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Abstract

This paper considers semiparametric estimation of quantile regression models in the presence

of endogeneity. Imposing index restrictions in the triangular model framework, an e�cient semi-

parametric estimator for nonseparable models is introduced. Endogeneity is addressed through

a control variable approach. The estimator has four main characteristics: 1) It is based on con-

ditional quantile restrictions; 2) it allows for dimension reduction; 3) it addresses endogeneity of

one or more covariates; 4) it is e�cient. Large-sample properties of the proposed estimator are

derived and an empirical application on the e�ect of property rights on land pro�ts is discussed.
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1 Introduction

This paper proposes a �exible estimator for nonseparable models. These models are central in

econometrics as economic theory seldom provides as much guidance for empirical model speci�ca-

tion as would be required to design an appropriate econometric framework. Indeed, behavioural and

equilibrium assumptions from economic theory typically suggests shape and exclusion restrictions

but no parametric restrictions and no separability in the disturbances (Matzkin (2007)). However,

it can be adventurous to simply supplement theoretical models by imposing parametric structures

that functions and distributions may not possess. This applies for instance to models with endo-

geneity which is a class of models characterized by nonseparable disturbances. As noted by Imbens

and Newey (2009), nonseparability in the disturbances is an intrinsic feature of models with en-

dogeneity. For these reasons, identi�cation in nonseparable models has recently attracted a lot

of attention (Chesher (2003), Matzkin (2008), Newey and Imbens (2009), Heckman, Matzkin and

Nesheim (2009)). Typical such models are of common use in Labor or Development economics and

estimation of their structural features usually relies on imposing arbitrary parametric restrictions or

assuming separable disturbances - standard instrumental variable methods are of this sort. These

empirical approaches have several drawbacks, not the least of them being that they do not allow

for the heterogeneity that naturally arises from nonseparability in the disturbances in the economic

model. Therefore, a nonparametric analog estimator incorporating nonseparability in the distur-

bances would strongly weaken the restrictions imposed a priori by practitioneers and signi�cantly

reduce the risk of misspeci�cation in commonly used econometric models.

This paper is concerned with a situation where a (continuous) regressor is correlated with the

errors because of some unobservable common factor a�ecting both the outcome and the endogenous

variable. Continuity of endogeneous regressors ensures the possibility of using a control variable.

Besides, the disturbance in the outcome equation is restricted to be at most two-dimentional. One

positive aspect of this restriction is that it allows for identi�cation of individual e�ects, but at the

cost of imposing strong restrictions on the dimensionality of disturbances. Another advantage is that

thanks to the local identi�cation approach adopted here, the validity of the model is preserved for

some parts of the distribution even when global identi�cation does not hold. Indeed, identi�cation of
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structural features of the model rely upon local independence conditions whereas Imbens and Newey

(2009) require global identi�cation restrictions. Relying on conditional quantile restrictions leads to

constructive identi�cation in nonseparable models, as shown by Chesher (2001, 2003). Therefore,

this paper proposes a semiparametric quantile estimator for nonseparable models that fully exploits

nonparametric identi�cation results, while maintaining parametrization restrictions close to minimal.

This is achieved by the use of nonparametric quantile regression estimation methods which o�er a

comprehensive characterization of the stochastic relationship among variables and are robust to

non-Gaussianity of disturbances as well as to misspeci�cation.

Misspeci�ed econometric models lead to biased estimates and this is all the more an issue when

the e�ects of interest depend on preliminary estimation of some of the regressors, as it is naturally

the case with control variable approaches. First, consistency of the second-stage estimate will be

a�ected by consistency of the �rst-stage, which demonstrates the critical nature of speci�cation

in the �rst-stage. Second, the e�ciency of a �plug-in� estimator will be adversely a�ected if the

parametrization of the nuisance functions is incorrect. Misspeci�cation can lead to big e�ciency

losses if parametrization of the second equation is incorrect. Hence, addressing potential misspeci�-

cation is an important task in order to develop reliable inference procedures in nonseparable models.

The semiparametric approach to misspeci�cation in this type of models is to allow for the functional

forms of some components of each equation in the triangular model to be unrestricted. Naturally,

�exible speci�cation gives rise to the curse of dimensionality and this has to be addressed for esti-

mators to be of any use in practice. Indeed, when it comes to nonseparable models, the curse of

dimensionality is all the more inevitable that the structural function has dimension at least two,

while in general its dimension will be much larger. Imposing index restrictions �ts well the non-

separable framework, encompasses a large class of models and is not nested with additive models.

Therefore, the model incorporates index restrictions in order to deal with the curse of dimensional-

ity. Besides, a large class of models naturally falls into this framework such as censored regression

quantile models with endogeneity (Blundell and Powell (2007)) and several transformation models.

E�ciency. Chen and Pouzo (2009) - Ai and Chen (2009). E�ciency bounds are of fundamental

importance for semiparametric models. Such bounds quantify the e�ciency loss that can result from
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a semiparametric, rather than a parametric, approach. This paper derives the asymptotic e�ciency

bounds of a control variable estimator for nonseparable models.

