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Abstract

We consider the problem of efficiently sharing water from a river among a

group of satiable agents. Since each agent’s benefit function exhibits a satiation

point, the environment can be described as a cooperative game with external-

ities. We show that the downstream incremental distribution is the unique

distribution which both is fair according to the “aspiration welfare” principle

and satisfies the non-cooperative core lower bounds. On the other hand, the

cooperative core may be empty. Furthermore, the downstream incremental dis-

tribution satisfies all core lower bounds for all connected coalitions if and only

if each agent’s individual rationality constraint is independent of the behavior

of the other agents.
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1 Introduction

In many economic and political environments the characteristics of a prisoner’s dilemma

are present: the non-cooperative equilibrium is inefficient and enforcing the efficient

outcome requires cooperation (Hardin, 1968; Ostrom, 1990). International agree-

ments determine how to achieve cooperation among a group of countries and specify

how to make monetary compensations to distribute the resulting benefits. Examples

are the European Union, the GATT, and the Kyoto Protocol on greenhouse emissions.

In all these environments the benefit of a group of countries depends on how the

other countries behave. Cooperation of the other countries exerts an externality on

the value (or benefit) of a coalition (or group) of countries. In other words, these

environments can be described as a cooperative game with externalities.1

A natural requirement of any agreement is that a subgroup of countries should not

be better off by signing a separate agreement. An agreement belongs to the core if it

is not blocked by a subgroup of countries. In the presence of externalities the stability

of an agreement depends on how countries act after the deviation of a coalition. We

might make two extreme assumptions about the behavior of countries outside the

blocking coalition: either they continue to cooperate by signing their own agreement

or they do not cooperate at all. The non-cooperative core requires that the agreement

is not blocked by a subgroup assuming that the countries outside do not cooperate.

This concept corresponds to Hart and Kurz (1983)’s notion of γ-stability of agree-

ments whereby an agreement is disbanded once a coalition deviates. Similarly, the

cooperative core imposes that the agreement is not blocked by a subgroup assuming

that the countries outside do all cooperate. This concept corresponds to Hart and

Kurz (1983)’s notion of δ-stability whereby countries continue to act together after

the deviation of a coalition.

1For cooperative games with externalities several recent papers offer extensions of the Shapley

value of games without externalities (see Maskin (2003), de Clippel and Serrano (2005), Navarro

(2007) and Macho-Stadler, Pérez-Castrillo, and Wettstein (2007)).
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We consider international agreements for sharing water resources of a river.2 A

set of agents is located along the river and the river picks up volume along its course.

Each agent extracts water from the river for consumption and/or production. Agents

value water differently in the sense that some have higher needs and higher marginal

utility /productivity than others. These heterogeneous valuations are represented by

concave and single-peaked benefit functions, where the peak consumption corresponds

to an agent’s satiation point.

Kilgour and Dinar (2001) and Ambec and Sprumont (2002) considered the special

case when each agent’s benefit function is strictly increasing and satiation points do

not exist. This assumption appears unnatural because in reality overconsumption

may cause flooding or increase sanitation costs with higher water extraction costs.

We show that under single-peaked benefit functions the environment can be described

as a cooperative game with externalities. The values assigned to coalitions are the

result of a non-cooperative game.

Because property rights over water are not well defined, there are two conflicting

doctrines invoked by riparian countries in international river disputes: the theory of

absolute territorial sovereignty (ATS) and the theory of unlimited territorial integrity

(UTI) respectively (see Godona, 1985). Core lower bounds are inspired by ATS.

Under UTI an agent (or group of agents) could freely use the full stream of water

originating upstream from its location if the other agents are absent, thereby enjoying

a benefit called “aspiration welfare”. Since water is scarce, not everybody can enjoy

its aspiration welfare. A welfare distribution that assigns to any agent or group of

agents more than its aspiration welfare should be perceived as unfair. The aspiration

welfare defines upper bounds on welfare for any coalition of agents.3

2The importance of this problem has been empirically shown by Godana (1985) and Barrett

(1994). The field of research on water allocation is increasingly important with diminishing water

reserves (Young and Haveman, 1995; Carraro, Marchiori, and Sgobbi, 2005, Griffin, 2006).
3Notice that, in a recent paper, Ni and Wang (2007) apply the ATS and UTI principles to the

problem of dividing the cost of cleaning a polluted river.
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Under non-cooperative behavior there exist distributions satisfying the core lower

bounds. Our first main result shows that the downstream incremental distribution

is the unique distribution satisfying the non-cooperative core lower bounds and the

aspiration upper bounds. The downstream incremental distribution is the incremental

distribution corresponding to the natural order of the river. Our second main result

shows that for more than three agents, there may not exist any distribution satisfying

the cooperative core lower bounds. Therefore, the cooperative core lower bounds are

above the non-cooperative core lower bounds. In general cooperation exerts a positive

externality on the value of a coalition compared to its value under non-cooperative

behavior.

Since the core is empty, we may allow only connected coalitions to block. Even

if blocking is restricted to these coalitions, the core may still be empty. Our third

main result gives a simple necessary and sufficient condition for the existence of a

distribution satisfying the aspiration upper bounds and the core lower bounds for

all connected coalitions independently of the other agents’ behavior. The condition

is that cooperation exerts no externality on the value of any agent. Since all core

lower bounds are above the non-cooperative core lower bounds, it follows that the

downstream incremental distribution is not blocked by any connected coalition in-

dependently of the other agents’ behavior if and only if the individual rationality

constraints are identical under all behaviors of the other agents.

The paper is organized as follows. In Section 2 we introduce the problem of sharing

a river among satiable agents and we determine necessary and sufficient conditions for

an efficient water consumption plan. In Section 3 we calculate the value of a coalition

for each partition of the agents via the backwards induction algorithm applied to a

dynamic game induced by the structure of the river and the partition of the agents.

