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Abstract

This note is devoted to continuity results of the time derivative of the solution to the one-

dimensional parabolic obstacle problem with variable coefficients. It applies to the smooth fit

principle in numerical analysis and in financial mathematics. It relies on various tools for the

study of free boundary problems: blow-up method, monotonicity formulae, Liouville’s results.
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1 Introduction

Consider a parabolic obstacle problem in an open set. We look for local properties, which

do not depend on the boundary conditions and the initial conditions, but only depend on

the equation in the interior of the domain. Consider a function u with a one-dimensional

space variable x in Q1(0) where by Qr(P0) we denote the parabolic box of radius r and

of centre P0 = (x0, t0):

Qr(P0) =
{

(x, t) ∈ R
2, |x − x0| < r, |t − t0| < r2

}

.

Assume that u is a solution of the one-dimensional parabolic obstacle problem with

variable coefficients:
{

a(x, t)uxx + b(x, t)ux + c(x, t)u − ut = f(x, t) · 1l{u>0} a.e. in Q1(0)

u ≥ 0 a.e. in Q1(0)
(1)
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where ut, ux, uxx respectively stand for ∂u
∂t

, ∂u
∂x

, ∂2u
∂x2 , and 1l{u>0} is the characteristic

function of the positive set of u. Here the free boundary Γ is defined by

Γ = (∂ {u = 0}) ∩ Q1(0) .

To simplify the presentation, we assume that the coefficients

a, b, c and f are C1 in (x, t) , (2)

but Hölder continuous would be sufficient in what follows.

A natural assumption is that the differential operator is uniformly elliptic, i.e. the

coefficient a is bounded from below by zero. If we do not make further assumptions on

a and on f , we cannot expect any good property of the free boundary Γ. Suppose that:

∃ δ > 0, a(x, t) ≥ δ, f(x, t) ≥ δ a.e. in Q1(0) . (3)

Up to a reduction of the size of the box (see [4]), any weak solution u of (1) has a bounded

first derivative in time and bounded first and second derivatives in space. Assume there-

fore that this property holds on the initial box:

|u(x, t)|, |ut(x, t)| , |ux(x, t)| and |uxx(x, t)| are bounded in Q1(0) . (4)

This problem is a generalisation to the case of an operator with variable coefficients

of Stefan’s problem (case where the parabolic operator is ∂2/∂x2 − ∂/∂t). Stefan’s

problem describes the interface of ice and water (see [10, 13, 8]). The problem with

variable coefficients arises in the pricing of american options in financial mathematics

(see [3, 2, 14, 11, 9, 15, 1]).

If P is a point such that u(P ) > 0, by standard parabolic estimates ut is continuous

in a neighbourhood of P . On the other hand if P is in the interior of the region {u = 0},
ut is obviously continuous. The only difficulty is therefore the regularity on the free

boundary Γ. By assumption ut is bounded but may be discontinuous on Γ. The regularity

of ut is a crucial question to apply the “smooth-fit principle” which amounts to the

C1 continuity of the solution at the free boundary. This principle is often assumed,

especially in the papers dealing with numerical analysis (see P. Dupuis and H. Wang [6]

for example).

In a recent work L. Caffarelli, A. Petrosyan and H. Shagholian [5] prove the C∞

regularity of the free boundary locally around some points which are energetically char-

acterised, without any sign assumption neither on u nor on its time derivative. This

result holds in higher dimension but in the case of constant coefficients. We use tools

similar to the ones of [5] and the ones the last author developed previously for the elliptic

obstacle problem in [12]. Our main result is the following:

2



Theorem 1.1 (Continuity of ut for almost every time) Under assumptions (1)-(2)-

(3)-(4), for almost every time t, the function ut is continuous on Q1(0).

This result is new, even in the case of constant coefficients. The continuity of ut cannot be

obtained everywhere in t, as shown by the following example. Let u(x, t) = max{0,−t}.
It satisfies uxx − ut = 1l{u>0} and its time derivative is obviously discontinuous at t = 0.