Review of the literature. Estimation of parametric triangular models based on quantile regres-

sion has been considered by various authors. A �rst trend in the literature has seen the development

of estimators for the class of location-shift models, that is, models in which the e�ect of covariates is

invariant to the particular quantile of the control variable used in the estimation. Amemiya (1982)

�rst introduced a class of two-stage median regression estimators. More recently, Lee (2007) consid-

ered a semiparametric quantile regression version of a separable triangular model, where the control

variable enters additively and is approximated via series. Removing the separability intrinsic to

location models, Ma and Koenker (2006) developed two general classes of estimators for a location-

scale form of a parametric model. Building on identi�cation results derived by Chesher (2003),

they construct an estimator which allows for a description of the entire stochastic relationship be-

tween the endogeneous variable and the outcome. Following their approach Jun (2009) suggested a

semiparametric estimator based on a random coe�cients model. His model preserves the additivity

assumption between covariates of the structural equation while allowing for nonseparability in the

disturbances.

Another approach to identi�cation and estimation of nonseparable models has been to consider a

single-equation framework (Chernozhukov and Hansen (2005), Chernozhukov et al. (2007), Chen and

Pouzo (2008)). The triangular framework is less general and present both advantages and drawbacks

compared to the single-equation approach. One such drawback has recently been underlined by

Chesher (2009) who clearly de�nes the natural 'identi�cational' limits of the triangular framework.

Some advantages are that the problem considered here is well-posed and hence leads to simpler

asymptotics, and thanks to the model completeness it incorporates the whole of the information

available in structural economic model (by specifying the data generating process of the endogenous

variable), and hence allows for heterogeneous marginal e�ects. Indeed the triangular framework

allows one to consider the full stochastic behaviour of the model. Last, but not least, a triangular

framework naturally arises in various empirical problems where one is interested in the complete

stochastic description of the model: consumer demand, labour market, property rights and pro�ts.
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Plan of the paper. Section 2 introduces and motivates the model. Section 3 describes the sieve

estimator and conditions for consistency and the derivation of convergence rates are discussed. In

section 4 I introduce a pro�led sieve estimation strategy for quantile regression index models, and

consider in some detail the implementation of the proposed estimator. Results of some prelimi-

nary simulations are shown. Section 5 describes a potential empirical application. Last, section 6

concludes.

2 The model

This paper considers a triangular structural model which has an outcome equation

Y1 = h1(X ′θ, U, V ) (1)

where Y1 is a scalar continuous random variable, X ≡
[
Y2
...W

]
is a k-vector of observed random

variables, including Y2, a continuous endogenous variable and k − 1 exogenous variables W . Endo-

geneity of Y2 arises from its covariation with the unobserved random variable V . θ is a k-component

vector of �nite-dimensional parameters. Also, h1 is an unknown function restricted to be strictly

monotonic in U . U is a scalar random variable that satis�es the independence condition

U ∼ U(0, 1)|X,V.

Besides the outcome equation, completeness of the model is assumed by specifying the structural

equation for Y2 as

Y2 = h2(Z, V ), (2)

where Z is a vector of random variables, and V is a scalar continuous random variable, and

h2(Z, V ) is strictly monotonic in V . Equation (2) can also be thought of as a reduced form for Y2.

Remark 2.1. (i) For simplicity X ′θ is assumed to be scalar, however results of the paper easily

extends to vector valued X ′θ (this case is considered in the application). (ii) Results in this paper

also extends to a triangular model with m equations.
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This framework can be motivated by various economic examples. In the recent literature the

study of returns to education is the leading motivation for the triangular framework. In this paper,

I detail how this framework arises in the study of e�cient choice of land use in a fallow farming

system. Consider land productivity in Ghana, as in Goldstein and Udry (2008). Individual farmers

have to make decisions about the optimal path of fertility and of agricultural output for a given

plot. Their decision will depend on two main criteria: (i) the opportunity cost of capital to a

particular farmer, and (ii) farmer's con�dence in the ability to reestablish cultivation on the plot

after fallowing. Assume that the aim of an individual i with control over a set Pi of plots of land

(indexed by p) is to manage fertility to maximize the present value of the stream of pro�ts she can

claim from this land. The pro�t per hectare generated by the cultivation of a plot is denoted by πp,

and is strictly concave and increasing in τ (assumption). Let the production function of a plot p be

Y1 = h1(τ,Xp, u, ν), where τ denotes fallow duration, Xp is a vector of �xed characteristics of plot

p, and ν is the unobserved heterogeneity in cost of capital and u is the unobserved heterogeneity

in land productivity. Suppose that h1 is increasing in u and is twice continuously di�erentiable

(assumption). The decision facing the individual i is the length of time she should leave each plot

fallow before cultivation. Then the individual maximizes the di�erence between expected revenues

given observed and unobserved plot's characteristics and costs of fallowing by solving the following

problem:

τ∗p = arg max
τ

E[π(τ,Xp, u, ν) | Z, ν] = arg max
τ

[E[h1(τ,Xp, u, ν) | Z, ν]− C(τ,Xp, ωp, ν)] , (3)

where C is the cost of a particular number of years of fallowing, which depends on ωp, the

likelihood of losing plot p during a year in which it is fallow (equivalently, security of tenure over the

plot), plot's characteristics and the unobserved opportunity cost of capital. ωp will vary according

to i's status in local political hierarchies and according to the manner in which she acquired plot p.