In Section 4 we focus on non-cooperative behavior and show that the downstream

incremental distribution is the unique distribution satisfying the non-cooperative core

lower bounds and the aspiration upper bounds. In Section 5 we turn to cooperative
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behavior and show that for more than three agents there may not exist any distri-

bution satisfying the cooperative core lower bounds. Furthermore, the downstream

incremental distribution satisfies all core lower bounds for all connected coalitions if

and only if the cooperation exerts no externality on the value of any agent. In Section

6 we conclude.

2 The Problem

Let N = {1, . . . , n} denote the set of agents (or countries). We identify agents

with their locations along the river and number them from upstream to downstream:

i < j means that i is upstream from j. A coalition is a non-empty subset of N .

Given two coalitions S and T , we write S < T if i < j for all i ∈ S and all j ∈ T .

Given a coalition S, we denote by min S and max S, respectively, the smallest and

largest members of S. Let Pi = {1, . . . , i} denote the set of predecessors of agent

i and P 0i = Pi\{i} denote the set of strict predecessors of agent i. Similarly, let

Fi = {i, i + 1, . . . , n} denote the set of followers of agent i and let F 0i = Fi\{i}

denote the set of strict followers of i. A coalition S is connected if for all i, j ∈ S

and all k ∈ N , i < k < j implies k ∈ S. Given a coalition S, let C(S) denote the set

of connected components of S, i.e. C(S) is the coarsest partition of S such that any

T ∈ C(S) is connected. We often omit set brackets for sets and write i instead of {i}

or v(i, j) instead of v({i, j}).

The river picks up volume along its course. We denote by ei ≥ 0 the volume which

the river picks up at agent i’s location (or in country i). Each agent is endowed with

a benefit function. Let bi : R+ → R denote agent i’s benefit function. We assume

that bi is differentiable for all xi > 0 and strictly concave. Furthermore, b′i(xi) goes to

infinity as xi tends to 0 and there exists a satiation point x̂i > 0 such that b′i(x̂i) = 0.

In other words, x̂i is agent i’s optimal (water) consumption and if he consumes more

than x̂i, then he will infer a loss (compared to consuming x̂i) from overconsumption.

A problem is a triple (N, e, b) where e = (ei)i∈N and b = (bi)i∈N . Given a problem,
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a consumption plan for N is a vector x(N) ∈ RN
+ such that for all j ∈ N∑

i∈Pj

xi(N) ≤
∑
i∈Pj

ei.

The above constraint says that the water ei, which is picked up by the river at agent

i’s location, can only be consumed by i and the agents which are located downstream

from i.4

Given a consumption plan x(N) and an agent i, let

Ei(x(N)) =
∑

j∈P 0i

(ej − xj(N))

denote the amount of water which is passed to agent i from his strict predecessors

P 0i in the consumption plan x(N) (with the convention E1(x(N)) = 0)5.

We call x∗(N) an optimal (or efficient) consumption plan if and only if it maxi-

mizes the sum of all agents’ benefits. Note that here it is suboptimal for any agent to

consume more than x̂i. Therefore, it may be suboptimal to use all the water
∑

i∈N ei.

Now analogously to Ambec and Sprumont (2002) there exists a unique optimal con-

sumption plan x∗(N) and that for x∗(N) there exists a partition {Nk}k=1,...,K of N

and a list (βk)
K
k=1 of non-negative numbers such that6

Nk < Nk′ and βk > βk′ whenever k < k′ (1)

b′i(x
∗
i (N)) = βk for every i ∈ Nk and every k = 1, . . . , K (2)

x∗i (N) ≤ x̂i for all i ∈ N (3)∑
i∈Nk

(x∗i (N)− ei) = 0 for every k = 1, . . . , K − 1. (4)

4This makes our problem different from both the allocation of a private good with the possibility

of sidepayments and queuing problems where the order of the agents is flexible and agents are

compensated for the welfare maximizing queue (see among others Maniquet (2003) and Chun (2004)).
5Agent 1 does not receive any water from the other agents because agent 1 occupies the first

location of the river.
6For a detailed description of the efficient allocation of water along a river, see Kilgour and Dinar

(2001). Furthermore, recall that S < T means i < j for all i ∈ S and all j ∈ T .
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Thus, if x∗i (N) = x̂i, then i ∈ NK , i.e. the saturated agents belong to the last member

NK of the partition.

Money is available in unbounded quantities to perform sidepayments. Agent i’s

utility from consuming xi units of water and the monetary transfer ti is ui(xi, ti) =

bi(xi) + ti. An allocation is a tuple (x(N), t(N)) where x(N) is a consumption plan

for N and t(N) ∈ RN is a vector of monetary transfers such that
∑

i∈N ti(N) ≤ 0. A

(welfare) distribution is any vector z = (z1 . . . , zn) ∈ RN which is the utility image of

some allocation (x(N), t(N)) in the sense that zi = bi(xi(N)) + ti(N) for all i ∈ N .

We distribute the maximal welfare
∑

i∈N bi(x
∗
i (N)) among the agents.7

3 Externalities and Core Lower Bounds

Since each agent’s benefit function is single-peaked, any agent never consumes more

than his satiation point. If marginal benefits are higher for agents located more

downstream, then it may be profitable for a coalition to pass some water from one

component to another component even though some of the passed water is consumed

by agents in between the two components. Therefore, the value of a coalition may be

greater than the sum of the values of its connected components. However, it may be

also profitable for the agents outside of S to pass some water from one component

to the next one leaving some water for consumption for the agents in S. Hence,

the value of a coalition S will depend on both the components of S and the behavior

of the agents outside of S. In other words, the behavior of the agents outside of S

exerts an externality on the value of coalition S. In what follows we will assume

that the agents outside of S form a partition and each member of the partition is

maximizing its surplus for any amount of water which is not used by the predecessors.

