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Abstract

This paper is devoted to continuity results of the time derivative of the solution to the one-dimensional parabolic
obstacle problem with variable coefficients. Under regularity assumptions on the obstacle and on the coefficients,
we prove that the time derivative of the solution is continuous for almost every time. When the solution is
nondecreasing in time this result holds for every time. We also give an energy criterion which characterizes the
continuity of the time derivative of the solution at a point of the free boundary. Such a problem arises in the pricing
of american options in generalized Black-Scholes models of finance. Our results apply in financial mathematics.
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Let o € (0,1) and consider a domain D of R%. We denote by H® the Banach space of Hélder functions

Ho (D)= { f €C*NL¥(D) : |fllap < 0 |

where [[flla;p = || - [z (p) + [flas,
f ‘Tat 7f Y, s
fopm sy DI
wirtren (o -y + |t —s|)
(z,t)#(y,s)
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(see [12], Chap. 3, Sec. 2). For all ¢ € [1, 00] we also define the Sobolev space
2

W2E1(D) = {u € LY(D) : (%, %, %) € (L9(D))? } :

To Py = (w9,t9) € R? and R € (0, 00), we associate the open parabolic cylinder
Qr(Py) = {(z,t) € R® : |z — x| < Rand |t —to| < R*},

and the lower half parabolic cylinder

Qp(Po) ={(z,t) eR® : [z —z9| < Rand 0 <ty —t < R*} .
Such notations for parabolic problems are standard. See [20,12,18] for more details. On W214(Qg(P)),
consider now the parabolic operator
& ou Ju

b(x,t) — tHu— —
o2 + (:L‘, )ax+c(za )u ot "’

where a, b and ¢ are variable coefficients which depend on x and t.

Lu := a(x,t)

This paper is devoted to regularity properties of the solutions to the one-dimensional parabolic obstacle
problem

L’U,(Z',t) = f(mvt) ]1{u>0}($7t)
(x,t) € Qr(P) a.e. (1.1)
u(z,t) >0

The function 1,0y denotes the characteristic function of the set {u > 0} := {(z,t) € Qr(FPo) : u(z,t) >0}:

1 if wu(xt) >0,

]1{u>0} (:L',t) =
0 if wu(x,t)=0.

Our main assumption is the following assumption on uniform parabolicity and non degeneracy and reg-
ularity of the coefficients and of the function f:

a, b, c and f belong to H*(Qr(P)) for some a € (0,1) ,
(1.2)

there exists a constant 0o > 0such that for any (x,t) € Qr(FP), a(xz,t) > 0o and f(x,t) > dp .

By [14], under Assumption (1.2), (1.1) has a unique solution for suitable initial datum and boundary
conditions. From standard regularity theory for parabolic equations, [20,12,18], it is known that any solu-
tion u belongs to Wjj’tl;q(QT(Po)) for any » < R and ¢ < +00. As a consequence of Sobolev’s embeddings,
u is continuous. The set {u = 0} is then closed in Qr(P).

Definition The sets {u = 0} and I" := Qr(Py) N 0{u = 0} are respectively called the coincidence set
and the free boundary of the parabolic obstacle problem (1.1).

Notations. We will use u¢, u; and uz, respectively for %, % and ‘327“. By |A| we denote the volume of the

set A C R? with respect to the Lebesgue measure, and by DQR) the set of smooth functions with compact
support. For any domain D C R? we will write u € Wi’t;igc(D) if and only if u € W %(K) for all
compact K CC D. The heat operator will be abbreviated to H, Hu := u,,; — u;. The parabolic boundary
of Q7 (Py) is the set 9PQ~ (Py) := [xo—r, xotr] x {to—r?}U{zo—r, zotr} X [to—r2, to]. We define the parabolic
distance dist,, between two points P = (z,t) and P’ = (2/,#') by dist,(P, P') == \/(z — a/)2 + [t — t/].
By standard parabolic estimates u; is continuous in a neighborhood of any point P such that «(P) > 0.
If P is in the interior of the region {u = 0}, u; is obviously continuous. The key issue is therefore the
regularity of u; on the free boundary I'. Our first result states that u is almost never discontinuous.




Theorem 1.1 (Continuity of u, for almost every t) Let u be a solution of (1.1) and assume (1.2).
For almost any t1 € (to — R,to + R), if P1 = (x1,t1) is a point on the free boundary T', then
Ju

i —(P)=0.
A o (P)

As far as the authors know, this result is new, even in the case of constant coefficients. The continuity of
us cannot be obtained everywhere in ¢, as shown by the following example. Let u(z,t) = max{0, —t}. It
satisfies uz, — ur = lgy~0y and its time derivative is obviously discontinuous at ¢ = 0. If we additionally
assume that u; > 0, we achieve a more precise result:

Theorem 1.2 (Continuity of u, for all ¢t when u; > 0) Under the assumptions of Theorem 1.1, if u;
is monnegative, then u; is continuous everywhere, and satisfies

0
8_1;:0 on I'.

The assumption that wu; is nonnegative can be established in some special cases (special initial conditions,
boundary conditions, and time independent coefficients). See for example the results of Friedman [13],
for further results on the one-dimensional parabolic obstacle problem with particular initial conditions.

When we are not assuming that « is nondecreasing in time, it is useful to have some criteria to determine
the points where the time derivative of the solution is continuous. We begin with a density criterion based
on the density 0(P;) of the coincidence set {u = 0} at the point P, € Qr(Fo):

|{u — 0} N QT(P1)|
|QT(P1)|

0(Py) = ligljélf

and on the lower density 6~ (P;) of {u = 0} at P;:

{u=0}NQ; ()|
|Qr (Pr)] .

0~ (P) := limi(r)lf |

Theorem 1.3 (Density criterion: continuity of u;) Let u be a solution of (1.1), assume (1.2) and
consider a point Py € Qr(FPo). If either (P1) =0, or (P1) # 0 and 0~ (Py) # 0, then we have

ou
li —(P)=0.
P—P; PIEISR(P())\F at( )
Otherwise, if 0(Py) # 0 and 0~ (P1) = 0, then u; is not continuous at P;.

The second criterion is an energy criterion based on a monotonicity formula. Consider a nonnegative
cut-off function ¢ € D(R) such that ¢ = 1 on ( s, 54/ ZEE;) and 1) = 0 on (foo, —r {:Eﬁi;} U
[r i) oo). Let Q.(P1) C Qr(Py) C R%. With P, = (21,t1), and a, f the functions involved respect-

a(P1)?

ively in the definition of the operator L and in Equation (1.1), define the function vp, for all (z,t) €
R x (=1 f(P1),r* f(P1)) by

t
vp, (x,t) == u (xl + a0/ S5t + —) “Y(x) if 2] <7y /L3, vp, =0 otherwise . (1.3)

f(P1)

’1)2
)3

For all t € (=72 f(P1),0), let

E(t;v) == {

1
—t 636

0
G} (x,t) da:f/t S%/R{(val)(ﬁv)G}(x,s) dzxds ,
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with Hv := vy — vy, LU 1= =20+ 3 - v, + 2t vy and G(z,t) := (2m(—t))"Y2 exp (—22/(—4t)).

Theorem 1.4 (Energy criterion: continuity of u;) Under the assumptions of Theorem 1.1,

(i) either lim;_q s<0 E(t;vp,) = V2,

(ii) or there exists some t € (—r? f(Py),0) such that E(t;vp,) < /2. In that case, lim;_q, 1<0 E(t;vp,) =
\/5/2 and ug is continuous in a neighborhood of P;.

The one-dimensional parabolic obstacle problem for differential operators with variable coefficients is
a generalisation to the case of an operator with variable coefficients of Stefan’s problem (case where
the parabolic operator is Lu = ug, — u¢). Stefan’s problem describes the interface of ice and water (see
[17,25,14]). The problem with variable coefficients arises in the pricing of american options in mathematical
finance (see [5,3,26,19,16,27,1,4,22,23]). The regularity of u; is a natural question to apply the “smooth-fit
principle” which amounts to require the C! continuity of the solution at the free boundary. This principle
is often assumed in numerical methods (see for instance [10]).

In [26] Van Moerbeke studied a special case where he proved that u; is continuous except at one point
and gave some asymptotics of the free boundary at this point. In [13], Friedman specifically studied
the case of an american option and proved that u; is continuous on some subsets of the free boundary.
Using the maximum principle, he also proved for a special class of initial data that the free boundary is
piecewise monotone. Then until recently the theory of the obstacle problem has essentially been studied
in the stationary case (see [17,25,14] and references therein). Variational inequalities have been related
to probabilistic methods in [3,16,19], and also to viscosity solutions methods [27,24]. Also see [1] for a
recent paper revisiting variational inequalities and raising questions on the regularity of the solution and
of the free boundary.

Recently in [7], Caffarelli, Petrosyan and Shahgholian considered the case with constant coefficients in
any dimension and without any sign assumptions on the solution. They developed a nice theory of the
regularity of the free boundary, based on Liouville type results and monotonicity formulas, like the one
introduced by Weiss in [29]. As we shall see below, such tools are extremely useful for our purpose.

This paper is organized as follows. In Section 2 we obtain Wftl i a priori estimates on the solution and
prove a non-degeneracy lemma. As a consequence the free boundary is a closed subset of zero measure.
In Section 3 we introduce the notion of blow-up sequences which are a kind of zooming at a point of
the free boundary. We will use them to study the regularity of the solution. These sequences converge,
up to the extraction of sub-sequences, to the blow-up limit which is a solution in the whole space of the
obstacle problem with constant coefficients. Using a monotonicity formula we prove in Section 3 that
the blow-up limit is scale-invariant. This allows us to classify all possible blow-up limits in a Liouville
theorem. The energy also gives a criterion to distinguish regular and singular points of the free boundary,
see Section 4. In Section 5 we prove the uniqueness of the blow-up limit at each singular point. The last
section is devoted to the completion of the proofs of all results stated in Section 1 and some additional
results on the time derivative of the solution.

