretical asymptotic relative efficiency stated in Corollary 5
is 86.31%. The empirical variances are equal to 0.7968 and 0.7135, respectively, corresponding
to an asymptotic relative efficiency of 89.54%. On the right part of Figure 3, we can see that the
classical scale estimator is much more sensitive to the presence of outliers than the Shamos–Bickel
estimator.

Figure 4 (left) illustrates the part (ii) of Corollary 5. d = 0.45 corresponds to D = 0.1 < 1
2 .

The right part of Figure 4 shows the robustness of the Shamos–Bickel estimator with respect to the
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Figure 4. Empirical densities of the quantities nDL(n)−1(σ̂SB − σ) (‘*’) and nDL(n)−1(σ̂n,X − σ) (‘o’) for the
ARFIMA(0, d, 0) model with d = 0.45, n = 600 without outliers (left) and with outliers p = 10% and ω = 10 (right).

classical scale estimator in the presence of outliers. In these numerical experiments, following [10,
p. 21], we take L(n) = �(1 − 2d)/(�(d)�(1 − d)).

4.3. Rousseeuw–Croux robust scale estimator

For numerical results associated to the Rousseeuw–Croux robust scale estimator (33), we refer
the reader to [9].

4.4. Discussion on the construction of asymptotic confidence intervals

We propose in this section to give some hints on how to build confidence intervals for the different
estimators that we considered. There are mainly two situations: the limiting distribution is either
Gaussian or a linear combination of the square of a Gaussian random variable and the Rosenblatt
process evaluated at 1. For instance, in the case of the Shamos–Bickel estimator when D is in
( 1

2 , 1), we give in Table 1 an empirical evaluation of σ̄ 2/σ 2 for different values of D = 1 − 2d

of an ARFIMA(0,d ,0) process, where σ̄ 2 is defined in Equation (30). These values have been
obtained by using quasi-Monte Carlo approaches. An asymptotic confidence interval for σ can
then be obtained by plug-in.

The case where D = 1 − 2d belongs to (0, 1
2 ) is more involved. It requires an estima-

tor of D as well as an estimation of L(n). In Table 2, we give for different values of d

the 95% empirical quantiles associated to (Z2,D(1) − Z1,D(1)2)/2, namely the x’s satisfying
P(Z2,D(1) − Z1,D(1)2) ≤ 2x) = 0.95. These values have been obtained by using that from

Table 1. Empirical values of σ̄ 2/σ 2 for an ARFIMA(0, d, 0) process with different values of d.

d 0.1 0.12 0.15 0.17 0.2
σ̄ 2/σ 2 0.6050 0.6232 0.6670 0.7121 0.8202

Table 2. Values of x defined by P(Z2,D(1) − Z1,D(1)2) ≤ 2x) = 0.95 for an ARFIMA(0, d, 0) process
with different values of d.

d 0.26 0.3 0.35 0.4 0.45
x 45.2103 29.5672 19.2967 15.0844 15.5393
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Lemma 14 in [6]

k(D)nD−2L(n)−1

⎡
⎣n

2

n∑
i=1

(X2
i − 1) − 1

2

∑
1≤i,j≤n

XiXj

⎤
⎦ d→ 1

2
[Z2,D(1) − (Z1,D(1))2], (36)

as n tends to infinity. More precisely, we simulated for n = 1000 and 5000 replications of the
left-hand side of Equation (36) when X is an ARFIMA(0,d,0) process.

5. Proofs

Proof of Corollary 5 Consider σ̂n,Y defined in Equation (32).

Case i. Let us first prove that, as n tends to infinity,

√
n(σ̂ 2

n,Y − σ 2)
d−→ N

(
0, 2σ 4

[
1 + 2

∑
k≥1

ρ(k)2

])
. (37)

Using Equation (32) and Xi = Yi/σ , n(n − 1)(σ̂ 2
n,Y − σ 2) = σ 2[n ∑n

i=1(X
2
i − 1) − ∑

1≤i,j≤n Xi

Xj + n]. Since H2(Xi) = X2
i − 1, we get

√
n(σ̂ 2

n,Y − σ 2) = σ 2

⎡
⎣ √

n

n − 1

n∑
i=1

H2(Xi) −
√

n

n(n − 1)

∑
1≤i,j≤n

XiXj +
√

n

n − 1

⎤
⎦ . (38)

By Theorem 4 in [11],

n−1/2
n∑

i=1

H2(Xi)
d−→ N

(
0, 2

[
1 + 2

∑
k≥1

ρ(k)2

])
.

Using the same arguments as those used in the proof of (80) in Lemma 15 of [6],
√

n(n −
1)−1 ∑n

i=1 H2(Xi) is the leading term in Equation (38), which gives Equation (37). Using the
Delta method to go from σ̂ 2

n,Y to σ̂n,Y , setting f (x) = √
x so that f ′(σ 2) = 1/(2

√
σ 2) = 1/(2σ),

we get

√
n(σ̂n,Y − σ)

d−→ N
(

0,
σ 2

2

[
1 + 2

∑
k≥1

ρ(k)2

])
.

On the other hand, by Proposition 4 (case (i)),

√
n(σ̂SB − σ)

d−→ N (0, σ̄ 2),

where

σ̄ 2 = 2b2σ 2

ϕ2(1/(b
√

2))

[
Var

(
h1

(
Y1

σ
,

1

b

))
+ 2

∑
k≥1

Cov

(
h1

(
Y1

σ
,

1

b

)
, h1

(
Yk+1

σ
,

1

b

))]
.

Thus, the asymptotic relative efficiency (ARE) of σ̂SB with respect to σ̂n,Y satisfies

ARE = σ 2/2[1 + 2
∑

k≥1 ρ(k)2]
σ̄ 2

.
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Using Lemma 1 in [11] and the fact that h1 is of Hermite rank greater than 2, we get that for any
k ≥ 1, Cov(h1(Y1/σ, 1/b), h1(Yk+1/σ, 1/b)) ≤ ρ(k)2 Var(h1(Y1/σ, 1/b)), which gives

σ̄ 2 ≤ 2b2σ 2

ϕ2(1/(b
√

2))
Var

(
h1

(
Y1

σ
,

1

b

)) [
1 + 2

∑
k≥1

ρ(k)2

]
,

and hence

ARE ≥ ϕ2(1/(b
√

2))

4b2 Var(h1(X1, 1/b))
≈ 86.31%.

The value of 86.31% has been obtained by approximating Var(h1(X1, 1/b)) with some Monte-
Carlo simulations.

Case ii. When 0 < D < 1
2 , Equation (38) and [6, Lemma 14] lead to

k(D)nDL(n)−1(σ̂ 2
n,Y − σ 2)

d−→ σ 2(Z2,D(1) − Z2
1,D(1)). (39)

The result follows by applying the Delta method. �

Proof of Corollary 7 The proof of (i) is given in the proof of Proposition 3 in [9]. The proof of
(ii) comes from Equation (39) and the statement (ii) in Proposition 6. �
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