The optimal fallow duration will then satisfy the �rst order condition

∂E[h1(τ,Xp, u, ν) | Z, ν]
∂τ

=
∂C(τ,Xp, ωp, ν)

∂τ
, (4)
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which shows that τ is a function h2 ofXp, ωp and ν: τ = h2(Z, ν), with Z = [X′p
...ω′p]. Assume that

∂2E[h1(·)|Z,ν]
∂τ∂τ ′ − ∂2C(τ,Xp,ωp,ν)

∂τ∂τ ′ < 0 so that the second-order condition is also satis�ed (assumption).

Then by the implicit function theorem h2(Z, ν) is monotone in ν. Therefore, this example leads to

a triangular model of the form considered in this paper

Y1 = h1(τ,Xp, u, ν), (5)

τp = h2(Z, ν). (6)

The approach adopted here for identi�cation and estimation is based on control variables and

has been explored by Chesher (2003). De�ne QX(τ | Z) to be the τ -conditional quantile of X

given Z. Besides the restrictions mentioned above (continuity of endogeneous variables, model

completeness, U and V are scalars, h1 and h2 are restricted to be strictly monotically varying in U

and V respectively), the model includes the following restrictions:

Assumption 2.1. Identi�cation in nonseparable models (ITM) (i) (Joint quantile indepen-

dence) QU |Y2,Z(τ1|y2, z) = QU |V,Z(τ1|v, z) = QU |V (τ1|v); (ii) (conditional τ -quantile restriction)

QV |Z (τ2|z) = 0.

Assumption 2.2. Identi�cation under index restrictions (IR) (i) X does not contain a con-

stant (intercept: θ0 is identi�able only up to a scale). To get identi�cation, we need some location

and scale normalizations: ‖θ0‖ = 1. (ii) h1(.) is di�erentiable and is not a constant function on the

support of X ′θ0. (iii) For the discrete components of x, varying the values of the discrete variables

will not divide the support of x′θ0 into disjoint subsets.

In this version of the paper I add a further restriction on the second equation.

Assumption 2.3. Additivity and heteroskedasticity (AH). Let ξ = σ(Z).V , then

Y2 = h2(Z) + ξ.

Note that this assumption preserves nonseparability in V although being more restrictive than

the general case. Assumption ITM(i) is similar to Assumption (2) in Lee (2007). The �rst equality
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in ITM(i) holds when v is the value of V that satis�es v = y2−h2(z). The second equality in ITM(i)

assumes a τ1-quantile independence of U on Z conditional on V . Under the previous assumptions

ITM and IR and AH, taking the conditional quantiles of Y1 on V = v, W = w and Z = z, and of

Y2 on Z = z yields

QY1|V,W,Z(τ1|v, w, z) = h1(x′θ,QU |V,W (τ1|v, w), v) (7)

QY2|Z(τ2|z) = h2(z) +Qξ|Z(τ2|z) (8)

Set v ≡ y2 − h(z) and note that conditioning on V = v and Z = z is identical to conditioning

on Y2 = y2 and Z = z, we can rewrite (7) and (8):

QY1|X,Z(τ1|x, z) = h1(x′θ,QU |V,W (τ1|y2 − h(z), w), y2 − h2(z)) (9)

QY2|Z(τ2|z) = h2(z) (10)

This system of equation suggests a control variable analogue estimator in which the control

variable enters non-additively. Indeed, looking at units with common values of V allows one to

identify the variations in Y1 induced by variations in Y2. As equation (10) suggests, an estimate

ĥ2(z) can be obtained from nonparametric quantile regression of Y2 on Z. This estimates will then

be used in the control function. The description of the estimator is given in the next section.

3 Estimation using sieve minimum-distance

3.1 The sieve estimator

Building on identi�cation results, this paper develops a sieve-based analog estimator (e.g Grenander

(1981), Shen (1997), Chen (2007), Chen and Pouzo (2009)) and derive its asymptotic properties. For

simplicity, X ′θ is considered to be a scalar, although the treatment can be extended to multivariate

settings. The support of all variables is allowed to be unbounded, i.e., to be the whole real line.
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De�ne D ≡ (y, x, z) for y = (y1, y2) ∈ Y, x ∈ X , and z ∈ Z. Let α0 = (θ0, h0) ∈ A ≡ Θ × H

denote the true parameters of interest, where Θ is a compact subset of Rdx and h0 = (h01, h02) ∈ H

are real-valued measurable functions of the data. Let V = Y2 − h2(Z). From equations (9) and

(10), one can de�ne the following two residual functions ρ1(Di, α) = 1[Yi1 ≤ h1(X ′iθ, s(τ1, V )]− τ1 ,

where s(τ1, V ) simply makes explicit that h1 will depend on V and a particular τ1, and ρ2(Di, α2) =

1[Yi2 ≤ h2(Zi)]−τ2. These two residual functions lead to a vector of two semiparametric conditional

moment restrictions m1(D1, α) = E[ρ1(D1, α)|D1] and m2(Di, α2) = E[ρ2(D2, α2)|D2]. These two

moment conditions can be stacked into a vector m(D,α) = (m1(D1, α1),m2(D2, α2))′. Based on

these moment condition a stacked sieve minimum distance estimator for α0 can be de�ned as

α̂n = arg min
α∈Ak(n)

1
n

n∑
i=1

ρ̂(di, α)′
∑̂

(di)−1ρ̂(di, α) (11)

= arg min
α∈Ak(n)

1
n

n∑
i=1

{ρ̂1(di, α1)′
∑̂

1
(di)−1ρ̂1(di, α1) + ρ̂2(di, α2)′

∑̂
2
ρ̂2(di, α2)}, (12)

withAk(n) ≡ Θ×Hk(n), and
∑

(D) = (
∑

1(D1),
∑

2(D2))′, where
∑

1(D1) ≡ V ar(ρ1(D1, θ, h1)|D1)

and
∑

2(D2) ≡ V ar(ρ2(D2, h2)|D2) are positive-de�nite weighting matrices. Stack GMM/SMD has

been considered in a general context by Newey (1984) or Ai and Chen (2007) for instance.