2. Regularity estimates and properties of the free boundary
2.1. A priori reqularity estimates

Assume that (1.2) holds and consider a solution u of (1.1). By a bootstrap argument, u is bounded
in Wftl “UQRry2(Po)) for all ¢ € (1,00). In particular, by Sobolev imbeddings, v is continuous. Further
regularity estimates require more sophisticated methods. To this end, let us consider a function u €
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W2 ioe(Qr(Po)) N C(Qr(Py)) solution of

Lu < f a.e. QR(PO) ’
Lu=f ae {u>0}, (2.1)
u>0 ae Qr(FP).

Theorem 2.1 (A priori regularity estimates) Assume (1.2) and consider a solution w of (2.1). For
all R" < R, w is bounded in Wi’tl;oo(QR/ (Fy)).-

The Wftl " regularity is essentially optimal. Consider indeed in the case a = 1, b = 0 and ¢ = 0 the
function

u(z,t) =0 (—t)+ + % (1-0)2%

where x4 := max{0,z}. For § = 0 or 1, u is a solution in Witllzi(]RQ) to Uze — up = lpysop, but it is
neither in W27 (R?) for 6 = 1, nor in W>[5! (R?) for 6 = 0.

Theorem 2.1 is an adaptation of a result by Alt and Philips [2]. Tts proof relies on the two following
Lemmata 2.2 and 2.3. In [20], Theorems 7.21 and 7.22 (pp. 180-181), we can read the following statement.

Lemma 2.2 (De Giorgi-Nash-Moser-Harnack inequality) Let P€R?, r€(0,1) and g = g(z,t) €
L?(Qy,.(P)). Under Assumption (1.2), if u € Wi’;;l(QZT(P)) satisfies
AQUzg +buy —u <g, u>0, (x,1)€QL(P)ae.,
then there exists a positive constant Cg, which depends on a and b but is independent of v, such that
sup u < Cu | Vrlgll 20— + inf wu
Q: (P) FQ) ol )

In R% d > 1, the term VTllgl 2 o- (py) would be replaced by pd/(d+1) l9llpasr(g- (py)- In the above
expression we use the notation Cp is order to remind that this inequality is of Harnack type.

We can deduce from [20], Theorem 4.9 (p. 59) and Exercise 4.5 (p. 84), the following result. The original
result was proved by Ciliberto in [9].

Lemma 2.3 (Schauder interior estimates) Let P € R? r € (0,1) and f = f(x,t) € H*(Q, (P)),
a € (0,1). Under Assumption (1.2), if u € Wi’tl;l(Q; (P)) is a solution of

Lu=f ae ine@ (P),
then ugzy, is in H®, us is in H® and there exists a positive constant C's, which depends on L = a0y, +
b0, + ¢ — O¢ but is independent of r, such that
0%u ou
—| <

su —
P 0x? oz

Q;,,(P)

+ sup
Q.5 (P)

3u‘ n 1
— ~ sup
ot r Q;,(P)

Cs o
= < sup |u| + r¥sup |f] + r** [f]a;Qr(P)>'
Qr (P) Q7 (P)

Proof. A classical density argument reduces the question to the case u,, in H®, and u; in H* in The-
orem 4.9 (p. 59) from [20]. According to Exercise 4.5 (p. 84) in [20] applied to v with k£ = 0 the result
holds for w in the domain Q7 (P) with v(z,t) := r2u(rx,r?t). O

Proof of Theorem 2.1. Let 6 € (0,3R/2) and define (see Figure 1)
ws 1= {P € {u>0}NQrs(Po) : disty(P,{u =0} NQ3r/a(F)) < 6} .
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We recall that the parabolic distance dist, between two points P = (z,t) and P’ = (2/,¢) is defined by
dist, (P, P') := \/(z — 2/)2 + [t — /]. (1) Consider first the case P € Qpr/2(Py) Nws. For any r > 0 such

Qr(P) W

Qpya2(Fo) Y

Figure 1. Construction of the set ws.
that QZT(P) C Q3R/4(P0)5 if

M := max {17 8\/5 (||f||L°°(QR(Po)) + ”C”L‘X’(QR(PU))||u||L°°(Q3R/4(P0)))} )

then
I = cullpaqy, (ryy < M7 (2:2)

where ¢ = ¢(x,t) is the zeroth order coefficient of L. Define

 u(P) 1/2
r=\3c, 1 .
By continuity of u, lims_.osuppe,, |[u(P)| = 0. If § is sufficiently small, » < 1, and Q,.(P) is contained
in Q3r/4(Fo). Applying Lemma 2.2 to u with g = f — cu in Q,.(P), we get

sup u < Cy | V7f —cullp20- + inf w].
() ( L2Qu (o) T 2 p)

Using (2.2) and M > 1, this gives
1wl oo o = sup u<MCyx | inf utr®).
@ty Qr (P) Qa4 (P)
By definition (2.1) of r,
1 1
sup u < MCpx inf u+—-u(P)< (MC’H+—> u(P) .
Qr (P) Q. 2 2
Hence from the inequalities 0 < u(P) < SUP - (p) U, W obtain
1
0<-u(P)<MCy inf wu.
2 Q1,(P)
So in Qy,.(P), the function w is positive and Lu = f in Q,.(P).
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Applying Lemma 2.3 to u in @, (P) we get then

0%u U 1 ou C
w |5 + sup E‘ + - |5 < —S (M Cp + ) u(P) + 12 sup |f|+ 7" [f] .0-(p)
QP19 QP "a, r Q- (P)
By definition of r, we conclude that
2
sup 92 + sup %‘ < (7 also we have sup %‘ <Cir (2.3)
QPO Qp (P QP 19¥

with Cy := Cs (2M O (M Crr + 3) + 1f e=(@uro)) + [flas@n(ry)-
(2) Consider now the much simpler case P € Qr/2(Fo) \ ws. By definition of § and of ws, for § small
enough, we have Q, (P) C Qsr/4(Fo) and Q, (P) C {u > 0}, with
0
=7

Consequently we can apply Lemma 2.3 to u in Q. (P):

2

sup | + sup e + - osup o= <y (2.4)

Q.5 (P) Q.5 (P) Q5 (P)
with O := Cs (T_QHUHL‘”(Q?(PQ)) e or oy + Ta[f]a;cz;w))'
(3) Putting all together (2.3) and (2.4) we get

2u ou
sup W—i— sup E—i— sup |=—| < Cs
QrpPTOTTL G (P Qp/a(P)

with C5 := max(C1, C2). The Theorem 2.1 is proved for R’ = R/2. Extending the result to any Qr with
R’ € (R/2, R) is classical by a covering argument. Hence there exists a positive constant C'p/ such that
2

u
— | < ’. .
92 <Cgr (2.5)

0
ox

U
—| + sup
at ’ QR/(P)

sup
QR/ P)

+ sup
Qr/(P)

|

As a direct consequence of (2.5), we obtain an estimate of u close to I'. And (2.3) gives a better result
estimate on u,. Recall first that u, = 0 on I', because u is nonnegative everywhere and u =0 on T.

Corollary 2.4 Under Assumption (1.2), consider a solution u of (2.1) in Qr(Py). Let R’ € (0, R),
Py €T be such that Q,(P1) C Qr/(Po) for some p > 0 small enough. Then there exists C such that for
all P € Qp(Pl),

ou

u(P) < C 2 |SEP)

‘gé and  Jug,(P)|, [ue(P)] < C.

Proof. Let P = (x,t), P, = (v1,t1), P1+ = (x1,t) and Taylor expand around P; € T, using the fact that
ug(P1) =0:

[u(P)| < u(P)=u(Pre)| + |u(Pre) —u(P1)] |

/ds / do uge(z1 +alz —x1))(z —21)% +  sup

5
S|t <3 O p?
Qp/s(P)

0
ot




Now with the notations of the proof of Theorem 2.1(1), (2.3) gives if P € ws N Qpr/2(Fo)

U(P) 1/2
< <
sGr=a (2CHM)

du

sup

- X
Qr/2(P)

SO
U 5Cpr
—| <C .
o am‘ =Macym’
In Qr/2(Fo) \ ws (2.4) gives the result with p = §/+/2. Finally when P € Qp/ (Po)\QRry2(Po), we get the
result by a covering argument, which ends the proof. (Il

2.2. Non-degeneracy lemma

The non-degeneracy lemma is an important tool which has first been introduced by Caffarelli in [8] for
the elliptic obstacle problem. It can be interpreted as the fact that the free boundary can not appear or
disappear suddenly, or is not “blurred”. It has been for instance proved for the parabolic problem with
constant coefficient in [7]. Here we extend it to the case of variable coefficients.

Lemma 2.5 (Non-degeneracy lemma) Under Assumption (1.2), consider a solution u of (2.1) in
Qr(Py). Let R € (0,R), Pr € {u> 0} be such that Q. (P1) C Qr/(FPo) for some r > 0 small enough.
There exist two positive constants C' and 7 > 0 such that if Qr(P1) N {u =0} # 0:

r<yr — sup UZCT2.
Q- (P1)

The constants C and 7 only depend on R’ and L.

Proof. Consider first P’ = (z',t') € {u > 0} N Q,(Py). For some positive constant C' to be fixed later, we
set for all (z,t) € Q-(P') C Qr (Fo)

w(z,t) == u(z,t) —u(P) = C((z— ')+t —t]).
By Assumption (1.2), Lu = f > 6o in {u > 0}. For all (z,t) € Q.(P") N {u > 0}, we have

Lw(z,t) — c(z, t) w(z,t) > Lu(z,t) — c(x, t)u(z,t) — C(2a(z,t) +1) —2Cb(x,t) - (x — 2)
> 8o — Cle(x,t)| (2r)2 — C (2a(x,t) + 1) — 2C |b(x, )| (2r)

. A ~1
according to Corollary 2.4. With C' := %" (2 lallL=(@n(pyy) +1) ~ and

_ 0o . A -1 A e
7= 5 m1n{(4C ||b||Loc(QR(PU))) 5 (40 ||C||L°°(QR(P0))) } )

we obtain

Lw(z,t) — c(z, t) w(z,t) >0 in Qr(P)N{u>0}.
Notice that w(P’) = 0. Applying the parabolic maximum principle in @, (P’) N {u > 0} for p < 7 (cf.
[20] Theorem 2.9 (p. 13), or [12] Theorem 1, Chap. 2, Sec. 1 (p. 34)) we get that the maximum of w is
nonnegative and achieved in {(z,t) € Q, (P’) : u(z,t) > 0,t <t'}. On d{u=0}NQ, (P’'), u =0 implies
that w is negative then there exists P> = (z2,t2) € 0PQ, (P’) N {u > 0} such that

sup w=w(Ps) =u(P) —u(P) —C((xzz — ') +|ta —t/|) > 0.
Qp (P)N{u>0}



This means that when there exists Py € T such that P’ € Qz(P;) N {u > 0}, then for p < ¥ we have

sup u > u(Py) > u(P') +Cp* > C p?
Qp (P)

and by continuity of u, the estimate remains true when P’ tends to P, € I'. O
2.3. Properties of the free boundary

Theorem 2.6 Under Assumption (1.2), the free boundary T’ associated to a solution u of (2.1) is a closed
set of zero Lebesgue measure.