If additionally we assume that ut ≥ 0 we achieve a more precise result:

Theorem 1.2 (Continuity of ut for all t when ut ≥ 0) Under assumptions (1)-(2)-

(3)-(4), if ut ≥ 0 in Q1(0) then ut is continuous everywhere in Q1(0).

The assumption that ut ≥ 0 can be established in some special cases (special initial

conditions, boundary conditions, and time independent coefficients). See for example

the results of Friedman [7], for further results on the one-dimensional parabolic obstacle

problem with particular initial conditions.

In Section 2 we introduce blow-up sequences, which are a kind of zoom at a point of

the free boundary. They converge, up to a sub-sequence, to a solution on the whole space

of the obstacle problem with constant coefficients. Thanks to a monotonicity formula for

an energy we prove in Section 3 that the blow-up limit is scale-invariant. This allows us to

classify in Section 4 all possible blow-up limits in a Liouville’s theorem. Then we sketch

the proof of Theorem 1.1. We even classify energetically the points of the free boundary

into the set of regular and singular points. In Section 5 we prove the uniqueness of the

blow-up limit at singular points. Then we give the sketch of the proof of the Theorem

1.2. For further details we refer to [4].

2 The notion of blow-up

Given a point P0 = (x0, t0) on the free boundary Γ, we can define the blow-up sequence

by

uε
P0

(x, t) =
u(x0 + εx, t0 + ε2t)

ε2
, ε > 0 . (5)

Roughly speaking the action of this rescaling is to zoom on the free boundary at scale ε

(see figure 1).

By assumption, u(P0) = 0. Because u is non-negative, we also have ux(P0) = 0.

Moreover uε
P0

has a bounded first derivative in time and bounded second derivatives in

space. For this reason, using Ascoli-Arzelà’s theorem, we can find a sequence (εn)n which

converges to zero such that
(

uεn

P0

)

n
converges on every compact set of R

2 = Rx × Rt to

a function u0 (called the blow-up limit) and which a priori depends on the choice of the

sequence (εn)n.
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Figure 1: Blow-up

The limit function u0 satisfies the parabolic obstacle problem with constant coeffi-

cients on the whole space-time:

a(P0)u
0
xx − u0

t = f(P0) · 1l{u>0} in R
2 .

By the non-degeneracy assumption (3), it is possible to prove that 0 ∈ ∂
{

u0 = 0
}

.

To characterise the blow-up limit u0, we need to come back to the original equation

satisfied by u and to obtain additional estimates. In order to simplify the presentation

we make a much stronger assumption on u: assume that u is a solution on the whole

space-time of the equation with constant coefficients a ≡ 1, f ≡ 1, b ≡ 0 and c ≡ 0:

uxx − ut = 1l{u>0} in R
2 . (6)

Without this assumption, all tools have to be localised. See [4] for more details.

3 A monotonicity formula for energy

For every time t < 0, we define the quantity

E(t; u) =

∫

R

{

1

−t

(

|ux(x, t)|2 + 2 u(x, t)
)

− 1

t2
u2(x, t)

}

G(x, t) dx

where G satisfies the backward heat equation Gxx + Gt = 0 in {t < 0} and is given by

G(x, t) =
1

2
√

π(−t)
exp

( −x2

4(−t)

)

.

Theorem 3.1 (Monotonicity formula for energy) Assume that u is a solution of (6).

The function E is non-increasing in time for t < 0, and satisfies

d

dt
E(t; u) = − 1

2(−t)3

∫

R

|Lu(x, t)|2G(x, t) dx (7)
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where

Lu(x, t) = −2 u(x, t) + x · ux(x, t) + 2 t · ut(x, t) .

A similar but different energy is introduced in [5, 16].

Corollary 3.2 (Homogeneity of the blow-up limit) Any blow-up limit u0 of (uεn

P0
)n

defined in (5), satisfies

u0(λx, λ2t) = λ2u0(x, t) for every x ∈ R, t < 0, λ > 0 . (8)

Proof. We prove it in the case P0 = 0. The crucial property is the scale-invariance of E :

E(ε2
nt; u) = E(t; uεn

0 ) .