In practice, one would consider the following three-step procedure:

Step1. Obtain an initial consistent estimator:

arg min
α∈Ak(n)

1
n

n∑
i=1

{ρ̂1(di, α)′ρ̂1(di, α) + ρ̂2(di, h2)′ρ̂2(di, h2)}.

Step2. Obtain a consistent estimator
∑̂

(D) of the optimal weighting matrix
∑

0(D) using α̂n and

any nonparametric regression procedures (such as kernel, nearest-neighbor or linear sieves).

Step3. Obtain the optimally weighted estimator α̃n = (θ̃n, h̃n(ν̂)) by repeating the previous sieve-

based estimation of step 1 in order to solve

min
α∈An

E[ρ(D,α)′
ˆ

[
∑

0
(D)]−1ρ(D, θ, α)].
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3.2 Consistency and convergence rates

3.2.1 Consistency

The choice of sieve bases is motivated by the kind of smoothness one wants to impose and the

support of the function to be approximated. The asymptotic analysis in this paper relies on standard

smoothness restrictions on the unknown functions h1 and h2. Suppose that X = X1×X2× . . .×Xd

is the Cartesian product of compact intervals X1, . . . ,Xd. Let 0 < γ ≤ 1. A real-valued function h

on X is said to satisfy a Hölder condition with exponent γ if there is a positive number c such that

|h(x)− h(y)| ≤ c |x− y|γe for all x, y ∈ X ; here |x|e = (
∑d

l=1 x
2
l )

1/2 is the Euclidean norm of x =

(x1, . . . , xd) ∈ X . Given a d-tuple α = (α1 + . . .+αd) of nonnegative integers, set [α] = α1 + . . .+αd

and let Dα denote the di�erential operator de�ned by

Dα =
∂[α]

∂xα1
1 . . . ∂xαd

2

. (13)

Let m be a nonnegative integer and set p = m + γ. A real-valued function h on X by Λpc(X )

(called a Hölder class), and the space of all m-times continuously di�erentiable real-valued functions

on X by Cm(X ). De�ne a Hölder ball with smoothness p = m+ γ as

ΛpC(X ) =

{
h ∈ Cm(X ) : sup

[α]≤m
sup
x∈X
|Dαh(x)| ≤ c, sup

[α]=m
sup

x,y∈X ,x 6=y

∣∣∣∣Dαh(x)−Dαh(y)
|x− y|γe

∣∣∣∣ ≤ c
}
. (14)

Functions belonging to a Hölder ball are well approximated by linear sieves. Linear sieves form

a large class of sieves useful for sieve estimation. Tensor-product construction is a standard way

to generate linear sieves of multivariate functions from linear sieves of univariate functions. For

instance, for a bivariate tensor product spaces: let Ul, l = 1, 2, be compact sets in Euclidean spaces

and U = U1×U2 be their Cartesian product. Let Gl be a linear space of functions on Ul for l = 1, 2,

each of which can be any of the sieve spaces described below, among others. The tensor product, G,

of G1,G2 is de�ned as the space of functions on U spanned by the functions g1(x1)× g2(x2), where

gl ∈ Gl for l = 1, 2. To facilitate the treatment of functions on noncompact domain, the technique

suggested in Chen, Hong and Tamer (2005) is applied introducing a weighting function as follows:
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‖α‖s = ‖θ‖E + ‖h‖∞,ω (15)

where the weighted Holder norm is de�ned as ‖g‖∞,ω ≡ supξ |g(ξ)ω(ξ)|, where ω(ξ) = (1 +

‖ξ‖2E)−ς/2, ς > p > 0.

Assumption 3.1. (i) The data (Yi, Xi, Zi) : i = 1, 2, ..., n are i.i.d.; (ii) fY1|Y2,X,V (y1 | y2, x, v) is

continuous in (y1, y2, x, v), and supy1 fY1|Y2,X,V (y1) ≤ const. < ∞ for almost all Y2, X, V . (iv)

fY2|Z(y2 | z) is continuous in (y2, z), and supy2 fY2|Z(y2) ≤ const. < ∞ for almost all Z; (v)

E[FY1|X,V (h1(X ′θ, V )) | X = x, V = ν] ∈ Λp11 (D2), E[FY2|X(h2(Z)) | Z = z] ∈ Λp21 (D).

Assumption 3.2. (i) h ∈ H a Holder space under the weighted metric ‖h‖∞,ω, α0 ∈ A ≡ Θ ×H;

(ii) An ≡ Θ×Hn, n ≥ 1, are the sieve spaces satisfying Hn ⊆ Hn+1 ⊆ H, and for any α ∈ A there

exists πnα ∈ An such that ‖πnα0 − α0‖s = o(1) (as kn →∞) and kn/n→ 0.