The proof is a based on several results which are consequences of Corollary 2.4 and Lemma 2.5.
Lemma 2.7 (Cube property of the free boundary) Under Assumption (1.2), consider a solution u
of (2.1) in Qr(Py). There exists a constant \ € (0, %) such that for any r > 0 small enough, for any
Py € T'N Qsrya(Po) such that Q.(P1) C Qsrya(Po), there exists Py € QT_/2(P1) such that Qx,(P2) C
{u>0}NQ,.(P).

Proof. By Lemma 2.5, there exists P, = (72,12) € Q,,(F1) such that
1 -
u(Py) > 1 Cr?.

On the other hand, according to Corollary 2.4 applied to p = r, there exists a positive constant C such
that for all P = (z,t) € Qxr(P2),

[u(P)—u(P2)| < |u(z, t) —u(ws, )| +]u(22, t) —u(zs, ta)| <

Crlz—xa|+C |t—t2] < (ACHX2C)r2. (2.6)

N | —

Collecting these two estimates, we obtain
1 - ~ ~
u(P) > ZCTQ — ()\C—i-)\QC)rQ,
which is positive if A is chosen small enough. O

Recall now the following result on measurable sets.

Lemma 2.8 (Density in a point of a measurable set) Let A be a measurable subset in R?. If A has
non-zero Lebesque measure, then for almost every Py = (x1,t1) € A, we have

tmsup —=rpr — b

uhere G, (Fy) 1= o = o+ 3] % [ = 3o+ 3]

See [11], Theorem 2.9.11 (p. 158), Remark 2.9.12 (p. 158), Theorem 2.8.18 (p. 152) and Remark 2.8.9 (p.
145).

Proof of Theorem 2.6. For the convenience of the reader, we recall here a proof that can be found in [7].
Let us suppose by contradiction that the measure of I' is non-zero. By Lemma 2.8 there exists at least
one point P; such that

lim sup 7|F NCn(F)]

n—oo  |Cn(P1)|

Divide the euclidean cylinder C,,(P;) into n parabolic cylinders Q; 1= Q1 (z1,t;), t; :=t1 — % + %,
ie€{0,....,n—1} . If Q;,, NT = 0, we set E;,, := Q. Otherwise, by Lemma 2.7 there exists E;, in
Qi,n n {’LL > 0} with ‘Ei,n| > A3 |Qz,n|

=1.



Cn(Pl)

EOA,H

e L/ /A
NN

0}

{u
\\ E. 3,n

Figure 2. Construction of the sets Ej; .

Let us set E,, := U?;01Ei7n. We have

TN Cn(P) | En|

limsup ————2 <1 —liminf ———<1-X <1
which contradicts Lemma 2.8. O

A straightforward consequence of Theorems 2.1 and 2.6 is the following result:
Proposition 2.9 Let D be a domain of R2 x R. IfU° € Wftllii(D) is a fonction satisfying
Ul —U’ <1 ae D
U= U =1 ae {U°>0}
U°>0 ae D

then
0{U°>0}|=0 and U, —U=Toso .

3. Properties of blow-up limits

3.1. Reduction to the constant coefficient case

The reduction of a general operator L to the heat operator H is done by a classical transformation
which goes as follows. Assume (1.2) and consider a solution of (1.1). Let P; = (x1,¢1) € T and take r > 0
such that Q,(P1) CC Qr(Fo). For all P = (z,t) € Q,(P1) N {u > 0}, Equation (1.1) can be rewritten as

9%u ou 9%u ou

a(P) 55 (P) = S2(P) = [(Py) + (F(P) = J(P1)) — (a(P) — a(Py)) 55(P) ~b(P) Z2(P) = e(P) u(P)
Consider the affine change of variables
(2.8) = (X o= 48 (@ —@1), Ti=f(P) (t — 1)) (3.1)
and define
UX,T):=u(x,t),
o3, T) = 5 (P 1(P)) = @lP)=a(P) 5P - 0(P) SHP) = e(P)ulp))



In the (X, T) variables, the function U is a solution in Wztl J(Q) of the parabolic obstacle problem

0?U  oU .
—aXQ — a_T = (1 +g) Il{U>O} s U > 0 a.e.in Q (32)

such that 9{U = 0} > 0 where

(e e
Q o ( \/CL(Pl)7 \/a(Pl)
1.

Important remark 7o avoid further tedious notations and up to make a previous reduction of the
problem, we will assume (except when we will have to move the point Py ) from now on and in the whole
paper that f(P1) = a(Py) =1 and r = 1.Then U satisfies

) X (7T2f(P1),T2f(P1)) .

By construction, g(0) =

0?U  oU .

5%2 " BT (1+9)Lusoy, U>0 ae in Qi(0) (3.3)
From Assumption (1.2) and Theorem 2.1, we deduce that there exist an a € (0,1) and a positive

constant C' such that for r > 0, small enough,

5 < 19X, 7)< COX* + [T ¥ (X,T) € Qu0). (3.4)

Proposition 3.1 Under Assumption (1.2), consider a solution u of (1.1). With the above notations,
Ue Wi’;m(Ql(O)) and there exist a positive constant C such that for any P € {U > 0} N Q1(0),

Q-(P)C@:1(0) = sup U > Cr?.
Q: (0)
Moreover, 0{U = 0} has zero Lebesgue measure.

Proof. This result is a straightforward consequence of Lemma 2.5 and Theorem 2.6 using the change of
variables (3.1). O

3.2. Localization, localized energy

Let us first rephrase in terms of U the energy which has been introduced in Section 1. We need to
localize the solution first.
To a nonnegative cut-off function ¢ € D(R) such that ¢) =1 on (—1/2,1/2) and ¢ =0 on (—oo0, —1] U
[1,00), we associate the function
v(z,t) =vp (2,t) = Uz, t)Y(z) , (2,1) €Rx(-1,0).

To simplify the notations, we shall drop the index P; whenever there is no ambiguity. The energy now
takes the form:
2 2
+2 v> _

£(v: 1) A{[—%( % t2

with

0
G} (z,t) d:z:—/t SLQ/R{(HU—I)EUG}(LS) dxds, (3.5)

Hv:=v4, — v,
Lv:=—-2v+T v, +2tv;,

_ =?
e (-4t

Var ()
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The function G satisfies the backward heat equation:
Guz +Gy=0 in R x(00,0).
The kernel of £ is spanned by the space of scale-invariant functions:

Lv=0 <= ov(z,t)=22v\z,\2t) = vr(z,t), V(2,t) ERx(-00,0), YA>0. (3.6)

This is easily proved by writing vy (x,t) — v(z,t) fl 3(Lv)(pnx, u?t) dp.

3.3. Notion of blow-up

In [8] Caffarelli introduces the notion of blow-up sequences in order to study the free boundary of
the elliptic obstacle problem. Such a tool is convenient as long as only a priori WI ’t ioo estimates of the
solution is known. Here we adapt such a notion of blow-up sequences to the parabohc obstacle problem.
Definition (Blow-up sequence) Let (e,)nen be a sequence which converges to 0. The blow-up se-

quence (U )pen associated to a function U : Q1(0) — R around 0 is the sequence defined by

U (z,t) =€, U (enz, e1t) VYV (2,t) € Q1e,(0), VnEN.

The parabolic scaling (z,t) +— (ex, €2t) transforms the parabolic cylinder Q(0) into the parabolic cylinder
1(0) and preserves the heat operator H, in the sense that, for any ¢ > 0,

(HU®) (z,t) = (HU) (ex,€*t) V (z,t) € Q1,.(0) .

Proposition 3.2 (Blow-up limit) Assume (3.4) and consider a blow-up sequence (U™ )pen associated
to a solution U of (5.3). There exist a subsequence (en, )ren and a function U° € VV2 tllzi(]RQ) such that
(i) For any compact set K in R?, limy_oc [|[U* — UP|| oo (i) = 0,
(ii) The limit U° is nonnegative almost everywhere and it is a solution of

02U aU°

Bz o~ Muesops

(iii) O belongs to the free boundary of the limit, {U" = 0}.

Proof. By Proposition 3.1 and Ascoli-Arzela theorem (see for instance [6], Theorem IV.24 p. 72), u
to the extraction of a subsequence that we still denote by (€, )nen, (U )nen uniformly converges to a
nonnegative function U° € WQEIE’;(]RQ) in any compact set K CC R2. Let P’ € {U" > 0}. There exists

r > 0 such that UY > UO(P’)/Z in Q,.(P'"). Because of the uniform convergence, there exists N € N such
that for all n € N, n > N implies

Ue(p) > iUO(P) >0 VPecQ.(P).

In other words, Q,(P’') C {U" > 0} for n > N and we can pass to the limit in the equation:
0?U°  oUY
~Z 1 i Qu(P).
Ox? ot i Qn(F)
The equation U2, — U = Igyosgy holds both in {U° > 0} and in the interior of {U° = 0}. Moreover
UY, — UP <1 in R2 Then from Proposition 2.9, we deduce that {U° = 0} has zero Lebesgue measure
which proves Assertion (ii).

12



To prove that 0 € 9{U® = 0} we first notice that U(0) = 0 by uniform convergence. Because of
Proposition 3.1 there exists a positive constant C' such that for all » > 0 small enough,

~ t
Cr*< sup Ulx,t)= sup €U (i, —2> ,
(@€Qr () (z,)€Q5 (0) En €n

C <L) < sup U (x,t) .
€n (@1eQ;,,, (0)

Replacing €, r by 7, we obtain

Ci? < sup U — sup U’ as n— oo,
Q5 (0) Q7 (0)

which proves that 0 € 9{U° = 0}. O

Lemma 2.5 gives a much more detailed result than the statement of Proposition 3.2, (iii).