Furthermore, by the structure of the river, any amount of unused water can only be

transferred downstream and each member of the partition is maximizing its surplus

7Note that any vector z ∈ RN such that
∑

i∈N zi =
∑

i∈N bi(x∗i (N)) is a distribution because it

is the utility image of (x∗(N), t∗(N)) where t∗i (N) = zi − bi(x∗i (N)) for all i ∈ N .
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at any of its connected components for any amount of water, which is not used by

the predecessors of this connected component. Therefore, the outcome is a “subgame

perfect Nash equilibrium of the dynamic game with perfect information given by the

river”.

Let v(S,P) denote the value of S when the partition P of N forms where S ∈ P .

The calculation of v(S,P) follows the simple backwards induction algorithm along

the river. Here each coalition belonging to P is a player in the extensive form game

with perfect information (given by the river). The nodes of play are given by the

connected components of all coalitions in P . Information is perfect because at any

node of play the amount of unused water from the strict predecessors is observed (or

equivalently the consumptions of the strict predecessors are observed). A subgame

consists of an initial node of play and an amount of unused water which is passed

to the initial node of play by its strict predecessors. In the subgame each node of

play, which (weakly) follows the initial one, receives an amount of unused water from

its strict predecessors (or equivalently observes the consumption plans chosen by the

previous nodes) and chooses a feasible consumption plan given this amount of unused

water. The backwards induction algorithm calculates for each subgame the feasible

consumption plan of the initial node which maximizes the sum of their benefits plus

the sum of the benefits of all components which belong to the same coalition and

are further down the river. Here the reactions of the components further down the

river are already given by the amount of water which the initial component passes

to the following component. The outcome of the backwards induction algorithm is

the consumption plan of the (sub)game starting with the first component of the river

(agent 1 belongs to this component) and no amount of unused water is received by

this first component. Then v(S,P) is equal to the sum of the benefits all agents

belonging to S receive in the outcome of the backwards algorithm.

Formally, let ∪T∈PC(T ) = {T1, . . . , Tk} be such that T1 < · · · < Tk. The backwards

induction algorithm calculates for each component and each amount of unused water
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received by this component a feasible consumption plan which is optimal for this

component and the components further down the river which belong to the same

coalition:8

(k) For all E ′ ≥ 0, let x∗(Tk, E
′) be the optimal consumption plan for (Tk, (emin Tk

+

E ′, eTk\{min Tk}), bTk
);

(k-1) For all E ′ ≥ 0, let x∗(Tk−1, E
′) be the optimal consumption plan for (Tk−1, (emin Tk−1

+

E ′, eTk−1\{min Tk−1}), bTk−1
); note that Tk−1 and Tk necessarily belong to different

members of P ; after the choice of x∗(Tk−1, E
′), the amount Ek(x

∗(Tk−1, E
′)) =

E ′ +
∑

i∈Tk−1
(ei − x∗i (Tk−1, E

′)) of unused water is passed from Tk−1 to Tk and

Tk chooses the consumption plan x∗(Tk, Ek(x
∗(Tk−1, E

′))).

...

(l) Given E ′ and the volume the river picks up along the locations in Tl, x(Tl, E
′)

is a feasible consumption plan for Tl if E ′ +
∑

i∈Tl∩Pj(ei − xi(Tl, E
′)) ≥ 0 for all

j ∈ Tl. By backwards induction, suppose that for all components Tl′ following Tl

(l′ ∈ {l+1, . . . , k}) and all amounts of water E ′ ≥ 0 we have defined x∗(Tl′ , E
′).

Given these choices, a fixed E ′ ≥ 0 and a feasible consumption plan x(Tl, E
′), let

El+1(x(Tl, E
′)) = E ′+

∑
i∈Tl

(ei−xi(Tl, E
′)) be the amount of water passed from

Tl to Tl+1, let El+2(x(Tl, E
′)) = El+2(x

∗(Tl+1, El+1(x(Tl, E
′)))) be the amount

of water passed from Tl and Tl+1 to Tl+2, and in general, for t ∈ {1, . . . , k − l},

let El+t(x(Tl, E
′)) = El+t(x

∗(Tl+t−1, El+t−1(x(Tl, E
′)))) be the amount of water

passed from Tl, . . . , Tl+t−1 to Tl+t.

Let T ∈ P be such that Tl ⊆ T . Then for all E ′ ≥ 0, let x∗(Tl, E
′) be the

consumption plan for Tl which solves

max
x(Tl,E′)

∑
i∈Tl

bi(xi(Tl, E
′)) +

∑
l′∈{l+1,...,k}:Tl′⊆T

∑
i∈Tl′

bi(x
∗
i (Tl′ , El′(x(Tl, E

′))))

8For any S ⊆ N , let bS = (bi)i∈S and eS = (ei)i∈S .
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where x(Tl, E
′) is a feasible consumption plan for Tl given E ′. In other words,

x(Tl, E
′) maximizes the surplus of T in the subgame starting at Tl given E ′ and

how the other components react on any amount of water which arrives at each

component following Tl.

...

From the concavity of the bi we obtain that each component’s optimal consumption

plan is unique. We denote the outcome of the backwards induction algorithm ap-

plied to P by xP(N) where xPT1
(N) = x∗(T1, 0) and for all l ∈ {2, . . . , k}, xPTl

(N) =

x∗(Tl, El(x
∗(T1, 0))). Then for S ∈ P we define

v(S,P) =
∑
i∈S

bi(x
P
i (N)).

We will also call v(S,P) the core lower bound of S given that partition P of N forms.

Remark 1 The outcome of the backwards induction algorithm may not be unique

because some coalitions may be indifferent between passing water and not passing

any water. In the rare case of indifference at the outcome xP(N), we assume that any

coalition is passing water instead of not passing any water. Given P , this assumption

ensures that the value of any coalition S ∈ P is maximal among all outcomes of the

backwards induction algorithm.

We focus on subgame perfect equilibrium since we think that these are the only

kind of equilibria that are expected to emerge given the sequential nature of the

decisions made by the agents.