Taking the limit εn → 0, we get

E(0−; u) := lim
τ→0 τ<0

E(τ ; u) = E(t; u0) for every t < 0 . (9)

From the monotonicity formula (7), we get Lu0(x, t) = 0 for t < 0. This implies the

homogeneity (8) of u0 for t < 0. �

4 A Liouville’s theorem and consequences

Let

v+(x, t) =
1

2
(max{0, x})2 ,

v−(x, t) =
1

2
(max{0,−x})2 ,

and for m ∈ [−1, 0]

vm(x, t) =































m t +
1 + m

2
x2 if t ≤ 0 ,

t Vm

( |x|
t

)

> 0 if 0 < t < Cm · x2 ,

0 if t ≥ Cm · x2 ,

where the coefficient Cm is an increasing function of m, satisfying Cm = 0 if m = −1,

and Cm = +∞, if m = 0. The precise expression of Vm is given in [4]. In particular we

get v−1(x, t) = max{0,−t} and v0(x, t) = 1

2
x2.

Theorem 4.1 (Classification of global homogeneous solutions in R
2) Let u0 6≡ 0

be a non-negative solution of (6) satisfying the homogeneity condition (8). Then u0 is

one of v+, v− or vm for some m ∈ [−1, 0].
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Figure 2: Solutions of Theorem 4.1

Similar versions of this theorem are also proved in [5].

Theorem 1.2 is a consequence of Theorem 4.1. Every blow-up limit satisfies u0
t ≤ 0.

A more detailed analysis leads to

lim inf
P→P0

ut(P ) ≤ 0 . (10)

From the assumption ut ≥ 0 we so infer that ut = 0.

We also have an energy criterion to characterise points of the free boundary

Theorem 4.2 (Regular and singular points) Let u be a solution of (6). Then either

E(0−; u) =
√

2 or E(0−; u) =
√

2/2.

In the first case (i.e. E(0−; u) =
√

2) P0 is called a singular point. Otherwise (i.e.

E(0−; u) =
√

2/2), P0 is a regular point.

Proof. By (9) we have E(0−; u) = E(−1; u0). Blow-up limits have been classified in Theo-

rem 4.1. A simple calculation gives E(−1; v+) = E(−1; v+) =
√

2/2, and E(−1; vm) =
√

2

for every m ∈ [−1, 0]. �

5 A monotonicity formula for singular points

One of the crucial idea of [12] can be adapted to the parabolic framework.

Theorem 5.1 (Monotonicity formula for singular points) Let u be a solution of (6)

and assume that P0 = 0 is a singular point. For any m ∈ [−1, 0] the function

t 7→ Φvm(t; u) =

∫

R

1

t2
(u(x, t) − vm(x, t))

2
G(x, t) dx , t < 0 (11)

is non-increasing.

As a consequence limτ→0, τ<0 Φvm(t; u) := Φvm(0−; u) is well defined.
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Corollary 5.2 (Blow-up limit at singular points) Under the assumption of Theo-

rem 5.1, there exists a real m ∈ [−1, 0] such that any blow-up limit of u at 0 is equal to

vm.

Proof. Consider two sequences (εn)n and (ε̃n)n converging to 0 such that (uεn

0 )n and

(uε̃n

0 )n respectively converge to two blow-up limits u0 = vm, for some m ∈ [0, 1], and ũ0.

Using the scale-invariance we get

Φvm(−1; uεn

0 ) = Φvm(−ε2
nt; u) and Φvm(−1; uε̃n

0 ) = Φvm(−ε̃2
nt; u) .

Passing to the limit in the scale-invariance we obtain

0 = Φvm(−1; u0) = Φvm(0−; u) = Φvm(−1; ũ0) .

This proves that ũ0 = vm = u0, i.e. the uniqueness of the blow-up limit. �

Heuristically the singular points whose blow-up limit is vm with m ∈ [−1, 0) have a

free boundary with horizontal tangent in the (x, t)-plane: this almost never occurs. On

the other hand the singular points with v0 as blow-up limit and the regular points have

a blow-up limit which satisfies u0
t = 0. This last argument can be refined to show that

the time derivative of u is continuous at such points, and consequently for almost every

time. This proves Theorem 1.1.
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