Proposition 3.3 Under the assumptions of Proposition 3.2,
lyen >0y — Lfyosoy  in R? ae as n— o0,
where (U ),en is a convergent blow-up sequence associated to U, with blow-up limit U°.

Proof. From the proof of Proposition 3.2 if P € {U° > 0} there exists N such that, if N > n > N, then
P € {U > 0}. Assume now by contradiction that P € Int{U® = 0} is such that P € {U* > 0} for all
n € N. By Proposition 3.1, supg— ) U° > C'r?, which means that P € 9{U° = 0}, and is a contradiction.

To conclude we apply Proposition 2.9 to U°. O

3.4. A monotonicity formula and application to blow-up limits

Some monotonicity formulas have been introduced by G. Weiss in [28] to study the elliptic obstacle
problem and also by Giga and Kohn in [15], in a different context.

Proposition 3.4 (Local monotonicity formula) Under Assumption (3.4), if U is a solution of (3.3),
then the function t — E(t;v) is a nonincreasing function, which is bounded from below and bounded in
W12 (—~1,0), and such that for almost every t € (—1,0)

d 1 9
Eg(t; v) = EETEnE /]R |Lov(z,t)|” G(z,t) dr .

Before to prove Proposition 3.4, let us remark that a simple change of variable gives
ENtv) =E(t;0Y) Ve (=A72,0) (3.7)

where v*(z,t) := A\2v(Ax, \?t). Using (3.6), we obtain a characterization of the functions which are
invariant under the scaling v — v>.

Corollary 3.5 (Scale invariance of £) Let v € Wf,’tl;oo(R x R_). Then

Lyv=0sE(tv)=E(t;0Y) Vi<0, YA>0.

Proof of Proposition 3.4. We split it into two main steps.

13



First Step. Exactly as in [7], we can evaluate the time derivative of the first term in the expression of £.
Assume that v € D(R x [-1,0]), let

o(t:v) = /]R {%(’%(m)

and compute “ke(t;vy) at A =1 using £ vy = Lv at A =1, and e(A\?t;v) = e(t;vy)
d 1
dj (t;v) = 2—tDve(t; v) - Lu(x,t),

where Dye is defined for all ¢ in C*°(R x (—1,0)) by

v 0 2
Dye(t;v) - ¢ := /{ ( 2 20, a—¢+2¢)}de—/Rt—QU¢de.

To compute D,e(t;v) - Lu, we integrate by parts.

Dye(t:v) - Lo(z,t) = /R {it (1 _ Hv(a:,t)) + t%ﬁv(a:, t)} Loz, t) G(x,t) da

2

+ 21}(9@1&)) - %2112(:13,15)} G(z,t) dx

This proves
et = [ { g 1ol + ot (o 1) b6t do

By density, the above expression also holds for a.e. time for any v € Wftl (R x [-1,0]), with compact
support, and the function t — e(¢;v) is bounded from below and bounded in Wli)’coo(—l, 0).
Second Step. We prove that the function
1
— / (Hou(z,s) — 1) Lo(z, s) G(z, s) dx
R

s 1(v;s) 1= —
s

is integrable. The integral fto = Jp [(Hv(z,s) — 1)Lv(z, s) G(z, s)| dzds can indeed be bounded by (I) +
(I1), with

0
:/t é/RKHU(a:, s)—(1+g(z,9))) Lo(z, s) G(x, s)| dxds,
01
(II) .:/t 8—2/R|g(z, s) Lo(z,s) G(z,s)| drds .

By definition of v(x,t) := U(z,t) ¢¥(z), (Hv — (1 + g)) Lo vanishes on (—1/2,1/2) because U is a solution
of (3.3), and on (—oo,—1) U (1,+00) because of . As a consequence of Theorem 2.1, there exists a
constant C' > 0 such that |Lv(z,t)| < C(x? + |t]). For t € (—1,0), with ¢:= C’ (||[tozallL |Ul|L=(0:0)) +
[Yallzos Uzl (@i on | + 14l 2oe (Vaell o (@ (0)) + 1Tt Lo (@u(0))) + I149lloo(@u(0)))s We get

[¢] ds e~ P /45 c |¢] 6—1/163
< c p < ds .
/ //2 Vors o 2\/27r/0 59/2

With the change of variable

(s,x) — (ﬂ = zQ_;S, 0 := \/x25>
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we get

‘oo 33 g Omax (B, [t]) o(6)

(I) < Const S—. A / ——do | dp
1 VB2 -1 0 0

where Opmax (5, [t]) := min(8+/|t], /1 + |t]) and o(0) := SUDSS /<o g(z,t) is the modulus of continu-

ity of g at the origin. By (3.4), o is Dini-integrable, i.e. § — 6~1o(f) is integrable, which ends the proof.

O

Remark 3.6 An inspection of the proof shows that Proposition 3.4 holds under the following weaker
conditions: U € WIQ,}OO(Ql(O)) is a solution of (3.3) and o, defined as above, is Dini-integrable.

Lemma 3.7 Under Assumption (1.2), consider a solution u of (1.1). Then for any to < 0, T > P
E(vp,ty) is continuous.

Proof. This is a straightforward consequence of the dominated convergence theorem of Lebesgue and the
a priori bounds on the solution. O

Proposition 3.4 applies to blow-up limits.

Proposition 3.8 (Scale invariance of the blow-up limit for ¢ < 0) Under Assumption (3.4), con-
sider a solution U of (3.3), and U® a blow-up limit corresponding to a blow-up sequence associated to U.
Then UY is scale-invariant for t < 0:

U'(\z, \2t) = N2 U%(2,t) V (2,t) €R x (—00,0), YA>0.

Proof. Consider as above v(z,t) := U(x,t) ¥ (z). Let (v ),en be a blow-up sequence associated to v, and
vY a blow-up limit. By (3.7) we have

E(e2tv) =E(t;v) Vie (—€,2,0) . (3.8)
Since £ is monotone nonincreasing and bounded from below by Proposition 3.4, we may pass to the limit
in (3.8) and obtain

lim &(r;v) = E(t;0%) Vi<O0. (3.9)

Note that because of the monotonicity of £ the limit does not depend on the subsequence. As a con-
sequence,

_ d 0N 1 0 2
0= e )_th/va (&, )P G, t) de Vt<0

and v° is scale invariant by (3.6). Since U (z,t) = v (x,t) for any x, t such that |e, 2| < 1/2,
-1 < €2t <0, we have: U = ¢°, which ends the proof.
3.5. Classification of the blow-up limits
According to Proposition 3.2, blow-up limits are solutions in R? of the parabolic obstacle problem with
constant coefficients:
H(z,t) = 1050y (2,t)  (z,t) € R? ae.
(2, t) >0 (2,t) € R? ae. (3.10)
0 € a{v° >0}
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which are scale-invariant in R x (—oo, 0) by Proposition 3.8. For all (x,t) € R?, define the functions:

09 (z,t) = % (max{0,2})?,

PO TP

1
mt+ﬂx2 ift <0,

2
om (1) 1= {OtV<|z|>} ift >0
max < 0, — ift >0,

Vi

where m € [—1,0] and V(§) = —1 + Ci(a) (€2 + 2) + Ca(a) (256_52/4 +(£2+2) fog e=s’/4 ds). The
constants C1(a) and Cs(a) are given by

1 2 @ 2 2
Cl(a):_i (2—}-6“ /4/0 e ?® /4ds), Cg(a)zgea /4

where the parameter a € [0, 400] is uniquely determined in terms of m by the equation

1+m=2(C1(a) + V7 Ca(a)) . (3.11)
The limiting cases correspond to
m=-1, a=0, 02, (z,t) = max{0, -t} ,
1
m=0, a =400, v8(x,t)=§x2.

We have the following classification result.

Theorem 3.9 (A Liouville type result) Consider a solution v° € Wftllzoc (R2) of (3.10) with v%, and
vy bounded. If v° is such that

Nz, N2 t) = \%(2,t) Y (2,t) ER x (—00,0), YA€ (0,+00),

then v° = ’U_Oi_, 0 =09 or v =10 for some m e [-1,0].

Proof. We first classify the solutions in R x (—oo,0). Then we extend the solutions to R2.
First Step: Classification in R x (—00,0). This result is given in [7]. We reproduce it for completeness.

(1) Assume first that the interior of {v° = 0} N {t < 0} is non-empty. Because of the self-similarity
property, the function V(€) := v%(¢, —1) is such that v(x,t) = |t| V(z/y/—1) and it is solution in {u > 0}
of
§
V€ + Ve - SV = 1.

A direct computation gives V(¢) = 1+ C4 (§2 —2) + C» (*26662/4 +(£2-2) fog es /4 ds). Because of the
regularity of v°, we have to choose a € R such that V(a) = V’(a) = 0. The functions & — &2 — 2 =: V;(£)
and € — —2&eS /4 4 (€2 -2) fog es* /4 ds =: V() are respectively even and odd, so there is no restriction
to take a > 0, up to a sign change of C7 and Cs. This amounts to

1 2 a 2 2
01526(1/4/0 e/t ds and 02:26*‘1/4,
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Note that V”(a) = 1 and V" (€) = 2Cy e /4. If a # 0, this clearly contradicts the nonnegativity of V
and we have therefore a = 0, C; = 1/2: V(&) = ¢2/2 in {v° > 0}, or, equivalently, v = v since

either V(§) = % (max{0,£})? or V(&) = % (max{0, —£})? .

(2) Assume now that {v% = 0}N{¢ < 0} is of empty interior: by Theorem 2.6, I has zero Lebesgue measure
and for almost all (x,t) € R x (—00,0), Hv(x,t) = 1. As a consequence, Hv) =0 in R x (—00,0). Since
vy is bounded, m := v{ has to be a constant by Liouville’s principle (see for instance [30], Chapter XIV,
Theorem 1.2). Integrating with respect to ¢, we get: v°(x,t) = mt + v°(x,0) with 02, (z,0) = 1 + m.
Taking into account the conditions v > 0 and v°(0) = 0, an integration with respect to z gives v%(z,0) =
(14 m) 22 /2. Therefore v°(z,t) = v, (x,t) := mt + (1 +m)z?/2 in R x (—o0,0). Since v is nonnegative,
this implies that m € [—1,0].