Remark 2 The following is an important observation. Suppose that for some agent

we have ei > x̂i. Then for any partition P of N , in the outcome of the backwards

induction algorithm agent i will never consume more than x̂i, i.e. xPi (N) ≤ x̂i and

i will always dispose ei − x̂i (independently of whether i is a singleton in P or not).

Now define e′i = x̂i and e′i+1 = ei+1 + (ei − x̂i) and let e′ = (eN\{i,i+1}, e
′
i, e

′
i+1).

9 It

9If i = n, then we set e′ = (eN\{n}, e
′
n), i.e. the amount en − x̂n is not consumed by any agent.
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is immediate that for both problems (N, e, b) and (N, e′, b), xP(N) is the outcome of

the backwards induction algorithm applied to P . Furthermore, we also obtain from

(1)-(4) that x∗(N) is an optimal consumption plan for the problem (N, e, b) if and

only if x∗(N) is an optimal consumption plan for the problem (N, e′, b). Thus, from

now on we may suppose without loss of generality that in the problem (N, e, b) we

have ei ≤ x̂i for all i ∈ N .

The two extremes of behavior of the agents outside of S are the following: either

they do not cooperate at all or they all cooperate.

Non-Cooperative Core Lower Bounds: For all coalitions S, let v(S) = v(S, {S}∪

{{i}|i ∈ N\S}).

Cooperative Core Lower Bounds: For all coalitions S, let v(S) = v(S, {S, N\S}).

We say that cooperation exerts no externality on a coalition S if for any partition

P of N such that S ∈ P ,

v(S) = v(S,P).

Then the value of a coalition is independent of the interactions of the other agents. We

say that cooperation exerts a positive externality on a coalition S if for any partition

P of N such that S ∈ P ,

v(S) ≤ v(S,P).

Then cooperation does not decrease the value of a coalition compared to the value

under non-cooperative behavior.

The following proposition contains some basic relations among the core lower

bounds of a coalition for different behaviors of its complement. First, cooperation

exerts a positive externality on a coalition. Second, the following super-additivity

property is true: for any partition of N , if two coalitions belonging to the partition

11



merge, then their joint payoff does not fall compared to the payoff when they are

separate.

Proposition 1 Let P be partition of N and S ∈ P.

(i) v(S) ≤ v(S,P).

(ii) v(S) ≤ v(S).

(iii) For any two disjoint coalitions S, T ∈ P, v(S,P)+v(T,P) ≤ v(S∪T,P ′) where

P ′ = (P\{S, T}) ∪ {S ∪ T}.

The proof of Proposition 1 is obvious and is left to the reader (or see Ambec and

Ehlers, 2006).

It is immediate from our definition that the value of a coalition consisting of an

agent and his predecessors is independent of how the other agents behave, i.e. for all

i ∈ N and all Pi ∈ P we have

v(Pi) = v(Pi,P) = v(Pi).

Thus, cooperation exerts no externality on the coalition Pi. Even though the value of

a coalition may depend on how the other agents behave, the structure of the river in-

duces a unique natural incremental distribution, namely the downstream incremental

distribution z∗: for all i ∈ N , let

z∗i = v(Pi)− v(P 0i).

4 Non-Cooperative Core Lower Bounds and Aspi-

ration Upper Bounds

The aspiration upper bounds are implied by the UTI doctrine. Contrary to the core

lower bounds, these upper bounds do not depend on how the agents outside of a
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coalition behave. The aspiration welfare of a coalition S is the highest welfare it

could achieve in the absence of the agents in N\S while the volumes, which the river

picks up at the locations in N\S, exist. It is obtained by choosing a consumption

plan y(S) ∈ RS
+ maximizing

∑
i∈S bi(yi(S)) subject to the constraints∑

i∈Pj∩S

yi(S) ≤
∑
i∈Pj

ei for all j ∈ S.

Since all benefit functions are strictly concave, the maximization problem has a unique

solution, which we denote by y∗(S). Then the aspiration welfare of S is

w(S) =
∑
i∈S

bi(y
∗
i (S)).

A distribution z satisfies the aspiration upper bounds if
∑

i∈S zi ≤ w(S) for all coali-

tions S. In the Lockean tradition, coalition S has a legitimate right to the welfare level

w(S) but not to more. Unfortunately the aspirations of two complementary coalitions

S and N\S are incompatible: w(S) + w(N\S) > v(N). It is even the case that for

any partition P of N such that S ∈ P we have
∑

T∈P w(T ) > v(N), i.e. the aspi-

ration of S is never compatible with the aspiration(s) of N\S independently of how

N\S cooperates. Therefore, if
∑

i∈S zi > w(S), then
∑

i∈N\S zi <
∑

T∈P:T 6=S w(T ).

This means that S benefits from the existence of N\S while N\S suffers from the

existence of S. If none of the agents bears any responsibility for the existence of the

others, no coalition is ought to enjoy more than its aspiration upper bound.

Remark 3 Both the ATS and the UTI doctrines are also inspired by Moulin’s (1990)

group externalities depending on how we define property rights over water. In the

absence of the other agents and the water entering the river at their locations, any

agent i enjoys v(i). Since
∑

i∈N v(i) ≤ v(N), then our problem has positive group

externalities and any agent i should receive at least v(i). This inspires the ATS

doctrine for individuals and groups. In the absence of the other agents and the

presence of the water entering the river at their locations, any agent enjoys i enjoys

w(i). Since
∑

i∈N w(i) ≥ v(N), then our problem has negative group externalities
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and any agent i should receive at most w(i). This inspires the UTI doctrine for

individuals and groups.

Remark 4 There is an obvious relation between the non-cooperative core lower

bounds and the aspiration upper bounds: v(Pi) = w(Pi) for all i ∈ N . Now the

following is easy to show: if a distribution satisfies the non-cooperative lower bounds

and the aspiration upper bounds, then it must be the downstream incremental dis-

tribution.10

The main challenge of our paper is to find distributions which satisfy core lower

bounds. These bounds depend on the behavior of the agents outside of a coalition.