Assumption 3.3.
∑̂

(D) =
∑

(D) + op(1) uniformly over D ∈ D.

Assumption 3.4. (i) There is a function b(.) such that b(δ)→ 0 as δ → 0 and

E[sup‖α−α′‖<δ ‖m(Di, α)−m(Di, α
′)‖2] ≤ b(δ) for all small positive value δ;

(ii) E[supα∈An
|ρ(D,α)′ρ(D,α)|2] <∞.

Discussion of assumptions. One needs to ensure that the control variable estimate ν̂ is close

to its true value ν0 for n large enough. This will be veri�ed by standard nonparametric estimators.

One needs to show that the approximation error arising from the �rst step estimation of the control

variable is o(1), which is a necessary condition to show consistency (see Andrews (1994)). The

compactness assumption 3.2(i) can be replaced by a more general assumption allowing for noncom-

pact parameter space and a penalty assumption. Indeed, Assumption 3.2(i) can be replaced by the

following high-level condition: Assumption 3.2. (i') h0 ∈ H where H is a separable Banach space

under the metric ‖h‖c, α0 ∈ A ≡ Θ × H. This would allow for functions belonging to a Sobolev

space. Since Sobolev spaces are usually not compact under standard norms, one would have to

penalize the estimator (see Shen (1997), Chen and Pouzo (2009)). Assumption 3.2(ii) means that

the true parameter α0 is in the approximating sieve space An and it guarantees that the sieve space
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approximates the true function space well. This is similar to the denseness condition in Gallant and

Nychka (1987) or Ai and Chen (2003). Veri�cation of this assumption depends on the particular

sieve used to approximate h. Assumption 3.4 is an enveloppe condition which together with Holder

continuity of the objective function serves to verify uniform convergence.

Lemma 3.1. Let α̂ be the sieve extremum estimator (11). Let Assumptions 2.1-2.3 and 3.1-3.4

hold. Then ‖α̂n − α0‖s = o(1).

Proof: see appendix.

3.2.2 Convergence rates

Let {δn} denote a positive sequence that decreases to zero as n→∞. α̂n is said to be consistent for α0

at a rate (strictly) faster than δn if ‖α̂n − α0‖ /δn → 0 in probability, denoted as ‖α̂n − α0‖ = op(δn).

The goal is to show that α̂n is consistent at a rate faster than n−1/4 as this will be useful to show

asymptotic normality. Together with assumptions for consistency, (i) the sieve approximation error

rate, ‖α0 − πα0‖, have to approach zero suitably fast, and (ii) the sieve space, Θn, must not be too

complex. The following set of assumptions su�cient in order to obtain rates of convergence for α.

Assumption 3.5. There is C1 > 0 such that for all small ε > 0,

sup
{α∈An:‖α0−α‖≤δ}

E (m(θ,Dt)−m(θ0, Dt))
2 ≤ C1ε

2. (16)

Assumption 3.6. For any δ > 0, there exists a constant s ∈ (0, 2) such that

sup
{α∈An:‖α0−α‖≤δ}

|l(θ,Dt)− l(θ0, Dt)| ≤ δSU(Dt), (17)

with E([U(Dt)]γ) ≤ C2 for some γ ≥ 2.

Theorem 3.1. Let α̂ be the sieve extremum estimator (13). Let Assumptions IR, ITM, 3.1-3.6

hold. Then ‖α̂n − α0‖s = o(n−1/4).

Proof: This assumptions still need to be veri�ed.
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Remark 3.1. (i) Imposing index restrictions in the �rst-stage might be necessary to insure fast

enough convergence rates. Take k2n = Op

(
n

1
2p+dz

)
. With p = 2, k2n = n

1
4+dz , and hence ‖ν̂ − ν0‖ =

Op

(
n−

2
4+dz

)
. Thus, if dz ≤ 2, ‖ν̂ − ν0‖ = op

(
n−1/4

)
, if dz > 2, impose index restrictions to get

‖ν̂ − ν0‖ = op
(
n−1/4

)
. (ii) An alternative speci�cation would be to consider the outcome equation

Y1 = h1(X ′θ, ε) where X ′θ is a vector of small dimension M , and Xm (m = 1, ...,M) is a subvector

of X. The approach presented in this paper applies to this more general framework. The constraint

on the dimensionality of X ′θ will then come from the convergence rates.

3.3 Asymptotic normality and semiparametric e�ciency [TO BE ADDED]

Asymptotic normality and e�ciency will be shown by verifying theorem 3.2 in Chen and Pouzo

(2009).