Second Step: Classification in R?. The solution of (3.10) is uniquely extended to the domain corresponding
to t > 0, once it is known for ¢ < 0.

(1) If v° = 0% in R x (—o0,0) a.e., by unique continuation v° = v9 in R2.

(2) If v = 29, for some m € [~1,0], in R x (—o0,0) a.e., as in the first step of the proof, we may use
the scale invariance. In the interior of {v® > 0} N {t > 0}, the function V(¢) := v%(£,1) is such that
v0(x,t) = t V(x/+/t) is solution of

V() =V +5 V() =1.

A direct computation gives V(§) = —1 + C;1 (€2 + 2) + Cy (2«5@_52/4 +(£2+2) f(f e=s’/4 ds). The
free boundary condition V(a) = V'(a) = 0 allows to parametrize C; and Cy in terms of a: Ci(a) =
—1 (2 +ea’/4 foa e /4 ds) and Cs(a) = %ea2/4. Taking the limit ¢ — 0, ¢t < 0, we get

v0(x,0) = (Cy + /7 Co) 2*

that we have to identify with limy_o, <o 0%, (z,t) = (1 + m)z?. The point { = a corresponds to ¢ =

2?/a? it remains to characterize the solution in (—oco,—a). As V4(§) = &2 + 2 is even and V5(§) =
256752/4 + (€2 +2) fog e~ /4 ds is odd we can keep the same C7 and Cy by replacing Vo by —V5. This
provides (3.11) and completes the proof of Theorem 3.9. |

t

t
=0 (> 0} (> 0} %
—~ 1

=

0
oy >0} (0> 0} | {80}

0 0

v D

0
Vo1 Yo
Figure 3. Solutions of Theorem 3.9. The equation of the free boundary associated to v, for m € (—1,0) is t(z) = a~2 22
where a and m are related by (3.11).

)
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4. Regular and singular points of the free boundary

4.1. An energy characterisation

As in Section 3.2, to a nonnegative cut-off function ¢ € D(R) such that ¢» = 1 on (—1/2,1/2) and ¢ =0
on (—oo,—1] U [1,00), we associate the function v(z,t) := U(z,t) ¥(x), (z,t) € R x (—=1,0) where U is
given in terms of a solution of (1.1) as in Section 3.1 for some P; € T, and solves (3.3) (also see Equation
(1.3)). The localized energy is defined by (3.5). As in Section 3.2, we omit the index P; whenever there
is no ambiguity. Otherwise, we write vp, = v. We refer to Section 3.5 for the definition of v and v?,.

Proposition 4.1 (Energy characterisation of the points of T') Let u be a solution of (1.1) and

consider Py € T' such that Q-(P1) C Qr(Fy) for some r > 0. With the above notations and under
Assumption (1.2), if v° is a blow-up limit associated to v, then

A(v) == limOE(T; v) € {V2,v2/2} = E(t;0°) Vi<0.
7<0
If A(v) = v/2/2, then v° = o). If A(v) = v/2, then v° =0, for some m € [—1,0].

Proof. The uniqueness of the limit of the energy is a consequence of the monotone decay of £, according
to Proposition 3.4, and of (3.9).

Since a blow-up limit is scale invariant by Proposition 3.8, by (3.6) and Proposition 3.4, £(t; v°) does not
depend on t < 0. By Theorem 3.9, the only possible values of A(v) are £(t;0v%) and E(t;vY,), m € [-1,1].
Using £v° = 0 and integrating by parts with respect to x, we get

1 | 1
o0y yv oy __ - 0)2
S(t,v)/R{—_t< o +21}> 2 (") }G(x,t)dz

_ 1 R x O o 1, o2

[{5 (a5 ) merfaen
1 0 1 0 0

= — (—HV +2) + - Lo° 0" G(x,t) da

r L=t 2t

Using again £0° = 0 and Equation (3.3), we get £(t;0°) = [p & (=1{p050y +2) v G(z,t) daw. Taking
into account that &(¢;v%) = £(1;0°), this amounts to

1
Et;0°%) = Nor /]R (=Tgpo50y +2) 00 (x, —1) e dy .

We easily conclude that

oo .2 _=22 2 1 _z2 _z2
5(15;1)3)/0 %i/%dxg, 5(75;021)/R<m+ +mz2> C dr= [ = dr=V2.

2
U

Proposition 4.1 allows to divide the free boundary in two sets, depending on the value of A(v). Recall that
according to the notations of Section 3.2, the function v depends on P; € I'. When there is no ambiguity
on the blow-up point, we will denote the blow-up limit by U?n( Py consistently with the notations of
Section 3.5, and by vloDl when the point of blow-up P; is not fixed.

To emphasize the dependence of v on the point P; € T', we will write explicitly the index and note vp,
in the rest of this section.
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Definition (Regular and singular points) Under the assumptions of Proposition 4.1, a point Py € T
is said to be regular (respectively singular) if A(vp,) = v/2/2 (respectively if A(vp,) = v/2). We will denote
by R the set of regular points, and by S the set of singular points.

4.2. First topological properties of the regular and singular sets

Lemma 4.2 (Topological properties of R and S) Under Assumption (1.2), S is a closed set, and
R=T\S is open inT.

Proof. Let P, P, € ' and take ty <t < 0. We may write
5(t;’l}p2) — g(t;’l)pl) = g(to;’UPZ) - 5(150;’()131) + 5(15;1]132) — g(to;’UPZ) + 5(150;1}131) - 5(15;1]131) .

Since the function ¢t — E(¢; vp, ) is monotone nonincreasing, £(t; vp,) — E(to;vp,) < 0. Passing to the limit
t — 0, we get

A(HP2) - A(UPI) < E(to; UPz) - E(to; UPI) + g(to; vPl) - A(UPI) :
We fix P; and will move P; close to P;. For |tg| small enough, E(to; vp, ) — A(vp, ) can be chosen arbitrarily
small. Now, from Lemma 3.7 for a fixed tq, P> — E(to;vp,) is continuous, so that E(to;vp,) — E(to; vp,)
can also be chosen arbitrarily small for P, close enough to P;. Then limsupp, ,p, A(vp,) < A(vp,), ie.

the function I' 3 P — A(vp) is upper semi-continuous. If A(vp, ) = \/5/27 then A(vp,) = \/5/2 for P, in
a neighborhood of P;. This proves that R is an open set in I'. (I

5. Study of the singular points of the free boundary
5.1. A monotonicity formula for singular points

We adapt a monotonicity formula for the elliptic obstacle problem [21] to the parabolic case. As in the
second step of the proof of Proposition 3.4, let

r(v;s) = S%/R(Hv(z, s)—1) Lv(x,s) Gz, s)dx .

With the notations of Sections 3.2 and 3.4 and 3.5 consider v = vp, given by vp, (z,t):= U(x,t) 9 (z), for
some fixed point P; € S and v?, one of the blow-up limit of vp,. We define the functional

1 02 02 (0
D, (t;v) = t—Q/R‘v—vfn‘Q de—/t S—Q/R(Hv—l) (v—22) G da ds—&—/t ;/ r(0;v) df ds .

Proposition 5.1 (Local monotonicity formula for singular points) Under Assumption (5.4), let
U be a solution of (3.3). With the above notations the function t — ®,,(t;v) is nonincreasing, bounded
in WH1(—1,0).

Proof. By density, it is sufficient to prove the result for a smooth function v as in the proof of Propos-
ition 3.4. Let w := v — vY,. Using the change of variable 2 = /—ty, since % [, w*(z,t) G(z,t)dx =

fR t% w?(v/—ty,t) G(y, 1) dz and %w(\/—ty,t) = —2\3/’_—15 g—i’(\/—ty,t) + %—f(\/fry,t), we get

a [tig /]R w? (., £) Gz, 1) dm} -2 /R Lo, t) w(z, t) Gla,t) du
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Let e(t;v) := — [, { 2(Jvga|” +20) + & v2}G(x,t) dz be as in the first step of the proof of Proposition 3.4.

e(t;v)—e(t;vg)z—/ [1 ((,i(wrv )g:+2w) +ti2(u+v9n)w}de.

Integrating by parts with respect to z and using Hv2, = 1 and £v2, = 0 for every t < 0, we get

e(t;v) —e(t;00) = /{1 <6822(v+v )Jr;t%(erv?n)Z)wt%(erv?n)w}Gdz

1
= - (Hv—1 — .
/RL( v )+2t2£v}dex

i e e ] -
;i 2 ftsn) - ots] -2 [ i

Recall that E(t;v) = e(t;v) ft v; 8) ds by definition of £, e and r, and for any t < 0, e(t;v9,) = V2 =
lim,_ &(7;v) according to Propos1t10n 4.1. Thus

Thus

H~|L\D

v) — e(t;v),)] ft%/R(val) w@Gdr,

D, (t;0) =

d 2
—,,(t;v) = - [E(t;v) — lim 5(7‘ v)} (5.1)
dt t T—0
is nonpositive by Proposition 3.4. It remains to prove that
2 [° —2
(1) = i r(s;v)ds and (II) = = (Hv—1)wG dz,
t R

are integrable. (I) can be evaluated as in the second step of the proof of Proposition 3.4, using the
integrability of

[t] ,—1/16s ERp min(ﬁ\/ﬂ\/lﬂt\) do
|t| T2 ds and t oo |t| Nz o(f ) s,

0

where o(0) := SUDESS, /3 <o g(z,t) < Const - 0 by Assumption (3.4).
As for (IT), in {v >0}, Hv—1=g,and v =0in (R\ (—1,1)) x (—1,0), so we have:
1 1 1 1
f—x(H):—Q/ 9oy wGde + (Hv =1 wGdz + - 02, G dx .