In the case of non-cooperative behavior, there are distributions satisfying the core

lower bounds (or belonging to the γ-core). It turns out that in the presence of opti-

mal water consumptions and non-cooperative behavior, the downstream incremental

distribution is the only compromise between the ATS and the UTI doctrines.

Theorem 1 The downstream incremental distribution is the unique distribution sat-

isfying the non-cooperative core lower bounds and the aspiration upper bounds.

Proof. By Remark 4, if a distribution z satisfies the non-cooperative core lower

bounds and the aspiration upper bounds, then we must have z = z∗.

Next we show that z∗ satisfies the non-cooperative lower bounds. Let S be con-

nected and P = {S} ∪ {{i}|i ∈ N\S}. Because behavior is non-cooperative, we have

for all i ∈ P 0 min S, xPi (N) = ei. Thus, Emin S(xP(N)) = 0. Since S is connected,

{S, P 0 min S} is a partition of P max S. Hence, by Emin S(xP(N)) = 0,

v(P max S) ≥ v(S) + v(P 0 min S).

10The proof is identical to Ambec and Sprumont (2002): Let z be a distribution satisfying the

non-cooperative lower bounds and the aspiration upper bounds. Since v(1) = w(1), we have z1 =

v(1) = z∗1 . Let zi = z∗i for all i < j ≤ n. Since v(Pj) = w(Pj), we have
∑

i∈Pj zi = v(Pj). Thus,

by
∑

i∈P 0j zi =
∑

i∈P 0j z∗i = v(P 0j), we obtain zj = v(Pj)−
∑

i∈P 0j zi = v(Pj)− v(P 0j) = z∗j , the

desired conclusion.
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Thus, for any connected S,∑
i∈S

z∗i = v(P max S)− v(P 0 min S) ≥ v(S). (5)

Before we proceed, we note the following: for all i ∈ N we have v(P 0i)+bi(x̂i) ≥ v(Pi).

Thus, for all i ∈ N ,

bi(x̂i) ≥ v(Pi)− v(P 0i) = z∗i . (6)

Let S be an arbitrary coalition and let P = {S} ∪ {{i}|i ∈ N\S}. Since ei ≤ x̂i

for all i ∈ N , we have
∑

i∈P 0 min S(xPi (N) − ei) = 0. Hence, Emin S(xP(N)) = 0. Let

C(S) = {S1, . . . , SL} where S1 < S2 < · · · < SL. Choose the minimal l ∈ {1, . . . , L}

such that Emax Sl+1(x
P(N)) = 0 and set T1 = ∪l

t=1St. Then, by ei ≤ x̂i for all

i ∈ N , again we have Emin Sl+1
(xP(N)) = 0. Now choose the l′ > l minimal such that

Emax Sl′+1(x
P(N)) = 0 and set T2 = ∪l′

t=l+1St. Continuing this way we find a partition

T = {T1, T2, . . . , TM} of S. By construction, T1 < T2 < · · · < TM and

v(S) =
∑
T∈T

v(T ). (7)

For each T ∈ T , let T̄ = P max T\P 0 min T . Then by definition of T , we have for all

i ∈ T̄\T , Ei(x
P(N)) > 0 and therefore, xPi (N) = x̂i for all i ∈ T̄\T . Now we have∑

T∈T

∑
i∈T̄

z∗i ≥
∑
T∈T

v(T̄ )

≥
∑
T∈T

(v(T ) +
∑

i∈T̄\T

bi(x̂i))

= v(S) +
∑
T∈T

∑
i∈T̄\T

bi(x̂i),

where the first equality follows from (5) and the fact that each T̄ is connected, the

second inequality follows from the fact that xPi (N) = x̂i for all i ∈ T̄\T and the

consumption plan (xPi (N))i∈T̄ is feasible for T̄ , and the equality follows from (7).

Therefore, we have∑
i∈S

z∗i =
∑
T∈T

∑
i∈T

z∗i ≥ v(S) +
∑
T∈T

∑
i∈T̄\T

(bi(x̂i)− z∗i ).
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From (6) we know that bi(x̂i)− z∗i ≥ 0 for all i ∈ N . Hence,
∑

i∈S z∗i ≥ v(S) and z∗

satisfies the non-cooperative core lower bounds.

The proof that z∗ satisfies the aspiration upper bounds uses a straightforward

modification of the corresponding lemma in Ambec and Sprumont (2002).

Lemma 1 If S ⊆ T ⊆ N and T < i, then w(S ∪ i)− w(S) ≥ w(T ∪ i)− w(T ).

Then for any coalition S we obtain∑
i∈S

z∗i =
∑
i∈S

(w(Pi)− w(P 0i)) ≤
∑
i∈S

(w(Pi ∩ S)− w(P 0i ∩ S)) = w(S),

where the inequality follows from Lemma 1 and the last equality follows from the fact

that all terms cancel out except w(P max S ∩ S) = w(S) and −w(P 0 min S ∩ S) =

w(∅) = 0. �

Remark 5 It can be easily checked that Theorem 1 and its proof remain true if

agents are allowed to have benefit functions which either have a satiation point or

are strictly increasing (as in Ambec and Sprumont (2002)). Therefore, Theorem 1

generalizes the theorem of Ambec and Sprumont (2002). In the presence of satiation

points the main difference and (non-trivial) difficulty is to show that the downstream

incremental distribution satisfies the non-cooperative core lower bounds. In Ambec

and Sprumont (2002) this was straightforward because with strictly increasing benefit

functions it is never optimal for a coalition to pass water from one component to

another and cooperation exerts no externality on any coalition. Therefore, their game

is consecutive (Greenberg and Weber, 1986) meaning that the value of a coalition

equals the sum of the values of its connected components. Then for showing that a

distribution satisfies the core lower bounds, it is sufficient to show that the distribution

satisfies the core lower bounds for connected coalitions.