4 Computation and Simulation

4.1 Sieve extremum estimation

4.1.1 Computational e�ciency.

Quantile regression estimators have the remarkable feature that they can be rewritten as a linear

programming problem. From a computational point of view, this is extremely convenient and ef-

�cient procedures have been developed by Koenker (2005) and others. Unfortunately the GMM

framework for quantile regression does not allow one to use these procedures. In order to take

advantage of these computational features, I suggest to �rst consider a consistent estimator which

guarantees computational e�ciency, and then use the resulting estimates as starting values for the

asymptotically e�cient estimator. Estimation of quantile regression models with single-index re-

strictions has previously been considered in the literature by Chaudhuri et al. (1997) and Khan

(2001). Since the model considered in this paper allows for discrete regressors and the link function

is not necessarily monotonous in the index, the estimation procedure developed here cannot rely

on the average derivative estimator introduced by Chaudhuri et al. (1997), nor can it be based on

the rank estimator developed by Khan (2001). Ichimura and Lee (2006) and Wu et al. (2009) have
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proposed single-index quantile regression estimators based on local linear polynomials only. This

paper extends their approach to quantile regression models with multivariate link function and to

general sieve estimators of the link function.

First, the unknown functions h ∈ H are approximated by hn ∈ Hn, where again Hn is some

sieve space, that is, some �nite-dimensional approximation spaces (e.g Fourier series, splines, power

series,...) which becomes dense in H as sample size n → ∞. Then the vector of �nite-dimensional

parameters θ and the unknown sieve coe�cients are estimated by a pro�led sieve least absolute de-

viation procedure. In order to estimate the �nite-dimensional parameter vector θ by semiparametric

pro�led estimation, using the sample criterion function n−1
∑n

i=1m(Di, θ, ĥ1(ν̂)), it is much easier if

ĥ1(ν̂) were a sieve estimate obtained by maxh∈Hn Q̂n(θ, h1(ν̂)) = n−1
∑n

i=1m(θ, h1(ν̂), Di) for any

arbitrarily �xed θ, rather than a kernel estimate. Besides, in order to impose shape restrictions

sieves, i.e splines, are much more appropriate (see note 3 pp.2 in Chen and Pouzo (2009a)). I follow

this recommendation and propose a pro�led semiparametric sieve extremum estimation procedure

which is consistent with the recent literature on sieve estimation (for similar remarks and a com-

prehensive review, see Chen (2006)). Hence, consider the following asymptotically ine�cient but

computationally convenient minimization problem:

arg min
h1,θ

n∑
i=1

ρτ1
{
yi − h1(x′iθ, ν̂i)

}
(18)

Approximate h1(·) by a sieve tensor product: h(·) =
∑k1

j=1

∑k2
l=1 βijlψj(x

′θ̂(k))ψl(ν̂), where ψ is

a univariate basis; note that series estimators o�er an alternative to the tensor-product approach

suggested here (see for instance Newey (1994)).

Step1. Obtain a consistent estimator of the control variable ν0.

Step1.1 Estimate h2 as the solution to

arg min
h2

n∑
i=1

ρτ2 {y2i − h2(zi)} (19)

Step1.2 Get an estimate of the residuals ν̂i = y2i − ŷ2i.
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Step2 Semiparametric estimation.

Step2.0 Get initial values for θ(0).

Step2.1 Given θ̂(k), obtain β̂(k) by solving

min
β

n∑
i=1

ρτ1

yi −
k1n∑
j=1

k2n∑
l=1

βijlψj(x′θ̂(k))ψl(ν̂)

 , (20)

Step2.2 Given β̂(k), obtain θ̂(k+1) by solving the following optimization problem:

min
θ

n∑
i=1

ρτ1

yi −
k1n∑
j=1

k2n∑
l=1

β̂
(k)
ijl ψj(x

′θ)ψl(ν̂)

 , (21)

Step 3: Repeat Steps 1 and 2 until convergence to θ̂∗.

One can then estimate ĥ given θ̂∗. Note that the optimization problem reduces to successive linear

quantile regressions, which is computationally extremely fast.

Remark 4.1. The objective function might not be well-behaved, need to try various initial values

(see Newey and McFadden (1994) and Bates and Watts (1988)).

Remark 4.2. The estimation strategy can be extended to a model with m endogeneous variables by

adding a linear index of control variables. The estimator would then become a double-index model.

4.2 Experimental simulations

In this subsection I show the results of two Monte-Carlo simulations in order to explore the �nite

sample properties of the computationally e�cient estimator. Note that these simulations do not

include the asymptotically e�cient estimator and hence provide a lower bound to the expected

performance of the asymptotically e�cient estimator. The nonparametric estimator used is quantile

smoothing splines as in Koenker et al. (1994).

4.2.1 Single-index quantile regression

The �rst Monte-Carlo simulation shows that the procedure introduced in this paper produces results

comparable to the �nite sample properties of the single-index quantile regression estimator based on
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local linear polynomials suggested by Wu, Yu and Yu (2009). I reproduce one of their experimental

setting. The DGP is:

y = sin

(
π(u−A)
C −A

)
+ 0.1Z, (22)

where u = xT θ, x = (x1, x2, x3)T , and theoretical values are given by θ0 = 1√
3
(1, 1, 1)T , A =

√
3

2 −
1.645√

12
;
√

3
2 + 1.645√

12
; xi ↪→ Unif(0, 1), i = 1, 2, 3, Z ↪→ N(0, 1), xi's and Z are mutually independent.

In the table t denotes quantiles. Results are shown in table 1.