2 1= Jiz|<1/2 t= J1j2<)z)<1 = Jiz>1
The last term is integrable: a trivial change of variable shows that the exponential decay is the domin-
ant factor. The second term is integrable because of the gaussian weight, as in the second step of the
proof of Proposition 3.4: the function ¢ + [t|=5/2 f11/2 e=*/(=4) ds is indeed integrable. The first term
|t| =2 f|x|<r/29]1{v>0} wGdz is also integrable: using the change of variables (s,x) — (f,6) as in the
second step of the proof of Proposition 3.4 again, we can conclude as above. O

Remark 5.2 As for the local monotonicity formula for £ studied in Proposition 3.4, an inspection of the
proof shows that a sufficient condition for the proof of Proposition 5.1 is that the map o — é foa @ do
is integrable, i.e. o is twice Dini-integrable.

As a consequence, we can state the following result.
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Corollary 5.3 Under Assumption (1.2), consider a solution u of (1.1). Let us fit Py € S. Note v%(Pl)

a blow-up limit in Py. Then for any r € (0, R) there exists t, < 0 and a continuous function s : (t,,0] x
Qr(Py) NS — R with s(0, Py) =0 such that for any P> € Q,.(Po) NS and t € (t,,0) we have

D) (G 0p,) < Prnpy) (G op,) + (8, P2) -
Similarly there exists a continuous function § satisfying 3(0, P1) = 0, such that

1 2 1 2
/t2 [0, 2,6) = vy (. 0)| Gl ) S/t—lepl(:C,t)—vfn(Pl)(x,t) Glz,t)dz  +3(t, Py)
R

Proof. The point P; is fixed and we write for tg <t < 0,
O(t;vp,) — ®(t;vp, ) = ®(t;vp,) — ®(to;vp,) + P(to; vp,) — P(to;vp,) + P(to;vp, ) — Pt vp, ) -

By the monotonicity formula, the first term satisfies ®(t;vp,) — ®(to;vp,) < 0. There exists a modulus
of continuity we,(d), continuous in (to,d) such that w,(0) = 0 and

[@(to; vp,) — P(to; vp,)| < wio ([P — F1l) -
Finally there exists a monotone modulus of continuity w such that
|®(t; vp) — @(050p, )] < w([E]) -
Therefore we get
D(t;vp,) — P(t;vp, ) < s(t, Pa)
with

s(t: P2) = inf (@i, (1P2 = Pi]) + 20(]to])

We now prove the second inequality. A careful investigation of the proof of Proposition 5.1 shows that
the estimates on (I) and (II) are uniform with respect to the point P> € S. So there exists ¢ — ¢;1(t)
which tends to zero when t tends to zero such that uniformly in P, € S, we have

1 2
Qo (py) (L vp,) — 15—2/]R ‘UPZ - U%(Pl)‘ G dx

This implies the result with §(¢, Po) = s(t, P2) + 2¢1(1). O

<aft)

5.2. Scale invariance and blow-up limits

A simple change of variable gives

®,, (N2 t;0) = O (t;0?) Vi€ (=A72,0), YA>0, (5.2)
where v* (2, 1) := A"20(A 2, A2 t). If we replace € by ®,,, we have a result which is similar to Corollary 3.5
and Proposition 4.1.

Proposition 5.4 (Scale invariance of ®,, and consequences) Under Assumption (1.2), consider a
solution w of (1.1). For some P; € S define v as in Section 3.2 and take m € [—1,0]. Consider a blow-up
limit v° associated to v. Then
;i_{no@m(ﬂv) =, Vi<O0.
7<0
with
D, / 00 — vl ‘Gdr Vt<0.

In the particular case where we choose v2, O, we get limy g, 7<0 Pm(T;0) = @ (t;00) = 0 for all

t<O0.
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5.3. Uniqueness of the blow-up limit at singular points

Proposition 5.5 Under Assumption (3.4) consider a solution U of (3.8) andv = vp, given byvp, (z,t):=
Uz, t)¥(x), for some fized point Py € S. There exists a unique m € [—1,0] such that for any sequence
(€n)nen converging to 0, the whole blow-up sequence (U"),en locally uniformly converges to v9,.

Proof. Let (v1),en and (v"2?),en be two blow-up sequences associated to v, with blow-up limits U(Ol)
and v(y). Assume that v(}) = vy,. By (5.2),

(I)m(ei,l t;v) = @y, (t;01) — @m(t;v?l)) =0 asn—o00.
With no restriction, we may assume that €, 2 < €, 1, so that by Proposition 5.1,
q)m(ei,l t;v) > (I>m(6721,2 t;v) = @y (t02)

Passing to the limit n — oo, we get

1
0> q)m(t;v(OQ)) = 15—2/]R

since E’U(OQ) =0, r(v?Q);t) =0 and HU(OQ) =1 for t < 0, since A(v?z)) = /2 by Proposition 4.1. This proves

‘ 2

G(z,t) de >0

0 0
’U(Q) — Uy

that 0?2) =9 = v?l).
For any (z,t) € Q1/(2, ,)(0), i = 1, 2, U™ coincides with v+. This proves the uniqueness of the
blow-up limit of U. g

To any P; € T', we can therefore associate a unique m(P;) := m € [—1,0] such that the blow-up limit
of a solution at this point is v%,. For any m € [—1,0], we set

Sm={PLel : m(P) =m}.
5.4. Continuity properties of the singular set

Lemma 5.6 (Continuity of the blow-up limit) The function Py — m(Py) is continuous on S.

Proof. Let P, € §. From Corollary 5.3 and the scale invariance of the monotonicity formula, we have
with vlé‘ (y,7) = t%vp2(|t|y,t27):

() (~Li0p) < gy (=130 ) + 5(E P) -
At the limit ¢ = 0, we get
D (p) (= 1500,py)) < Py (=15 00 pyy) + 8(0, Pa)

i.€.
2
/R}U%(PZ) - ’U?n(Pl) G(z,-1) dx < s(0, P) .
The contiuity of s joint to the fact that s(0, P;) = 0 implies that

Pgh—r>nP1 m(PQ) = m(Pl)
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Lemma 5.7 (A uniform continuity result) For any r € (0, R), there exists t,, < 0 such that for any
t € (t.,0), if vp is given in terms of U as in Section 3.2, where U is a solution of (3.3), and if (3.4) is
satisfied, then
1 2
lim sup }

- w2
=0 pesronmy b

vp(x,t) — ’UTOn(P)(,T,t) G(z,t) dx=0.

Proof. Consider a monotone decreasing sequence (€, )nen with lim, o €, = 0 and a sequence (P, )nen of
points in S N Q. (Fy), and assume by contradiction that

. 1 /
lim =
n—oo t R

We also assume that P, — Ps, € SN Q- (Py). We first remark that by the scale invariance we have

’ 2

vp (z,t) — vgl(Pn)(x,t) G(z,t)de =:1>0.

2
= ). vp (z,t) —USI(PR)(x,t)‘ G(z,t) dx— E /’ x,21) (P )(x,zsit) G(x,e2t) dx

Next we estimate this expression by ((I),, + (II),,) where
2
Yo = G / ‘vp x,e21) m(Pw)(vait)‘ G(z,2t) dx
1 0 2 0 202 2
(I1),, = e ‘vm(Px)(x,gnt) - Um(Pn)(‘r7Ent)‘ G(z,ext) dx
We also introduce the quantity
2
(I11),, / ’vp z,e2t) m(P )(,T,Eit)’ G(w,&2t) dx
(ent) o
From Corollary 5.3, we get
M), < (1), + 8(2t, P,)

with the particular choice P; = P,,. Moreover, still by scaling invariance, we have

(HI)n:/ f“\/‘t_'(x,—n

Poo
This implies that

2

_Ugn(Pw)(‘ra_l) G(Qf,—l)da?—>0 as e, — 0.

(I)p, — 0 as n— +4o0.
Finally we remark that

2

(In),, = . (x,—1) — vgl(Pn)(x, —-1)| G(z,—-1)dz < C|m(Px) — m(Pn)|2 —0 as P, — Py

This gives the contradiction with [ > 0. O

5.5. Time projection of the singular set

Proposition 5.8 The set I :={t € [-R? R?| : 3z € [-R, R}, (z,t) € S\So} has zero Lebesque measure.

To prove Proposition 5.8, we need several preliminary results.

Lemma 5.9 For any mo € (—1,0), the set Si_1 ) = U
of x.

me[—1,mo] S 18 locally a graph as a function
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Proof. Consider two sequences (Pp)nen and (P, )nen of points in Sj_y ,,,) converging to some point
P, € T. Since S is closed, Py, € S, and by Lemma 5.6, m(Px) € [—1,mg]. Assume by contradiction
that P, = (zp,t,) and P, = (zp, 1)), t, > t,. Consistently with the previous notations, we consider the
function v = vp,, which is associated to the change of coordinates (3.1) where now the point P; = P, is
moving. In the new coordinates the image of P, is the origin and the image of P/ is a point ﬁ; = (0,&2)
with 2 = f(P,)(t,, — tn). We then consider the sequence of functions

vp (o) = e 2v(en €l t) .

But at time t = —1, we have

2 2 2
/R‘U;;_USL(POC)‘ deﬁQ/R‘v;;—vgl(Pn)‘ de+2/R‘U21(Pn)_U9n(Px) Gdzx .

From lemma 5.7, the sequence (vp' Jnen is uniformly close to vgl(Pn) and m(P,) — m(Px) € [-1,mg).
Therefore on the one hand vj;; converges to vgl( Py On the other hand, let us remark that by construction

the point P = (0,1) belongs to 9 {vf;; > 0} and from the non-degeneracy Proposition 3.1 in the rescaled
variables, we have for any r € (0,1): -
sup vp > Cr?

Q- (P
At the limit we get for any r € (0,1):

sup USI(PDO) > Cr?

Q- (P)

This is in contradiction (see Section 3.5) with the fact that P’ is in the interior of the coincidence set of
v%(Pm) when m(Px) € [—1,mp] with mg < 0. O

Although we will not use it later, we can state the following additional result.

Corollary 5.10 For any mg € (—1,0), z9 € [—R, R], tg € [-R?, R?], the sets {(,1) € S|_1,mg) : T =
2o} and {(x,t) € So : t =to} are locally finite. Moreover Sy is locally contained in a graph, as a function

of t.