Remark 6 The grand coalition N needs not necessarily to form in order to imple-

ment the efficient allocation and downstream incremental distribution. Instead of

having a global agreement, local agreements among coalitions belonging to the “effi-

cient” partition {Nk}k=1,...,K (defined by conditions (1) to (4)) equivalently implement
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both the optimal consumption plan x∗(N) and the downstream incremental distribu-

tion z∗. It is straightforward that the consumption plan (x∗i (N))i∈Nk
of each subset

Nk coincides with the optimal consumption plan for the subriver sharing problem

(Nk, bNk
, eNk

), i.e. the portion Nk of the river N . Moreover, for any Nk it is easy to

show from (1) to (4) that (z∗i )i∈Nk
is the downstream incremental distribution of the

subriver sharing problem (Nk, bNk
, eNk

).11

5 (Cooperative) Core Lower Bounds

The downstream incremental distribution satisfies the non-cooperative core lower

bounds. We investigate whether there exist distributions satisfying the core lower

bounds when agents cooperate, i.e. once a coalition S forms the complement N\S

can also from coalitions. First, we focus on the other extreme of non-cooperative

behavior, namely on cooperative behavior.

Note that for two agents we have v = v and the non-cooperative core lower bounds

and the cooperative core lower bounds are identical. Although the downstream incre-

mental distribution may violate the cooperative core lower bounds for three agents,

the cooperative core is always non-empty for three agents (Ambec and Ehlers, 2006).

Unfortunately, for more than three agents there may not exist any distribution satis-

fying the cooperative core lower bounds.

Theorem 2 When there are more than three agents all distributions may violate the

cooperative core lower bounds.

The following example establishes Theorem 2.

Example 1 (The cooperative core may be empty) Let N = {1, 2, 3, 4} and the benefit

functions b be such that b1(x) = 50x − x2

2
for all x ∈ [20, 100], b2(x) = b3(x) =

11It follows from (1) to (4) that b′min N2
(emin N2) ≤ β2 and (where P 0 minN2 = N1) v(P minN2) =

v(N1) + v(minN2). Therefore, z∗min N2 = v(minN2) which is identical with agent minN2’s value in

the subriver sharing problem (N2, bN2 , eN2). The same argument applies to any Nk.
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100x − 10x2 for all x ∈ [3, 10] and b4(x) = 2b1(x). The river inflows are e1 = 33,

e2 = e3 = 4, e4 = 37.

We show that v̄(2) = b2(x̂2), v̄(3) = b3(x̂3), and v̄(1, 2, 3, 4) < v(1) + v̄(2) +

v̄(3) + v(4). The last condition implies that no distribution satisfies each agent i’s

cooperative core lower bound v̄(i) (note that v(1) = v̄(1) and v(4) = v̄(4)).

First, the optimal consumption plan x∗(N) solves the maximization program de-

fined by v̄(1, 2, 3, 4). Because b4 = 2b1, x∗(N) equalizes agents’ marginal benefits, i.e.,

50−x∗1(N) = 100−20x∗2(N) = 100−20x∗3(N) = 100−2x∗4(N), and satisfies the global

resource constraint x∗1(N) + x∗2(N) + x∗3(N) + x∗4(N) = e1 + e2 + e3 + e4 = 78. The

solution is (30, 4, 4, 40). Therefore v̄(1, 2, 3, 4) = b1(30)+b2(4)+b3(4)+b4(40) = 3930.

Second, we show that coalition {1, 3, 4} chooses to pass three units of water from

1 to {3, 4}. Therefore, 2 consumes x̂2 = 5 units of water and v̄(2) = b2(x̂2). Doing so,

coalition {1, 3, 4} loses x̂2 − e2 = 1 unit of water (which is consumed by 2) and 1, 3,

and 4, respectively, can consume 30, 4, and 39 units of water. The welfare achieved is

b1(30)+b3(4)+b4(39) = 3690. If no water is passed from 1 to {3, 4}, then 1 consumes

e1 = 33 and 3 and 4 share optimally 41 units of water by consuming respectively 41
11

and 410
11

. The welfare is then b1(33) + b3(
41
11

) + b4(
410
11

) ≈ 3677.32 < 3690.

Third, we show that the coalition {1, 2, 4} chooses to pass three units of water

from {1, 2} to 4. Therefore, 3 consumes x̂3 = 5 units of water and v̄(3) = b3(x̂3).

Doing so, coalition {1, 2, 4} loses x̂3 − e3 = 1 unit of water (which is consumed by 3)

and 1 and 2, respectively, can consume 30 and 4 units whereas 4 consumes e4+2 = 39

units. The welfare achieved is b1(30) + b2(4) + b4(39) = 3690. If no water is passed

from {1, 2} to 4, then 1 and 2 share optimally e1+e2 = 37 units of water by consuming

respectively (approximatively) 32.9 and 4.1 and 4 consumes e4 = 37. The welfare is

then b1(32.9) + b3(4.1) + b4(37) ≈ 3676.7 < 3690.

Finally, v(1) + v̄(2) + v̄(3) + v(4) = b1(e1) + b2(x̂2) + b3(x̂3) + b4(e4) = b1(33) +

b2(5) + b3(5) + b4(37) = 3936.5 > 3930 = v̄(1, 2, 3, 4). Hence, all distributions violate

the cooperative core lower bounds.
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Given Theorem 2, next we investigate when there exist distributions satisfying

the core lower bounds. When the expectations of any coalition are pessimistic, the

downstream incremental distribution satisfies the core lower bounds. When the ex-

pectations of any coalition are optimistic, there may not be any distribution satisfying

the core lower bounds. This is even true if blocking is restricted to connected coali-

tions (see Example 1). Allowing blocking only for connected coalitions is natural for

a river because coordination is easier for neighboring countries. Empirically, Murgai

et al. (2002) show that water exchanges among farmers located on irrigation canals

in Pakistan is negatively correlated with geographical distance. In the literature on

line-graph games such as the river game, most papers assume that only consecutive

players can communicate with each other (Greenberg and Weber, 1986; Brink, Laan

and Vasil’ev, 2007). Demange (2004) also considers only blocking by consecutive

or connected coalitions. The following result gives a simple necessary and sufficient

condition for the existence of a compromise between the UTI doctrine and the ATS

doctrine for all connected coalitions under optimistic expectations.