Theoretical Value Coe�cient Bias Std. Error MSE

t = 0.1

theta 1 0.5774 0.5767 -0.0006 0.0243 0.0006
theta 2 0.5774 0.5737 -0.0036 0.0239 0.0006
theta 3 0.5774 0.5801 0.0028 0.0227 0.0005

t = 0.3

theta 1 0.5774 0.5727 -0.0047 0.0181 0.0003
theta 2 0.5774 0.5756 -0.0017 0.0203 0.0004
theta 3 0.5774 0.5828 0.0054 0.0183 0.0004

t = 0.5

theta 1 0.5774 0.5758 -0.0016 0.0172 0.0003
theta 2 0.5774 0.5740 -0.0034 0.0173 0.0003
theta 3 0.5774 0.5815 0.0041 0.0184 0.0004

t = 0.7

theta 1 0.5774 0.5749 -0.0024 0.0194 0.0004
theta 2 0.5774 0.5750 -0.0024 0.0189 0.0004
theta 3 0.5774 0.5812 0.0038 0.0174 0.0003

t = 0.9

theta 1 0.5774 0.5728 -0.0045 0.0211 0.0005
theta 2 0.5774 0.5735 -0.0039 0.0238 0.0006
theta 3 0.5774 0.5843 0.0070 0.0230 0.0006

Table 1: Comparison with Wu, Yu and Yu (2009) - n = 100, r = 100

4.2.2 Additive triangular model with index restrictions

This Monte-Carlo simulation considers the estimation of a triangular model with index restrictions.

Y2 is the endogenous variable. The DGP is:
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Y1 = (xT θ0)2 + U

Y2 = 1 + 2.x1 + 3.z + V

U = λ.cos(V )2 + ε

where u=xT θ, x = (x1, x2, y2)T ,θ0=(1,4.5,-3)T ; λ=3; x1 ↪→N(0,32), x3 ↪→N(2,42), Z↪→N(3,52),

ε ↪→Unif(0,1), V↪→Unif(0,1), xis and Z are mutually independent. Results are for τ1 = .5. Results

are shown in table 2.

Theoretical Value Coe�cient Bias Std. Error MSE

t = 0.5

theta 1 1.0000 1.0000 0.0000 0.0000 0.0000
theta 2 4.5000 4.5243 0.0243 0.3307 0.1100
theta 3 -3.0000 -3.0095 -0.0095 0.2360 0.0558

Table 2: Simulation for A Separable Triangular Model - n = 300, r = 100

4.2.3 Simulation to be added.

Results for a nonseparable triangular model will be added. Nonetheless, as the two previous simula-

tions already show, the sieve pro�led estimation procedure developed in this paper should be easily

adapted for the nonseparable model.

5 Empirical application: Pro�ts and property rights.

The role of institutions is currently a major center of interest in development economics. After a

�rst generation of cross-country regressions of economic growth on various measures of institutional

quality (Hall and Jones (1999), Acemoglu et al. (2001), Rodrik et al. (2004) among others), the

economic profession seems to have reached the consensus that institutions in general, and property

rights in particular, matter for growth and development. Following these macro studies the question

of the mechanisms through which property rights a�ect economic performance has come under

the scrutiny of more recent work (Banerjee and Iyer (2005), Pande and Udry (2006)). Several
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mechanisms can be underlying the connection between particular institutions and investment or

productivity.

Goldstein and Udry (2008) have recently investigated one particular mechanism that could po-

tentially link property rights over land to agricultural investment, and in turn, to farmers' pro�ts.

Investment incentives depend on expectations of rights over the returns to that investment and hence

on the nature of property rights. Goldstein and Udry (2008) examine the connection from a set of

complex and explicitly negotiable property rights over land to agricultural investment, and in turn,

to agricultural productivity. There exists several mechanisms through which property rights over

land might in�uence investment in agriculture.

Consider an environment in which fertilizer is expensive, land is relatively abundant, and crop

returns are low. Hence, fallowing is the primary mechanism by which farmers increase their yields:

it is the most important investment in land productivity. Farmers who lack political power are not

con�dent of maintaining their land rights over a long fallow which leads to shorter than optimal

fallow durations. This framework can be applied to the model considered in this paper as shown in

section 2.

The survey consists of a 2-year rural survey in Ghana. There were four village clusters. Within

each village cluster, 60 married couples selected. Each head and spouse was intervied 15 times.

Multiple plots and each plot can be identi�ed with a particular individual who controls it. Several

questions about plots (plot-level inputs, harvests, sales, credit + plot rights and history question-

naires). Additional information about soil fertility. Data on education and individual wealth.

The econometric strategy followed in the present paper is to examine the e�ect of an individual's

position in local political and social hierarchies on his or her fallowing choices on a plot, conditional

on plot characteristics. In turn, productivity e�ects of (endogenous) fallowing choices are estimated

using the individual's political and social position as instruments for the fallowing choice. Equations

(5) and (6) suggests the following semiparametric econometric model speci�cation
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Y1 = h1(τp,X′pθ1, u, v) (23)

τp = h2(Z ′θ2, ν) = h2(Z ′θ2) + λ(Z, v). (24)

Note that in this particular case one would want to impose index restrictions in the second equa-

tion as well. Endogeneity arises because τp is not independent of the error term since it may respond

to the same unobserved attributes of the plot that in�uence pro�ts. An appropriate instrument is

ωp, which is unobserved. Instead, a set of variables Z that represent the cultivator's position in local

social and political hierarchies is used as instruments. Estimation of structural feature will yield

local quantile e�ects of fallow duration on pro�ts. This more general empirical approach attempts

at providing a more thorough understanding of the e�ect of property rights on land pro�ts. This

endeavour should render possible to investigate and bring to light two aspects of the relationship

between property rights and productivity: heterogeneity and nonlinearities.