Proof. Taking into account Lemma 5.9, we only have to prove that locally Sy is contained in a graph.
Let us do it as in Lemma 5.9, by contradiction. Consider two sequences (Py)nen, and (P))n,en € S(l)\]
such that lim, oo Py, = limy o0 P, = Poo, Pn = (Tn,tn), P, = (2),tn), 2, — 2, > 0. By Lemma 5.6,

Py, € Sp. Consider the sequence (v3 )nen defined by v (z,t) = €, *v(e,x,ent) for v = vp, and
En = ﬁ?’g (2], — zpn). The remainder of the proof is the same as above. We end up by noticing that the

point P = (1,0) needs to satisfy v3(P’) = 0, while the limit of vy is vy (x,t) = 2°/2 when m = 0. O

By Lemma 5.9, locally S_1 ;,,,) can be described as a graph: = + (x, h(x)). To the function i : R — R,
for any § > 0, we associate the quantity:

qn(z,0) := sup M -

' |lz—a’|<5 |:C/ - JE|

Lemma 5.11 Let mg € (—1,0). With the above notations, lims_.o qn(x,d) = 0, uniformly in x.

Proof. If the Lemma is false, we can find two sequences of points P,, = (2, h(zy)) and P, = (a,, h(x}))
such that (P,)nen and (P)),en converge to Py, = (z, h(x)), and such that

|h(z) = h(zn)|

|27, — @]

ln = — 1 #0.
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Let us consider v = vp, and the corresponding change of coordinates which transforms P, in the origin
and P} in a point P, = (%),%,) with 7, = /LE (2!, — ), T, = F(P)(h(a},) — h(zn)). We define
&n > 0 such that

U
n =

P, € 9Qe,(0)
and consider the blow-up sequence of functions

vE =€, v(en T, €2 t)

and define
T, T
VA~ Ay A N n n
Up to the extraction of a subsequence, (P! )nen converges to some P’ = (#,1') € dQ1(0). By construction,
P, belongs to 0{vy = 0}, hence by the non-degeneracy Proposition 3.1, we have

sup vp > Cr?, v;;(é’z) =0.
Qr(P})
Taking the limit as n goes to infinity, we identify vTOn( p.) 88 the limit of v3' as in the proof of Lemma
5.9, and get o B
sup vgn(Px) > Cr?, v%(Pw)(P’) =0.
Qr(P)
This implies that P’ & 8{1}9”(13&) > 0} = {(a,t), t =2?/a*} where a is related to m by (3.11). In
particular there exists ag > 0 related to mg € (—1,0) by (3.11) such that a € [ag, +00]. Therefore we
get that #' = (7')?/a?, which, joint to the fact that P’ = (#’,#') € dQ1(0), implies that &’ # 0. We now
compute
_ W) — hizn)|

-
" |27, — T4

_ E’/n /7 a(Pn)
f(Pn) f(Pn)
A )

Ty \/a(Pp) f(Pn) .

The fact that &/, — ' # 0 and |¢},| < 1 implies that I,, — 0. Contradiction. O

n

We will now use the Hausdorff area formula. According to [11], Theorem 3.2.3 (p. 243), we have the
following result (also see [11], 2.8.9 (p. 145), Theorem 2.8.18 (p. 152), 2.9.12 (p. 158), 3.2.1 (p. 241),
Theorem 3.1.8 (p. 217), Definition 2.8.16 (p. 161), 3.1.2 (p. 211), Theorem 2.10.35 (p. 197), for related
results).

Lemma 5.12 (Hausdorff area formula) Let A be a measurable set of R and consider a function h :
A — R such that, with the above notations, for all x € A, qp(x,d) < 0o for some § > 0. If Ny (y) is the
number of elements of h=1(t), then

/A [mqh(z,a)} das:/RNh(t)dt.

Proof of Proposition 5.8. Apply Lemmata 5.11 and 5.12 with A = {z € R, 3t € R, (2,t) € S|_1 ;) }:
J Ni(t)dt = 0. This proves that for any mg € (—1,0), the measure of the set

Imo :{tER : 3$€R7 (mat) ES[*l,mU]}
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is zero. Hence the measure of I = J,, oy I_1 is also zero. 0

Remark 5.13 An inspection of the proof of lemma 5.11 shows that %ﬁﬁgm)

even goes to zero uniformly as |z’ — x| — 0 and (z,h(z)), (', h(2")) € Sj—1,m,], because the two blow-up

limits centered in P, and in P! need to be the same which implies the limit a to be equal to +o0.
h(@")—h(z)

[/ —a]?

is bounded. This ratio

A simple consequence of the boundedness of the ratio is that the one-dimensional parabolic

Hausdorff measure of S|_1 ), i-e. Hé (8[,1’m0]) is bounded. Let us recall that the parabolic Hausdorff
measure is build on the parabolic distance dist, defined for two points P = (x,t) and P’ = (2/,t') by
dist, (P, P') := +/(z — )2+ [t — /| At this stage it can be seen that the time projection of S[_1 m,)
defined by I[_q ) = {t, I(x,t) € S[—Lmo]} satisfies Hz (H[—lmm]) < 400 for the classical euclidian

Hausdorff measure. A further inspection shows that the convergence to zero of the ratio % implies

that H? (H[—lmm]) =0 As a consequence we get that
1
H? (Tl[-10)) =0
where
H[—l,O) = {t, H(I,t) € S\So} .
This last remark can be of particular interest in higher dimension, especially in space dimension 2.
Remark 5.14 Using a blow-up argument, it can be easily deduced from this section that any point in

S\ (So US_1) is an isolated point in S and then is only surrounded by regular points from the free bound-
ary.

6. On the continuity of u; and proof of the results of Section 1

In this section using the transformation of Section 3.1, we reduce the problem to the case a =1, b = 0,
c=0and f(P1) =1 where P; € I'. After this transformation we have in the new coordinates P; = 0, but
we will still keep the notation P; to avoid some possible confusions.

6.1. Proof of Theorem 1.2

With direct estimates, we first prove the following result.

Lemma 6.1 (Estimates on the limit of u; at the boundary) Under assumption (1.2), if u is a
solution of (1.1) and Py € T', then we have

ou ou
i li —(P) <0 d (i lim inf — (P
R = e I

Theorem 1.2 is a straightforward consequence of (i).

Proof. We first prove (i). Let [ := limsupp_ p, pefusoy ut(P). Assume by contradiction that there exists
a sequence (P, = (Zn,ty))nen such that

uw(P,) >0, lim P,=P and lim 3_1;(]3") =1>0.

Define now II,, := (T, 1,) € T, 7, > 0 such that
Qn, (Pp) C{u>0}, 1L, € 0(Qy,(Fn)) N{u=0}
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and vy, = (0, (Zn — Tn), 0y, % (tn — ). Let uf’ (2,t) := 0,2 u(ll, + (naz,n3t)). Up to the extraction
of a subsequence, (U%n;l)neN converges locally uniformly on all compacts sets in R? to a function u° €
WL (R2) and (vn)nen to some v € Q1 (0), such that

x,t;loc

Hu’=1in {u0>0} ., u’>0 ae inR?,
ou? 0
W(u):l and u’(v)>0.

Here u°(v) > 0 is a consequence of the fact that [ # 0.

By Lemma 2.3 we can pass to the limit in u; because u; is bounded in H®, and the corresponding bound
is uniform under zooming scaling. The function v achieves its maximum at v. Otherwise, there would
be a point P’ = (2/,#') € {u® > 0} such that u?(P’) > [ and then the point T}, = II,, + (n,2’, n2t’) would
satisty

) dully oo
lim T, = P, and lim 2o(T},) = lim —22(P) = 22

(P)>1,
a contradiction. Thus u) < u(v) = I. Moreover u? satisfies the equation
oul
H(— | =0 ae.in {u’>0}.
(%) > 0)
By the strong maximum principle, u? = [ in Q. (v) for some r > 0, small enough, and as a consequence

0
%:1+l in Q. (v),
which means that there exist o and k € R such that
u(z,t) =1t —t,)+ A +1)(z—T)*/2+k>0 in Q,(v).
Iterating the method, we may cover the parabolic connected component of {(x,t) € R? : u%(z,t) > 0, t <
t, } which contains v. Its boundary is given by
z— ¢(x) :==min{t,, t, — 17" (1+1) (x —T0)*/2+k)} .
For any = € R such that ¢(z) < t, and = # Zg, u’(z, ¢(z)) = (141)(z—To) # 0 contradicts the continuity
of u¥(-,t). Thus [ < 0.

It remains to prove (ii). This is equivalent to prove that

. 0%u
q:= lim sup

—(P)>0.
P—Py, Pe{u>0} 5302( =

Assume by contradiction that ¢ < 0 and as for (i), define P, = (zp,t,) such that lim, . uz(Pn) = g,
I, = (T, tn), My v and uff' . Up to the extraction of a subsequence (vy,)nen and (ujf’ )nen respectively
converge to v € dQ1(0) and u® € W21 (R?), which satisfy

x,t;loc
Hu’=1in {«">0}, u’>0 ae inR?,
0?u®
Ox?
As above, in the parabolic component of {(z,t) € R? : u%(z,t) > 0, t < t,} which contains v
ul(z,t) = (= 1)t —t,) +q(z —T0)*/2+k > 0.
This again contradicts the regularity of u? on 9{u® = 0}. O

(v)=¢ and u°(v)>0.
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6.2. A new characterization of some singular points and consequences

Lemma 6.2 Under Assumption (1.2) consider a solution u of (1.1). Let | :=liminfp_ p, perusoy ut(P)
be negative. Consider a minimizing sequence (Pp = (2, tn))nen for I. Define I, = (T, t,) €T, 0y > 0
such that

Qn,(Pn) C{u>0}, II, € 0(Qy,(Pn)) N{u=0}
and vy = (0,1 (Tn — Tn), 0,2 (tn —1n)). Up to the extraction of a subsequence, (uff’ := n,?u(Il, +
(M, m2t)))nen converges locally uniformly on all compacts sets in R? to a function u® € Wfﬁ’;}zoc(R%,
and (Vn)nen to some v = (x,,t,) € 0Q1(0). Moreover there exist Top and k € R such that

u(z,t) =1t —t,)+ (1 +1)(z—T0)?/24+ k>0 V(2,t) €ER x (—o00,t,) .

Proof. We proceed as in the proof of Lemma 6.1. The function u° and v are such that

Hu’=1in {u">0}, u’>0 ae inR?,
ou® 0
W(u):l and uw’(v)>0.