We will say that a distribution z satisfies for any connected coalition S all core

lower bounds if
∑

i∈S zi ≥ v(S,P) for all partitions P of N such that S ∈ P. Then

the core lower bound of S is always satisfied independently of how the agents outside

of S are organized.

Theorem 3 The following are equivalent:

(i) There exists a distribution satisfying the aspiration upper bounds and for any

connected coalition all core lower bounds.

(ii) The downstream incremental distribution satisfies for any connected coalition

all core lower bounds.

(iii) Cooperation exerts no externality on the value of any agent, i.e. v(i) = v(i,P)

for all i ∈ N and all partitions P of N such that {i} ∈ P.
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Proof. (i)⇒(ii): Let z be a distribution satisfying the aspiration upper bounds and

for any connected coalition all core lower bounds. By Proposition 1, all core lower

bounds are greater than or equal to the non-cooperative core lower bounds. Hence,

z is a distribution satisfying the aspiration upper bounds and for any connected

coalition the non-cooperative core lower bounds. Then, by Remark 4, we have z = z∗

and the downstream incremental distribution satisfies for any connected coalition all

core lower bounds.

(ii)⇒(i): By Theorem 1, z∗ satisfies the aspiration upper bounds. Hence, z∗ is a

distribution satisfying the aspiration upper bounds and for any connected coalition

all core lower bounds.

(ii)⇒(iii): Let z∗ satisfy all core lower bounds for all connected coalitions. Let i ∈ N

and P be a partition of N such that {i} ∈ P. Since {i} is connected, we have

v(Pi)− v(P 0i) = z∗i ≥ v(i,P). Hence, by v(i,P) = bi(x
P
i (N)),

v(Pi) ≥ v(P 0i) + bi(x
P
i (N)). (8)

On the other hand, by
∑

j∈P 0i x
{P 0i,N\P 0i}
j (N) =

∑
j∈P 0i ej ≥

∑
j∈P 0i x

{Pi,N\Pi}
j (N),

x
{Pi,N\Pi}
P 0i (N) is a consumption plan for P 0i. Therefore, v(P 0i) ≥

∑
j∈P 0i bj(x

{Pi,N\Pi}
j (N))

and

v(P 0i) + bi(x
{Pi,N\Pi}
i (N)) ≥ v(Pi). (9)

Hence, from (8) and (9) we obtain bi(x
{Pi,N\Pi}
i (N)) ≥ bi(x

P
i (N)). Since agent i’s

consumption is always smaller than or equal to x̂i and bi is strictly increasing between

0 and x̂i, the previous inequality is equivalent to

x
{Pi,N\Pi}
i (N) ≥ xPi (N) (10)

By {i} ∈ P , we have xPi (N) ∈ {ei, x̂i}. If xPi (N) = ei, then v(i,P) = bi(ei) = v(i), the

desired conclusion. If xPi (N) 6= ei, then xPi (N) = x̂i. Hence, by (10), x
{Pi,N\Pi}
i (N) =

x̂i, and by x̂i ≥ ei, x̂i > ei. But then, by x
{Pi,N\Pi}
i (N) = x̂i > ei, we have∑

j∈P 0i

x
{Pi,N\Pi}
j (N) <

∑
j∈P 0i

ej.
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Therefore, ∑
j∈P 0i

bj(x
{Pi,N\Pi}
j (N)) < v(P 0i). (11)

Hence,

v(Pi) =
∑

j∈P 0i

bj(x
{Pi,N\Pi}
j (N)) + bi(x

{Pi,N\Pi}
i (N)) < v(P 0i) + bi(x̂i),

where the inequality follows from (11) and x
{Pi,N\Pi}
i (N) = x̂i. Now, by xPi (N) = x̂i,

this inequality contradicts (8). Thus, we have to have xPi (N) = ei and v(i,P) = v(i)

for all i ∈ N and all P such that {i} ∈ P .

(iii)⇒(ii): Let S be a connected coalition and P be a partition such that S ∈ P .

We show v(S) = v(S,P). Since S is connected, we have either v(S) = v(S,P) or

v(S) < v(S,P) =
∑

i∈S bi(x̂i). Suppose that

v(S) < v(S,P) =
∑
i∈S

bi(x̂i). (12)

Then there exists i ∈ S such that ei < x̂i. Let P ′ = (P\S) ∪ {{j}|j ∈ S}. By (12),

xPj (N) = x̂j for all j ∈ S. Then xP(N) is also the outcome of the backwards induction

algorithm when agents cooperate according to P ′. Hence, xP
′

j (N) = x̂j for all j ∈ S

and v(i,P ′) = bi(x̂i). Since ei < x̂i and v(i) = bi(ei), we obtain v(i) < v(i,P ′), which

contradicts (ii). Hence, (12) was wrong and we have v(S) = v(S,P).

By Theorem 1, z∗ satisfies the non-cooperative core lower bounds. Hence, by

v(S) = v(S,P) for all connected coalitions S and all partitions P such that S ∈ P ,

z∗ satisfies for any connected coalition all core lower bounds, the desired conclusion.�

By Theorem 3, the downstream incremental distribution satisfies all core lower

bounds for all connected coalitions if and only if the individual rationality constraints

are identical under all behaviors of the other agents. Condition (iii) of Theorem 3 is

trivially satisfied in Ambec and Sprumont (2002) because in their paper no coalition

is passing water from one of its connected components to another one independently

of the behavior of the other agents. Basically, it requires that no agent can “free
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ride” on the other agents’ cooperative behavior. Such a condition can be estimated

in real-world river sharing problems.