6 Conclusion

This paper makes an attempt at extending currently existing parametric or semiparametric estima-

tors for quantile regression models in the presence of endogeneity. The �rst contribution is to develop

a sieve based estimator that generalizes considerably previous estimators. A second contribution is

to discuss implementation issues for e�cient estimation of semi-nonparametric quantile regression

estimators. Last, it is hoped that the application will lead to new results on the understanding of

the interaction between institutions and economic development.
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A On smoothness

One issue arising in the estimation and the derivation of asymptotic properties of semi-nonparametric

models is the decision over of the smoothness of the functions h0. This is a critical step because

it has implications on all aspects of semiparametric estimation. There are three main aspects that

should inform the choice of smoothness for h0:

1. (Economic) Theory . The smoothness of h0 should ideally follow from economic theory or,

more generally, from smoothness properties intrinsic to the object it represents (whether a

density or a utility function).

2. Implementation . The type and the smoothness of the estimator will be made according

to the smoothness assumptions on h0. For instance, it is known that if Θ = Λp([0, 1]d) is

the Holder space of p-smooth functions with p > d/2, then functions in this space are well

aproximated by linear sieves and one can for example use series estimator. It is not the case

however if Θ = W 1
1 ([0, 1]d): one should rather take the sieve space, Θn, to be the nonlinear

Gaussian radial basis ANN. Therefore, although ease of computation should not be the only

concern when one decides how smooth h0 should be, in practice it will be taken into account

(see Chen (2007) for more on this).

3. Large-sample properties of the estimator .

(a) The smoothness assumption has major implications in terms of convergence rates. This

plays an important role in semiparametric models in particular, as
√
n-consistent estima-

tion of the parametric part of the model often relies on the assumption that
∥∥∥ĥ− h∥∥∥ =

o(n−
1
4 ).

(b) Compactness of the parameter space H, or at least of the sieve space Hn, is a key require-

ment for consistency. A natural consequence of this fact is that one should make sure

that she/he will be able to verify the compactness assumption for the parameter space

considered.
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B Consistency and convergence rates

B.1 Consistency

[PRELIMINARY]

Consistency is obtained by application of theorem 3.1 in Chen (2007).

Condition 3.1 (Identi�cation) The identi�cation condition is veri�ed by assumptions ITM and

IR which ensures that for j = 1, 2, E[ρj(D,α)] = 0 implies θ = θ0 and h = h0. (θ0, h0) ∈ int(Θ)×H

satis�es the model. In particular, condition 3.1 (ii) is satis�ed since the semiparametric model is

well-posed.

Condition 3.2 (Sieve spaces) Given the choice of sieve spaces Hn and the de�nition of the

norm ‖·‖∞,ω, suph∈H ‖α−Πnα‖ = o(1) (see Chen, Hansen and Scheinkman (1997) or Ai and Chen

(2003)).

Condition 3.3 (Continuity) Condition 3.3(ii) is implied by conditions 3.2 and 3.3(ii)'. The

proof of condition 3.3(ii)' is devided into two parts: (i) E[ρ1(D,α1)′
∑

1(D)ρ1(D,α1)] = o(1), and

(ii) E[ρ2(D,α2)′ρ2(D,α2)] = o(1).

• (i) To verify condition 3.3(ii)', note that for any h(.) ∈ H,

|m(D,α)−m(D,α0)| = |E[ρ(D,α)− ρ(D,α0)]|

=
∣∣E[FY1|X,V (h(X ′θ, V ))− FY1|X,V (h0(X ′θ0, V ))]

∣∣
=
∣∣E[fY1|X,V (h̄(X ′θ̄, V ))[h(X ′θ, V )− h0(X ′θ0, V )]]

∣∣
≤ E[fY1|X,V (h̄(X ′θ̄, V ))]× sup

x,v

∣∣h(X ′θ, V )− h0(X ′θ0, V )
∣∣

where h̄(X ′θ̄, V ) is in between h(X ′θ, V ) and h0(X ′θ0, V ). Thus assumption on smoothness of

f and ‖πnh0 − h0‖∞ = o(1) imply

E[|m(D,α)|] ≤ E[fY1|X,V (h̄(X ′θ̄, V )) | Z]× ‖πnα0 − α0‖∞ = o(1). (25)
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• (ii) E[ρ2(D,α2)′ρ2(D,α2)] = o(1) follows from similar steps.

Hence (i) and (ii) verify condition 3.3(ii)', and hence imply condition 3.3(ii)

Condition3.4 (Compact sieve spaces) Note that A = Θ×H, with H = Λp(Rd), is compact

under the norm ‖α‖s = ‖θ‖E +‖h‖∞,ω, and ‖h‖∞,ω ≡ supξ |h(ξ)ω(ξ)|, where ω(ξ) = (1+‖ξ‖2E)−ς/2,

ς > p > 0. Hence condition 3.4 is veri�ed.

Condition3.5 (Uniform convergence) Uniform convergence over sieves follows from continuity,

from simple convergence of Qn and from Condition 3.4 of Chen (2006).

B.2 Convergence rates

[TO BE ADDED]