The function uf achieves its minimum at v: uf > uf(v) = I. Moreover Hu? = 0 almost everywhere in
{uo > 0}. By the strong maximum principle, v = [ in @, (v) for some r > 0, small enough, and as a

consequence
*u® , _
Tz 1 +1 in Q (v),

which means that there exist z¢ and k € R such that
u(z,t) =1t —t,)+ (1 +1)(z—T0)?/2+k>0 in Q,(v).

Iterating the method, we may cover the parabolic connected component of {(z,t) € R? : u’(x,t) > 0, t <
t, } which contains v. This proves that its boundary is given by

z— ¢(z) :i=max {t,, t, — 7 (1 +1) (z —T0)?/2+k)} .

For any z € R such that ¢(z) < t, and & # T, ul(x, #(x)) = (1+1)(x—T() # 0 contradicts the continuity
of ul(-,t) if I > —1. Thus infg ¢ > t, and u° is positive in {t < ¢, }. By unique continuation, we establish
the expression of u” in R x (—o0,1t,). O

As a consequence of this lemma we have
Lemma 6.3 Under Assumption (1.2) consider a solution u of (1.1) and take Py € T'. If

lim inf Ju

—(P) <0
P—P;, Pe{u>0} Gt( )

then P, € S.

Proof. Consider a nonnegative cut-off function ¢» € D(R) such that ¢y = 1 in a small neighborhood of
x = 0 and with small enough compact support. Assume by contradiction that P; is regular. For any
P’ = (2/,t') we define
upr(z,t) =u(z + 2"t +1').
By Proposition 4.1, lim, o &(T;up,¥) = v/2/2. By Proposition 3.4, for any § > 0, there exists a 79 < 0
such that
V2/2 < E(ro;up ) < V2/2+68/2. (6.1)

28



With the notations of Lemma 6.2 and according to Lemma 6.2 the sequence (U%T; )nen converges uniformly
to u®(z,t) =1l(t—t,)+ (1 +1)(z —7)?/2+k >0in R x (—oc0,t,). We compute

lim E(t;ul) =v2.
t—0,t<0

Then for any 6 > 0, there exists to, < 0 with |ts| small enough such that for ¢ > to, we have (using the
scaling invariance of the energy):

5
V2o <Eu’) = lim Etufy w(na) = lim E(ntum,v) .

So for 7y defined in (6.1) and t > ¢, fixed, there exists N = N(¢,0) such that
J
Vn >N, E(t;uf Y(n-)) > E(t;u’) — 3 and n2t > 719 .

Proposition 3.4 applies to ur,,:
E(mpt; um,¥) < E(70; um,¥) -
By continuity of the map P’ — &(70;up:t)), we have

N | S

E(ro;um, ¥) < E(to;up ) +

Collecting these estimates, we have for any n > N

\v}

) 0
V2§ <E(tu) — 5 < Emptsum, ) < E(ro;um,¥) < E(T0;up, ) + 5 < % +9,
a contradiction for any § < v/2 /4. O

As a direct consequence of Lemmata 6.1 and 6.3 we obtain
Corollary 6.4 Under Assumption (1.2) consider a solution u of (1.1). If Py € R then

ou
li —(P)=0.
P—»Pl,lzgrel{um} 8t( )

Lemma 6.5 Let u be a solution of (1.1) and assume that (1.2) holds. If there exist r > 0 and P; =
(r1,t1) € Qr(Py) such that Q.(P1) C Qr(Py) and t' :=inf{t € (tp —r*,tp+7?] : 2’ € (xp—r,2p+7)
such that (z',t) € T'} is achieved in (xp —r,xp + 1) x (tp — r? tp + 2] and u is positive in {(z,t) €
Q- (Py) : t <t'} then (2',t') is a singular point.

Proof. Assume by contradiction that P’ € R. According to Theorem 3.9 and Proposition 5.5, the blow-up
limit in P’ corresponding to a blow-up sequence at scale €, is u® = vJ. There exists therefore some
P = (x,t) with ¢ < 0 such that P € Int{u® = 0}. By Lemma 2.5, this implies that w(P’ + ¢, P) = 0 for
n large enough, a contradiction with the definition of P’. 0

Theorem 6.6 Under Assumption (1.2) consider a solution u of (1.1). For any m € [-1,0], if P; € Sp,
then 9

lim inf _u( )
P—Py, Pe{u>0} Ot

Proof. Let Py = (v1,t1) and | := liminfp_, p, pefu>o0} ut(P). By considering a blow-up sequence (€, )nen
and by computing wi(xp,,tp, — €,/2) — (v?n(Pl))t(xpl,tpl —1/2) = m(Py) we get that | < m = m(Py).
Assume by contradiction that the inequality is strict.
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Let (P,,)nen be a sequence with P, = (z,, t,) such that u(P,) > 0, lim,, P,, = P, and lim,, u;(P,) = [.
For any n € N, define ¢, > 0, such that P, € 9Q., (Py). Let us consider a localized blow-up sequence
(u‘;’fl"')neN which converges to v),. Since Qc,, (P) C Qsec, (P1), the sequence (ug := €, u(zy + €, T,y +
€2 1)) nen satisfies B B

up — v (-+P) with P e dQi(0).

Here P = (7,1) = lim,, . 1 o P, with P,, = (”””E;”“, ’57’6;2’51) By Lemma 6.2 and using the same notations,
for some II,, := (T, tn) € T, (uff’ Jnen uniformly converges to u®(x,t) = I(t —t,) + (1 +1) (x —T)* /2 + k

in R x (=00, t,). Let us define Zy such that I(fo — t,) 4+ k = 0. Then for Py = (Zo, ), and by uniqueness
of the limit solution u?, we have u® = v?(- + Py). Consequently we have

N 0 ¥5)
urf, — v (- + Po).
Moreover we have
M < €n .

Now let us consider the sequence (U%"n)neN which satisfies u%"n = uapjb (-+11,,) with IT,, = (M, Z"E;Qt") €

En n

dQ., /. (0). Up to extraction of a subsequence, we can assume that II,, — II with IT € Q1(0) and then
ufp — v (- + P +1I) .

Because we assumed that [ # m, this implies that 1, /e, — 0 and then I=0.
Given § > 0, we now consider u > 0 large enough such that

[0 ((0, =) + P) — mp| < bpu
[P ((0, =) + Po) — lu| < ép .

The function A — uf\ln = A"2u(Z, + Az, t, + A2 t) is continuous: there exists a A\, € (7, €,) such that

1, 1
S (0.—p) = 5 fm+ 1]
for any n large enough. The sequence (u?‘f;)neN converges to a function @ in Wi’tl;oo which satisfies
Hi=1lgeoy, @>0 and (0, —p) = %[m—i—l] .

Consider a nonnegative cut-off function ¢ € D(R) such that ¥y =1 on (—1/2,+1/2), supp(¢)) = [—1, 1].
On the one hand, there exists to, = too(d) < 0 such that

) —
V2 - e E(tsv] (- + Po)) = lim E(tsufy (na)) = lim E(ptiun, ) V€ (teo,0) .

On the other hand by definition of S, lim, ¢ &(7;up,¥) = v/2. By Proposition 3.4, for any § > 0, there
exists 79 < 0, with |7| sufficiently small, such that

E(rosup, ) < V2+6/2.
For any § > 0, t > 0, there exists a N = N (¢, ) such that

n>N = Etuf ¥(nn)) > Etv)(-+ Po)) — and nit>1p.

\CRS%)

Moreover, for a fixed 79, by continuity of the energy, since II,, € Qa, (P1),
1
E(rosum, ¥) < E(rosup ) + 5 ¥n>N
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for N large enough. Using Proposition 3.4, for all t > o, n > N, s € (10,72 t) C (70,0), we get
_ ) )
V2 -6 < E(t;v](-+ Po)) — 3 < EMmptsum, ¥) < E(s;um, ¥) < E(ro; um, ¥) < E(T0;up,¥) + 5 < V244,

For any given t > t, and n > N(t,6) we define s :== A2 7, and 7 € (79/A\2, (n,/A\n)?t). As a consequence,
the estimate

V2 -6 <ENTum, ) = E(riuy ¥(nn:) < V2+6

holds true for any ¢t > t-(6) and n > N(t,0). From our construction we get that A, — 0 and 7,,/A, — 0,
so that ’5(7‘;@) — \/5’ < § for all 7 < 0 and for all § > 0. Therefore

Vr e (—00,0), E(ra) =V2.

This means that @ is scale-invariant by Corollary 3.5. By Theorem 3.9 there exists an 7 such that 4@ = v2 .

Because of the expression of @(0, —u1)/p we obtain m = [m +1]/2 € (=1, 0). From the convergence of ugy"
to v2 with m € (—1,0) where the free boundary 9 {v% > 0} is a parabola oriented in the positive time
direction, and from the fact that P, € Qx, (II,,), we deduce that Lemma 6.5 applies to u in Q 4, (P,) for
some A > 0 large enough, but independent of n. Then there exists a sequence of singular points (7, )nen

in Qan, (P,) such that lim, . m(Z,) = m, because ul”\{; converges to v3,. Moreover the sequence Z,,
converges to P; and then by Lemma 5.6, we obtain m = m(P;), which is impossible. O

As a very simple consequence, we obtain the following result.
Corollary 6.7 Under Assumption (1.2) consider a solution w of (1.1). If Py € Sy then

ou
E(P) =0.

lim
P—Py, Pe{u>0}

6.3. Proofs of the results of Section 1

Proof of Theorem 1.4. If for some t < 0, £(t;vp,) < /2, then by Proposition 3.4, t — E(t;vp,) is
monotone decreasing, and by Proposition 4.1, P; € R. By Corollary 6.4, u; is continuous at P, and in a
neighborhood of P; by Lemma 4.2. g

Proof of Theorem 1.3. By Proposition 4.1, the limit of £ is either v/2 or v/2/2. In the second case, Corollary
6.4 applies at P; and the continuity of u; holds because R is open in I' according to Lemma 4.2, which
proves (ii). O

Proof of Theorem 1.1. By Proposition 5.8, the set I has zero Lebesgue measure. If (z1,¢1) = P, € T' is
such that ¢; &€ I, then P; € So UR, and the result holds by Corollaries 6.4 and 6.7. d
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