Remark 7 The equivalence in Theorem 3 does not remain true under cooperative

behavior, i.e. if we require that the cooperative core lower bounds are satisfied for

any connected coalition. Below we provide an example showing that v(i) = v(i) for

all i ∈ N but the downstream incremental distribution violates a cooperative core

lower bound for a connected coalition.

By Proposition 1, cooperation exerts a positive externality on a coalition (com-

pared to non-cooperative behavior). Then one may wonder whether starting from any

partition “more” cooperation of the other agents always exerts a positive externality

on the value of a coalition. Here “more” cooperation means that from a partition

we obtain a coarser partition by merging some coalitions. If this were true, then the

cooperative core lower bound of a coalition is maximal among all core lower bounds

for all behaviors of the other agents. The following example shows that merging some

coalitions may exhibit a negative externality on the value of a coalition (compared to

the value of the coalition before the merger).12

Example 2 (For a coalition the cooperative core lower bound may not be maximal

among all core lower bounds) Let N = {1, 2, 3, 4} and the benefit functions b be such

that b1(x) = 50x − x2

2
for all x ∈ [20, 100], b2(x) = b3(x) = 100x − 10x2 for all

x ∈ [3, 10] and b4(x) = 2b1(x). The river inflows are e1 = 33, e2 = 4, e3 = x̂3 = 5,

e4 = 35.

We show the following: v(i) = v(i) for all i ∈ N and v(2) < v(2, {{1, 4}, {2}, {3}}) =

b2(x̂2). Therefore, if coalitions {1, 4} and {3} merge, then {2} obtains strictly less

than v(2, {{1, 4}, {2}, {3}}). The welfare achieved by a coalition might decrease with

a coarser partition of its complement.

12This is in contrast to industrial environments where collusive agreements or cartels reduce market

competition or R&D agreements with spillovers.
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First, we show that {1, 4} passes some water from 1 to 4 and 2 consumes his

peak x̂2 under the partition {{1, 4}, {2}, {3}}, i.e. v(2, {{1, 4}, {2}, {3}}) = b2(x̂2).

Without passing water, the welfare achieved by {1, 4} is b1(e1) + b4(e4) = b1(33) +

b4(35) = 6761
2

= 3380.5. By passing some water, the coalition looses 1 unit of water

(consumed by 2 because x̂2 − e2 = 1), and agents 1 and 4 share optimally 33+35-

1=67. They equalize marginal benefits 50− x1 = 100− 2x4 and satisfy the resource

constraint x1 + x4 = 67. Thus, 1 and 4, respectively, consume 28 and 39. Their

welfare is b1(28) + b4(39) = 3387 > 3380.5.

Second, we show that if 3 joins the coalition {1, 4}, then coalition {1, 3, 4} chooses

not to pass any water from 1 to {3, 4}. Doing so 3 and 4 share optimally e3 + e4

and they consume respectively 40
11

and 400
11

. Then the welfare achieved by {1, 3, 4} is

b1(33) + b3(
40
11

) + b4(
400
11

) = 80321
22

> 3650. If some water is passed from 1 to {3, 4},

then e1 + e3 + e4 − 1 = 72 units of water are shared optimally between the members

of {1, 3, 4}. Agents 1, 3 and 4, respectively, consume 890
31

, 122
31

and 1220
31

. The welfare is

then b1(
890
31

) + b3(
122
31

) + b4(
1220
31

) = 113110
31

< 3649. Therefore, {1, 3, 4} chooses not to

pass any water from 1 to {3, 4} and v(2) = b2(e2) = v(2).

Since e3 = x̂3, we have v(i) = v(i) for all i ∈ N . Furthermore, by e2 < x̂2,

v(2) < v(2, {{1, 4}, {2}, {3}}).

Finally, we show that the downstream incremental distribution violates the coop-

erative core lower bounds although we have v(i) = v(i) for all i ∈ N . Since e2 < x̂2

and e3 = x̂3, we obtain

v(2, 3) = v(2, {{1, 4}, {2}, {3}}) + v(3, {{1, 4}, {2}, {3}}) = b2(x̂2) + b3(x̂3) > v(2, 3).

Hence, by Theorem 3, z∗ violates the cooperative core lower bounds.

6 Conclusion

Theorems 1 and 2 are consistent with the literature on international agreements for

pollution reduction. This literature disagrees on the stability of a global agreement
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(the “grand coalition”) because of opposite assumptions about the behavior of the

nonmembers of an agreement. On the one hand, Chander and Tulkens (1997) show

that the non-cooperative core is non-empty, thereby leading to a “grand coalition”

agreement. On the other hand, Carraro and Siniscalco (1993) assume that coalitions

still cooperate when an individual country deviates. They conclude that any global

agreement is not stable because at least one individual country blocks it and the core

is empty. In our river sharing problem, the non-cooperative core is non-empty since

it includes the downstream incremental distribution while the cooperative core might

be empty.

An important work related to ours is Demange (2004). She considers hierarchies

and shows that the “hierarchical outcome” satisfies the core lower bounds for all

connected coalitions for all super-additive cooperative games. If we insist that the

core lower bounds are satisfied for some non-connected coalitions, then there exists a

large class of super-additive games where the “hierarchical outcome” violates the core

lower bounds. If the hierarchy is a river, then the hierarchical outcome corresponds

to the upstream incremental distribution u∗. This is the analogue of the downstream

incremental distribution defined by u∗i = v(Fi) − v(F 0i) (here again it does not

matter how the agents in P 0i behave). Both her and our work have in common

that the cooperative game is super-additive and that an incremental distribution

corresponding to the structure of the river (or the hierarchy) is proposed as a solution

to the game under consideration. The important differences between Demange (2004)

and our work are that here externalities do exist whereas in hers they do not and

that the downstream incremental distribution satisfies the non-cooperative core lower

bounds for all coalitions (connected or non-connected).
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